## FINAL REPORT OF GEOLOGICAL MAPPING & DRILLING ON THE

GREENDROP PROPERTY (COPPER, GOLD, MOLY CLAIMS)
NEW WESTMINSTER MINING DIVISION NEAR CHILLIWACK, B.C.

92-H-3/W

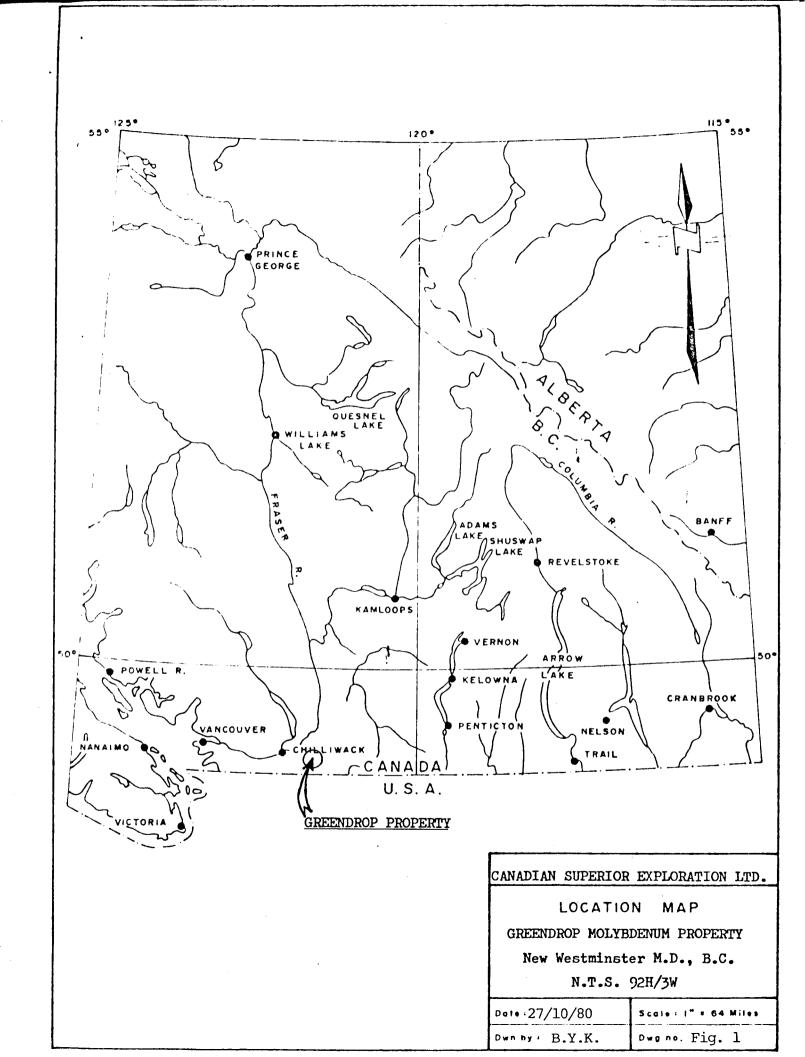
LOCATION:

The central part of the claims is located at coordinates 49<sup>0</sup>08'N latitude, 121<sup>0</sup>26'W longitude, approximately 5 km. north of

the Chilliwack Lake.

WORK PERIOD:

May 5 - July 31, 1980




OCTOBER 20, 1980

B.Y. Kim Geologist Vancouver, B.C.

### TABLE OF CONTENTS

|          |                    |                              |               | PAGE |
|----------|--------------------|------------------------------|---------------|------|
| I        | SUMMAR             | Υ                            |               | 1    |
| II       | INTROD             | UCTION                       |               | 1    |
|          | i)                 | Location, Access and physiog | raphy         | 2    |
|          | ii)                | Property status              |               | 2    |
|          | •                  | History of work done         |               | 3    |
| III      | GEOLOG             | Υ                            |               | 4    |
|          | i)                 | Introduction                 |               | 4    |
|          | ii)                | Lithology                    |               | 5    |
|          | iii)               | Structure                    |               | 11   |
|          | iv)                | Alteration                   |               | 12   |
|          | v)                 | Mineralization               |               | 13   |
| IV       | DRILLI             | NG                           |               | 15   |
| V        | CONCLU             | USIONS AND RECOMMENDATIONS   |               | 15   |
| VI       | REFERE             | ENCES                        |               | 16   |
| ILLUSTRA | TIONS              |                              |               |      |
| ,        | Locat <sup>*</sup> | ion Map                      | Facing Page 1 |      |
|          |                    | gical Plan                   | In Pocket     |      |
|          |                    | gical Section                | In Pocket     |      |
|          |                    | gy, alteration and drilling  | In Pocket     |      |
|          |                    | Sketch                       | In Pocket     |      |
| APPENDI( | CES                |                              |               |      |
|          |                    | ing Log                      | In Pocket     |      |
|          |                    | ment of expenditure          |               |      |



#### I SUMMARY

- i) The 1980 exploration program on the Greendrop property consisted of prospecting, geological mapping (1"=200') and diamond drilling (2 holes 3020 ft. in total).
- ii) The program revealed a well-defined elliptical zone
  (1 x 1.5 km. approximately) of hydrothermal alteration
  together with minor multiple-staged mineralization of
  Mo-Cu porphyry-type.
- iii) The two most favourable sites were drilled vertically down to 1500 ft. and 1520 ft. respectively with negative results. There was no improvement of mineralization at depth nor was there any indication of a deep-seated felsic differentiate.
- iv) The source of breccia-bearing molybdenite float remains uncertain but seems to be of little economic interest.
- v) Due to the extremely rugged topography and thick valleyfill, the selection of drill sites was limited and drilling costs were high.

#### II INTRODUCTION

The Greendrop property, located approximately 27 km. south of Hope, B.C. consists of three original M.G.S. claims, the Copper (4 units), Gold (2 units) and Moly (6 units). An additional four claims (80 units), the Green (1-4) were staked over and surrounding the original claims after Canadian Superior Exploration Ltd. made an option agreement with the property owner.

The 1980 program conducted on the Greendrop property was initiated as a result of a reconnaissance survey carried out in 1979. The results indicated the possibility of an exploitable molybdenum-bearing deposit within the program area. A detailed geological survey was therefore carried out, and was followed by a drilling program during the period May - July, 1980.

#### i) Location, Access and Physiography

The Greendrop property situated at coordinates 49<sup>0</sup>08'N latitude by 121<sup>0</sup> 26'W longitude (N.T.S. 92H/3W) in the New Westminster Mining Division, British Columbia. The claims are located around and immediately southwest of Greendrop Lake, a small lake approximately 5 km. north of the well-known Chilliwack Lake. (Figure 1)

Access to the property is possible via helicopter from Vancouver or Hope, or walking 4 kilometers southwest along the Centennial Trail from the northeastern end of the Greendrop Lake, the present termination of local logging roads.

The claims cover part of the Post Creek Valley which in many places is bordered on the southeast and northwest by steep cliffs and talus slopes. Relief is high with elevations ranging from 900 m. in the southwestern corner of the map to 1450 m. at a southern central ridge. Vegetation consists mainly of mature hemlock, balsam and cedar trees with moderate underbrush.

### ii) Property Status

The original property consisted of three M.G.S. claims (12 units) that were staked and recorded on May 4th, 1979 by J.M. Mirko, a partner of Kodiak Resources Ltd. (a private B.C. company presently consisting of three shareholders including J.M. Mirko). Following the signing of an option agreement an additional four M.G.S. claims (80 units) were staked by Canadain Superior Exploration Ltd. over and adjacent to the pre-existing claims. Those four claims were duly recorded on October 30, 1979. Claim data for all the claims are listed below (Table 1) and plotted on Map 4.

TABLE 1 - CLAIM DATA (Greendrop Option)

| Claim Name | No. of Units | Record No. | Record Date        |
|------------|--------------|------------|--------------------|
| Copper     | 4            | 452 (5)    | May 4, 1979        |
| Gold       | 2            | 453 (5)    | May 4, 1979        |
| Moly       | 6            | 454 (5)    | May 4, 1979        |
| Green 1    | 20           | 664 (10)   | October 30, 1979   |
| Green 2    | 20           | 665 (10)   | October 30, 1979   |
| Green 3    | 20           | 666 (10)   | October 30, 1979   |
| Green 4    | 20           | 667 (10)   | October 30, 1979 · |

#### iii) History of Work Done

Although the mineral showings and widespread gossan zone southwest of the Greendrop Lake probably were known for decades, there is no record of exploration activities before 1970. At that time the property was jointly optioned by the Noranda Exploration Co. Ltd. and Kerr-Addison Mines Ltd. from the previous owner, Tom Richards.

Under Noranda's management the following program was undertaken:

- (i) Reconnaissance geological mapping
- (ii) I.P. Survey
- (iii) Trenching
- (iv) Diamond drilling (one inclined hole 661 ft.)

The objective of Canadian Superior Exploration Ltd.'s 1980 program was to define the nature of widespread strong pyritization and pin-point the possible deep-seated molybdenum deposit associated with a multiple intrusion.

During May 5 - July 31, 1980 Canadian Superior Exploration Ltd. conducted an exploration program which consisted of:

- (i) Geological mapping (1:2500) of the central part of the claim block, approximately 2 x 2.5 km.
- (ii) Prospecting and local geochemical sampling covering the entire claim block and surrounding area.
- (iii) Diamond drilling of 3020 ft. in 2 holes.

#### III GEOLOGY

#### i) Introduction

Regionally the area is underlain by granodiorite and quartz-diorite belonging to the Chilliwack Batholith of late Oligocene age (J.W.H. Monger 1970). These granitic rocks have intruded the Custer gneiss, a Mesozoic (?) metamorphic complex to the north and east, and Eocehe conglomerates and sandstones along the western boundary of the claim block.

Centrally these intrusive rocks have been altered and pyritized by later intrusions of a quartz-diorite porphyry and a breccia complex. Dykes and sill-like igneous bodies of various compositions were emplaced subsequently.

The two-dimensional limits of these multiple intrusions with their associated pyrite halo are visible aerially as well-defined heavy staining in the well-exposed cliffs, immediately southwest of the Greendrop Lake. This gossan zone is elliptical in plan, measuring 1.5 km. (east-west) by 1 km. (north-south) and straddles the covered Post Creek Valley. (See Map No. 3 - coincides with alteration zone).

No significant mineral showings on surface have been found. However, the most interesting mineralization on float boulders and minor showings is molybdenite contained in:

- fractures of well-silicified altered granodiorite and diorite porphyry
- ii) silicified breccia as heavy fracture coating usually with quartz and minor disseminations

#### ii) Lithology

The map area is within the upper Tertiary Chilliwack Batholith except a small area in the northeast corner underlain by the metamorphic complex of the Custer Gneiss group. A centrally located elliptical gossan zone associated with multiple intrusion is of major interest. All the rocks around the gossan zone show predominantly dioritic composition characterized by very little potassium feldspar.

Bedrock exposures are generally restricted to the upper part of the steep slopes and cliffs. Outcrop occupies approximately 10% of the total map area.

## 1) Granodiorite-Quartz-Diorite (Tg)

Most of the area outside the gossan zone is underlain by fresh or weakly altered granodiorite to quartz-diorite of the Post Creek phase of the Chilliwack Batholith. Centrally this is intruded by irregularly-shaped igneous bodies, large numbers of dykes and breccias, mostly of dacitic composition.

In handspecimen the granodiorite-quartz-diorite is predominantly leu-cocratic and medium grained with hypidiomorphic textures. But a gradational change toward the central breccia zone locally renders the texture porphyritic, with coarsening of plagioclase feldspar and quartz. The principal minerals are plagioclase (40-50%), quartz (30-40%) and biotite/hornblende (10-15%). In most of the map area feldspar is altered to incipient sericite and mafic minerals are chloritized and locally epidotized, with calcite and minor pyrite in fine fractures.

### 2) Altered Granodiorite - Quartz-Diorite (Ta)

Altered granodiorite and quartz-diorite constitute a separate map unit of sericitized and/or silicified equivalents of the granodiorite and quartz-diorite. They are usually coarser grained than the unaltered equivalent and show occasional relict textures of the latter.

### 3) <u>Diorite - Quartz-Diorite Porphyry (Td)</u>

Irregularly shaped intrusions and dyke-like bodies of diorite to quartz-diorite porphyry are widespread inside the gossan zone. These intrusions appear to be responsible for at least the initial stages of sulphide mineralization.

Located near the drilling area this rock is a fine to medium grained porphyry with abundant sub-to euhedral feldspar laths in an inequigranular groundmass. The principal minerals are plagioclase (60-70%), quartz 5-10%), biotite (10-20%) usually with pyrite (3-5%) up to 10%. The same type of rock mapped in the western part tends to be coarser grained and contains less pyrite. All the diorite and quartz-diorite porphyries are variably altered, often with very weak to moderate propylitic alteration and local fracture-controlled sericitization.

### 4) Breccias (B)

The wide occurrence of a breccia complex is one of the most interesting features of the property. These brecciated rocks are visible on the main cliffs 600 m. south-southwest of Greendrop Lake, where they appear to form a pipe-like body peripheral to the phyllic alteration. The pipe seems to be controlled by N  $70^{\circ}$  W and N-S fracture systems.

The core of the breccia occurrence consists principally of two different types; an intrusive breccia called here 'rubble breccia' and a 'tuff breccia'. The rest of the breccia units are located outwardly and seem to be associated with post-breccia dyke rock ('dyke breccia') and a peripheral crackle zone ('crackle breccia'). A remaining type of breccia ('altered breccia') is an outlier which seems to have no genetic relation

with the above breccia complex.

In cliff exposures the breccia seems to intrude the altered granodiorite with near-vertical contacts. Fragments of the breccia are mostly angular and transported or at least rotated. All of these features indicate that the breccia is of a breccia pipe origin.

All the breccias contain pyrite in variable amounts and show weak to strong sericite-kaolin alteration. Drusy quartz veins with rare molybdenite are strong near the rim of the pipe.

### 4-1) Rubble breccia (Br)

The most highly brecciated type in the central zone of the breccia complex is classified as 'rubble breccia'. It is composed mostly of variably-sized angular fragments with minor amount of matrix. Alteration of this breccia is so intense that the original minerals are difficult to identify. Where the alteration is weak it appears that fragments are mostly composed of altered granodiorite cemented by minor amounts of comminuted granodiorite.

The breccia contains 2-5% pyrite, mostly as coarse void-fill clusters in the matrix. Minor visible molybdenite was occasionally found in drusy quartz near the pipe rim.

### .4-2) Tuff breccia (Ba)

The less-brecciated and locally non-brecciated part of the main breccia zone is occupied by tuff breccia, which is similar in part to a volcanic agglomerate-tuff. The latter is intimately intercalated with the rubble breccia (Map 1). Fragments of the brecciated rock appear to be made up mostly of light grey silicified agglomerate-tuff and minor altered granodiorite enclosed by stained tuffaceous material. The nature of contacts with the rubble breccia are unclear mainly because of intense alteration near the contact.

The tuff breccia is variably pyritized but generally weaker and finergrained than that of the rubble breccia. Although the evidence is sparse as to the origin of this tuff breccia a breccia pipe origin is preferred to an extrusive mode of emplacement.

### 4-3) Crackle breccia (Bc)

The weak breccias occurring around and outside the rubble breccia were termed 'Crackle breccia' for mapping purposes. This is a gradational type of rock between the rubble breccia and the altered granodiorite. The crackle breccias are principally badly crumbled rocks which contain variably-sized angular pieces of rock surrounded by stained fractures and open cracks with partly communited matrix. Therefore the rock constituents are uniform for both fragments and matrix. No visible exotic fragments were found.

Three isolated occurrences of these crackle breccias (Map 1) are texturally similar to one occurring near the main breccia pipe. These outliers may have been branch conduits structurally connected to the main pipe at depth. It is probable that pipe-boring volatiles and fluids formed those breccias by escaping with little distentional power through the structural weak zones.

### 4-4) Dyke breccia (Bd)

The dyke breccia differs from the preceding in that it contains a larger portion of matrix (50-70%) to rock constituents and this matrix appears to be relatively fresh. Although too fine grained to be identified under the microscope the matrix of this breccia appears to be basaltic-andesite in composition. Fragments are weakly altered granodiorite with assimilated edges. They are sometimes angular but usually rounded and 0.1 - 5 cm. in diameter. The content of pyrite is somewhat weaker than in the other breccias.

The dyke breccia is probably an intrusion breccia which may have been formed along a peripheral zone of the main breccia while the basic dyke was introduced.

### 4-6) Altered breccia (Bal)

The brecciated rock exposed in the eastern slope near DDH #1 is an exceptional kind which may have no genetic relation to the above mentioned breccias. This breccia shows only local fragments which are rounded and assimilated in a leucocratic granitic matrix. The fragments seem to be heterogeneous aphanetic dyke rocks of mesocratic composition, but in most cases alteration and assimilation precluded identification. The rock may be an intrusive rock with abundant inclusions. The variety of the dark-colored inclusions may have originated from the Custer gneiss group. Alternatively it may be a pre-mineral tectonic breccia which has been subjected to subsequent alteration. Pyritization is extensive and as strong as in other neighbouring rock types. However, there is no indication of Mo-Cu mineralization.

### 5) Dacite Porphyry Dyke (Dd)

The most frequent pre-mineral dyke observed on surface is dacite. It is 1-3 m. in width and mostly striking north  $70\text{-}80^{0}$  west with a steep dip. This dacite dyke is similar and may grade into diorite porphyry. It is characterized by abundant plagioclase (60-70%) with minor biotite-hornblende and quartz. The dyke is slightly darker than the diorite porphyry and porphyritic with abundant subhedral plagioclase phenocrysts.

Pyritization is as strong as the country rocks, which are mostly the diorite porphyry and altered granodiorite. Where the dyke is highly altered and bleached the two rock-types (diorite porphyry and dacite dyke) are hardly distinguishable.

### 6) <u>Basic Dyke (Da)</u>

A small outcrop south of the waterfall near DDH #1 is the only surface exposure of this basic dyke. However, occurrences of this rock type are frequent in DDH #2. In the drill hole occurrences this rock occurs as a narrow, steeply-dipping dyke, intruded into the altered granodiorite but in the deeper parts of the hole the occurrence is closely related to the diorite porphyry. Some of the dykes show a gradational contact

with the porphyry. The dyke is dark grey to black, fine grained to aphanitic near the surface of the hole, but changing gradationally to lighter porphyritic dyke to the deeper parts of the core.

#### 7) Post-mineral Dykes (P)

Most of the pre-mineral rock units in the map area are intruded by a number of post-mineral dykes. They are dacite-andesite, basalt, lamphrophyre and other narrow meso-and melanocratic dykes. Those dykes are mostly porphyritic with aphanitic groundmass, and their contacts with the intruded rocks are sharp. Minor coarse clusters of sulphide on the sharp contact include some large galena cubes. Those sulphides are probably derived by leaching from the surrounding host rocks.

Outcrops of fresh dacite-andesite porphyry weather out as prominences along the contact between the rubble breccia and altered granodiorite. One of these cliff-forming outcrops, approximately 30 x 100 m. strikes N20°W with a near-vertical dip. It is characterized by phenocrysts of plagioclase, hornblende and biotite set in fine grained greenish grey groundmass. Locally weak brecciation was found with well-assimilated fragments of granodiorite. Megascopically this porphyry dyke is dacite porphyry similar to the narrow post-mineral dacite-andesites, and is probably of the same origin.

### 8) Custer gneiss (Mg)

A small area in the extreme northeastern corner of the map is underlain by a metamorphic complex of the Custer gneiss group. Age determination for this metamorphic rock is still a problem but it is presumed to be Mesozoic or older. A large variety of rock types have been reported but in the map area the Custer gneiss consists of:

- i) Light colored biotite-hornblende gneiss rich in plagioclase.
- ii) Plagioclase pegmatite
- iii) Marble and calc-silicate

The Custer gneiss is intruded by the Chilliwack Batholith and the contact appears to be sharp. Minor float of calc-silicate rock were found near the assumed contact east from DDH #1. The float contains pyrophyllite, epidote, diopside and minor garnet. Rare chalcopyrite was found with magnetite-bearing float.

#### iii) Structure

Fractures and faults are prominent structural features in the map area. The entire structural picture for the central gossan zone is not clear due to lack of outcrop in the Post Creek Valley. Dykes and breccias were mapped along with prominent fractures around the peripheral cliff of the gossan zone. The former reflect structural weaknesses which may have acted as conduits for magma.

The most prominent fracturing trends are N70-80°W and N35-45°E. Both of these trends are indicated by zones of late-stage dykes, veins, and fractures. No definite faults have been mapped in the central gossan zone. However, an apparent fault was located in the northwest part of the map area. This fault strikes N40°E with a vertical to steep southerly dip as indicated by a strong topographic depression and local broken outcrops with heavily stained veining.

The remaining faults are expressed as linear fractured outcrops associated with moderate topographic depressions in which rock is more intensely altered and shattered. Frequently the fractured zones were occupied by late-stage dykes and veins with sharp contacts. The composite map "Geology, Alteration & Drilling" (Map #3) illustrates the basis of these structures.

No significant faulting or shearing was disclosed by drilling. In drill core slicken-sided fractures, usually coated with smeared sulphide, are weak and minor compared with other porphyry-type deposits in the Canadian Cordillera. The broken zone at 256 ft. of DDH #1 is thought to be developed by a ground-water channel. The deep overburden which hampered drilling work for DDH #2 is probably a covered, deeply incised, fault line filled with huge cliff-falls.

#### iv) Alteration

Hydrothermal alteration within the main gossan zone is shown by a variable assemblage of quartz, sericite, chlorite, carbonate, epidote and minor secondary biotite. There is very little argillization. Thin section study by S.C. James has verified that minor amounts of clay minerals were identified in all the altered samples. This argillization seems to occur in association with late-stage faulting or shearing.

Principally there are two alteration suites:

- (i) Sericite + quartz + pyrite (or phyllic)
- (ii) Chlorite + calcite + epidote + pyrite (or propylitic)

These two alteration suites are mainly predetermined by the type of host rocks, while the intensity of alteration is dependent on degree of fracturing. Strong quartz-sericite alteration is predominant in most of the altered granodiorite and part of breccia. Diorite porphyry and most of the pre-mineral dyke rocks tend to be propylitic. Drill cores commonly show near-vertical fracture-controlled sericitization in pervasively and weakly altered diorite porphyry (the propylitic suite).

Due to the scarcity of mineral occurrences the relation between Mo-Cu mineralization and alteration zone is not quite clear. It seems that alteration suite (i) is mostly associated with the fracture and vein-selvage type of mineralization, while suite (ii) accompanies the disseminated type of mineralization, and is generally limited to pyrite and minor chalcopyrite.

Rock alteration and sulphide impregnation are considered to be contemporaneous. However one stage of alteration in the Greendrop property may have been a barren one since a localized strong quartz-sericite zone is unaccompanied by significant mineralization.

Weathering effects are minimal although limonitic and jarositic gossan is prominent and extensive. Fresh pyrite and other minor sulphides are common on surface exposures and near the bedrock contact in drill core.

#### v) Mineralization

Primary metallic mineralization in the elliptical gossaneous area of the Greendrop property contains pyrite and minor chalcopyrite, molybdenite, magnetite, sphalerite and galena. Quartz, sericite, calcite and gypsum are the main non-metallic hydrothermal minerals. No zonal pattern has been recognized because occurrence of Cu-Mo sulphides are insufficient for the required information and because the central area is completely covered with valley-fill. However, it is noted that highly altered quartz-sericite rock contains less pyrite than the diorite porphyry which appears to be located outwardly in propylitic zones.

Pyrite is the only abundant primary sulphide and comprises from 1 to more than 10% of the rock constituents in most of the gossan zone. It occurs both in fractures and as disseminations. Pyrite constitutes 2 - 5% of the rubble breccia occurring as coarse clusters with quartz and rare molybdenite. Most of chalcopyrite is contained in fracture-veining and minor disseminations within the adjacent wall rock of the vein. Chalcopyrite does not necessarily occur in highly altered quartz-sericite rock.

<u>Molybdenite</u>-bearing mineralization is found most frequently within the rubble breccia and/or within the intensely altered quartz stockwork along its contact. In drill core erratic molybdenite was found on steeply dipping quartz veins as envelopes and isolated fine flakes. No pervasively disseminated molybdenite was found. All the molybdenite occurrences are from the phyllic alteration zone.

Magnetite is fairly abundant on altered granodiorite near the western contact with rubble breccia. It occurs as coarse grained clusters on vuggy fractures with quartz and/or pyrite. Occurrences of <u>sphalerite</u> and <u>galena</u> are common throughout the drill core but they appear to be restricted to steeply-dipping quartz-calcite veinlets which represent a particular stage of mineralization.

Several specks of coarse <u>scheelite</u> were found in drill core. They are on a chalcopyrite-rich fracture and seem to have been formed in a relatively earlier stage with chalcopyrite and molybdenite.

#### Paragenesis

The above hydrothermal minerals were introduced in several sequential stages. Each stage occupies unique sets of fractures which are filled with specific combination of minerals. The paragenetic stages are; established by separating those fracture sets according to the mineral assemblages and the crosscutting relationships. The following chronological stages are based on megascopic evidence largely from the drill core:

- Stage 1: Pyrite and rare chalcopyrite disseminated typically with clots of mafics.
- Stage 2: Quartz-pyrite-chalcopyrite-molybdenite with or without alteration envelope.
- Stage 3: Quartz-molybdenite and rare chalcopyrite without alteration envelopes.
- Stage 4: Quartz-calcite with local sphalerite-galena clusters with rare chalcopyrite and magnetite.
- Stage 5: Barren calcite veining followed by gypsum in fractures.

Since pyrite is only a common mineral the above chronology is not far beyond a speculation. More study is required to establish the paragenetic relationships particularly in the more complicated breccia zone.

#### IV DRILLING

Two most promising sites were drilled vertically down to 1500 ft. and 1520 ft. respectively (Map 1 for location). The drill holes were laid out based on the previous geological mapping carried out in May. The drilling contract was awarded to Buccaneer Drilling Inc., which company completed 3020 ft. of drilling during the period of June 9 - July 31, 1980. The work procedure was as follows:

| <u>Hole No.</u> | Total Depth | Date Started | Date Completed | Remarks         |
|-----------------|-------------|--------------|----------------|-----------------|
| DDH #1          | 1500 ft.    | June 13      | July 7         |                 |
| DDH #2          | 1520 ft.    | July 11      | July 31        | 450' overburden |

Drilling revealed no encouragement for any deep-seated possibilities. There was no improvement of mineralization at depth nor was there any indication of a hidden felsic differentiate. The intensity of alteration near the ends of both holes are weaker than that of surface. The total sulphides and frequency of minor Mo-Cu occurrences appear to be uniform throughout the drill core. (Map 1 and Appendix 2 - drilling log)

#### V CONCLUSIONS & RECOMMENDATIONS

- i) The 1980 exploration program on the Greendrop property delineated a well-defined gossan zone (1  $\times$  1.5 km.) with an interesting breccia complex in its southern periphery. Geologically the property appears to be favourable for porphyry-type Mo-Cu deposits. Drilling verified the porphyry-type environment with minor Mo-Cu values in assay.
- ii) The diorite-quartz-diorite porphyry which seems to be a host rock for sulphide mineralization is more like dyke rock in distribution rather than the desirable high-level intrusive stock or plug.
- iii) The Greendrop property was not completely tested but seems to be of little economic interest since most of untested ground for large tonnage potential is in the Post Creek valley and open-pit operation is not feasible.
- iv) No further work is recommended.

### VI <u>REFERENCES</u>

- (1) Monger JWH 1970

  Hope Map-Area, West half, B.C. GSC Paper 69-47
- (2) Blanchflower J.D. 1979 Exploration report on the Greendrop property, a private C.S.E. report.
- (3) Sutherland Brown A. (Editor) 1976

  Porphyry Deposits of the Canadian Cordillera, CIMM Special Vol. 15.

## STATEMENT OF EXPENDITURES (Greendrop Project - 1980)

| Drilling              | \$149,570.47 |
|-----------------------|--------------|
| Aircraft Charter      | 23,227.52    |
| Assays                | 2,522.15     |
| Travel Expense        | 270.60       |
| Operating Supplies    | 982.47       |
| Board and Lodging     | 1,325.50     |
| Automotive            | 135.45       |
| Salaries and Benefits | 22,180.38    |

Total:

\$200,214.54

I certify the above expenditures to be a true and accurate account of expenses incurred.

Dated on October 27, 1980, Vancouver, B.C.

Boo Y. Kim, Geologist

### CERTIFICATE

- I, Boo Young Kim, of the City of New Westminster, in the Province of British Columbia, certifies as follows:
  - That I am a geologist, residing at 222 Ash Street, New Westminster, B.C.
  - 2. That I have practised my profession continuously since being graduated in 1964 with B. Sc. in Geology from the Seoul National University in Seoul, Korea, and that I have continuously engaged in geological and mining exploration work for the past fifteen years.
  - That I am a Fellow of the Geological Association of Canada.
  - 4. That I am an employee of Canadian Superior Exploration Ltd. in Vancouver, B.C.
  - 5. That I have no interest in the property herein described.

DATED at Vancouver, British Columbia, this 28 day of October, 1980.

Boo Young Kim

Bylow

BYK:ms

| PROPERTY GREENDROP     | LOCATION Greendrop Lake Area, near Hope, B.C.    | DRILL HOLE No DH #1 |
|------------------------|--------------------------------------------------|---------------------|
| COMMENCEDJune 13, 1980 | ELEVATION,030 <sup>m</sup> (approx) DIPSVertical | SHEET No ]          |
| COMPLETED              | BEARING                                          |                     |
|                        | DEPTH 1,500 ft.                                  |                     |

| FROM<br>Ft. | Ft. | DESCRIPTION                                                                                   | SAMPLE<br>No. | FROM<br>ft. | то<br>ft. | SAMPLE WIDTH | % Mo  | assay<br>% Cu |       | Au <sup>OZ/</sup> t |
|-------------|-----|-----------------------------------------------------------------------------------------------|---------------|-------------|-----------|--------------|-------|---------------|-------|---------------------|
| 0           | 42  | Overburden                                                                                    |               |             |           |              |       |               |       |                     |
| 42          | 176 | Diorite porphyry: Abundant (not crowded) subhedral white feldspar                             | 42301         | 42          | 47.6      | 5.6          | .001  | .04           | .03   | .001                |
|             |     | phenocrysts up to 5 mm long in dark fine grained to aphanitic groundmass. 2-5%                |               |             |           |              |       |               |       |                     |
|             |     | sulphides, mostly of pyrite. Rare cpy on occasional fracture faces with pyrite                |               |             |           | MINERA       | RECOU | RCES BI       | RANCH |                     |
|             |     | clusters. No sign of oxidation. Fracturing weak, predominantly $30^{\circ}$ - $40^{\circ}$ to |               |             |           | ASS          | SIMIN | ripo.         | et /  |                     |
|             |     | core axis. Pervasively propylitic with frequent selvage sericite-clay also with               |               |             |           |              | 3     |               |       |                     |
|             |     | late stage calcite coating. Occasional epidote patches and disseminations.                    |               |             |           |              |       |               |       |                     |
|             |     | Obviously propylitic environemnt. Recovery 90%.                                               |               |             |           | N            | 0     |               |       |                     |
|             |     | 45.6-71 More like dacitic dyke, no clear contact, light gray to gray white,                   | 42302         | 65          | 71        | 6.0'         | .001  | 0.3           | .04   | .001                |
|             |     | finer (than above) grained phenocrysts of feldspar in aphanitic groundmass,                   |               |             |           |              |       |               |       |                     |
|             |     | slightly more broken than above (42-45.6). Fine grained disseminated pyrite and               |               |             |           |              |       |               |       |                     |
|             |     | fractured-coated pyrite as cubes and blobs. Steeply dipping fracture with calcit              | e             |             |           |              |       |               |       |                     |
|             |     | are usually coated with greenish tinted chlorite-clay smear, rare cpy with 3-5%               |               |             |           |              |       |               |       |                     |
|             |     | total sulphides. Slicken-sided fractures showing some weak near-horizontal                    |               |             |           |              |       |               |       |                     |
|             |     | movements, more mafic 68.5-70 with weak porphyritic texture. Recovery 85%.                    |               |             |           |              |       |               |       |                     |
|             |     |                                                                                               |               |             |           |              | 2116  |               |       |                     |

CONTRACTOR Buccaneer Diamond Drilling Inc.

LOGGED BY: B.Y. Kim Astronomy

|           | DEDT!!         |               |
|-----------|----------------|---------------|
| COMPLETED | BEARING        |               |
| COMMENCED | ELEVATION DIPS | SHEET No 2    |
| PROPERTY  | LOCATION       | DRILL HOLE No |

| FROM | то | DESCRIPTION                                                                       | SAMPLE<br>No. | FROM     | то  | SAMPLE<br>WIDTH | Mo % | ASSAY | VALUE<br>Aa <sup>OZ</sup> /T | Au /T |
|------|----|-----------------------------------------------------------------------------------|---------------|----------|-----|-----------------|------|-------|------------------------------|-------|
|      |    | 71-83 Broken, rubbly core with abundant calcite-coated fractures. Minor           | 42303         | 78       | 83  | 5'              | .001 | .05   | .02                          |       |
|      |    | gypsum. fractures of 80-90° to core axis. Fracture-controlled sericite -clay      |               |          |     |                 |      |       |                              |       |
|      |    | alteration coinciding with more broken zone 80-83'. Total sulphides 3-5%.         |               |          |     |                 |      |       |                              |       |
|      |    | Recovery 85%.                                                                     |               |          |     |                 |      |       |                              |       |
|      |    | 83-91.5 Slightly coarser than above (45.6 - 83), more like proper diorite         | 42304         | 83       | 91  | 8'              | .001 | .02   | .01                          | .001  |
|      |    | porphyry, near-horizontal (70° to higher angle to C.A.) fractures predominant     |               |          |     |                 |      |       |                              |       |
|      |    | with pyrite and sericite-clay alteration halo. A near-vertical fracture of        |               |          |     |                 |      |       |                              |       |
|      |    | quartz-calcite contains minor Pbs-ZnS with pyrite around 85 ft. of hole depth.    |               |          |     |                 |      |       |                              |       |
|      |    | 2-3% total sulphides. Recovery 90%.                                               |               |          |     |                 |      |       |                              |       |
|      |    | 9].5 -]]] Back to dacitic-looking section, probably from more intense alteration, | 42305         | 100      | 106 | 6'              | .001 | .01   | .01                          | .001  |
|      |    | lighter colored and finer grained than above (83-91.5), also more broken, 2-3%    |               |          |     |                 |      |       |                              |       |
|      |    | total sulphides mostly of fine grained pyrite. Recovery 85%.                      |               |          |     |                 |      |       |                              |       |
|      |    |                                                                                   |               |          |     | -               |      | -     |                              |       |
|      |    | 111-138 Similar to above (83-91.5), more porphyritic appearance due to light      | 42306         | 111      | 117 | 6'              | .001 | .02   | .01                          | .001  |
|      |    | standing-out feldspars in darker finer grained matrix. Probably less altered      | 42307         | 123      | 130 | 7'              | .001 | .02   | .01                          | .001  |
|      |    | section - Total sulphides ± 2%. Cpy fracture with pyrite 129'. Recovery over 9    | g%.           | <u> </u> |     |                 |      |       |                              |       |

| PROPERTY  | LOCATION       | DRILL HOLE No DH #1 |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No            |
| COMPLETED | BEARING        |                     |
|           | DEDTU          |                     |

| FROM | то  | DESCRIPTION                                                                              | SAMPLE | FROM   | TO  | SAMPLE |      | ASSAY | VALUE               |                     |
|------|-----|------------------------------------------------------------------------------------------|--------|--------|-----|--------|------|-------|---------------------|---------------------|
| PROM | 10  | DESCRIPTION                                                                              | No.    | FROIVI |     | WIDTH  | Mo % | Cu %  | Ag <sup>OZ</sup> /7 | Au <sup>OZ/</sup> T |
|      |     | ° 138-176 Similar to above (91.5-111). Sericitic alteration becoming pervasive           | 42308  | 135    | 142 | 5'     | .001 | .05   | 02                  | .001                |
|      |     | Total sulphide 2-3%. Poor recovery (65%) especially 153-176. Contact obscured            | 42309  | 153    | 159 | 6'     | .001 | .02   | .01                 | .001                |
|      |     | by broken rubbly core.                                                                   | 42310  | 166    | 172 | 6'     | .001 | .05   | .07                 | .001                |
| 176  | 182 | Andesite porphyry dyke: dark gray, porphyritic due to light colored feldspars            | 42311  | 176    | 182 | 6'     | .001 | .06   | .01                 | .001                |
| -    |     | and minor chloritized mafics as phenocrysts in almost black aphanitic matrix.            |        |        |     |        |      |       |                     |                     |
|      | _   | Weaker alteration than above diorite porphyry.Little or very weak selvage serici-        |        |        |     |        |      |       |                     |                     |
|      |     | tization (difference from diorite porphyry). 3% pyrite and rare specks of cpy.           |        |        |     |        |      |       |                     |                     |
|      |     | Steeply dipping ( $10^{0}$ to C.A.) sharp contact with the diorite porphyry below.       |        |        |     |        |      |       |                     |                     |
|      |     | Recovery 90%.                                                                            |        |        |     |        |      |       |                     |                     |
| 182  | 256 | Diorite porphyry: light gray to grayish white, pervasively altered with strong           | 42312  | 182    | 189 | 7'     | .001 | .08   | .04                 | .001                |
|      |     | quartz of secondary origin. Pervasive phyllic zone with occasional brownish              |        |        |     |        |      |       |                     |                     |
|      |     | biotite, presumably secondary origin. Disseminated pyrites at mafic sites.               |        |        |     |        |      |       |                     |                     |
|      |     | Steeply-dipping pyrite-quartz fractures (vuggy at times) and alteration selvage.         |        |        |     |        |      |       |                     |                     |
|      |     | Occasionaly cpy on fracture and as disseminations. Minor fine specks and smear           |        |        |     |        |      |       |                     |                     |
| -    |     | of MoS <sub>2</sub> on weakly slipped fractures. Cpy on a near-vertical fracture at 196' | 42313  | 195    | 200 | 5'     | .001 | .17   | .05                 | .001                |
|      |     |                                                                                          |        |        |     |        |      |       |                     |                     |

CONTRACTOR: ....

| PROPERTY  | LOCATION       | DRILL HOLE No. | DH# I |
|-----------|----------------|----------------|-------|
| COMMENCED | ELEVATION DIPS | SHEET No       | . 4   |
| COMPLETED | BEARING        |                |       |
|           |                |                |       |

| FROM | то  | DESCRIPTION                                                                                          | SAMPLE<br>No. | FROM | то  | SAMPLE<br>WIDTH | Mo % | assay<br>Cu% | VALUE<br>OZ<br>Ag /T | Au 7T |  |
|------|-----|------------------------------------------------------------------------------------------------------|---------------|------|-----|-----------------|------|--------------|----------------------|-------|--|
|      |     | Alteration intensity gradually weakens from 221 with more chloritized mafics                         | 42314         | 206  | 211 | 5'              | .001 | .07          | .07                  | .009  |  |
|      |     | around 224'                                                                                          |               |      |     |                 |      |              |                      |       |  |
|      |     | A distinct near-vertical pyrite-quartz-sericite fracture 229-233 with shredded                       | 42315         | 219  | 224 | 5'              | .002 | .05          | .01                  | .001  |  |
|      |     | <u>biotite in outside of the alteration envelope.</u>                                                | 42316         | 231  | 236 | 5'              | .001 | .08          | .03                  | .001  |  |
|      |     | Gradual change to more broken zone from 236 along with the increased intensity                       |               |      |     |                 |      |              |                      |       |  |
|      |     | of quartz-sericite alteration.                                                                       | 42317         | 241  | 247 | 6'              | .001 | .12          | .03                  | .001  |  |
|      |     | At 253 hole caved with groundwater pressure, strong sericite and flooded quartz                      |               |      |     |                 |      |              |                      |       |  |
|      |     | with increased amount of pyrite and minor visible cpy. Core recovery over 90% except 253-256 (40%).  |               |      |     |                 |      |              |                      |       |  |
|      |     | -Hole stopped at 256 ft. (Bq Hole)                                                                   |               |      |     |                 |      |              |                      |       |  |
|      |     | (Reaming and re-drilling with NQ and NQ-coring started from 120')                                    |               |      |     |                 |      |              |                      |       |  |
| 120  | 171 | Andesite porphyry dyke: as the above BQ core (176-182) Poor recovery,                                |               |      |     |                 |      |              |                      |       |  |
|      |     | particularly 125-146' (15%) averaged 30%. Note the difference in rock type from the initial BQ core. |               |      |     |                 |      |              |                      |       |  |
| 171  | 262 | Diorite porphyry: Gray white, moderate to strong propylitic alteration with                          |               |      |     |                 |      |              |                      |       |  |
|      |     | occasional near-vertical fracture-controlled quartz-sericite selvages, Strong                        | 42330         | 236  | 241 | 5'              | .001 | .15          | .05                  | .002  |  |
|      |     | fine disseminations of pyrite at mafic sites. Occasional cpy on fracture                             | 42331         | 250  | 255 | 5'              | .001 | .06          | .01                  | .001  |  |
|      |     | with 1/10 Cp:py ratio. Total sulphides 2-3%. Weak sulphide-smeared slips                             |               |      |     |                 |      |              |                      |       |  |

| PROPERTY  | LOCATION       | DRILL HOLE No. DH #1 |
|-----------|----------------|----------------------|
| COMMENCED | ELEVATION DIPS | SHEET No             |
| COMPLETED | BEARING        |                      |

| FROM | то  | DESCRIPTION                                                                                                                                                                                                                                                                                                | SAMPLE<br>No.  | FROM       | то              | SAMPLE<br>WIDTH | Mo % |     | VALUE<br>OZ<br>Ag /T | oz<br>Au /T |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------------|-----------------|------|-----|----------------------|-------------|
|      |     | around 262'. Cpy at 243, 244 and 249' core recovery 70-80%.                                                                                                                                                                                                                                                |                |            |                 |                 |      |     |                      |             |
| 262  | 369 | Andesite porphyry dyke: dark gray, porphyritic with lighter-colored feldspar  (25%) in fine grained to aphanitic black matrix at contact. Contact is sharp and steeply-dipping changing into lighter color due to alteration intensity                                                                     | 42332          | 267        | 273             | 6'              | .001 | .03 | .01                  | .001        |
|      |     | (generally pervasive chloritization) Total sulphides 2-3%.                                                                                                                                                                                                                                                 |                |            |                 |                 |      |     |                      |             |
|      |     | 262-275 Angular broken core 3%; Total sulphides both on fracture faces and as disseminations. No predominant near-vertical structures as in diorite porphyry Fractures of high and low angles (to C.A.) are equally frequent.  More chloritic for near-vertical (low angles to C.A.) fractures. Occasional | /              |            |                 |                 |      |     |                      |             |
|      |     | calcite-coating and minor subsequent (?) gypsum on fractures. Very fine grained pyrite disseminations throughout. Poor recovery approximately 50%.                                                                                                                                                         | 42333          | 284.5      | 289             | 4.5'            | .001 | .05 | .01                  | .002        |
|      |     | 275-328 Broken and crushed core at 305 partly due to carbonate veining  with minor Pbs-Zns. Pbs-Zns also at 306 in solid core. Angularly broken                                                                                                                                                            | 42334<br>42318 | 300<br>311 | 3 <sub>05</sub> |                 | .001 | .02 | .03                  | .002        |
|      |     | core due to strong calcite fractures 310-311.                                                                                                                                                                                                                                                              | 42319          | 323        | 329             | 6'              | .001 | .07 | .03                  | .002        |

CONTRACTOR

| PROPERTY  | LOCATION       | DRILL HOLE No. DH#1 |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No6           |
| COMPLETED | BEARING        |                     |
|           | DEDT!          |                     |

| FROM | то  | DESCRIPTION SAMPLE No.                                                                                  | SAMPLE | FBOM    | то  | SAMPLE | PLE ASSAY VALUE |      |             |       |  |  |
|------|-----|---------------------------------------------------------------------------------------------------------|--------|---------|-----|--------|-----------------|------|-------------|-------|--|--|
|      |     |                                                                                                         | No.    | 1110111 | 10  | WIDTH  | Mo%             | Cu % | oz<br>Ag /T | Au /T |  |  |
|      |     | Cpy fractures at 324, 326, 328. Total sulphides 3%. Recovery 80-90%.                                    |        |         |     |        |                 |      |             |       |  |  |
|      |     | 328-364 Porphyritic appearance with abundant feldspar phenocrysts in light                              | 42320  | 329     | 335 | 6'     | .001            | .08  | .04         | .003  |  |  |
|      |     | greenish-gray fine grained to aphanitic chloritized groundmass. Generally                               |        |         |     |        |                 |      |             |       |  |  |
|      |     | massive with fair amount of pyrites and occasional cpy fractures with CP/py ratio                       |        |         |     |        |                 |      |             |       |  |  |
|      |     | 1/5-1/10. Propylytic (pervasive) with partial sericitization of feldspar pheno-                         | 1      | 343     | 347 | 4'     | .001            | .21  | .43         | .004  |  |  |
|      |     | crysts and local fracture sericite. l <sup>CM</sup> vuggy calcite-quartz vein (30% to C.A.              |        |         |     |        | ļ               |      |             |       |  |  |
|      |     | with Pbs-ZnS at 344. Cream colored ZnS and minor specular hematite. Total                               | 42322  | 354     | 361 | 6'     | .001            | .05  | .05         | .003  |  |  |
|      |     | sulphides 2-3%. Recovery 85%.                                                                           |        |         |     |        |                 |      |             |       |  |  |
|      |     | 364-369 Weak alteration with almost fresh phenocryst feldspar and weakly                                |        |         |     |        |                 |      |             |       |  |  |
|      |     | broken mafics. Fracturing is also weak, Minor cpy fractures with pyrite are                             |        |         | ••• |        |                 |      |             |       |  |  |
|      |     | not uncommon. MoS <sub>2</sub> -Cpy on quartz veining (10 <sup>0</sup> to C.A.) at 368. Sulphides 2-3%. |        |         |     |        |                 |      |             |       |  |  |
|      |     | Broken at 369, the contact with diorite porphyry below. Recovery 80%.                                   |        |         |     |        |                 |      |             |       |  |  |
|      |     |                                                                                                         |        |         |     |        |                 |      |             |       |  |  |
| 369  | 425 | Diorite porphyry: light gray to white, pervaisively and moderately altered to                           | 42323  | 364     | 369 | 5'     | .001            | .08  | .04         | .002  |  |  |
|      |     | sericite-chlorite and sericite-quartz. Selvage alteration more distinctive for                          | 42324  | 369     | 375 | 6'     | .001            | .07  | .03         | .001  |  |  |

LOGGED BY: .....

CONTRACTOR

| PROPERTY  | LOCATION       | DRILL HOLE No DH #1 |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No            |
| COMPLETED | BEARING        |                     |
|           | DERTIL         |                     |

| FROM TO |     | DESCRIPTION                                                                                 | SAMPLE | FROM | то  | SAMPLE |      | ASSAY VALUE |                    |       |  |
|---------|-----|---------------------------------------------------------------------------------------------|--------|------|-----|--------|------|-------------|--------------------|-------|--|
| 171014  | 10  | DESCRIPTION                                                                                 | No.    | PROM | 10  | WIDTH  | Mo % | Cu %        | T\ <sup>QZ</sup> A | Au /T |  |
|         |     | sericitization. All the structures controlled by near-vertical pyrite veining.              |        | T-T  |     |        |      |             |                    |       |  |
|         |     | Strong pyrite as dissemination replacing mafics and on near-vertical                        |        |      |     |        |      |             |                    |       |  |
|         | ·   | fractures. Minor cpy is not unusual generally associated with quartz veining.               |        |      |     |        |      |             |                    |       |  |
|         | -   | Cpy increasing with minor MoS <sub>2</sub> 380-385. Strong near-vertical veining of quartz- | 42325  | 394  | 399 | 5'     | .001 | .09         | .01                | .001  |  |
|         |     | pyrite with increased amount of cpy just above the contact with much fresher-               | 42326  | 399  | 404 | 5'     | .001 | .09         | .03                | .002  |  |
|         |     | looking diorite porphyry. Minor MoS <sub>2</sub> at 408.                                    | 42327  | 404  | 411 | 7'     | .001 | .09         | .16                | .002  |  |
|         |     | PbS-ZnS at 408.2. Total sulphide 3-5% with 1/20 Cp-py ratio.                                |        |      |     |        |      |             |                    |       |  |
|         |     | 409-421 Patch of fresh to less-altered diorite porphyry.                                    |        |      |     |        |      |             | <u> </u>           |       |  |
|         |     | 421-425 Pervaisively altered (weak sericite-chlorite) with stronger selvage.                |        |      |     |        |      |             |                    |       |  |
|         |     | Total sulphides 3-5% with heavy fracture pyrite. Also strong quartz veining with            |        |      |     |        |      |             |                    |       |  |
|         |     | coarse pyrite. Frequent minor cpy 421-425 associated with flooded quartz.                   | 42328  | 420  | 425 | 5'     | .001 | .06         | .01                | .001  |  |
|         |     | Recovery averaged 75% locally down to 60%.                                                  |        |      |     |        |      |             |                    |       |  |
| 425     | 450 | Andesite porphyry dyke: Similar to 362-369. Initial 2 ft. from the contact                  | 42329  | 436  | 441 | 5'     | .001 | .14         | .08                | .002  |  |
|         |     | seems like post-mineral basic porphyrite dyke but changes rapidly to mineralized            |        |      |     |        |      |             |                    |       |  |
|         |     | and weakly altered andesite porphyry dyke. Occasional good cpy fractures                    |        |      |     |        |      |             |                    |       |  |
|         |     | (near-vertical). gradually more bleached toward lower contact and more frequent             |        |      |     |        |      |             |                    |       |  |
|         |     | occurrences but still local rather than pervaisive dissemination.                           |        |      |     |        |      |             |                    |       |  |

CONTRACTOR: .....

| PROPERTY  | LOCATION       | DRILL HOLE No DH #1 |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No            |
| COMPLETED | BEARING        |                     |
|           | OERT!!         |                     |

| 55014 |      | DECEMPTION                                                                                   | SAMPLE |      |     | SAMPLE |      | ASSAY |       |       |
|-------|------|----------------------------------------------------------------------------------------------|--------|------|-----|--------|------|-------|-------|-------|
| FROM  | то   | DESCRIPTION                                                                                  | No.    | FROM | то  | WIDTH  | Mo % | Cu %  | Agz/T | AÛZ/T |
|       |      | Total sulphides 3-5%. Recovery 80%.                                                          |        |      |     |        |      |       |       |       |
|       |      | Total Sulphites 5 5%. Recovery 50%.                                                          |        |      |     |        |      |       |       |       |
| 450   | 1500 | Diorite porphyry: broken core at contact, Gray white, highly altered pervasive-              | 42335  | 450  | 455 | 5'     | .001 | .06   | .02   | .002  |
| 130   | 1300 | ly with rare original textures. Abundant gypsum fractures. (hairline to 5 <sup>mm</sup> veir | 1      | 462  | 467 | 5'     | .001 | .09   | .02   | .001  |
|       |      | of near-horizontal attitude. Gypsum veins cutting all the steeply-dipping struc-             |        |      |     |        |      |       |       |       |
|       |      | tures including pyritic fractures with alteration envelopes.                                 | 42337  | 482  | 487 | 5'     | .001 | .07   | .02   | .001  |
|       |      | Amount of total sulphides decreased to 1-2% with no increase of Cp/py                        |        |      |     | _      |      |       |       |       |
|       |      | ratio. Strong gypsum fractures are distinct contrast with diorite above                      |        |      |     |        |      |       |       |       |
|       |      | (369-435). Sulphides tend to be finer grained than above. Good core recovery                 |        |      |     |        |      |       |       |       |
|       |      | averaged over 90%. MoS2 on steeply-dipping fracture at 511.                                  | 42338  | 502  | 507 | 5'     | .001 | .08   | .01   | .002  |
|       |      | *Fresher diorite porphyry (clear biotite) with unattached feldspar phenocrysts)              |        |      |     |        |      |       |       |       |
|       |      | patch (½ ft.) at 515. Minor PbS-ZnS-CuFeS <sub>2</sub> on steeply dipping carbonate fracture |        |      |     |        |      |       |       |       |
|       |      | at 516.                                                                                      |        |      |     |        |      |       |       |       |
|       |      | A near-vertical slip face with near-horizontal movement at 525. Stronger,                    | 42339  | 522  | 527 | 5'     | .001 | .08   | .01   | .001  |
|       |      | heavier pyrite fractures around 517 split and broken core due to stronger gypsum             |        |      |     |        |      |       |       |       |
|       |      | fractures at 542.                                                                            |        |      |     |        |      |       |       |       |
|       |      | Pervasively altered diorite continues with very minor changes and extensive                  | 42340  | 546  | 551 | 5'     | .001 | .07   | .03   | .001  |

CONTRACTOR: .....

| PROPERTY  | LOCATION       | DRILL HOLE No DH #1 |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No9           |
| COMPLETED | BEARING        |                     |
|           | 2571           |                     |

| FROM | то | DESCRIPTION                                                                    | SAMPLE<br>No. | FROM | то                                    | SAMPLE<br>WIDTH | Mo % | ASSAY | value<br>OZ<br>Ag / | oz<br>Au /T |
|------|----|--------------------------------------------------------------------------------|---------------|------|---------------------------------------|-----------------|------|-------|---------------------|-------------|
|      |    | strong gypsum fractures (predominantly 70° to C.A.)                            |               |      |                                       |                 |      |       |                     |             |
|      |    | Pbs-Zn on calcite vein at 573' and fine fracture of PbS-ZnS extending downward | 42341         | 572  | 577                                   | 5'              | .001 | .10   | .13                 | .003        |
|      |    | approximately ½ ft. Core recovery 90% 450-467 and better than 90% 467 ~ 1500   |               |      |                                       |                 |      |       |                     |             |
|      | -  | based on measurement for 5~10' drill run intervals.                            |               |      |                                       |                 |      |       |                     |             |
|      |    | 591-614 Very slightly more siliceous and less gypsum. 1-2% total sulphides     | 42342         | 592  | 597                                   | 5'              | .001 | .05   | .02                 | .002        |
|      |    | l-2% total sulphides. Minor cpy at 595. Recovery 95%.                          |               |      |                                       |                 |      |       |                     |             |
|      |    | 614-637 Slightly sericitic than above 591-614. More pyrite fractures and       | 42343         | 615  | 620                                   | 5'              | .001 | .06   | .01                 | .002        |
|      |    | gypsum. Total sulphides 2%. Cpy at 624'                                        | 42344         | 632  | 637                                   | 5'              | .001 | ,06   | .03                 | .002        |
|      |    | 637-660. Strong gypsum throughout not only in near-horizontal direction but on | 42345         | 650  | 655                                   | 5.'             | .001 | .06   | .06                 | .002        |
|      |    | steeply-dipping fractures. Steeply-dipping slip faces with crushed gypsum and  |               |      |                                       |                 |      |       |                     |             |
|      |    | smeared sulphide around 654'. Total sulphides 1-2%.                            |               |      |                                       |                 |      |       |                     |             |
|      |    |                                                                                |               |      |                                       |                 |      |       |                     |             |
|      |    | ·                                                                              |               |      | · · · · · · · · · · · · · · · · · · · |                 |      |       |                     |             |
|      |    | ·                                                                              |               |      |                                       |                 |      |       |                     |             |
|      |    |                                                                                |               |      |                                       |                 |      |       |                     |             |
|      |    |                                                                                |               |      |                                       |                 |      |       |                     |             |

LOGGED BY: ....

CONTRACTOR: ...

| PROPERTY  | LOCATION       | DRILL HOLE No DH .#1 |
|-----------|----------------|----------------------|
| COMMENCED | ELEVATION DIPS | SHEET No]Q           |
| COMPLETED | BEARING        | •                    |
|           | DEDTU          |                      |

| FROM  | то | DESCRIPTION                                                                                                                           | SAMPLE      | FROM   | то  | SAMPLE | E ASSAY VAL |     |                    | -                  |          |
|-------|----|---------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|--------|-------------|-----|--------------------|--------------------|----------|
| PHOIM |    | DESCRIPTION                                                                                                                           | No.         | FRUIVI |     | WIDTH  | Mo%         | Cu% | Ag <sup>OZ</sup> / | Au <sup>OZ</sup> / | T        |
|       |    | 660-684 Frequent heavy 1-5mm fractures of 20-300 to C.A. soft core mostly of                                                          | 42346       | 675    | 680 | 5'     | 001         | .07 | .05                | .001               |          |
|       |    | sericite-clay and gypsum with quartz. Cpy + ZnS + PbS in fracture                                                                     |             |        |     |        |             |     |                    |                    | ,        |
|       |    | transparently coated by gypsum at 671. Total suphides 2%                                                                              |             |        |     |        |             |     |                    |                    |          |
|       |    | 684-708 Very minor changes extensively, more siliceous zone 702-708. Minor fine                                                       | 42347       | 703    | 708 | 5'     | .003        | .02 | .01                | .002               | <b></b>  |
|       |    | grained MoS <sub>2</sub> on quartz vein at 707. Gypsum persistent and strong.                                                         |             |        |     |        |             |     |                    |                    | <u> </u> |
|       |    | 708-731 More siliceous with secondary biotite, gypsum weakening slightly. Cpy                                                         | 42348       | 726    | 731 | 5'     | .001        | .06 | .02                | .001               |          |
|       |    | with poorly-defined flooded quartz at 70% cpy at 722 both on near-                                                                    |             |        |     |        |             |     |                    |                    |          |
|       |    | horizontal pyrite fracture.                                                                                                           |             |        |     |        |             |     |                    |                    |          |
|       |    | 731-754 almost identical as above 708-731, siliceous (harder core) with                                                               |             |        |     |        |             |     |                    |                    |          |
| :     |    | secondary biotite 736-739, occasional heavy pyrite fractures of 70% to                                                                |             |        |     |        |             |     |                    |                    |          |
|       |    | C.A. cutting near-vertical structures, 1-2% Total sulphides                                                                           |             |        |     |        |             | -   | -                  |                    |          |
|       |    | 754-778.5 Usual pyrite fractures cut by strong gypsum fractures. No change from                                                       | 12310       | 757    | 762 | E !    | .001        | .06 | 01                 | .002               |          |
|       |    | above. Dissemination of pyrite seems to be decreasing gradually to the                                                                | <del></del> | 737    | 702 | 3      | .001        | .00 | .01                | .002               |          |
|       |    | depth 1-2% sulphides                                                                                                                  |             |        |     |        |             |     |                    |                    |          |
|       |    | 778.5-802 Heavier pyrite-carbonate veining 779-782. Two kinds of gypsum, one                                                          | 42354       | 779    | 784 | 5'     | -001        | .26 | . 03               | -001               |          |
|       |    | white powdery on thin to hairline fracture faces and the other is crystalline lilac-coloured transparant kind associated with steeply |             |        |     |        |             |     |                    |                    |          |

NTRACTOR LOGGED BY:

| PROPERTY  | LOCATION       | DRILL HOLE No DH . # I |
|-----------|----------------|------------------------|
| COMMENCED | ELEVATION DIPS | SHEET No               |
| COMPLETED | BEARING        |                        |
|           | DEBTH          |                        |

| FROM | то | DESCRIPTION                                                                  | SAMPLE | FROM | то  | SAMPLE |       |     | VALUE  |         |    |
|------|----|------------------------------------------------------------------------------|--------|------|-----|--------|-------|-----|--------|---------|----|
| PROM | 10 | DESCRIPTION                                                                  | No.    |      |     | WIDTH  | Mo%   | Cu% | Ag oz/ | T Au OZ | 'T |
|      |    | dipping calcite-pyrite-cpy fracture at 787.5. The former is more             | 42355  | 802  | 807 | 5 1    | .001  | .03 | .01    | .001    |    |
|      |    | usual, the latter probably anhydrite. T.S. 1-2%, Recovery 95%                |        |      |     |        |       |     |        |         |    |
|      |    | 802-826 No substantial change from above. More frequent lilac gypsum veining | -      |      |     |        |       |     |        |         |    |
|      |    | and fracturing but overall less fractured due to less hairline gypsum        |        |      |     |        |       |     |        |         |    |
|      |    | fractures. Occasional heavy pyrite usually with anhydrite-calcite            |        |      |     |        |       |     |        |         |    |
|      |    | veining 1-2% T.S.                                                            |        |      |     |        |       |     |        |         |    |
|      |    | 826-849.5 Unbroken core particularly from 837-849.5 due to less gypsum (less | 42356  | 832  | 837 | 5'     | .001  | .11 | .23    | .001    |    |
|      |    | than I fracture every inch) Large clusters of pyrite at weakly               |        |      |     | :      |       |     |        |         |    |
|      |    | broken, dark-colored mafic sites and white phenocryst of altered and         |        |      |     |        |       |     |        |         |    |
|      |    | rounded feldspar (weak sericite) Heavy pyrite + PbS + ZnS veining            |        |      |     |        |       |     |        |         |    |
|      |    | at 835 ft.                                                                   |        |      |     |        |       |     |        |         |    |
|      |    | 849.5-873 Massive core down to 866' due to less altered darker-colored       | 42357  | 850  | 855 | 5'     | . 001 | Ω5  | .15    | . 001   |    |
|      |    | porphyritic diorite, softer due to less augumented quartz from               |        |      |     |        |       |     |        |         |    |
|      |    | alteration. Minor PbS-ZnS at 851 & 864. Steeply dipping pyrite               |        |      |     |        |       |     |        |         |    |
|      |    | fracturing with stronger alteration halo, minor cpy associated with          |        |      |     |        |       |     |        |         |    |
|      |    | pyrite. Total sulphide 1-2% Anhyrdite-carbonate-pyrite veining is not        |        |      |     |        |       |     |        |         |    |
|      |    | unusual.                                                                     |        |      |     |        |       |     |        |         |    |

| LOGGED BY: |  |  |
|------------|--|--|
|------------|--|--|

| PROPERTY  | LOCATION       | DRILL HOLE No DH . #.1 |
|-----------|----------------|------------------------|
| COMMENCED | ELEVATION DIPS | SHEET No               |
| COMPLETED | BEARING        |                        |
|           | DERTH          |                        |

| , TO | TO DESCRIPTION S | SAMPLE                                                                                                                             | - FD014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>TO</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E ASSAY VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,0   |                  | DESCRIPTION                                                                                                                        | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FNOIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cu%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ag <sup>02</sup> /T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Au <sup>OZ</sup> /T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 873-897          | Generally stronger for anhyrdite veining. A near-vertical anhydrite-                                                               | 42358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                  | carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | satellite disseminations associated with the anhydrite veining                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | 2% T.S                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 897-920          | Pervasive alteration is weak. Clearly stronger alteration is controlle                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 0                | by near-vertical fracture selvages. Gypsum fractures weakened                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 920-944          | Flooded quartz and circular patches of incompletely altered dark portion                                                           | 42360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                  | give a partially assimilated breccia texture 1-2% T.S. No improvement                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | on copper grade expected.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply-                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | dipping veinlets - while gypsum occuring on near-horizontal to gently-                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | · ·              | dipping hairline fractures.                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | Moderate pervasive sericitization with local strong quartz flooding.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 944-968          | Altered andesite porphyry dyke 950.5-955 both contacts are poorly                                                                  | 42361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                  | defined due to chilled margins, alteration, quartz veining and pyrite                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | + gypsum fractures. Lower contact 350 to C.A. Approximately ten feet                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                  | from the both contact might have been brecciated zone, subjected to later alteration. Now quartz-rich matrix with light green gray |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ТО               | 873-897<br>897-920<br>920-944                                                                                                      | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite- carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its satellite disseminations associated with the anhydrite veining 2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled by near-vertical fracture selvages. Gypsum fractures weakened 920-944 Flooded quartz and circular patches of incompletely altered dark portion give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply-dipping veinlets - while gypsum occuring on near-horizontal to gently-dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding. 944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 35° to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite—42358  carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its  satellite disseminations associated with the anhydrite veining  2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled by near-vertical fracture selvages. Gypsum fractures weakened  920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360 give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply-dipping veinlets - while gypsum occuring on near-horizontal to gently-dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly 42361 defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 35° to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite- carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its satellite disseminations associated with the anhydrite veining  2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled by near-vertical fracture selvages. Gypsum fractures weakened  920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360 935  give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply- dipping veinlets - while gypsum occuring on near-horizontal to gently- dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 35° to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite- 28 7.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled  920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360 935 940  give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply- dipping veinlets - while gypsum occuring on near-horizontal to gently- dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly 42361 963 968  defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 350 to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite- carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its satellite disseminations associated with the anhydrite veining 2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled  920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360 935 940 5' give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply- dipping veinlets - while gypsum occuring on near-horizontal to gently- dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly 42361 963 968 5' defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 35° to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite- carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its satellite disseminations associated with the anhydrite veining  2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled  by near-vertical fracture selvages. Gypsum fractures weakened  920-944 Flooded quartz and circular patches of incompletely altered dark portion42360 935 940 5' .001  give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply- dipping veinlets - while gypsum occuring on near-horizontal to gently- dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 35° to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite—  carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its  satellite disseminations associated with the anhydrite veining  2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled by near-vertical fracture selvages. Gypsum fractures weakened  920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360 935 940 5' .001 .02  give a partially assimilated breccia texture 1-2% T.S. No improvement on copper grade expected.  Usual gypsum anhydrite fractures, anhydrite mostly on thicker, steeply—  dipping veinlets - while gypsum occuring on near-horizontal to gently—  dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly 42361 963 968 5 .001 .04  defined due to chilled margins, alteration, quartz veining and pyrite  + gypsum fractures. Lower contact 35° to C.A. Approximately ten feet  from the both contact might have been brecciated zone, subjected to | 873-897 Generally stronger for anhyrdite veining. A near-vertical anhydrite- carbonate-quartz-pyrite vein from 878-883, occasional large cpy and its satellite disseminations associated with the anhydrite veining  2% T.S.  897-920 Pervasive alteration is weak. Clearly stronger alteration is controlled  920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360  1920-944 Flooded quartz and circular patches of incompletely altered dark portion 42360  1930-944 Gipping veinlots - while gypsum occuring on near-horizontal to gently- dipping veinlots - while gypsum occuring on near-horizontal to gently- dipping hairline fractures.  Moderate pervasive sericitization with local strong quartz flooding.  944-968 Altered andesite porphyry dyke 950.5-955 both contacts are poorly defined due to chilled margins, alteration, quartz veining and pyrite + gypsum fractures. Lower contact 350 to C.A. Approximately ten feet from the both contact might have been brecciated zone, subjected to |

CONTRACTOR: .....

| PROPERTY  | LOCATION       | DRILL HOLE No DH# ] |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No13          |
| COMPLETED | BEARING        |                     |
|           | DEDTH          |                     |

| FROM | то | DESCRIPTION                                                                      | SAMPLE | FROM     | то    | SAMPLE |      | ,    | VALUE  |       |          |
|------|----|----------------------------------------------------------------------------------|--------|----------|-------|--------|------|------|--------|-------|----------|
|      |    |                                                                                  | No.    | 1 110111 |       | WIDTH  | Mo%  | Cu%  | Ag OZ- | Au OZ | <u>T</u> |
|      |    | sericitized & chloritized fragment patches of obsecure circular shapes.          |        |          |       |        |      |      |        |       |          |
|      |    | 968-991.5 Unbroken core rich in quartz and clearer mafic sites occupied by       | 42362  | 978.5    | 982.5 | 4'     | .001 | .07_ | .04    | .001  |          |
|      |    | pyrite. Sharp but less-frequent gypsum fractures. Near-vertical                  |        |          |       |        |      |      |        |       |          |
|      |    | pyrite fracturing decreased. Lilac anhydrite fracture of 25 <sup>0</sup> to C.A. |        |          |       |        |      |      | :      |       |          |
|      |    | at 986'.                                                                         |        |          |       |        |      |      |        |       |          |
|      |    | 991.5-1015.5 Altered diorite porphyry rich in quartz with pervasive moderate     | 42363  | 1007     | 1012  | 5'     | .001 | .08  | .05    | .001  |          |
|      |    | sericitization, occasional thin alteration selvages on pyrite fractures.         |        |          |       |        |      |      |        |       |          |
|      |    | Consistantly strong pyrite dissemination on partially or completely              |        |          |       |        |      |      |        |       |          |
|      |    | broken mafic sites. Cpy is erratic and very minor. Overall T.S.                  |        |          |       |        |      |      |        |       |          |
|      |    | increased from 1-2% to 2-3%, Cpy fractures with pyrite at 996 and                |        |          |       |        |      |      |        |       |          |
|      |    | 1002. Fracture-controlled alteration (stronger sericite and greenish             |        | :        |       |        |      |      |        |       |          |
|      |    | clay(?) with quartz) around 1006 ft.                                             |        |          |       |        |      |      |        |       |          |
|      |    | Decreased gypsum fractures, still common with occasional lilac anhydrite         |        |          |       |        |      |      |        |       |          |
|      |    | vein.                                                                            |        |          |       |        |      | =    |        |       |          |
|      |    | Good recovery, core generally massive, siliceous with easily-split               |        |          |       |        |      |      |        |       |          |
|      |    | gypsum fractures.                                                                |        |          |       |        |      |      |        |       |          |
|      |    |                                                                                  |        |          |       |        |      |      |        |       |          |

LOGGED BY: ....

CONTRACTOR: .....

| PROPERTY  | LOCATION       | DRILL HOLE No. DH #1 |
|-----------|----------------|----------------------|
| COMMENCED | ELEVATION DIPS | SHEET No].4          |
| COMPLETED | BEARING        |                      |
|           |                |                      |

| FROM | то | DESCRIPTION                                                                            | SAMPLE | FROM | то   | SAMPLE |      | ASSAY | VALUE | r <del></del> | ļ  |
|------|----|----------------------------------------------------------------------------------------|--------|------|------|--------|------|-------|-------|---------------|----|
|      |    |                                                                                        | No.    |      | , ,  | WIDTH  | Mo%  | Cu%   | Agoz/ | T Au oz       | /T |
|      |    | 1015.5-1039 Fresh to weakly altered biotite quartz-diorite porphyry rich in            | 42364  | 1032 | 1037 | 5'     | .001 | .09   | .09   | .001          |    |
|      |    | quartz around 1016. Incompletely assimilated darker patches surrounded by              |        |      |      |        |      |       |       |               |    |
|      |    | flooded quartz and feldspar give a brecciated texture (rounded dark fragment in        |        |      |      |        |      |       |       |               |    |
|      |    | felsic matrix) 1025-1039.                                                              |        |      |      |        |      |       |       |               |    |
|      |    | Minor Pbs-ZnS veining associated with carbonate 2-3% T.S. Minor specks of cpy          |        |      |      |        |      |       |       |               |    |
|      |    | and rare large chalcopyrite on fracture vein.                                          |        |      |      |        |      |       |       |               |    |
|      |    | Unbroken core with good recovery.                                                      |        |      |      |        |      |       |       |               |    |
|      |    | 1039-1063 Solid core mostly of feldspar (weakly sericitized) and quartz and            | 42365  | 1052 | 1057 | 5'     | .001 | .09   | .02   | .001          |    |
|      |    | usual pyrite and /or gypsum fractures of various attitude.                             |        |      |      |        |      |       |       |               |    |
|      |    | Minor steeply-dipping cryptocrystalline MoS <sub>2</sub> in dark colored quartz-pyrite |        |      |      |        |      |       |       |               |    |
|      |    | veining around 1061, T.S. 2-3%, cpy minor 0.1-0.15% Cu expected.                       |        |      |      |        |      |       |       |               |    |
|      |    | 1063-1086.5 same as above. Changing from 1075 into pyrite porphyry (?) fine            | 42366  | 1072 | 1077 | 5'     | .002 | .11   | .06   | .001          |    |
|      |    | grained pyrite disseminations in white siliceous aphanitic matrix                      |        |      |      |        |      |       |       |               |    |
|      |    | (quartz-sericite), probably a felsic dyke subjected to pervasive:                      |        |      |      |        |      |       |       |               |    |
|      |    | phyllic alteration later.                                                              |        |      |      |        |      |       |       |               |    |
|      |    | Cpy-ZnS veining around 1075', a heavy pyrite and minor cpy vein                        |        |      |      |        |      |       |       |               |    |
|      |    | at 1086'. 2-3% total sulphides.                                                        |        |      |      |        |      |       |       |               |    |

CONTRACTOR: .....

| PROPERTY  | LOCATION       | DRILL HOLE No DH .#.1 |
|-----------|----------------|-----------------------|
| COMMENCED | ELEVATION DIPS | SHEET No 1.5          |
| COMPLETED | BEARING        |                       |
|           | 2571           |                       |

| FROM TO | DESCRIPTION | SAMPLE                                                                           | I FROM I TO |      | SAMPLE |       |      |     |        |         |
|---------|-------------|----------------------------------------------------------------------------------|-------------|------|--------|-------|------|-----|--------|---------|
| ,       | "           | DESCRIPTION                                                                      | No.         | PROM | 10     | WIDTH | Mo%  | Cu% | Ag oz/ | Au oz/T |
|         |             | 1086.5-1109.5 Weaker pyrite porphyry as above and usual altered quartz-diorite   | 42367       | 1102 | 1107   | 5'    | .003 | .04 | .03    | .001    |
|         |             | porphyry. Minor brecciated textures due to poorly-defined pyrite veining         |             |      |        |       | :    |     |        |         |
|         |             | thin selvage alteration and later gypsum fracturing particularly around          |             |      |        |       |      |     |        |         |
|         |             | 1102'. 2-3% T.S.                                                                 |             |      |        |       |      |     |        |         |
|         |             | 1109.5-1134 Massive, unbroken light gray grayish white core, fresher than the    |             |      |        |       |      |     |        |         |
|         |             | above due to less frequent near-vertical fracturing, cpy is not unusual          |             |      |        |       |      |     |        |         |
|         |             | locally 1/10- 1/20 CP/PY ratio with 2-3% T.S. strong pyrite 1121-1123            |             |      |        |       |      |     |        |         |
|         | ļ           | 1134-1157.5 Py-cpy fractures and darker alteration selvages in lighter flooded   | 42368       | 1132 | 1137   | 5'    | .001 | .06 | .02    | .001    |
|         |             | quartz and feldspar. Continuous weak brecciated textures. Near vertical          |             |      |        |       |      |     |        |         |
|         |             | quartz-carbonate-pyrite stringer with local strong sericite-clay (green?)        |             |      |        |       |      |     |        |         |
|         |             | around 1051. 2% T.S. in solid core                                               |             |      |        |       |      |     |        |         |
|         |             | 1157.5-1184.5 Fresh-looking core of fine grained quartz-diorite porphyry with 2% | 42369       | 1162 | 1167   | 5'    | .001 | .06 | .04    | .001    |
|         |             | T.S. around 1171'. Moderate to strong fracture-controlled alteration             |             |      | -      |       |      |     |        |         |
|         |             | with increased amount of pyrite (3-5%) around 1176'. No improvement              |             |      |        |       | ļ    |     |        |         |
|         |             | on cpy content. T.S. 2-3%                                                        |             |      |        |       |      |     |        |         |
|         |             | 1184.5-1208.5 Fresh core (very weak prophylitic alteration) alternating with     | 42370       | 1198 | 1203   | 5'    | .005 | .09 | .07    | .001    |
|         |             | moderately altered core from steeply-dipping pyrite fracturing.                  |             |      |        |       |      |     |        |         |

LOGGED BY: ....

CONTRACTOR: ....

| PROPERTY  | LOCATION       | DRILL HOLE No DH#.1 |
|-----------|----------------|---------------------|
| COMMENCED | ELEVATION DIPS | SHEET No 1,6        |
| COMPLETED | BEARING        |                     |
|           | DERTH          |                     |

|      |    | PERCENTION                                                                      | SAMPLE | FROM   | EDOM   | то    | SAMPLE |     | ASSAY   | VALUE   |  |
|------|----|---------------------------------------------------------------------------------|--------|--------|--------|-------|--------|-----|---------|---------|--|
| FROM | то | o DESCRIPTION                                                                   | No.    | PROM   | 10     | WIDTH | Mo%    | Cu% | Ag oz/1 | Au oz/T |  |
|      |    | Cpy on near-vertical fracture with PbS + ZnS at 1191. Heavy pyrite              |        |        |        |       |        |     |         |         |  |
|      |    | and quartz veining and specks of MoS <sub>2</sub> with dark colored quartz and  |        |        |        |       |        |     |         |         |  |
|      |    | also with good cpy around 1198'. 2-3% T.S. solid core in general                |        |        |        |       |        |     | ļ       |         |  |
|      |    | with occasional sharp gypsum fractures and fair cpy.                            |        |        |        |       |        |     |         |         |  |
|      |    | 1208.5-1233 More frequent and extensive (1-2ft) fresher quartz diorite porphyry | 42371  | 1229   | 1234   | 5 '   | .001   | .05 | .03     | .001    |  |
|      | f  | between fracture-controlled altered zone. Overall fracturing becoming           |        |        |        |       |        |     | -       |         |  |
|      |    | weak with decreased amount of pyrite veining. Transparant anhydrite or          |        |        |        |       |        |     |         |         |  |
|      |    | gypsum vein of 20° C.A. at 1230'. 1-2% T.S. poor copper grade expected          |        |        |        |       |        |     |         |         |  |
|      |    | 1233-1256.6 Similar to above with slightly more stockwork fracturing and        | 42372  | 1254.6 | 1259.6 | 5'    | .002   | .08 | .02     | .001    |  |
| -    |    | consequently shorter fresh core, occasional quartz-calcite-pyrite-cpy-          |        |        |        |       |        |     |         |         |  |
|      |    | PbS + ZnS fractures & veins. 1-2% T.S.                                          | -      |        |        |       |        |     |         |         |  |
|      |    | 1256-1271 Similar to above. Fresher (weak chloritization of matics & pyrite)    |        |        |        |       |        |     |         |         |  |
|      |    | quartz diorite with occasional stockwork fractures which are respon-            |        |        |        |       |        |     |         |         |  |
|      |    | sible for local bleaching and selvage alteration.                               |        |        |        |       |        |     |         |         |  |
|      |    | Stronger near-vertical fractures around 1267 with green tinted chlorite-        | _      |        |        |       |        |     |         |         |  |
|      |    | clay.                                                                           |        |        |        |       |        |     | ļ       |         |  |
|      |    | A narrow basic porphyritic dyke or inclusion at 1267 with sharp contact.        | ,      |        |        |       |        |     |         |         |  |

CONTRACTOR: .....

| <br>LOGGED BY: |
|----------------|
|                |

| PROPERTY  | LOCATION       | DRILL HOLE No DH. # . 1 |
|-----------|----------------|-------------------------|
| COMMENCED | ELEVATION DIPS | SHEET No 1,7,           |
| COMPLETED | BEARING        |                         |
|           | DEPTH          |                         |

| FROM   | то | DESCRIPTION                                                                       | SAMPLE | FROM    | то   | SAMPLE |      | ASSAY | VALUE  |         |          |
|--------|----|-----------------------------------------------------------------------------------|--------|---------|------|--------|------|-------|--------|---------|----------|
| PROIVI | 10 | DESCRIPTION                                                                       | No.    | 1110101 |      | WIDTH  | Mo % | Cu %  | Ag oz/ | Au oz/1 | <u> </u> |
|        |    | pyritized.                                                                        |        |         |      |        |      |       |        |         |          |
|        |    | 2% T.S.                                                                           |        |         |      |        |      |       |        |         |          |
|        |    | 1271-1295 Improvement of alteration and pyritization due to more fractures with   | 42373  | 1280    | 1285 | 5'     | .001 | .02   | .01    | .001    |          |
|        |    | decreased fresher quartz diorite patches. Strong near-vertical slip               |        |         |      |        |      |       |        |         |          |
|        |    | fractures with weakly crushed sulphides and calcite-clay, gypsum coating          |        |         |      |        |      |       |        |         |          |
|        |    | at later (?) stage. Minor MoS <sub>2</sub> with quartz-coarse sericite veining at |        |         |      |        |      |       |        |         |          |
|        |    | 1294. 2-3% T.S.                                                                   |        |         |      |        |      |       |        |         |          |
|        |    | 1295-1318 Generally fresh core of biotite-hornblende diorite porphyry mostly of   | 42374  | 1307    | 1312 | 5'     | .002 | .04   | .01    | .001    |          |
|        |    | plagioclase and minor mafics and a little quartz.                                 |        |         |      |        |      |       |        |         |          |
|        |    | More pervasive and stronger alteration zone 1311-1317. Total sulphides            |        |         |      |        |      |       |        |         |          |
|        |    | decreased to 1-2% with solid recovery,occasional cpy as disseminations            |        |         |      |        |      |       |        |         |          |
|        |    | and on fractures.                                                                 |        |         | ļ    |        |      |       |        |         |          |
|        |    | 1318-1342 Local improvement of strong pyrite and quartz veining with heavy coarse | 42375  | 1327    | 1332 | 5'     | .002 | .03   | .05    | .001    |          |
|        |    | sericite flakes and fine grained alteration envelopes. Cpy + MoS <sub>2</sub>     |        |         |      |        |      |       |        |         |          |
|        |    | associated with pyrite clusters 1322-1336. Cpy + MoS <sub>2</sub> at 1228 with    |        |         |      |        |      |       |        |         |          |
|        |    | lilac-colored anhydrite patches. 2-3% T.S. with good recovery of hard             |        |         |      |        |      |       |        |         |          |
|        |    | siliceous core.                                                                   |        |         |      |        |      |       |        |         |          |

LOGGED BY: .....

| PROPERTY  | LOCATION       | DRILL HOLE No | DH#.1 |
|-----------|----------------|---------------|-------|
| COMMENCED | ELEVATION DIPS | SHEET No      | 18    |
| COMPLETED | BEARING        |               |       |
|           | DERTH          |               |       |

| FROM | то | DESCRIPTION                                                                       | SAMPLE  | FROM   | FROM TO |       |      | ASSAY | VALUE   |        |
|------|----|-----------------------------------------------------------------------------------|---------|--------|---------|-------|------|-------|---------|--------|
|      |    |                                                                                   | No.     |        |         | WIDTH | Mo%  | Cu%   | Ag oz/T | Au œ/T |
|      |    | 1342-1365 Fresh to weakly altered (propylitic) quartz-diorite porphyry with       | 42376   | 1357   | 1363    | 6'    | .001 | .06   | .01     | .001   |
|      |    | occasional quartz-pyrite fractures and veins, moderate sericite halo              |         |        |         |       |      |       |         |        |
|      |    | of variable width. 2% T.S. Cpy on fracture 1343 and 1363. MoS <sub>2</sub> with   |         |        |         |       |      |       |         |        |
|      |    | pyrite-quartz fracture at 1364.                                                   |         |        |         |       |      |       |         |        |
|      |    | 1365-1389.5 Fresher quartz-diorite due to less frequent steeply-dipping veining.  | 42377   | 1363   | 1368    | 5'    | .006 | .08   | .02     | .001   |
|      |    | Nearly fresh rock particularly 1375-1389. Occasional cpy fractures                |         |        |         |       |      |       |         |        |
|      |    | with pyrite and also minor MoS <sub>2</sub> with quartz veining. Solid core 95%   |         |        |         |       |      | -     |         |        |
|      |    | recovery. Total sulphides 1 - 2 %                                                 |         |        |         |       |      |       |         |        |
|      |    | 1389.5 - 1412 Broken and split core, especially 1394-1402, due to steeply-dipping | g 42378 | 1394.6 | 1399.6  | 5'    | .005 | .09   | .03     | .001   |
| -    | -  | slip faces with crushed carbonate-gypsum, chlorite-clay and also and              |         |        |         |       |      |       |         |        |
|      |    | minor sulphides. Weak indication of near-horizontal movement on the               |         |        |         |       |      |       |         |        |
|      |    | slickensided fracture. 1-2% T.S. over 90% recovery.                               |         |        | :       |       |      |       |         |        |
|      |    | 1412-1435 Fresh to weakly altered diorite porphyry with more broken and altered   | 42379   | 1415   | 1420    | 5'    | .010 | .06_  | .08     | .001   |
|      |    | zone (1414-1417) due to steeply-dipping fractures and veins. Occasiona            | 1       |        |         |       |      |       |         |        |
|      |    | cpy on a fracture face. Minor MoS <sub>2</sub> on a fine gently dipping fracture  |         |        |         |       |      |       |         |        |
|      |    | at 1420.                                                                          |         |        |         |       |      |       |         |        |
|      |    | 1-2% T.S.                                                                         |         |        |         |       |      |       |         |        |

| PROPERTY  | LOCATION       | DRILL HOLE No | DH#1 |
|-----------|----------------|---------------|------|
| COMMENCED | ELEVATION DIPS | SHEET No      | 19   |
| COMPLETED | BEARING        |               |      |
|           |                |               |      |

| 55014 |    |           |                                                                         | SAMPLE | 50014 | FROM    | EBOM TO |      |     | SAMPLE   |         | ASSAY | VALUE |  |
|-------|----|-----------|-------------------------------------------------------------------------|--------|-------|---------|---------|------|-----|----------|---------|-------|-------|--|
| FROM  | то |           | DESCRIPTION                                                             | No.    | FROM  | FROM TO |         | Mo % | Cu% | Ag oz/ T | Au oz/T |       |       |  |
|       |    | 1435-1459 | Same as above (1412-1435). Thin selvage alteration on pyrite-quartz-    | 42380  | 1451  | 1456    | 5'      | .002 | .13 | .05      | .001    |       |       |  |
|       |    |           | sericite-chlorite fracture.                                             |        |       |         |         |      | ·   |          |         |       |       |  |
|       |    |           | Minor specks of MoS <sub>2</sub> on quartz veining at 1436 and 1452     |        |       |         |         |      |     |          |         |       |       |  |
|       |    | 1459-1483 | Fresh to weakly altered diorite porphyry,80-90% plagioclase mostly      |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | fresh, + 10% biotite, partly chloritized. Occasional fracture           |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | alteration halo with pyrite, quartz, carbonate and minor gypsum.        |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | Weakly slipped fracture faces are not uncommon, local sericite          |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | (coarse) are associated with the above fracture. Solid fresh core       |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | in general with 1-2% T.S.                                               |        |       |         |         |      |     |          |         |       |       |  |
|       |    | 1483-1500 | Light gray to gray diorite porphyry, porphyritic textures due to large  | 42381  | 1484  | 1489    | 5'      | .002 | .08 | .03      | .001    |       |       |  |
|       |    |           | and small clusters of shredded black biotites in lighter colored fine   |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | grained plagioclase groundmass.                                         |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | Generally fresh with minor chloritization particularly along occasional |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | stock work fractures with pyrite. Decreased amount of pyrite, mostly    |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | on fractures and only minor disseminations, T.S. or 1-2%                |        |       |         |         |      |     |          |         |       |       |  |
|       |    |           | - End of Hole - 1,500 ft.                                               |        |       |         |         |      |     |          |         |       |       |  |

CONTRACTOR:

LOGGED BY: .....

```
(GREENDROP PROJECT)
                           DH #1
  Core Recovery
  0 - 42'
                                                        2941
                                                                     90%
                 Overburden
                                                                     80%
                                                        296'
       47.6'
                      90%
       52'
                      90%
                                                        305'
                                                                     70%
                                                        3081
                                                                     80%
       54'
                      90%
       57'
                                                        309'
                      50%
                                                                     90%
       65'
                      80%
                                                        3191
                                                                     90%
      67'
                                                        329'
                                                                     90%
                      95%
                      90%
                                                        333'
                                                                     90%
       70'
       76'
                      80%
                                                        343'
                                                                     90%
      78'
                                                        347'
                      80%
                                                                     85%
                      85%
                                                        3491
                                                                     85%
      83'
                                                        354'
      86'
                                                                     90%
                      90%
      91'
                      85%
                                                                     75%
                                                        358'
      931
                      90%
                                                                     85%
                                                        365'
      961
                                                        369.6'
                      90%
                                                                     80%
                                                        3721
       100'
                      85%
                                                                     60%
                                                        375'
       103'
                      85%
                                                                     95%
       106'
                      90%
                                                        377.81
                                                                     90%
      113'
                      90%
                                                                     85%
                                                        380'
                                                        3821
       118'
                      85%
                                                                     95%
                                                        388'
       1231
                      90%
                                                                     60%
      125'
                     100%
                                                        3941
                                                                     75%
                                                        397'
                      90%
                                                                     80%
       130'
      135'
                      85%
                                                        401.5'
                                                                     85%
       1381
                      85%
                                                        407'
                                                                     70%
                                                        411'
       142'
                                                                     70%
                      90%
       147'
                                                        415'
                      85%
                                                                     60%
       153'
                      85%
                                                        420'
                                                                     70%
      154'
                      30%
                                                        423'
                                                                     75%
                      50%
                                                        425'
                                                                     85%
       156'
       159'
                      40%
                                                        426'
                                                                     90%
      162'
                      40%
                                                        4281
                                                                     70%
       166'
                      50%
                                                        430'
                                                                     60%
      1721
                                                        436'
                                                                     90%
                      35%
                                                                     80%
       176'
                      75%
                                                        441'
       177'
                      95%
                                                        446.5'
                                                                    < 10%
       181'
                      90%
                                                        450'
                                                                    <10%
      186'
                                                450'- 457'
                      90%
                                                                     85%
                                                        467'
                                                                    >90%
       196'
                     100%
      200'
                     100%
       206'
                     100%
      211'
                      95%
      216'
                      95%
       224'
                      95%
       230'
                      90%
                                   * Below 467' all the way down to 1500', core
                                      recovery is 90% or better based on measurement for 5 - 10' drill run intervals.
       233'
                      90%
       236'
                      85%
      241'
                      85%
       244'
                      90%
       249'
                      90%
      253'
                      85%
                     <10%
       256'
        (stopped initial
         BQ Hole here.)
      NQ Hole
236 - 246'
                      70%
      250'
                      80%
      254'
                      80%
       2621
                      80%
      264'
                      30%
                      70%
       2651
      266'
                      80%
      267'
                      80%
      2691
                      30%
      273'
                      40%
      275
                      40%
       279.51
                      80%
      282.5
                      80%
      284.5'
                      80%
       286.5'
                      80%
```

2891

80%

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B.C. | DRILL HOLE No. DH #2 |
|-------------------------|----------------------------------------------|----------------------|
| COMMENCED July 11, 1980 | ELEVATION .960 M(approx.) DIPS Vertical      | SHEET No 1           |
| COMPLETED July 31, 1980 | BEARING                                      |                      |

| EDOM | 70    | occopination ,                                                             | SAMPLE |             |        |              | SAMPLE  |          | ASSAY               | VALUE       |  |
|------|-------|----------------------------------------------------------------------------|--------|-------------|--------|--------------|---------|----------|---------------------|-------------|--|
| FROM | то    | DESCRIPTION                                                                | No.    | FROM<br>Ft. | Ft.    | width<br>Ft. |         | Cu %     | Ag <sup>OZ</sup> /T | OZ/<br>Au T |  |
| 0    | 456   | Overburden (occasional huge boulders of altered granodiorite & agglomeraté |        |             |        |              |         | <u>.</u> |                     |             |  |
|      |       | breccia)                                                                   |        |             |        |              |         |          |                     |             |  |
| 456  | 459   | Basic porphyry dyke                                                        | 42388  | 456         | 466    | 10'          | .001    | .03      | .05                 | .001        |  |
|      |       | dark gray to black basic (andesite-basalt) dyke with weak porphyritic      |        |             |        |              |         |          |                     |             |  |
|      |       | appearance due to sparse light feldspar phenocrysts in aphanetic to        |        | MIN         | ERAL R | ESOUR        | CES BRA | NCH      |                     |             |  |
|      |       | very fine grained ground mass. Stockwork fractures of pyrite with weak     |        |             |        |              | CART    |          |                     |             |  |
|      |       | alteration halo. Sharp and steeply-dipping (20% to C.A.) contact with      |        | J.          | X'     | <b>K</b>     |         |          |                     |             |  |
|      |       | highly altered granodiorite below. Fine to hairline fractures of           |        |             |        |              |         |          |                     |             |  |
|      |       | pyrite along with sparse disseminated pyrite. Strong gypsum fractures      |        |             | NO.    |              |         |          |                     |             |  |
|      |       | of late stage. Total sulphides < 1 - 1%. Recovery 90%                      |        |             |        |              |         |          |                     |             |  |
| 459  | 527.5 | Altered granodiorite                                                       | 42389  | 466         | 476    | 10'          | .004    | .02      | .04                 | .001        |  |
|      |       | White to grayish white, highly altered coarse grained granodiorite.        |        |             |        |              |         |          |                     |             |  |
|      |       | Relict texture retained locally due to highly sericitized coarse           |        |             |        |              |         |          |                     |             |  |
|      |       | feldspar. Strong quartz both from original and secondary origin.           |        |             |        |              |         |          |                     |             |  |
|      |       | Locally flooded quartz and pyrite fractures with alteration halo erased    |        |             |        |              |         |          |                     |             |  |

CONTRACTOR: ... Buccaneer, Diamond Drilling Inc.

| PROPERTY GREENDROP         | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D.H. #2 |
|----------------------------|-----------------------------------------------|------------------------|
| COMMENCED July 11, 1980    | ELEVATION .9.60. M. (approx.) DIPSVertical    | SHEET No2              |
| COMPLETED July .31, .1980. | BEARING                                       |                        |
|                            | 550 ft.                                       |                        |

| FROM | то | DESCRIPTION                                                                       | SAMPLE<br>No. | FROM<br>Ft. | то<br>Ft. | SAMPLE | Mo % |     | VALUE | Au <sup>oz/</sup> T |
|------|----|-----------------------------------------------------------------------------------|---------------|-------------|-----------|--------|------|-----|-------|---------------------|
|      |    | all the relict textures. Abundant pyrite clusters usually associated              | 42390         | 476         | 486       | 10'    | .021 | .02 | .05   | .001                |
|      |    | with poorly defined quartz veining. Pyrite dissemination is very minor            |               | 486         | 496       | 10'    | .009 | .03 | .03   | .001                |
|      |    | compared with fracture and cluster pyrite.                                        |               |             |           |        |      |     |       |                     |
|      |    | Significant MoS <sub>2</sub> around 480 ft. as an extensive envelope on a 1 cm    |               |             |           |        |      |     |       |                     |
|      |    | near-vertical quartz vein. Visual estimate of MoS2 grade could be                 |               |             |           |        |      |     |       |                     |
|      |    | 0.05%. Minor amounts of PbS and ZnS is usual with local cpy. Their                |               |             |           |        |      |     |       |                     |
|      |    | occurrences are on steeply-dipping fine fractures and related with                |               |             |           |        |      |     |       |                     |
|      |    | quartz-carbonate veining. Gypsum occurrences are usual, mostly on                 |               |             |           |        |      |     |       |                     |
|      |    | near-horizontal fractures and occasionally as larger chunks on cracks.            |               |             |           |        |      |     |       |                     |
|      |    | 486 - 508.5 same altered granodiorite as above, totally altered to quartz-        | 42392         | 496         | 506       | 10'    | .001 | .01 | .01   | .001                |
|      |    | sericite and clay (?) with strong fracturing. Practically shattered               |               |             |           |        |      |     |       |                     |
|      |    | core. The shattered cracks filled with crushed clay-carbonate-gypsum.             |               |             |           |        |      |     |       |                     |
|      |    | Pyrite occuring as clusters on curved and criss-crossed fractures.                |               |             |           |        |      |     |       |                     |
|      |    | Straight fractures are mostly near-vertical ones. Strong quartz                   |               |             |           |        |      |     |       |                     |
|      |    | intermingled with sericite. Locally weak granular texture of coarse               |               |             |           |        |      |     |       |                     |
|      |    | granodiorite. No mafics. Occasional fine grained MoS <sub>2</sub> associated with |               |             |           |        |      |     |       |                     |

LOGGED BY: ....B, Y, Kim

| PROPERTY GREENDROP      | LOCATIONGreendrop Lake area near Hope, B. C. | DRILL HOLE No. D.H., #2 |
|-------------------------|----------------------------------------------|-------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical      | SHEET No 3              |
| COMPLETED July 31, 1980 | BEARING                                      |                         |
|                         | DEPTH . 1520 .ft                             |                         |

| FROM  | то  | DESCRIPTION                                                                                                                                                           | SAMPLE<br>No. | FROM | FROM TO SA |     |      |      | VALUE               | 07/                 |                       |
|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------------|-----|------|------|---------------------|---------------------|-----------------------|
|       |     | 9                                                                                                                                                                     |               | Ft.  | _Ft.       | Ft. | Mo % | Cu % | Ag <sup>O2</sup> /T | Au <sup>OZ</sup> /T |                       |
|       |     | quartz and/or pyrite veining but the amount of MoS2 is not as much as                                                                                                 |               |      |            |     |      |      |                     |                     |                       |
|       |     | the above core box (464' - 486') Total sulphides 2%, core recovery                                                                                                    |               |      |            |     |      |      |                     |                     |                       |
|       |     | over 90%.                                                                                                                                                             |               |      |            |     |      |      |                     |                     |                       |
|       |     |                                                                                                                                                                       |               |      |            |     |      |      |                     |                     |                       |
|       |     | 508.5 - 527.8 Quartz-sericite fels with no relict textures down to 522. Weak                                                                                          |               |      |            |     |      |      |                     |                     |                       |
|       |     | granular texture of original granodiorite from 522 - 527.5 (contact                                                                                                   |               |      |            |     |      |      |                     |                     |                       |
|       |     | with dyke below) Very strong pervaisive alteration with abundant late-                                                                                                |               |      |            |     |      |      |                     |                     |                       |
|       |     | stage gypsum fractures. Pyrite occuring as local heavy clusters and                                                                                                   |               |      |            |     |      |      |                     |                     |                       |
|       |     | intermittent fracture fillings. Evenly disseminated pyrite are very                                                                                                   |               |      |            |     |      |      |                     |                     |                       |
|       |     | minor. 2-3% T.S. with rare fine grained MoS2. Recovery over 90%.                                                                                                      |               |      |            |     |      |      |                     |                     |                       |
| 527.5 | 537 | Pacie nembyny dyke, dawk gway aphanetic to fine gwained dyke weck with sparse                                                                                         | 42393         | 527  | 537        | 10' | .001 | .02  | .01                 | .001                |                       |
| 527.5 | 337 | Basic porphyry dyke: dark gray, aphanetic to fine grained dyke rock with sparse  light-colored feldspar lath. Sharp steeply-dipping contact (10 <sup>5</sup> to C.A.) | 1             | 327  | 337        | 10  | .001 | .02  | .01                 | .001                |                       |
|       |     | with the above altered granodiorite. Thin selvages of bleaching on                                                                                                    |               |      |            |     |      |      |                     |                     |                       |
|       |     | pyritic fractures. Strong gently-dipping gypsum fractures, one of them                                                                                                |               |      |            |     |      |      |                     |                     | للتهوفية فرير والمالة |
|       |     | cross-cutting and shifting the near-vertical contact line.                                                                                                            |               |      |            |     |      |      |                     |                     |                       |
|       |     | T.S. ± 1% core recovery over 90%                                                                                                                                      |               |      |            |     |      |      |                     |                     |                       |

CONTRACTOR: .. Buccaneer. Diamond .Drilling .Inc..

| GREENDROP<br>PROPERTY   | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D. H. #2 |
|-------------------------|-----------------------------------------------|-------------------------|
| COMMENCED July 11, 1980 | ELEVATION .960 M.(approx.) DIPS Vertical      |                         |
| COMPLETED July 31, 1980 | BEARING                                       |                         |
|                         | DERTH 1520 ft.                                |                         |

| FROM  | то      | DESCRIPTION                                                                     | SAMPLE | FROM | то  | SAMPLE |      | ASSAY | VALUE             |                    |
|-------|---------|---------------------------------------------------------------------------------|--------|------|-----|--------|------|-------|-------------------|--------------------|
|       |         |                                                                                 | No.    | Ft.  | Ft. | Ft.    | Mo % | Cu %  | Ag <sup>0/T</sup> | Au <sup>0/</sup> T |
| 537   | 547.5   | Altered granodiorite: same as the above granodiorite (459-527.5) Local original | 42394  | 537  | 547 | 10'    | .001 | .02   | .01               | .001               |
|       |         | granular texture saved due to coarse sericitized feldspars and quartz           |        |      |     |        |      |       |                   |                    |
|       |         | grains. Mafics all gone and commonly replaced by pyrite. Where quartz           |        |      |     |        |      |       |                   |                    |
|       |         | flooding is stronger no relict texture at all. Persistent gypsum                |        |      |     |        |      |       |                   |                    |
|       |         | fractures. T. S. 2%. Recovery > 90%                                             |        |      |     |        |      |       |                   |                    |
| 547.5 | 5 561.5 | Basic porphyry dyke (Andesite-Basalt): same as the above dyke at 527.5 - 537.   |        |      |     |        |      |       |                   |                    |
|       |         | Criss-crossed pyrite fractures with thin envelope of alteration and             |        |      |     |        |      |       |                   |                    |
|       |         | bleaching. Occasional heavy pyrite clusters. Some angular inclusions            |        |      |     |        |      |       |                   |                    |
|       |         | of granodiorite. Granodiorite section 554-556 (large inclusion)                 |        |      |     |        |      |       |                   |                    |
|       |         | Steeply-dipping contact. T. S. 1 - 2% . Recovery > 90%                          | 42395  | 557  | 567 | 10'    | .001 | .02   | .02               | .001               |
| 561.5 | 5 650   | Altered granodiorite: Very usual type, same as above granodiorites. Original    |        |      |     |        |      |       |                   |                    |
|       |         | granular textures except where strong quartz veining. Fine grains of            |        |      |     |        |      |       |                   |                    |
|       |         | MoS2 on fracture near the contact above minor secondary biotite                 |        |      |     |        |      |       |                   |                    |
|       |         | around 563'. A steeply-dipping slip face at 572 showing near-horizontal         | I      |      |     |        |      |       |                   |                    |
|       |         | slicken-sided movement. T. S. 2 - 3 % Recovery > 90%                            |        |      |     |        |      |       |                   |                    |

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D. H. #2 |
|-------------------------|-----------------------------------------------|-------------------------|
| COMMENCEDJuly. 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No                |
| COMPLETED July 31, 1980 | BEARING                                       |                         |
| •                       | 1520 ft.                                      |                         |

| FROM | то | DESCRIPTION .                                                                              | SAMPLE<br>No. | FROM<br>Ft. | то<br>Ft. | SAMPLE<br>WIDTH<br>Ft. |      | <del></del> | Ag <sup>U</sup> /T | Δ <sub>11</sub> 0/ <sub>T</sub> |
|------|----|--------------------------------------------------------------------------------------------|---------------|-------------|-----------|------------------------|------|-------------|--------------------|---------------------------------|
|      |    | 574.5 - 598 same as above. Stronger quartz veining and minor MoS <sub>2</sub> at 599' , 1" | 42396         | 584         | 594       | 10'                    | .003 | .02         | .02                | .001                            |
|      |    | aplitic core at 594'                                                                       |               |             |           |                        |      |             |                    |                                 |
|      |    | T. S. 2 - 3 % with over 90% recovery.                                                      |               |             |           |                        |      |             |                    |                                 |
|      |    | 598 - 621 same as above, uniform core extensively. Strong solid quartz veining             | 42397         | 604         | 614       | 10'                    | .001 | .01         | .01                | .001                            |
|      |    | 603 - 604 and at 609' Pyrite mostly as heavy fracture-filling and                          |               |             |           |                        |      |             |                    |                                 |
|      |    | clusters on cracks. Dissemination is minor. Increased amount of                            |               |             |           |                        |      |             |                    |                                 |
|      |    | pyrite (T.S. 3 - 5%) along with flooded quartz. Recovery good all the                      |               |             |           |                        |      |             |                    |                                 |
|      |    | way,over 90%.                                                                              |               |             |           |                        |      |             |                    |                                 |
|      |    | 621 - 644 same as above, slightly more quartz both of well-defined vein type               | 42398         | 624         | 634       | 10'                    | .004 | .01         | .03                | .001                            |
|      |    | and flooded type. Relict granular texture of coarse granodiorite                           |               |             |           |                        |      |             |                    |                                 |
|      |    | preserved locally from pervaisive alteration and quartz flooding.                          | ļ             |             |           |                        |      |             |                    |                                 |
|      |    | Heavy pyrite on fractures and as matrix-like void-filling is usual,                        |               |             |           |                        |      |             |                    |                                 |
|      |    | especially around 632'. Minor MoS2 associated with the above pyrite                        |               |             |           |                        |      |             |                    |                                 |
|      |    | zone around 632' . A near-vertical fracture around 632' filled with                        |               |             |           |                        |      |             |                    |                                 |
|      |    | discontinuous ZnS - minor PbS & cpy. The fracture above is later than                      |               |             |           |                        |      |             |                    |                                 |

CONTRACTOR: Buccaneer Diamond Drilling Inc. LOGGED BY: B. Y. Kim

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D. H. #2 |
|-------------------------|-----------------------------------------------|-------------------------|
| COMMENCEDJuly 11, 1980  | ELEVATION 960. M. (approx.) DIPSVert.ical     | SHEET No                |
| COMPLETED July 31, 1980 | BEARING                                       |                         |
|                         | 1520 5+                                       |                         |

| FROM | то  | DESCRIPTION                                                            | SAMPLE<br>No. | FROM  | A TO SAMPLE WIDTH |       |      |      | VALUE   | 0/-  |  |
|------|-----|------------------------------------------------------------------------|---------------|-------|-------------------|-------|------|------|---------|------|--|
|      |     |                                                                        |               | Ft.   | Ft.               | Ft.   | Mo % | Cu % | Ag o' T | Au T |  |
|      |     | main pyrite mineralization stage.                                      |               |       |                   |       |      |      |         |      |  |
|      |     | Smeared sulphide along with crushed clay minerals on a near-vertical   |               | ·     |                   |       |      |      |         |      |  |
|      |     | slip face at 643'                                                      |               |       |                   |       |      |      |         |      |  |
|      |     | 3 - 5% T. S. over 90% recovery.                                        |               |       |                   |       |      |      |         |      |  |
|      |     | N .                                                                    |               |       | 4                 |       |      |      |         |      |  |
|      |     | 644 - 650 Coarse altered granodiorite rich in quartz-sericite. Pyritic |               |       |                   |       |      |      |         |      |  |
|      |     | stockwork fractures are usual. Dark greenish gray spots of altered     |               |       |                   |       |      |      |         |      |  |
|      |     | mafics partly replaced by fine grained pyrite. Usual gypsum fractures  |               |       |                   |       |      |      |         |      |  |
|      |     | throughout. Total sulphides weaker than above due to less pyrite       |               |       |                   |       |      |      |         |      |  |
|      |     | clusters, 2 - 3 %. Recovery over 90%.                                  |               |       |                   |       |      |      |         |      |  |
| 650  | 671 | Basic porphyry dyke: same dyke as above (547.5 - 561.5)                | 42399         | 653.5 | 663.5             | 5 10' | .07  | .01  | .01     | .001 |  |
|      |     | Stronger stockwork veining and wider bleached halo, consequently the   |               |       |                   |       |      |      |         |      |  |
|      |     | core is locally grayish white. Contact with the granodiorite above is  |               |       |                   |       |      |      |         |      |  |
|      |     | sharp and gently-dipped (70° to C.A.) Fine grains of MoS2 as           |               |       |                   |       |      |      |         |      |  |
|      |     | envelope on a well-defined near-vertical quartz vein 658.5 - 660.5     | 42400         | 667   | 677               | 10'   | .02  | .02  | .01     | .001 |  |
|      |     | and minor MoS2 around 655.                                             |               |       |                   |       |      |      |         |      |  |

CONTRACTOR Buccaneer Diamond Drilling Inc.

B. Y. Kim

LOGGED BY: .....

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No D H #2 |
|-------------------------|-----------------------------------------------|----------------------|
| COMMENCEDJuly 11, 1980  | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No             |
| COMPLETED July 31, 1980 | BEARING                                       |                      |
|                         | 1520 Ft.                                      |                      |

| FROM | то  | DESCRIPTION                                                                       | SAMPLE | FROM | FROM      | EDOM TO |      | TO   | SAMPLE              |                     |  | VALUE |  |  |
|------|-----|-----------------------------------------------------------------------------------|--------|------|-----------|---------|------|------|---------------------|---------------------|--|-------|--|--|
|      |     | DESCRIPTION                                                                       | No.    | Ft.  | то<br>Ft. | WHOTH.  | Mo % | Cu % | Ag <sup>OZ/</sup> T | Au <sup>OZ</sup> /T |  |       |  |  |
|      |     | Gypsum fractures cross-cutting all other structures. Purple gypsum or             |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | anhydrite is usual.                                                               |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | Weakly prophyritic due to subhedral to anhedral feldspar phenocrysts.             |        |      |           |         | Į.   |      |                     |                     |  |       |  |  |
|      |     | Original structure of the lower contact obsecured by flooded quartz.              |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | T. S. 1 - 2%, mostly on fractures, > 90% recovery                                 |        |      |           |         |      |      |                     |                     |  |       |  |  |
| 671  | 677 | Altered granodiorite: Totally sericitized feldspar and mafics and partly replaced | l      |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | by pyrite. Strong quartz both from primary and secondary origin.                  |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | Incompletely assimilated inclusions of the dark dyke rock in highly               |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | silicified granodiorite near contact. 2 - 3% T. S. over 90% recovery.             |        |      |           |         | :    |      |                     |                     |  |       |  |  |
| 677  | 688 | Basic porphyry dyke: generally same as the above dykes, slightly darker due to    |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | less stockwork fractures. Dissemination of fine grained pyrite                    |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | increased comparing with the above dyke rocks. 2% T. S.                           |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     | Recovery > 90%                                                                    |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     |                                                                                   |        |      |           |         |      |      |                     |                     |  |       |  |  |
|      |     |                                                                                   |        |      |           |         |      |      |                     |                     |  |       |  |  |

CONTRACTOR Buccaneer Diamond Drilling Inc.

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D. H. #2 |
|-------------------------|-----------------------------------------------|-------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No 8              |
| COMPLETED July 31, 1980 | BEARING                                       |                         |
|                         | 1520 5+                                       |                         |

| FROM  | то    | DESCRIPTION                                                                     | SAMPLE | FROM | FROM | FROM | FROM | FROM  | FROM                | FROM                | FROM | то | SAMPLE |  | ASSAY | VALUE |  |  |
|-------|-------|---------------------------------------------------------------------------------|--------|------|------|------|------|-------|---------------------|---------------------|------|----|--------|--|-------|-------|--|--|
|       |       |                                                                                 | No.    | ft.  | ft.  | ft.  | Mo % | Cu %_ | Ag <sup>OZ/</sup> T | Au <sup>OZ</sup> /T |      |    |        |  |       |       |  |  |
| 688   | 695   | Altered granodiorite: same as above granodiorite (671-677). Inclusion of dyke   | 42401  | 687  | 697  | 10'  | .01  | .02   | .01                 | .001                |      |    |        |  |       |       |  |  |
|       |       | rock in flooded quartz at 691 2 - 3% T. S. Core recovery over 90%               |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       |                                                                                 |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
| 695   | 715.5 | Basic porphyry dyke: same as the above dyke rocks. Abundant stockwork fractures |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | with weak alteration halo. Local light-colored core due to the                  |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | concentration of stockwork fracturing and bleaching.                            |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | Local inclusions of altered granodiorite.                                       |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | Total sulphides 2% with recovery > 90%                                          |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
| ļ     |       |                                                                                 |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
| 715.5 | 762   | Altered granodiorite: (same as above granodiorites) Weaker silicification than  |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | above, therefore more obvious original textures preserved. Well-                |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | fractured, softened and greenish tinted feldspar grains due to strong           |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | sericite and/or clay alteration. Usual gypsum veining. More siliceous           |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | around 719'. No sign of improvement on Cpy or molybdenite mineralization        | n.     |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | 715.5 - 738.5 T. S. ± 3%. Recovery over 90%                                     |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       | •                                                                               |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |
|       |       |                                                                                 |        |      |      |      |      |       |                     |                     |      |    |        |  |       |       |  |  |

CONTRACTOR: Buccaneer Diamond Drilling Inc.

| PROPERTY GREENDROP      | LOCATIONGreendrop Lake area near Hope, B. C. | DRILL HOLE No. D.H. #2 |
|-------------------------|----------------------------------------------|------------------------|
| COMMENCEDJuly 11, 1980  | ELEVATION 960 M (approx.) DIPS Vertical      | SHEET No 9             |
| COMPLETED July 31, 1980 | BEARING                                      |                        |
|                         | 1520 Ft.                                     |                        |

| FROM | то  | DESCRIPTION                                                                    | SAMPLE | FROM | то             | SAMPLE |      | Ţ    | AY VALUE            |                     |  |  |
|------|-----|--------------------------------------------------------------------------------|--------|------|----------------|--------|------|------|---------------------|---------------------|--|--|
|      |     |                                                                                | ft.    |      | ft.            | ft.    | Mo % | Cu % | Ag <sup>OZ/</sup> I | Au <sup>OZ/</sup> T |  |  |
|      |     |                                                                                |        |      |                |        |      |      |                     |                     |  |  |
|      |     | 738.5 - 762 More pervaisively altered but still weak original granular texture | 42402  | 752  | 762            | 10'    | .03  | .03  | .02                 | .001                |  |  |
|      |     | preserved. Disseminated pyrite is minor comparing with strong fracture         |        |      |                |        |      |      |                     |                     |  |  |
|      |     | pyrite.                                                                        |        |      |                |        |      |      |                     |                     |  |  |
|      |     | A steeply-dipping slip fracture 748 - 751 with smeared sulphide and            |        |      |                |        |      |      |                     |                     |  |  |
|      |     | clay, strong alteration halo for sericite and greenish clay(?), no             |        |      |                |        |      |      |                     |                     |  |  |
|      |     | relict textures around.                                                        |        |      | ·· · · · · · · |        |      |      |                     |                     |  |  |
|      |     |                                                                                |        |      |                |        |      |      |                     |                     |  |  |
| 762  | 924 | Diorite porphyry                                                               |        |      |                |        |      |      |                     |                     |  |  |
|      |     | Gradational in color and porphyritic texture from the above basic dykes        | ,      |      |                |        |      |      |                     |                     |  |  |
|      |     | mostly gray to dark gray with lighter-colored stockwork fractures and          |        |      |                |        |      |      |                     |                     |  |  |
|      |     | bleached alteration halo. Poprhyritic due to sparse (locally abundant)         |        |      |                |        |      |      |                     |                     |  |  |
|      |     | white feldspar and sharp biotite phenocrysts in fine grained to                |        |      |                |        |      |      |                     |                     |  |  |
|      |     | aphanetic dark gray groundmass. Remarkable changes in short intervals          |        |      |                |        |      |      |                     |                     |  |  |
|      |     | due to fracture-controlled alteration.                                         |        |      |                |        |      |      |                     |                     |  |  |
|      |     | Abundant criss-crossed stockwork fractures with weak pyrite and thin           |        |      |                |        |      |      |                     |                     |  |  |
|      |     | envelope bleaching. Occasional near-vertical heavy pyrite fractures            |        |      |                |        |      |      |                     |                     |  |  |

CONTRACTOR: Buccaneer Diamond Drilling Inc.

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No #2 |
|-------------------------|-----------------------------------------------|------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No10       |
| COMPLETED July 31, 1980 | BEARING                                       |                  |
| ••••••                  | DEPTH 1520 ft.                                |                  |

| FROM | то | DESCRIPTION                                                           | SAMPLE | FROM  | то    | SAMPLE |      |      | VALUE               |                     |
|------|----|-----------------------------------------------------------------------|--------|-------|-------|--------|------|------|---------------------|---------------------|
|      |    | DESCRIPTION                                                           | No.    | ft.   | ft.   | #toth  | Mo % | Cu % | Ag <sup>OZ/</sup> T | Au <sup>OZ/</sup> T |
|      |    | with wide strong alteration halo, which is responsible for local      |        |       |       |        |      |      |                     |                     |
|      |    | pervaisive (for core width) sericite and clay. About a foot away from |        |       |       |        |      |      |                     |                     |
|      |    | the above pervaisively altered fractures the core is much fresher.    |        |       |       |        |      |      |                     |                     |
|      |    | Greenish clay (montmorillonite?) after feldspar swells up when wet,   |        |       |       |        |      |      |                     |                     |
| -    |    | developed along the steeply-dipping pyrite fractures that are usually |        |       |       |        |      |      | -                   |                     |
|      |    | slipped.                                                              |        |       |       |        |      |      |                     |                     |
|      |    | Inclusions of altered granodiorite 768.5 - 770.5 and 774.5 - 776.5    |        |       |       |        |      |      |                     |                     |
|      |    | 762.5 - 786.5 2 - 3% T. S. Recovery > 90%                             |        |       |       |        |      |      |                     |                     |
|      |    | 786.5 - 810 Fresher and solider core with less pyrite fractures.      | 42403  | 784.5 | 794.5 | 10'    | .01  | .01  | .01                 | .001                |
|      |    | Heavy pyrite on a near-vertical fracture around 799'. 2 - 3% T. S.    |        |       |       |        |      |      |                     |                     |
|      |    | Recover > 90%.                                                        |        |       |       |        |      |      |                     |                     |
|      |    | 810 - 834 Stronger pervaisive clay alteration with strong pyrite      | 42404  | 825   | 835   | 10'    | .01  | .04  | .04                 | .001                |
|      |    | 825 - 832. 3 - 5% T. S. Recovery > 90%                                |        |       |       |        |      |      |                     |                     |
|      |    | 834 - 858 0.5 mm near-vertical heavy pyrite vein with strong          |        |       |       |        |      |      |                     |                     |
|      |    | alteration halo 838 - 843. Solid core with increased amount of        |        |       |       |        |      |      |                     |                     |
|      |    | overall pyrite 843 - 848. 3 - 5% T. S. Recovery > 90%                 |        |       |       |        |      |      |                     |                     |
|      |    |                                                                       |        |       |       |        |      |      |                     |                     |

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B.C. | DRILL HOLE No. D.H. #2 |
|-------------------------|----------------------------------------------|------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical      | SHEET No11             |
| COMPLETED July 31, 1980 | BEARING                                      |                        |
|                         | DEPTH 1520 ft.                               |                        |

| FROM | то  | TO TO THE SERIES OF THE SERIES | SAMPLE | FROM | то  | SAMPLE |      | ASSAY VALUE |      |                     |  |
|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-----|--------|------|-------------|------|---------------------|--|
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.    | ft.  | ft. | ft.    | Mo % | Cu %        | Ag T | Au <sup>OZ</sup> /T |  |
|      |     | 858 - 881 Darker, solider core with moderate stockwork veining with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42405  | 873  | 883 | 10'    | .01  | .02         | .05  | .001                |  |
|      |     | thin alteration halo and occasional near-vertical pyrite fractures with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |      |     |        |      |             |      |                     |  |
|      |     | stronger alteration. Greenish clay swollen up with water around the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |     |        |      |             |      |                     |  |
|      |     | alteration fractures. 2% T. S. Recovery > 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |      |     |        |      |             |      |                     |  |
|      |     | 881 - 924 same as above. Solid core with occasional thin fracture bleaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -      |      |     |        |      |             |      |                     |  |
|      |     | and alteration. Gypsum fracturing not as strong as above, very sharp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      |     |        |      |             |      |                     |  |
|      |     | contact with granodiorite below, 25 °C.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |     |        |      |             |      |                     |  |
|      |     | 2% T.S. Recovery > 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |     |        |      |             |      |                     |  |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |     |        |      |             |      |                     |  |
| 924  | 939 | Altered granodiorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      |     |        |      |             |      |                     |  |
|      |     | Coarse granular textured (preserved from the original feldspar rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42406  | 927  | 937 | 10'    | .001 | .01         | .01  | .001                |  |
|      |     | granodiorite) in grayish white, pervaisively altered with strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |     |        |      |             |      |                     |  |
|      |     | fracture and cluster pyrite. Gypsum fractures are usual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |     |        |      |             |      |                     |  |
|      |     | 3 - 5% T. S. Recovery > 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      |     |        |      |             |      |                     |  |
|      |     | • ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      |     |        |      |             |      |                     |  |
| 937  | 947 | Basic porphyry dyke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _      |      |     |        |      |             |      |                     |  |
|      |     | Dark gray to gray, porphyritic due to white feldspar grains in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |      |     |        |      |             |      |                     |  |

CONTRACTOR: Buccaneer Diamond Drilling Inc.

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No D. H. #2 |
|-------------------------|-----------------------------------------------|------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No               |
| COMPLETED July 31, 1980 | BEARING                                       |                        |
|                         | DEPTH 1520 ft.                                |                        |

| FROM | то   | DESCRIPTION                                                             | SAMPLE | FROM   |        | SAMPLE       |      |      | / VALUE            |                   |  |
|------|------|-------------------------------------------------------------------------|--------|--------|--------|--------------|------|------|--------------------|-------------------|--|
|      |      |                                                                         | No.    |        | ft.    | width<br>ft. | Mo % | Cu % | Ag <sup>O/</sup> T | Au <sup>O/T</sup> |  |
|      |      | dark-colored andesitic to basaltic groundmass. Fair stockwork fractures | S      |        |        |              |      |      |                    |                   |  |
|      |      | with thin selvage alteration. Upper contact obsecured by slip           |        |        |        |              |      |      |                    |                   |  |
|      |      | movement and development of alteration clay. Lower contact sharp,       |        |        |        |              |      |      |                    |                   |  |
|      |      | steeply dipped. Hairline fractures of pyrite cross-cutting the contact  | •      |        |        |              |      |      |                    |                   |  |
|      |      | 3 - 5% T. S. Recovery > 90%                                             |        |        |        |              |      |      |                    |                   |  |
|      |      |                                                                         |        |        |        |              |      |      |                    |                   |  |
| 947  | 1060 | Altered granodiorite                                                    | 42407  | 947    | 957    | 10'          | .002 | .04  | .01                | .001              |  |
|      |      | same as above granodiorites. Inclusions of angular fragments of dark    |        |        |        |              |      |      |                    |                   |  |
|      |      | aphanetic dyke near the contact (weak breccia texture). Prevaisively    |        |        |        |              |      |      | ,                  |                   |  |
|      |      | and weakly altered to sericite - clay (sericitization was probably      |        |        |        |              |      | ļ    |                    |                   |  |
|      |      | overprinted later by fracture - controlled alteration for clay) Strong  |        |        |        |              |      |      |                    |                   |  |
|      |      | fracture pyrite and usual gypsum fractures. Strong purple gypsum        | 42408  | 975.5  | 985.5  | 10'          | .001 | .01  | .01                | .001              |  |
|      |      | (anhydrite?) around 985' and 1 cm poorly-defined vein of anhydrite      |        |        |        |              |      |      |                    |                   |  |
|      |      | 1008' - 1009'                                                           | 42409  | 1005.5 | 1015.5 | 10'          | .001 | .01  | .01                | .001              |  |
|      |      | Incompletely assimilated dyke rock fragments or dyke swarm 1026 - 1034  |        |        |        |              |      |      |                    |                   |  |
|      |      |                                                                         |        |        |        |              |      |      |                    |                   |  |
|      |      | Cpy vein (0.3 mm 30 to C.A.) at 1033.5 ft.                              |        |        |        |              |      |      |                    |                   |  |

CONTRACTOR Buccaneer Diamond Drilling Inc.

B. Y. Kim

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D.H. #2 |
|-------------------------|-----------------------------------------------|------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No13             |
| COMPLETED July 31, 1980 | BEARING                                       |                        |
|                         | DEPTH 1520 ft.                                |                        |

| FROM | то   | то                                                                                    | то    | то     | DESCRIPTION | SAMPLE<br>No. | FROM | TO   | SAMPLE<br>WIDTH |          | ASSAY | VALUE | 0/- |  |
|------|------|---------------------------------------------------------------------------------------|-------|--------|-------------|---------------|------|------|-----------------|----------|-------|-------|-----|--|
|      |      | Criss-crossing pyrite fractures in more siliceous (from alteration) zone around 1040. |       | ft.    | ft.         | ft.           | MO % | Cu % | Ag I            | Au o / I |       |       |     |  |
|      |      | ° Fine grained MoS <sub>2</sub> on fracture around 1056'                              | 42410 | 1046.5 | 1056.5      | 10'           | .003 | .02  | .01             | .001     |       |       |     |  |
|      |      | 3 - 5% T.S. Recovery > 90%                                                            |       |        |             |               |      |      |                 |          |       |       |     |  |
| 1060 | 1210 | Basic porphyry dyke                                                                   |       |        |             |               |      |      |                 |          |       |       |     |  |
| •    |      | Brecciated contact (partly assimilated fragments) with stockwork veining              | ı     |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | and bleaching. Heavy pyrite clusters and bleaching obsecured the                      |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | contact line. Usually darker in color near the contact.                               |       |        |             |               |      |      |                 |          |       |       |     |  |
| ***  |      | 1060 - 1092.5. porphyry dyke showing frequent zonal change in color, texture and      |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | alteration intensity. Fresher core to the depth.                                      |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | Solid massive core of diorite porphyry with fracture pyrite and                       |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | alteration halo. 2% T.S. Recovery > 90%                                               |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | 1092.5 - 1116.5 More pervaisively altered 1101 - 1105, minor breccia texture          | 42411 | 1097   | 1107        | 10'           | .001 | .02  | .01             | .001     |       |       |     |  |
|      |      | from strong stockwork veining at 1115. Darker-colored core from                       |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      | around 1115 to the depth. 2% T. S. Recovery > 90%                                     |       |        |             |               |      |      |                 |          |       |       |     |  |
|      |      |                                                                                       |       |        |             |               |      |      |                 |          |       |       |     |  |

CONTRACTOR: Buccanger Diamond Drilling Inc.

| LOGGED BY: | В. | Υ. | Kim |      |  |
|------------|----|----|-----|------|--|
| LUGGED BT: |    |    |     | <br> |  |

| PROPERTYGREENDROP       | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D. H. #2 |
|-------------------------|-----------------------------------------------|-------------------------|
| COMMENCED July 11, 1980 | ELEVATION .960. M. (approx.) DIPS Vertical    | SHEET No                |
| COMPLETED July 31, 1980 | BEARING                                       |                         |
|                         | 55554 1520 ft                                 |                         |

| FROM | то    | DESCRIPTION                                                                   | SAMPLE | FROM | то   | SAMPLE       |       |      | / VALUE            |                    |
|------|-------|-------------------------------------------------------------------------------|--------|------|------|--------------|-------|------|--------------------|--------------------|
|      |       |                                                                               | No.    | ft.  | ft.  | width<br>ft. | Mo %_ | Cu % | Ag <sup>0/</sup> I | Au <sup>0</sup> /T |
|      |       | 1116.5 - 1140 dark-colored and fine grained to aphanetic with frequent stock- | 42412  | 1137 | 1147 | 10'          | .001  | .01  | .02                | .001               |
|      |       | work veining. A weak breccia texture 1116 - 1122. Changing gradationa         | 11y    |      |      |              |       |      |                    |                    |
|      |       | to light gray more proper diorite porphyry with sparse sharp biotite.         |        |      |      |              |       |      |                    |                    |
|      |       | Frequent thin criss-crossing stockwork fractures.                             |        |      |      |              |       |      |                    |                    |
|      |       | 1140 - 1163 Gradationally changed to lighter-colored with more disseminated   |        |      |      |              |       |      |                    |                    |
|      |       | fine-grained pyrite 1140 - 1148.5. Coarse sericite envelope on 1 cm           |        |      |      |              |       |      |                    |                    |
|      |       | pyrite vein (50 to C.A.) at 1160 where a minor dark-colored dyke              |        |      |      |              |       |      |                    |                    |
|      |       | ° occurs.                                                                     |        |      |      |              |       |      |                    |                    |
|      |       | 1163 - 1187 More pervaisively and strongly altered with stronger pyrite.      | 42413  | 1167 | 1177 | 10'          | .001  | .08  | .02                | .001               |
|      |       | 3 - 5% T. S. Recovery <b>&gt;</b> 90%                                         |        |      |      |              |       |      |                    |                    |
|      | !<br> | 1187 - 1210 Solid massive core of diorite porphyry with fracture-controlled   | 42414  | 1187 | 1197 | 10'          | .001  | .04  | .02                | .001               |
| •    |       | alteration and pyritization. Disseminated pyrite is minor to cluster          |        |      |      |              |       |      |                    |                    |
|      |       | pyrite on fractures. Approximately 10% pyrite 1186 - 1199. Locally            |        |      |      |              |       |      |                    |                    |
|      |       | breccia texture due to stockwork, alteration, pyrite veining and slip         |        |      |      |              |       |      |                    |                    |
|      |       | movements. 3 - 5% T. S. Recovery > 90%                                        |        |      |      |              |       |      |                    |                    |
|      |       |                                                                               |        |      |      |              |       |      |                    |                    |
|      |       |                                                                               |        |      |      |              |       |      |                    |                    |

CONTRACTOR Buccaneer Diamond Drilling Inc.

| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D.H. #2 |
|-------------------------|-----------------------------------------------|------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No               |
| COMPLETED July 31, 1980 | BEARING                                       |                        |
| ·                       | DEPTH1250 ft.                                 |                        |

| FROM | то   | , DESCRIPTION                                                                     | SAMPLE<br>No. | FROM<br>ft. | то<br>ft. | SAMPLE<br>WIDTH<br>ft. | Mo % |     | VALUE<br>Aq <sup>0</sup> /T | Au <sup>0</sup> / <sub>T</sub> |   |
|------|------|-----------------------------------------------------------------------------------|---------------|-------------|-----------|------------------------|------|-----|-----------------------------|--------------------------------|---|
| 1210 | 1308 | Diorite Porphyry                                                                  |               |             |           |                        |      |     |                             |                                |   |
|      |      | Darker-colored porphyritic diorite, fresh-looking other than stockwork            |               |             | ·         |                        |      |     |                             |                                |   |
|      |      | fracturing and its alteration envelope. Only a few millimeter                     |               |             |           |                        |      |     |                             |                                | : |
|      |      | envelope of bleaching. Pyrite decreased remarkable from above.                    |               |             |           |                        |      |     |                             |                                |   |
|      |      | 1210 - 1235 Fairly fresh sharp biotite books while some other mafics (hornblender | ?)            |             |           |                        |      |     |                             |                                |   |
|      |      | are broken to chlorite and replaced by pyrite.                                    |               |             |           |                        |      |     |                             |                                |   |
|      |      | 2 - 3% pyrite (T.S.) Recovery > 90%                                               |               |             |           |                        |      |     |                             |                                |   |
|      |      | Minor MoS2 on a gently-dipping quartz-pyrite-gypsum vein around 1226'             |               |             |           |                        |      |     |                             |                                |   |
|      |      | 1235 - 1282 Fresh looking diorite with frequent stockwork pyritic fractures of    | 42415         | 1237        | 1247      | 10'                    | .001 | .02 | .01                         | .001                           |   |
|      |      | weak alteration intensity. Gypsum overcoating on some of the fractures.           |               |             |           |                        |      |     |                             |                                |   |
|      |      | Solid massive core 2% T.S. with more than 90% recovery.                           | 42416         | 1266        | 1276      | 10'                    | .001 | .02 | .01                         | .001                           |   |
| :    |      | 1282 - 1308 Stronger (than above) criss-crossing stockwork veining and near-      |               |             |           |                        |      |     |                             |                                |   |
|      |      | vertical fracture-controlled pyrite-quartz-gypsum veins. Minor ZnS-PbS            | 42417         | 1287        | 1297      | 10'                    | .001 | .03 | .03                         | .001                           |   |
|      |      | associated with the latter.                                                       |               |             |           |                        |      |     |                             |                                |   |
|      |      | 1" steeply-dipping basic dyke at 1302 with sharp lower contact and                |               |             |           |                        |      |     |                             |                                |   |
|      |      | poorly-defined chilled upper contact.                                             |               |             |           |                        |      |     |                             |                                |   |
|      |      | Strong silicification near the contact below with basic porphyry dyke             |               |             |           |                        |      |     |                             |                                |   |

| PROPERTYGREENDROP        | LOCATION                                | DRILL HOLE No. D.H. #2 |
|--------------------------|-----------------------------------------|------------------------|
| COMMENCED July 11, 1980  | ELEVATION 960 M (approx.) DIPS Vertical | SHEET No. 16           |
| COMPLETED. July 31, 1980 | BEARING                                 |                        |
| ••••••                   | DEPTH 1250 ft                           |                        |

| FROM   | то     | DESCRIPTION                                                             | SAMPLE<br>No. | FROM | TO   | SAMPLE<br>WIDTH | Mo_%   |      | VALUE    | h0/-    |  |
|--------|--------|-------------------------------------------------------------------------|---------------|------|------|-----------------|--------|------|----------|---------|--|
|        |        | 2" wide pyritic vein at the contact.                                    |               | ft.  | ft.  | Tt              | LMO_%_ | Cu % | Ag       | Au '' I |  |
|        |        | 2 - 3% T. S. Recovery > 90%                                             |               |      |      |                 |        |      |          |         |  |
|        |        |                                                                         |               |      |      |                 |        |      |          |         |  |
| 1308   | 1316.5 | Basic porphyry dyke                                                     |               |      |      |                 |        |      |          |         |  |
|        |        | same as the above dykes, darker and finer-grained near the contact.     |               |      |      |                 |        |      |          |         |  |
|        |        | 2 - 3% T. S. Recovery > 90%                                             |               |      |      |                 |        |      |          |         |  |
|        |        |                                                                         |               |      |      |                 |        |      | <u> </u> |         |  |
| 1316.5 | 1338   | Diorite porphyry                                                        |               |      |      |                 |        |      |          |         |  |
|        |        | Light gray to gray, plagioclase-rich ( $^+$ 80%) weakly altered diorite | 42418         | 1327 | 1337 | 10'             | .001   | .05  | .04      | .001    |  |
|        |        | porphyry. Abundant clusters of biotite broken weakly but pervaisively   |               |      |      |                 |        |      |          |         |  |
| -      |        | to chlorite. Very strong disseminated and fracture pyrite. ± 1 cm       |               |      |      |                 |        |      |          |         |  |
|        |        | chloritic alteration envelopes on pyritic stockwork fracutures. More    |               |      |      |                 |        |      |          |         |  |
|        |        | siliceous around 1328 ± 5% T. S. Recovery > 90%                         |               | E    |      |                 |        |      |          |         |  |
|        |        |                                                                         |               |      |      |                 |        |      |          |         |  |
| 1338   | 1474   | Basic Porphyry dyke and diorite porphyry                                |               |      |      |                 |        |      |          |         |  |
|        |        | Basic porphyry dyke at the contact changing gradually into lighter      | 42419         | 1347 | 1357 | 10'             | .001   | .01  | .03      | .001    |  |
|        |        | and more prophyritic diorite. Frequent zonal change from diorite        |               |      |      |                 |        |      |          |         |  |

CONTRACTOR: Buccaneer Diamond Drilling INc...

| PROPERTYGREENDROP       | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No D. H. #2 |
|-------------------------|-----------------------------------------------|------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No 17            |
| COMPLETED July 31, 1980 | BEARING                                       |                        |
|                         | DEPTH 1250 ft.                                |                        |

| FROM | то | DESCRIPTION                                                                     | SAMPLE<br>No. | FROM | то   | SAMPLE<br>WIDTH |      |      | VALUE    | . 0/  |
|------|----|---------------------------------------------------------------------------------|---------------|------|------|-----------------|------|------|----------|-------|
|      |    |                                                                                 |               | ft.  | _ft. | wiртн<br>ft.    | Mo % | Cu % | Ag * / T | Au"/T |
|      |    | porphyry to darker dyke phase. 3 - 5% T. S. but locally 5 - 10%,                |               |      |      |                 |      |      |          |       |
|      |    | Recovery > 90% .                                                                |               |      |      |                 |      |      |          |       |
|      |    | Lighter-colored fracture-controlled alteration zone 1349 - 1362,                | 42420         | 1387 | 1397 | 10'             | .001 | .03  | .02      | .001  |
|      |    | probably argillic environment.                                                  |               |      |      |                 |      |      |          |       |
|      |    | Minor ZnS with anhydrite at 1377 and pyrite-anhydrite-coarse sericite           |               |      |      |                 |      |      |          |       |
|      |    | at 1379.                                                                        |               |      |      |                 |      |      |          |       |
|      |    | 1400 - 1448 Gradational change from darker and more porphyritic phase to finer  | 42421         | 1417 | 2427 | 10'             | .015 | .06  | .01      | .001  |
|      |    | (aphanetic locally) and pervaisively altered phase, changing point              |               |      |      |                 |      |      |          |       |
|      |    | around 1410. This change is probably due to alteration from near-               |               |      |      |                 |      |      |          |       |
|      |    | vertical heavy pyrite veining.                                                  |               |      |      |                 |      |      |          |       |
|      |    | 0.3 - 0.5 mm near-vertical MoS2 fracture with quartz-pyrite-magnetite           |               |      |      |                 |      |      |          |       |
|      |    | at 1425' 3 - 5% T. S. Recovery > 90%.                                           |               |      |      |                 |      |      |          |       |
|      |    | 1448 - 1474 Fine-grained, gray to light gray diorite with abundant disseminated |               |      |      |                 |      |      |          |       |
|      |    | and fracture pyrite: Weakly altered mafics mostly to chlorite and               | 42422         | 1457 | 1467 | 10'             | .006 | .08  | .01      | .001  |
|      |    | partly replaced pyrite. Feldspars fresh except those near the heavy             |               |      |      |                 |      |      |          |       |
|      |    | pyrite fractures. They are partly altered to green clay or sericite.            |               |      |      |                 |      |      |          |       |
|      |    | Gypsum (purplish anhydrite) is usual on wide (up to ½") and hairline            |               |      |      |                 |      |      |          |       |

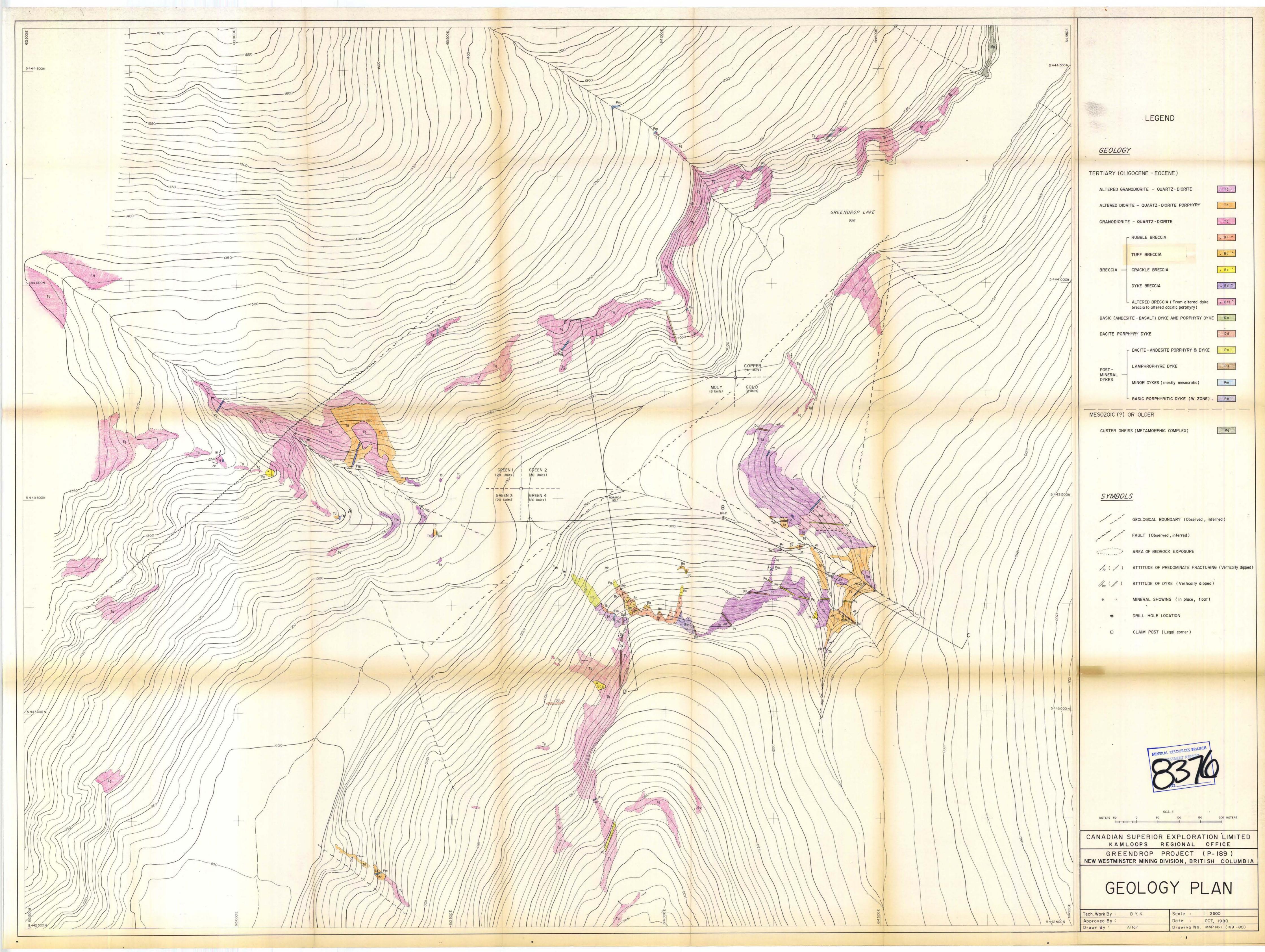
CONTRACTOR Buccaneer Diamond Drilling Inc.

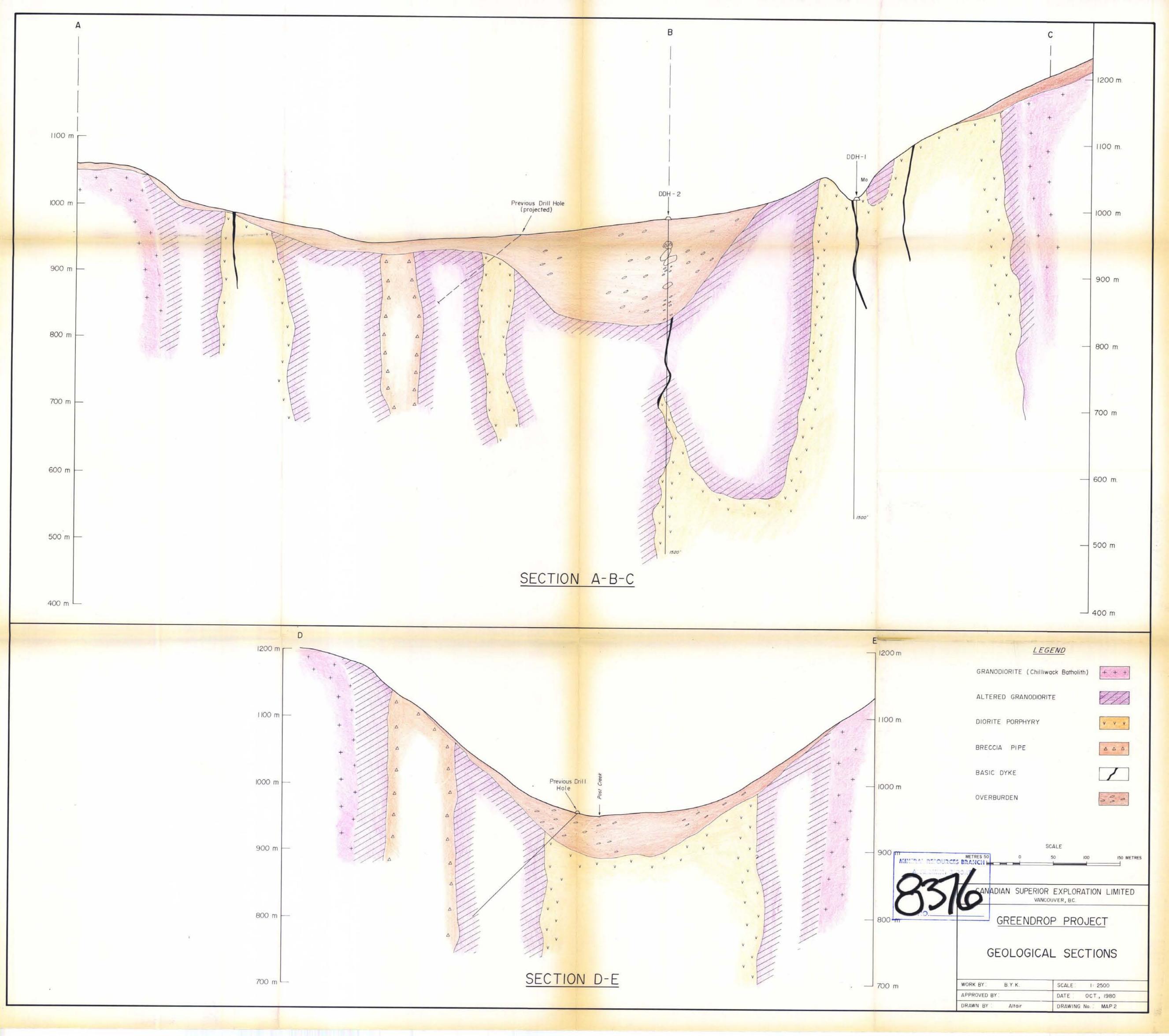
y: B. Y. Kim

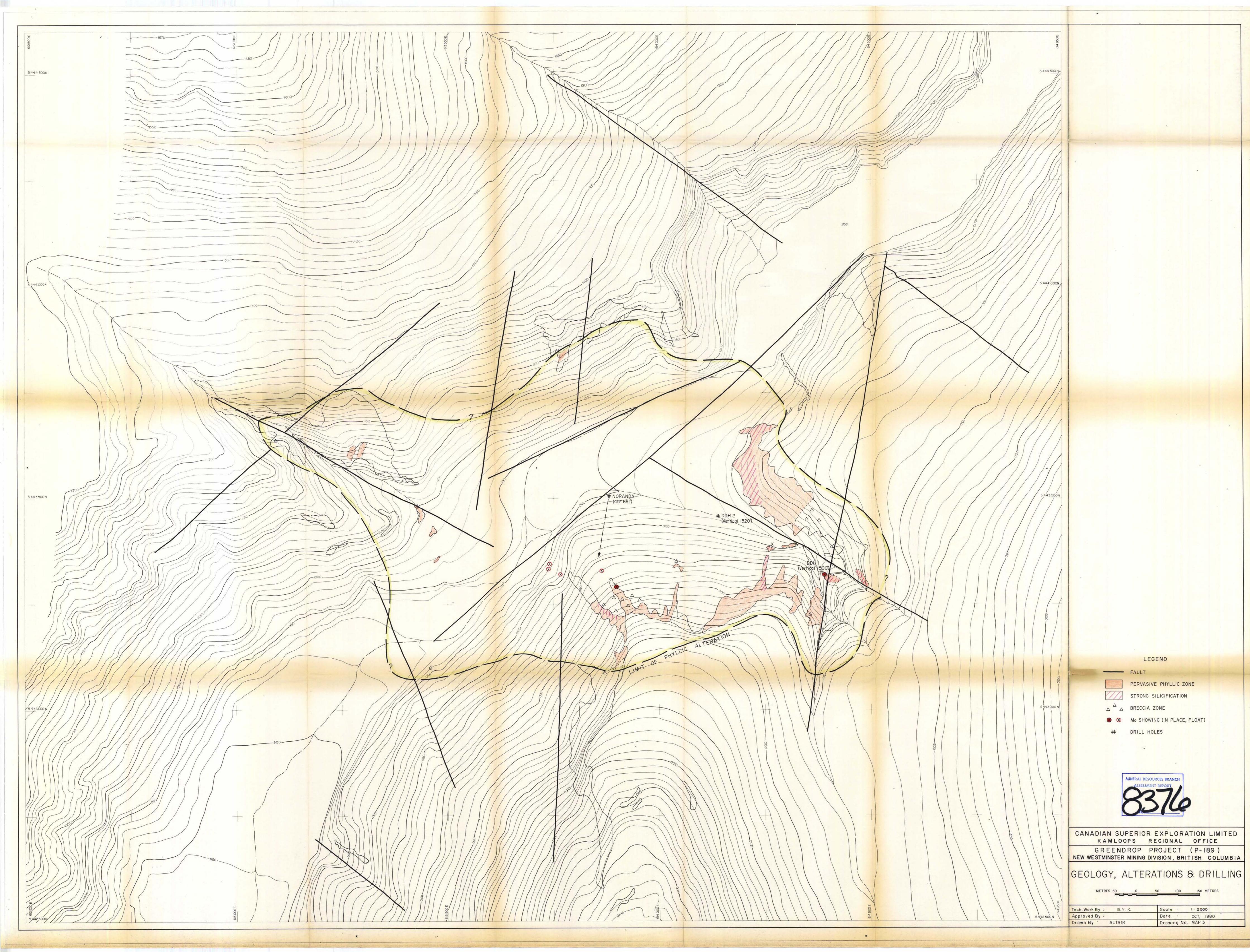
| PROPERTY GREENDROP      | LOCATION Greendrop Lake area near Hope, B. C. | D. H. #2 DRILL HOLE No |
|-------------------------|-----------------------------------------------|------------------------|
| COMMENCED July 11, 1980 | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No 18            |
| COMPLETED July 31, 1980 | BEARING                                       |                        |
|                         | DEDTU 1250 ft                                 |                        |

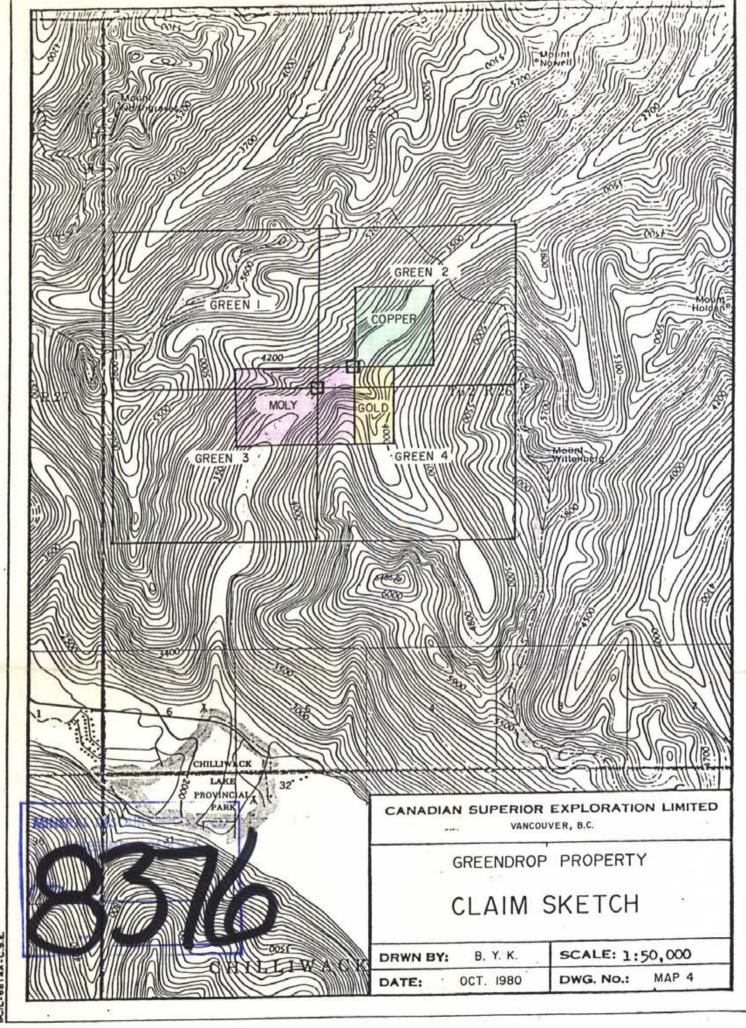
| FROM TO |        | DESCRIPTION                                                             | SAMPLE     | FROM | то   | SAMPLE    |      | ASSAY | VALUE      |                    |  |
|---------|--------|-------------------------------------------------------------------------|------------|------|------|-----------|------|-------|------------|--------------------|--|
| FHOM    | 10     | DESCRIPTION                                                             | No.        | ft.  | ft.  | width ft. | Mo % | Cu %  | $Ag^{0/T}$ | Au <sup>0</sup> /T |  |
|         |        | fractures with pyrite.                                                  |            |      |      |           |      |       |            |                    |  |
|         |        | In general, massive fresh-looking core with heavy pyrite. $\pm$ 5% T.S. |            |      |      |           |      |       |            |                    |  |
|         |        | Core recovery > 90%                                                     |            |      |      |           |      |       |            |                    |  |
|         |        |                                                                         |            |      |      |           |      |       |            |                    |  |
| 1474    | 1495.5 | Diorite porphyry                                                        |            |      |      |           |      |       |            |                    |  |
|         |        | Gradational change from above to more porphyritic with strong cluster   |            |      |      |           |      |       |            |                    |  |
|         |        | biotite ( like diorite porphyry of DDH#1). Contact should be            | 42423      | 1487 | 1496 | 9'        | .002 | .08   | .01        | .001               |  |
|         |        | 1474 - 1475 where strong fracture sericite-clay alteration with pyrite  | ) <b>-</b> |      |      |           |      |       |            |                    |  |
|         |        | gypsum veining (steeply-dipped)                                         |            |      |      |           |      |       |            |                    |  |
|         |        | Massive diorite porphyry with large clusters of biotite in feldspar     |            |      |      |           |      |       |            |                    |  |
|         |        | (weakly sericitzed) groundmass. Quartz is minor. Heavy disseminated     |            |      |      |           |      |       |            |                    |  |
|         |        | and fracture pyrite with weak steeply-dipping magnetite fractures. The  | ne         |      |      |           |      |       |            |                    |  |
|         |        | magnetite increasing to the depth. 3 - 5% T. S.                         |            |      |      |           |      |       |            |                    |  |
|         |        | Core recovery > 90%.                                                    |            |      |      |           |      |       |            |                    |  |
|         |        | <b>4</b>                                                                |            |      |      |           |      |       |            |                    |  |
| 1495.5  | 5 1514 | Breccia                                                                 |            |      |      |           |      |       |            |                    |  |
|         |        | Sharp contact with strong breccia textures. Angular magnetite           | 42424      | 1497 | 1507 | 10'       | .008 | .07   | .01        | .001               |  |

CONTRACTOR: Buccaneer Diamond Drilling Inc.


| PROPERTY GREENDROP       | LOCATION Greendrop Lake area near Hope, B. C. | DRILL HOLE No. D. H. #2 |
|--------------------------|-----------------------------------------------|-------------------------|
| COMMENCEDJuly. 11. 1980. | ELEVATION 960 M (approx.) DIPS Vertical       | SHEET No                |
| COMPLETEDJuly 31, 1980   | BEARING                                       |                         |
|                          | DERTH 1250 ft.                                |                         |


|      |      | DESCRIPTION                                                                    | SAMPLE | FROM | то   | SAMPLE       |      |      | VALUE      | γ                  |         |
|------|------|--------------------------------------------------------------------------------|--------|------|------|--------------|------|------|------------|--------------------|---------|
| FROM | то   | DESCRIPTION                                                                    | No.    | ft.  | ft.  | WIDTH<br>ft. | Mo % | Cu % | $Ag^{0/}T$ | Au <sup>0/</sup> T |         |
|      |      | fragments along with others and heavy pyrite (minor cpy) in matrix of          |        |      |      |              |      |      |            |                    |         |
|      |      | dark porphyritic diorite. Total sulphides ± 10% for 1495.5 - 1497.5            |        |      |      |              |      |      |            |                    |         |
|      |      | 1497.5 - 1498.5 dark diorite porphyry with minor breccia texture due to pyrite |        |      |      |              |      |      |            |                    |         |
|      |      | veining and other stockwork fractures. Gypsum fractures fairly strong,         | 42425  | 1514 | 1520 | 6'           | .001 | .01  | .01        | .001               |         |
|      |      | sharp decrease in T. S. from the above well-brecciated zone. T.S. 3%.          |        |      |      |              |      |      |            |                    |         |
|      |      | 1498.5 - 1514 Weak breccia, neither large magnetite fragments nor cpy          |        |      |      |              |      |      |            |                    |         |
|      |      | mineralization. Gray white altered granodiorite with irregular patches         |        |      |      |              |      |      |            |                    |         |
|      |      | of incompletely assimilated dark-colored fragments. T. S. 2 - 3%               |        |      |      |              |      |      |            |                    |         |
|      |      |                                                                                |        |      |      |              |      |      |            |                    |         |
| 1514 | 1520 | Diorite Porphyry dyke                                                          |        |      |      |              | -    | ļ    |            |                    |         |
|      |      | Gray to dark gray, porphyritic due to abundant light-colored feldspar          |        |      |      |              |      |      | -          |                    |         |
|      |      | in darker groundmass. Sharp fresh-looking biotite standing-out locally         |        |      |      |              |      |      |            |                    |         |
|      |      | Weak stockwork fracturing. Contact is steeply-dipped and cross-cut by          |        |      |      |              |      |      |            |                    | _       |
|      |      | fine fractures and veins. A 1 cm quartz vein at 1514.5 (40 $^{\circ}$ to C.A.) | -      |      |      |              |      |      |            |                    |         |
|      |      | Showing minor fine grained MoS2 on vein envelope. T. S. 2 - 3%. Solic          | l      |      |      |              |      |      |            |                    | <u></u> |
|      |      | core with no visible cpy.                                                      |        |      |      |              | -    |      |            |                    |         |
|      |      | - End of Hole 1520 ft                                                          |        |      |      | <u> </u>     |      |      |            |                    |         |


CONTRACTOR: Buccaneer Diamond Drilling Inc.


```
0 - 456'
                   Overburden
       466'
                    >90%
       471.5'
                       11
       481.5'.
490'
                       11
                       п
       496.5'
       497'
                     25% (ground-up pebbles)
       507'
                    >90%
       509'
                      80%
       517'
527'
                    >90%
       531'
                     90%
       537'
                    >90%
       545'
                       н
       553.5'
557'
       567'
                       11
                       11
       574'
       584'
                       11
       594'
                       11
                       11
       604'
       614'
       6241
                       н
                       11
       634'
       644
                       11
       653.5'
657'
                       11
                      90%
       667'
                    >90%
       673'
                       H
                       ti
       677'
       687'
                       11
                       **
       697'
                       11
       705'
705 - 715.5'
715.5 721'
                      11
                      75% (ground up core-
                            technical difficulty)
721 - 731.5'
                    >90%
       741.5'
752'
                       ii.
                       11
                       11
752 - 762'
       764.5'
                     60%
       774.5
                    >90%
       784.5
```

<sup>\*</sup> Below this point all the way down to 1520' core recovery is 90% or better based on measurement for 10' drill run intervals.







