
80-702-#8470

GEOCHEMICAL REPORT ON THE NITHI MOUNTAIN MOLY PROJECT FRASER LAKE, BRITISH COLUMBIA

Molly 1-14, 17 18; MJM 1-5; and Strep Mineral Claims OMINECA MINING DIVISION

N.T.S. MAP SHEETS 93 F/15, 93 K/2 LATITUDE 53°57'38" to 54°00'07" LONGITUDE 124°48'21" to 124°53'07"

FOR ROCKWELL MINING CORPORATION Vancouver, British Columbia

by

J. W. Davis, M.Sc., P.Geol. and C. H. Aussant, B.Sc., P.Geol.

TAIGA CONSULTANTS LTD. Calgary, Alberta

August 1980

SUMMARY

- The property under consideration consists of sixteen (16) old-style two-post mineral claims (Molly 1-14, 17, 18), and about 90 claim units staked under the modified grid system (MJM 1-5; Strep) which cover and surround Nithi Mountain and its flanks.
- The total area under mineral disposition is approximately 2,250 hectares (5,560 acres).
- 3. The claim group is situated approximately 8 km (5 mi.) south of the village of Fraser Lake, British Columbia, and is accessible via the Chowsunkit logging road and a network of old logging roads which criss-cross the property.
- 4. The claim group is located within an area underlain by the Topley intrusives.
- 5. Work carried out on the claims consisted of the collection of approximately 2400 soil samples. These samples were collected on grid lines placed between previously sampled lines. Samples were collected every 50 metres and analyzed for Mo, Mn, Fe, and Zn.
- 6. The geochemical results have been plotted on 1:5000 scale maps.
- A number of anomalous Mo-in-soil areas were delineated as well as locating molybdenite-in-outcrop areas.

TABLE OF CONTENTS

Statement of Qualifications: James W. Davis
Statement of Qualifications: Claude H. Aussant
INTRODUCTION
LOCATION AND ACCESS
Table 1
Figure 3
Figure 4
PHYSIOGRAPHY
REGIONAL GEOLOGICAL SETTING
Table 2
Figure 3
LOCAL GEOLOGY
REVIEW OF EXPLORATION ACTIVITY
MINERAL OCCURRENCES
DATA PRESENTATION
Table 3
GEOCHEMISTRY
EXPLORATION RESULTS
RECOMMENDATIONS
PERSONNEL
SUMMARY OF EXPENDITURES
APPENDIX I Analytical Techniques .
APPENDIX II Geochemical Analytical Results

In Back Pocket:

•

MAP #1	Mo and Mn Geochemical Results Rock Sample Location Sites Mo Contours
MAP #2	Fe and Zn Geochemical Results Zn Contours

STATEMENT OF QUALIFICATIONS

I, the undersigned, of the City of Calgary in the Province of Alberta, do hereby certify:

- that I am a consulting geologist residing at 3220 Oakwood Drive S.W., Calgary, Alberta;
- 2. that I graduated from St. Louis University with a B.Sc. in Geology in 1967, and a M.Sc. in Geology in 1969, and that I have been practising my profession continuously since graduation;
- that I am registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta, since 1971;
- 4. that I have personally supervised and participated in the exploration of the Nithi Mountain property during the period from June 14 to July 10, 1980.

Respectfully submitted,

mas W. War

Davis, M.Sc., P.Geol.

Calgary, Alberta August 1980

STATEMENT OF QUALIFICATIONS

I, the undersigned, of the City of Calgary in the Province of Alberta, do hereby certify:

- that I am a practising Professional Geologist with offices at #301, 1300 - 8th Street S.W., Calgary, Alberta;
- 2. that I am a graduate of the University of Calgary, B.Sc. in Geology (1976);
- 3. that I have practised my profession for four years since graduation;
- that I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta, since 1979;
- 5. that I have personally worked on the claims and supervised exploration work carried out thereon.

Respectfully submitted,

NA

Calgary, Alberta August 1980

Claude H. Aussant, B.Sc., P.Geol.

INTRODUCTION

This report describes the results of a soil geochemical survey carried out on the Molly 1-14, 17, 18; MJM 1-5; and Strep Mineral Claims, located 8 km (5 mi.) south of Fraser Lake, British Columbia.

Field work, which consisted of geochemical sampling, was conducted between June 14 and July 10, 1980.

Conclusions set forth in this report are based on the results of the above exploration program combined with data acquired from exploration work previously conducted on these mineral claims.

More detailed information on the mineral claims can be found on Table 1.

LOCATION AND ACCESS

The Nithi Mountain Moly Property is located about 8 km (5 mi.) south of the village of Fraser Lake, which is 158 km (98 mi.) west of the city of Prince George in central British Columbia (Figure 1). The property lies almost entirely within N.T.S. 93 F15 with the northern margin extending into N.T.S. 93 K/2. The claims are geographically located between $53^{\circ}57'38''$ and $54^{\circ}00'07''$ North latitude and between $124^{\circ}48'21''$ and $124^{\circ}53'07''$ West longitude.

The property consists of 16 old-style two-post claims (Molly 1-14, 17, 18) and about 90 claim units staked under the modified grid system (MJM 1-5; Strep) which surround Nithi Mountain and its flanks (Figure 2). The total area under mineral disposition is approximately 2,250 hectares (5,560 acres). This contiguous block of claims is held under option by Rockwell Mining Corporation from three different owners. The Molly 1-14, 17, 18 claims are optioned from Andrew Robertson; the MJM 1-5 claims from Nithex Explorations Ltd.; and the Strep claim from P. Ogryzlo and Dan Young.

The claims are accessible from Fraser Lake by four-wheel-drive vehicles via the Chowsunkit logging road. A network of old logging roads criss-cross the property making the property readily accessible.

TABLE 1

SUMMARY OF CLAIM DATA

Claim Name	Claim Units	Record Number	Record Date	Expiry Date
Strep	9	801	Sept 26/77	Sept. 26/84
MJM 1	14	835	Oct. 17/77	Oct. 17/83
MJM 2	18	836	Oct. 17/77	Oct. 17/82
MJM 3	10	837	Oct. 17/77	Oct. 17/83
MJM 4	20	838	Oct. 17/77	Oct. 17/82
MJM 5	16	839	Oct. 17/77	Oct. 17/82
MOLLY 1		15166	June 27/62	June 27/81
MOLLY 2		15167	June 27/62	11
MOLLY 3		15168	June 27/62	88
MOLLY 4		15169	June 27/62	n '
MOLLY 5		15170	June 27/62	11
MOLLY 6		15171	June 27/62	H I
MOLLY 7		15172	June 27/62	11
MOLLY 8	2-post	15173	June 27/62	II
MOLLY 9	claims	15174	June 27/62	11
MOLLY 10		15175	June 27/62	11
MOLLY 11		15176	June 27/62	н
MOLLY 12		15177	June 27/62	n
MOLLY 13		15178	June 27√62	н
MOLLY 14		15179	June 27/62	31
MOLLY 17		15182	June 29/62	11
MOLLY 18		15183	June 29/62	13
DB 1	14	3132	August 27/80	August 27, 1981
DB 2	2	3133	August 27/80	11
DB 3	7	3134	August 27/80	Ĩ
				•

•.

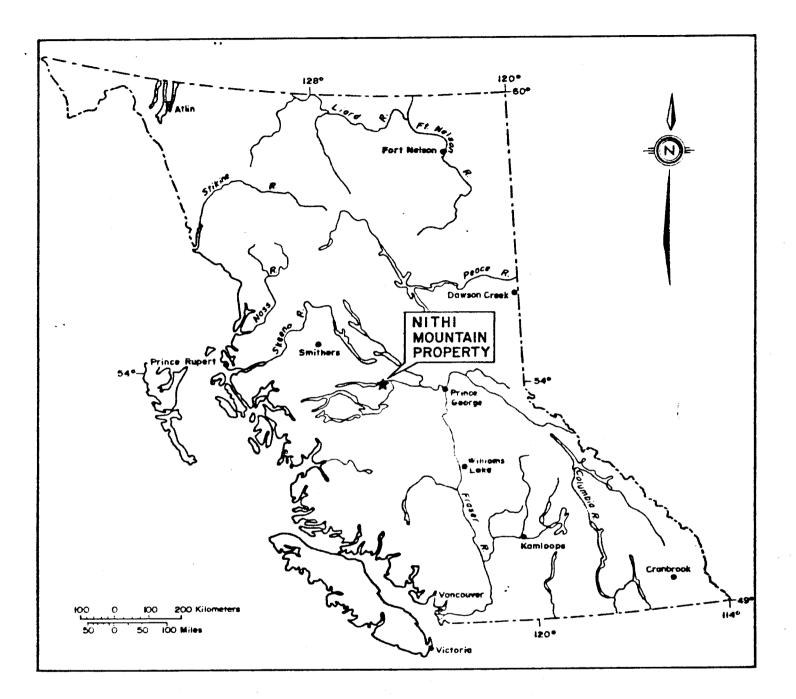
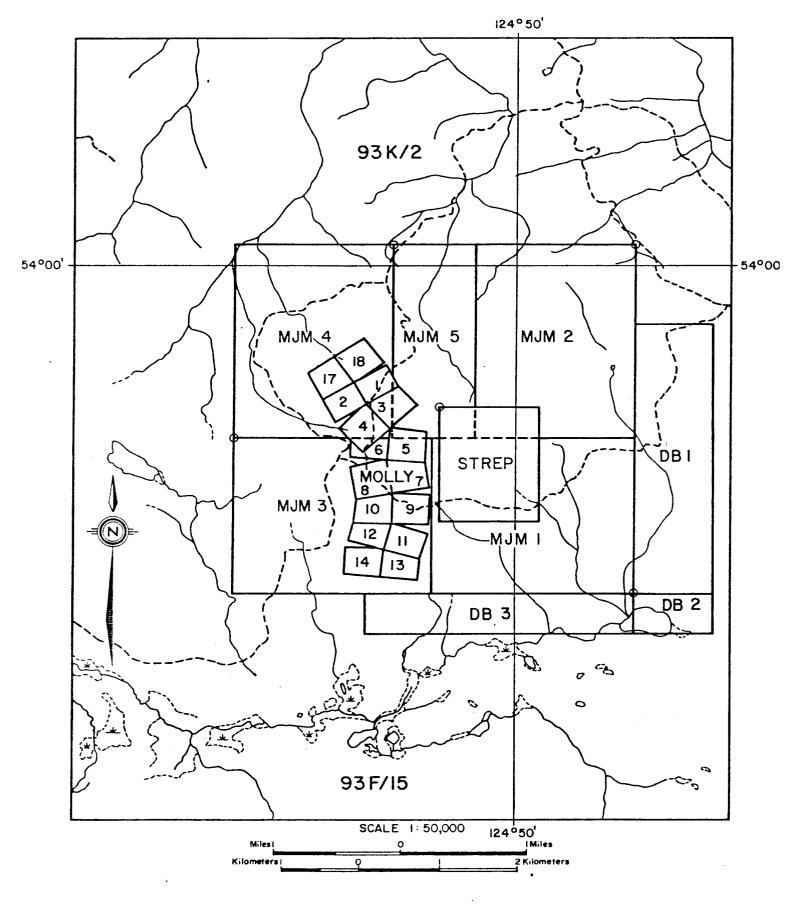



FIGURE I

PROPERTY LOCATION MAP NITHI MOUNTAIN MOLYBDENUM PROPERTY

- 3 -

FIGURE 2

PROPERTY LOCATION MAP

- 4 -

PHYSIOGRAPHY

The Nithi Mountain area is within the Interior System of the Canadian Cordillera and more specifically within the physiographic subdivision referred to as the Nachako Plateau. Local terrain consists of gently rolling hills and low mountains with flat-bottomed valleys. Upland surfaces are generally well drained with few lakes or marshes, while the valleys are the loci of a number of large, long, narrow lakes such as Fraser Lake or Francois Lake. The east-west trending lakes are the remnants of Pleistocene meltwater channels which followed pre-Pleistocene stream valleys. The east-west orientation of these valleys probably reflects fundamental structural control of pre-Pleistocene topography.

Local relief in the Fraser Lake area is approximately 380 metres (1240 feet) as measured from Fraser Lake to the top of Nithi Mountain. This order of relief is slightly greater than elsewhere on the Nachako Plateau indicating that Nithi Mountain may have been a topographic high even prior to the late Tertiary uplift and stream disection of the area.

Elevations on the property vary from 823 metres (2700 feet) ASL in the southeastern part of the area to 1352 metres (4435 feet) ASL at the top of Nithi Mountain. The mountain itself has a pronounced asymmetry with a steep south flank and a more gentle north flank. This asymmetry is due to the presence of a deeply incised and underfit, east-west trending stream valley south of the mountain. This flat-bottomed stream valley is filled with glaciofluvial and glaciolacustral deposits. Bedrock exposures are more abundant on the south side of Nithi Mountain because of the steeper topography and drier soil conditions which prevail on this south-facing slope which limit the forest growth and allow more rapid erosion. The total area of bedrock exposure is perhaps 15% on the south-facing slopes and 5% on the north.

The entire area has been glaciated, with the most recent glaical advance from the west. Striated glacial payment can be observed at the top of Nithi Mountain, indicating it was completely covered by a piedmont glacier. Till is generally thin; however, it can be expected that any pre-glacial stream valleys oriented transverse to the east-west ice direction would be infilled with thick till deposits.

REGIONAL GEOLOGICAL SETTING

Relevant Published Geological Data

The Nithi Mountain property is situated astride the boundary between the Fraser Lake map-area and the Nechako River map-area. Regional mapping by the Geological Survey of Canada was completed by J. G. Grey and J. E. Armstrong in 1936-1937 and the geologic map (630A) for the Fraser Lake map-area was published in 1941. Geological mapping of the Nechako River map-area was completed by H. W. Tipper in 1949-1953 and the geologic map (1131A) was published along with G.S.C. Memoir 324 in 1968. Both of these geologic maps were printed at a scale of 1:253,440. The most detailed geologic map of the Nithi Mountain area was completed by J. M. Carr in 1966 at a scale of 1:63,360 as part of "Geology of the Endako Area" in a publication produced by the B.C. Department of Mines and Petroleum Resources on "Lode Metal in British Columbia". More recently, a regional geological atlas (G.S.C. Map 1424A) was compiled by R. J. W. Douglas for all of N.T.S. 93 at a scale of 1:1,000,000.

- 6 -

The Earth Physics Branch of the Geological Survey of Canada completed an aeromagnetic survey of Nithi Mountain in 1961. The Fraser Lake area (93 K/2) is covered by aeromagnetic map 1590G, while the Hallett Lake mapsheet (93 F/15), which includes most of Nithi Mountain, is covered by aeromagnetic map 1589G. Both of these maps are produced at a scale of 1:63,360.

There exists in the geological literature a great number of reports dealing with the Endako Molybdenum Mine. However, most of the reports do not deal specifically with the geology and mineral occurrences of the Nithi Mountain area.

Regional Geology

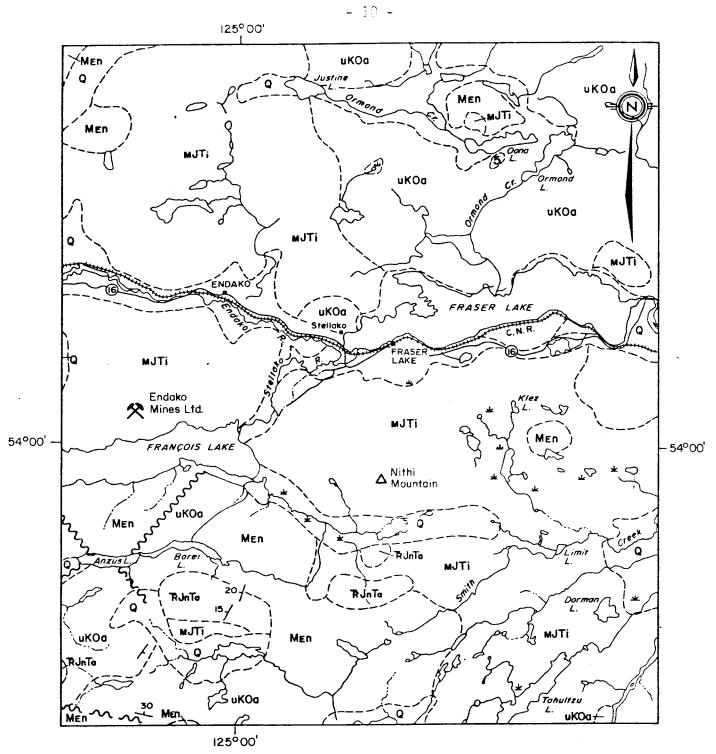
The Topley batholith of Middle Jurassic to Lower Cretaceous age extends northwest from Tatuk Lake to Babine Lake for a distance of 155 km (96 miles). This intrusive was emplaced into country rock consisting of the Pennsylvanian and Permian Cache Creek Group, and the Upper Triassic and Lower Jurassic Takla Group. The Cache Creek Group consists of limestone, chert, argillite, basic volcanics, and greenstones. The Takla Group consists of basalt and andesite along with minor interflow sedimentary rock units.

The Topley intrusives intrude the southwestern flank of the Pinchi geanticline, which is an elongate, northwest trending, fault-bounded belt of Cache Creek rocks. This geanticline was uplifted and broadly folded in late Triassic time and faulted along the periphery of the structure. These peripheral faults are thought to have controlled the emplacement of the Topley. Towards the southwest, the Topley is intrusive into both the Takla Group and the Hazelton Group.

Carr (1966) has recognized nine phases of the Topley Intusions. The oldest and most extensive Topley is the Simon Bay diorite complex. This Middle Jurassic complex consists of coarsely crystalline, foliated hornblende diorite, quartz diorite, granodiorite, and gabbro. This mesozonal, concordant pluton exhibits a pronounced northwest foliation which is thought to reflect pre-existing structural control for its emplacement.

Simon Bay rocks are intruded by the Late Jurassic Topley phases consisting of the Endako, Nithi, Glenannan, Casey, and Francois plutons. The Endako intrusive is Upper Jurassic in age and is a subporphyritic biotite hornblende quartz monzonite, which is the host rock for the Endako Mine. Intruding the Endako are a series of brown-pink porphyritic potash feldspar granite dykes and aplite dykes. The Nithi stock is a pink-grey subporphyritic biotite hornblende quartz monzonite. The Nithi quartz monzonite is the same age as the Endako pluton and is lithologically similar and for these reasons is considered equivalent. The Glenannan is a zoned pluton composed of pink porphyritic granite located north of Endako. The Casey alaskite occurs as discordant stocks which vary from granite to monzonite in composition. The Stellako intrusives are pink biotite quartz monzonite and pink-grey hornblende biotite granodiorite. The final unit identified as part of the Topley is the Fraser quartz monzonite which is Lower Cretaceous in age and is exposed in one small circular stock of pink biotite hornblende guartz monzonite. Of these various phases of the Topley, only the Endako, Nithi, and Casey are known to host molybdenum deposits.

- 7 -


Following an extended period of erosion which unroofed most of the Topley intrusions, the Lower to Middle Jurassic Hazelton Group was laid down in a northwest trending basin through the area. The Hazelton Group can be subdivided into two units, the chert-pebble conglomerate unit and the Middle Jurassic unit. The chert-pebble conglomerate unit, as the name implies, consists of conglomerate, shale, and greywacke, along with volcanics including both pyroclastics of andesitic composition. The Middle Jurassic unit is mainly sedimentary with some interlayered flow breccias and tuffs. Rock types include andesite, phyolite, greywacke, conglomerate, shale, argillite, and arkose. Both of these units received debris from the erosion of Topley intrusions.

Resting with angular unconformity on all older formations is the Upper Cretaceous to Paleocene Ootsa Lake Group. The Ootsa Lake Group is predominantly acid volcanics although some andesitic and basaltic flows do occur near the base of the Group and there are minor interflow sedimentary rocks.

Unconformably overlying the Ootsa Lake Group are the Miocene Endako Group sedimentary and volcanic rocks. The Lower Endako Group units consist of conglomerate, sandstone, mudstone, and minor lignite which represent stream and lacustrial deposition under continental weathering conditions. The upper units of the Endako Group are predominantly basaltic flows with minor andesite and interflow sediments. Following the deposition of the flood basalts, the Nechako Plateau was faulted and uplifted. In late Cenozoic time, erosion disected this plateau, producing a mature topography only slightly modified by Pleistocene glaciation. Table 2 summarizes the regional stratigraphic succession and Figure 3 illustrates the geologic setting of the Nithi Mountain area.

- 8 -

		REGIUME JIM	TIGRAPHIC SUCCESSION
Era	Period or Epoch	Formation	Lithology
	Recent		Stream and lake deposits, talus, soil
Cenozoic	Pleistocene		Glacial and glacio-fluvial deposits
Lenvasie		Erosion interval	
	Miocene and(?) later	Endako Group	Basalt, andesite; related tuff and breccia; minor shale and greywacke
		Angular unconformity	
Mesozoic and	Upper Cretaceous	Ootsa Lake Group	Rhyolitic and dacitic tuff and breccia; shale, sand- stone, conglomerate
Cenozoic	to Lower Miocene		Rhyolite, dacite, trachyte, andesite; minor basalt; related tuff and breccia
		i	Basalt, andesite; minor rhyolite, sandstone, and conglomerate
		Erosion Interval	
	Post-Middle Jurassic to pre-Upper Cretaceous	1990 - N	Biotite granite, granodiorite, quartz diorite, diorite; minor gabbro
- 1	Greeneer	Not in contact	
Mesozoic	Upper Jurassic	Not in contact	Argillite, argillaceous limestone
	(Callovian)	Relations not known:	intrusive contact with younger granitic rocks
	Middle	Hazelton Group	Greywacke, argillite, conglomerate tuff, breccia, andesite.
	Jurassic (Bajocian)	hazer our arcan	and arkose; minor rhyolite Andesite, related tuffs and breccias, chert-pebble conglom-
			erate, shale, and sandstone
		Unconformity; erosion	the second
	Middle Jurassic to Lower	Topley Intrusions: Fraser quartz monzonite	Granite, granodiorite, diorite, and quartz diorite Pink biotite-hornblende quartz monzonite. Small circular stock.
	Cretaceous	Stellako intrusions	Pink biotite quartz monzonite, pink-grey hornblende-biotite granodiorite. Discordant, north-northeast trend
		Francois granite	Red porphyritic biotite granite. Miarolytic, chilled margins. No molybdenum deposits.
		Casey alaskite	Leucogranite and quartz monzonite. Discordant stocks and satellitic dykes. Molybdenum deposits at Owl Lake, Tatin Lake, Nithi Mountain, and Endako.
		Glenannan complex	Zoned pluton north of Endako. Pink porphyritic granite, quartz monzonite, granodiorite. No molybdenum deposits.
		Nithi quartz monzonite	Pink-grey subporphyritic biotite-hornblende quartz monzonite Resembles Endako quartz monzonite and may be equivalent. Molybdenum deposit at Nithi Mountain
		Quartz feldspar porphyry, por- phyritic granite, aplite	Brown-pink porphyry dykes up to 45 metres wide, abundant at mine. Porphyritic pink potash feldspar gramite dykes up to 15 metres wide. Pink sugary aplite up to 1.2 metres wide
		Endako quartz monzonite	Pink subporphyritic biotite-hornblende quartz monzonite. Host rock at Endako mine
		Simon Bay diorite complex	Coarse-grained, foliated hornblende diorite, quartz diorite, granodiorite, gabbro. Mesozonal, concordant pluton. Oldest Topley unit. No molybdenum deposits
		Intrusive contact with	h lower part of Takla Group
	Upper Triassic	Takla Group	Red and brown shale, conglomerate, and greywacke
l	and Lower Jurassic		Andesitic and basaltic flows, tuffs, and breccias; inter- bedded argillite and minor limestone
L		Not in contact; intru-	sive contact with Topley Intrusions
	Post-Upper Permian - pre-Lower Jurassic		Serpentinized peridotite, talc schists, anthophyllite schist
		contact: intrusive con	I tact between Topley Intrusions and Cache Creek Group
leozoic	-	Cache Creek Group	Limestone

REGIONAL GEOLOGY, NITHI MOUNTAIN

Q	Quaternary	MJTi	Topley Intrusions
MEn	Endako Group	RjnTa	Taƙla Group
uKOa	Ootsa Lake Group	~~~~ + +	Fault Bedding (inclined, vertical)

LOCAL GEOLOGY

The Nithi Mountain property is completely underlain by the various phases of the Topley intrusives. A detailed description of the rock units exposed on Nithi Mountain as defined by Carr (1966) is as follows:

Simon Bay Complex

The complex consists largely of foliated, rather dark rocks having a mixed or hybrid appearance and composed partly of alternating bands, or lenses, which range in width from inches to hundreds of feet and differ either in composition, in graid size, or both. The rocks are mostly greenish, fine- or medium-grained, equigranular quartz diorites consisting of moderate amounts of quartz and orthoclase, or microcline, and abundant plagioclase, biotite, and hornblende. Quartz is interstitial and wedge shaped; orthoclase is in small discrete crystals; plagioclase is andesine and lacks oscillatory zoning; hornblende partly forms anhedral crystals of above average size; and biotite is commonly poikilitic or, in the mafic bands, in laminated masses which contribute strongly to the foliation of the rock. Accessories include magnetite, sphene, and pyrite. Locally there are gabbros, which are quartz-free and contain labradorite plagioclase, diopside, and hornblende. In places the rocks enclose coarse-grained lenses of quartz diorite composition. Inclusions are common and are mainly angular, although in the well-foliated rocks some are lenticular. The inclusions are of dark fine-grained rock which is probably hornfels. Tn places, notably near Simon Bay, the complex is traversed in several directions by fine-grained light-coloured quartz monzonite dykes at whose margins the host rocks are feldspathized. Aplite dykes were also noted. Although generally fresh, the rocks of the complex are in places strongly sheared and altered, with production of actinolite, chlorite, epidote, pyrite, magnetite, and locally scapolite. This hydrothermal alteration also affects certain sheared greenstone dykes in the rocks but is less apparent in other, later, dykes, which include both acid porphyries and diabase dykes. Shearing in the complex is in various directions, some of which are transverse to the foliation of the rocks.

Caledonia Quartz Monzonite

Caledonia Quartz Monzonite occurs on the southwestern flank of Nithi Mountain and as irregular patches in Endako quartz monzonite. At two locations it is close to felsic dykes but contacts between Caledonia quartz monzonite and other rock types were not seen.

Caledonia quartz monzonite is a grey to pink, medium-grained porphyritic rock which contains approximately equal amounts of quartz, plagioclase and potassium feldspar and 5-10% biotite. Pink subhedral potassium feldspar phenocrysts from 5-16 mm long which make up approximately 10% of the rock are characteristic of Caledonia quartz monzonite. No molybdenite was found in Caledonia quartz monzonite on Nithi Mountain.

Nithi Quartz Monzonite

This unit occupies the summit and parts of the northern and eastern slopes of Nithi Mountain and is divided into several outcrop areas by a large later intrusion of the Casey quartz monzonite. West of the summit the unit is in exposed sheared contact with the quartz diorite complex, which it probably intrudes and against which it appears somewhat chilled. Contacts with quartz monzonites assumed to be younger are entirely hidden. The unit consists of quartz monzonites, which, although differing in appearance, are probably intergradational and which occur alternately without a definable pattern. The difference in these rocks results from a variation in the content of light-coloured phenocrysts and medium-sized crystals, which are mostly of orthoclase but also of plagioclase and quartz. The rocks contain occasional small dark inclusions like those in previously described units, some of the inclusions being angular and little resorbed. On the Molly road a weak foliation due to feldspar alignment is steep and strikes variously northeast and northwest.

The least porphyritic variety of the Nithi quartz monzonite is a uniform medium-grained pinkish-grey rock with abundant biotite and a granular texture. Crystals as much as one-half centimetre in size are rare, and the majority are between one-half millimetre and two millimetres. The estimated modal composition of the rock is: Quartz, 35%; orthoclase, 21%; plagioclase, 35%; biotite, 7%; hornblende, 1%; other minerals, including magnetite, sphene, and apatite, 1%. Although quartz, orthoclase, and biotite may be locally interstitial, the over-all texture is controlled by closely packed subhedral crystals. Orthoclase is perthitic and locally has microcline twinning. Plagioclase shows strongly developed oscillatory zoning and wide rims of more albitic composition. Quartz grains are aggregates of closely packed individuals, formed perhaps by recrystallization during cooling and inversion. Biotite mainly forms small thick plates.

The strongly porphyritic variety is a lighter coloured, generally pink rock of somewhat coarser grain size and with phenocrysts mainly of perthitic orthoclase and aggregated quartz but also of plagioclase that together amount to nearly one-third of the rock. The estimated modal composition of a specimen is: Quartz, 40%; orthoclase, 30%; plagioclase, 23%; biotite, minor hornblende, and accessory minerals, 7%. The rock, which looks not unlike the Glenannan quartz monzonite, differs from the preceding variety only in the presence of phenocrysts and medium-sized crystals, of which those of orthoclase and plagioclase reach lengths of 2 cm and one-half cm respectively, and those of quartz a diameter of three-quarters of a centimetre. The orthoclase phenocrysts deeply enclose small crystals of other minerals and are intergrown at their margins with neighbouring crystals. The quartz

phenocrysts contain inclusions mainly of feldspar and are ovoid to irregular in shape, with well-defined partly rounded margins.

Rocks occur which are intermediate in character between these two described varieties and which superficially resemble the Endako quartz monzonite and have abundant phenocrysts of sizes generally not exceeding one-half centimetre.

Casey Granite

The unit comprises light-coloured rocks, many of which locally have been called alaskite. They are mostly quartz monzonites, although some fine-grained varieties are granites. Although varying in appearance due to their differing grain size and porphyritic development, all are characterized by an absence of hornblende, a low biotite content, and an inequigranular texture.

Fine-grained rocks occupy parts of the margins of the main bodies and also form dykes and offshoots of the latter. They are pink, more or less porphyritic rocks which resemble aplites and have an average grain size of about one-half millimetre. Orthoclase and quartz phenocrysts are 3 millimetres in size in some rocks and are as large as one-half centimetre in others. Under the microscope the quartz phenocrysts appear as aggregated grains, and the rocks are found to contain micropegmatite. The estimated mode of a speciment of these rocks is: Quartz, 33%; orthoclase, 40%; plagioclase, 25%; biotite, 2%.

The remaining rocks are somewhat coarser grained, with average grain sizes ranging up to 2 millimetres; they are pink or white quartz monzonites that weather either white or brownish. The coarser of these rocks are found mainly in the stock and its northernmost arm, and in the northern part of the Nithi Mountain body. The absence of fine-grained rocks along parts of the contacts with the older units, and in some dykes which cut these units, shows that the degree of chilling of the intrusions was slight. In some places the adjoining older rocks were apparently sheared prior to emplacement of the Casey intrusion; for example, the Tatin quartz monzonite at a contact north of Tatin Lake. In the stock, rapid fluctuations of grain size occur and locally there are lenses of granite pegmatite and separate pod-like concentrations of biotite. In many places the rocks contain small irregular cavities partly filled with wellcrystallized quartz, orthoclase and biotite, and chlorite. A foliation is recorded only in rocks north and south of the east end of Tatin Lake, where it is directed northward across the assumed strike of both bodies. Inclusions of foreign rocks are virtually absent in the unit.

The coarser-grained rocks contain phenocrysts of orthoclase and quartz which increase in size and number roughly with increasing grain size of the rock. They may be as large as 1 centimetre and constitute as much as 30% of the rock. The phenocrysts are relatively inconspicuous because of the irregularity of their margins, which are poikilitic to smaller crystals. With increasing coarseness the rocks adopt a less granular, more interstitial texture, in which both quartz and orthoclase partly surround other crystals and form interstitial wedges. Plagioclase is generally in small crystals, and in some of the rocks it exceeds orthoclase in amount. Biotite forms small scarce books and plates and is slightly more plentiful than in the fine-grained rocks. Under the microscope some interstitial orthoclase is seen to possess microcline twinning, and plagioclase crystals show wide marginal zones and only the faintest indication of oscillatory zoning. Local graphic intergrowths of quartz and orthoclase occur but not in the coarsest-grained rocks. The estimated mode of a typcial coarser-grained rock is: Quartz, 36%; orthoclase, 30%; plagioclase, 30%; biotite, 3%; accessories, 1%.

Stellako Quartz Monzonite

The Stellako quartz monzonite occurs in the northwestern corner of the Nithi Mountain property. This intrusive phase is one of the youngest phases of the Topley, according to Carr (1964). No molybdenite mineralization has been found associated with this intrusive phase. The Stellako consists of a finely crystalline grey massive quartz monzonite which contains approximately 5% biotite and 2% hornblende.

Aplite dykes occur on Nithi Mountain along with associated pegmatite of granitic composition at a number of locations. The aplites are most abundant in the Casey granite. The aplite is generally light pink in colour with a relatively uniform finely crystalline texture composed of quartz, orthoclase, and rarely plagioclase and biotite. Pegmatite with crystals up to several centimetres in size are compositionally the same as the aplite and are often in gradational contact with aplite.

The porphyry dykes are mapped into several groups depending on the composition of the light-coloured phenocrysts. The majority of these dykes are rhyolite, quartz latite, and dacite, but some are latite or andesite. Generally, the dyke rocks are pre-mineral in age.

Dykes with quartz, orthoclase, and plagioclase phenocrysts are common and have been noted on the west side of Nithi Mountain within the Nithi quartz monzonite. These dykes contain phenocrysts ranging from 5 mm to 2 cm in size, imedded in a ground mass which is generally rhyolitic in composition. According to Carr (1966), these dykes are mineralized only at the Endako Mine and at the showings at Nithi Mountain, and states: Potassic alteration has also been noted within both the Casey granite and the Nithi quartz monzonite. In these rocks, this alteration is characterized by orange-pink to salmon-pink envelopes around veins, which may or may not contain quartz. Fairly intense potassic alteration has been noted associated with disseminated molybdenite in several occurrences on the east side of the Nithi Mountain property.

Molybdenite mineralization is widely distributed on the Nithi Mountain property. This mineralization is most commonly associated with quartz veins, but also occurs as fracture fillings, disseminations, or scattered tiny rosettes. Gangue minerals in the quartz veins often include pyrite along with minor amounts of magnetite and specular hematite. Molybdenite typically occurs as finely divided grains within the quartz veins imparting a characteristic bluish-grey coloration. In other cases, small quartz veins alternate from pure quartz to quartz and molybdenite to pure molybdenite along the strike of the vein. Fracture fillings of molybdenite are common with some disseminated molybdenite in the adjacent host rock. Ferrimolybdenite, which is a secondary mineral formed from weathering of molybdenite, is found associated with quartz molybdenite veins. Small scattered rosettes of molybdenite were noted both in the Nithi quartz monzonite and particularly in the Casey granite. Most quartz molybdenite veins strike from 60° to 70° with steep dips of from 65° to 90° .

REVIEW OF EXPLORATION ACTIVITY

The original claims staked on Nithi Mountain were staked during the period 1952-1955 for uranium. Mineralization in the form of the secondary uranium minerals was found in a fractured rhyolite porphyry dykes within Topley granite. The showing was located at an elevation of 1070 m (3500') on the northwest slope of Nithi Mountain. The dyke had a length of 185 m (600') and a width of about 30 m (100'), and trended north-south.

Work on these original claims included trenching and drilling. Four drill holes were completed in 1956 by American Standard Mines who optioned the original claims. In all, a total of 100 m (333') of drilling was completed. This uranium mineralization was found to have no depth extension and the claims were subsequently dropped.

With the discovery of the Endako Mine in 1962, there was renewed exploration in the area for molybdenite. This exploration resulted in the staking of Nithi Mountain by various junior mining companies including R & P Metals Ltd. (Fraser Lake Mines), Fort Reliance Minerals, Dundee Mines, Jodee Explorations, and New Indian Mines. Trenching, soil sampling, and diamond drilling were completed during this period. Although molybdenum mineralization was discovered, both in surface workings and in subsequent diamond drilling, little effort was directed towards a systematic evaluation of these properties. Interest gradually declined in the late 1960's and most claims were allowed to lapse.

In 1970, Nithex Exploration restaked the area and carried out an exploration program of trenching and diamond drilling. Nithex drilled a total of four diamond drill holes, one of which encountered significant molybdenite mineralization.

In 1975, Amex Potash Limited optioned the claims held by Nithex and Fraser Lake Mines on Nithi Mountain and subsequently acquired additional claims in the same area in order to complement their land position. Exploration carried out in 1975 by Amex included geologic mapping, soil sampling, magnetic surveying, and induced polarization surveying. In the summer of 1976, a percussion drilling program was completed by Amex on their Nithi properties. Twelve holes totalling 975 m (3200') were drilled on the property. Subsequently, Amex dropped their option on the property.

- 16 -

MINERAL OCCURRENCES

Numerous molybdenite showings have been found in outcrop or exposed by trenching on the Nithi Mountain property. In addition, there are a number of mineralized boulders containing molybdenite scattered throughout the property. Rock samples were collected from these molybdenite showings. The locations are shown on the accompanying map.

DATA PRESENTATION

The results of the systematic geochemical survey conducted on the claims have been compiled at a scale of 1:5000 on an enlarged version of the topographic map prepared for Amex Explorations in 1975.

Two maps accompany this assessment report: one containing the Mo and Mn soil sample analytical results with the Mo results contoured, as well as the rock sample location sites; and one containing Fe and Zn soil sample results with the zinc results contoured.

The rock assay and trace element analytical results are listed in Table 3.

-	18	-
---	----	---

. ROCK SAMPLE RESULTS

					· · · · · · · · · · · · · · · · · · ·					
Sample Number	Rock Type	Assa Resul			Anal	ytical	Result	S		
		Total M as % Mo		Total Cu	Mn	Fe	Ag	Zn	W	Au
JD 1 JD 2 JD 3	granite N.R.	0.504	0.454	10	80 20	0.4	0.2	16 6	0	
JD 3 JD 4 JD 5 JD 6 JD 7	qtz monz qtz monz diorite qtz monz qtz monz	0.44 0.017 0.069 0.215 0.166	0.028 0.017 0.064 0.158 0.102	72 20 24 18	60 380 180 60	0.2 0.6 3.8 1.0 1.1	0.2	48 52 26 16	000000000000000000000000000000000000000	
JD 8 JD 9 JD 10 JD 11	qtz monz granite qtz monz qtz monz qtz monz	1.08 0.028 0.178 1.05	0.800 0.016 0.112 0.522	16 16 6 4 6	40 140 820 60	0.5 0.4 1.5 0.5	8.4 0.2 0.2 0.2	4 30 54 10	0 0 0 0	
JD 12 JD 13 JD 14	granite granite granite	0.022 0.096 0.780	0.008 0.046 0.714	14 24 8	80 80 100	0.9 0.9 0.5	2.0 0.2 0.4	10 10 10 10	0 0 0	
				Мо	Mn	Fe		Zn	W '	Au
JD 15 JD 15A	qtz monz N.R.			305	260	1.2		18	2	20
JD 16 JD 17 JD 18 JD 19 JD 20 JD 21 JD 22 JD 23	qtz monz qtz monz qtz monz qtz monz granite granite N.R. N.R.			107 370 230 28 20 450	480 100 260 60 160 140	2.0 0.7 1.2 1.0 0.6 0.7		20 14 18 12 16 14	2 0 5 2 2 2	10 10 10 10 10 10
RR 1	qtz monz			500	60	3.0		28	5	40
76N-11 (PDH)	1976 dril hole, chi samples	p		28	300	1.6		38		
76N-11A (PDH)	1976 dril hole, chi samples			50	260	1.7		44		
	Samples			Total Cu	Mn	Fe	Ag	Zn	W	Au
CA 1 CA 2 CA 3 CA 4 CA 5	N.R. qtz monz qtz monz qtz monz diorite	0.179 0.330 0.160 0.030	0.033 0.150 0.160 0.024	10 8 4 22	80 40 20 540	0.5 0.4 0.2 5.7	0.4 0.2 1.4 0.2	24 8 2 68	0 0 0 5	

...continued

Table 3, continued

Sample Number	Rock Type	Assa Resul			Anal	ytical	Resul	ts		
		Total M as % Mo		Total Cu	Mn	Fe	Ag	Zn	W	Au
CA 6 CA 7 CA 8	granite granite granite	0.010 0.021 0.029	0.005 0.001 0.001	6 6 12	140 120 100	0.6 0.4 0.4	0.2 0.2 0.2	16 16 16	0 0 0	
L 7+70E 11+50S	qtz monz	0.464	0.413	12	100	0.6	0.2	16	0	
L19+90E 1+00N	granite	0.049	0.023	6	240	0.3	0.2	16	0	
L 1+55E 13+00S	qtz monz	0.080	0.071	16	200	0.8	0.4	22	0	
L21+40E 7+07N	granite	0.424	0.406	8	100	0.5	0.2	12	0	
L20+65E 0+50N	granite	0.584	0.553	10	1600	0.4	0.2	6	0	
L20+65E 0+70N	granite	0.047	0.99	8	80	0.4	0.2	4	2	
L22+90E 2+90N	granite	0.038	0.011	10	140	0.6	0.2	12	0	
L23+65E 3+21N	granite	0.165	0.130	6	140	0.4	0.2	8	0	
L25+90E 5+43N	qtz monz	0.051	0.051	10	180	0.6	0.4	22	0	
L19+90E 13+50N	qtz monz	0.390	0.356	6	60	0.7	0.4	10	0	

- 19 -

GEOCHEMISTRY

The geochemical survey conducted on the Molly, MJM, and Strep mineral claims consisted of systematic soil sampling along chained grid lines. The grid lines were located so as to enlarge the geochemical grid conducted by Amex Potash Limited in 1975. In areas where no geochemical results were available, lines were spaced every 75 metres. In areas previously sampled, grid lines were located between the old Amex sample lines. Samples were collected every 50 metres along these grid lines with the 'B' horizon being sampled whenever possible. A total of approximately 2400 soil samples were collected from the claims and analyzed for Mo, Mn, Fe, and Zn. Descriptions of the commercial laboratory analytical techniques are included in Appendix I.

In addition to the soil sampling, a total of 42 rock samples were collected from molybdenite showings scattered throughout the property. These rock samples were assayed for Total Mo and MoS₂ and analyzed for Total Cu, Mn, Fe, Ag, Zn, W, and Au.

EXPLORATION RESULTS

A number of areas with anomalous molybdenum values in the soils were delineated, as well as a broad area of high zinc values. The results of these two elements have been contoured on the accompanying maps.

The manganese geochemical results ranged from 1 ppm Mn to 38,000 ppm, high values being scattered throughout the grid area. A number of anomalous molybdenum and zinc values correspond with high manganese results and thus are probably due to the scavenging effect manganese has with other elements. The anomalous molybdenum, and to a lesser extent zinc, values which occur without the high manganese association deserve more detailed investigation. The iron values, as a whole, were generally very low and thus show that there is no iron associated with the molybdenum mineralization found on the property and thus that an I.P. survey would do very little in determining the better mineralized zones.

- 21 -

RECOMMENDATIONS

It is recommended that stripping and trenching of the areas with the higher molybdenum geochemical results be conducted to try to further delineate the molybdenum mineralization, and then a few diamond or percussion drill holes be drilled to determine the extent and continuity of the mineralization.

- 23 -

.

••

PERSONNEL

Name, Position, Address	June	July
AUSSANT, Claude (Project Geologist) #1102, 544 Blackthorn Rd. N.E. Calgary, Alberta	16-30	1-10
BYERS, Don (Prospector) 910 Birch Sherwood Park, Alta.	20-30	1-4
DAVIS, James W. (Project Supervisor) 3220 Oakwood Dr. S.W. Calgary, Alberta	17-19 25-30	1-10
MILLINOFF, Terri Beth (Junior Geologist) 2550 Chilver Road Windsor, Ontario	16-30	1-10
NELSON, Thomas (Prospector) P. O. Box 952 Gaspe, Quebec	14-26	3-10
RAY, Robert (Prospector) P. O. Box 32 Fort Fraser, B.C.	14-30	1-10
THOMPSON, Daryl (Prospector) 2683 Panorama Drive N. Vancouver, B.C.	22-26	3-10

:

CLAIM: MJM-1	RECORD NO.:	835	
TIME PERIOD: June 14 to			
	out, 10, 1900		
PRE-FIELD PREPARATION			340.0
PERSONNEL			
Project Supervisor Project Geologist	3 man days @ \$275/day 4 man days @ \$240/day	825.00 960.00	
Prospectors	15 man days @ \$140/day	2,100.00	3,885.0
TRANSPORTATION & TRAVEL			
Travel expenses 4x4 truck (Jimmy)	4 days @ \$35/day	550.00 140.00	
Automobile	4 days @ \$25/day	100.00	
3/4-ton truck	2 days @ \$35/day	70.00	860.0
CAMP & ACCOMMODATION			Í
Lodging Food	22 man days @ \$10/day 22 man days @ \$17/day	220.00 374.00	
Fue]		60.00	
Field equipment rent	al, and misc. 22 man days @ \$15/day	330.00	984.0
GEOCHEMICAL ANALYSES 408 soil samples ana	lyzed for Mo, Mn,		
Fe, Zn	@ \$3.00/sample	1,224.00	
8 rock samples assay MoS ₂	ed for lotal Mo, @ \$11.50/sample	92.00	
8 rock samples analy	zed for Total Cu,		1 - 00 4 0
Mn, Fe, Ag, Zn,	W, Au @ \$9.75/sample	78.00	1,394.0
MISCELLANEOUS	reproductions	75.00	
Maps, publications, Telephone		75.00	
Freight	•	20.00	170.0
POST-FIELD COMPILATION			
Report writing Drafting and secreta	rial	650.00 215.00	865.0
brarting and scoreta		SUB-TOTAL	\$ 8,498.0

••• FR	SUMMARY OF EXPENDITURES ASER LAKE, BRITISH COLUMB OMINECA MINING DIVISION	AIA	
CLAIM: MJM-2	RECORD NO.:	836	
TIME PERIOD: June 14 to	July 10, 1980		
PRE-FIELD PREPARATION			340.00
	2 man days @ \$275/day 3 man days @ \$240/day 14 man days @ \$140/day	550.00 720.00 1,960.00	3,230.00
TRANSPORTATION & TRAVEL Travel expenses 4x4 truck (Jimmy) Automobile 3/4-ton truck	3 days @ \$35/day 4 days @ \$25/day 2 days @ \$35/day	550.00 105.00 100.00 70.00	825.00
CAMP & ACCOMMODATION Lodging Food Fuel Field equipment renta	19 man days @ \$10/day 19 man days @ \$17/day als and misc. 19 man days @ \$15/day	190.00 323.00 45.00 285.00	843.00
GEOCHEMICAL ANALYSES 377 soil samples ana	lyzed for Mo, Mn, @ \$3.00/sample ed for Total Mo, @ \$11.50/sample zed for Total Cu, Mn,	1,131.00 92.00 78.00	1,301.00
MISCELLANEOUS Maps, publications, n Telephone Freight	reproductions	75.00 75.00 20.00	170.00
POST-FIELD COMPILATION Report writing Drafting and secretar	rial	650.00 215.00	865.00
ADMINISTRATION @ 10%		SUB-TOTAL	\$ 7,574.00 757.40 \$ 8,331.40

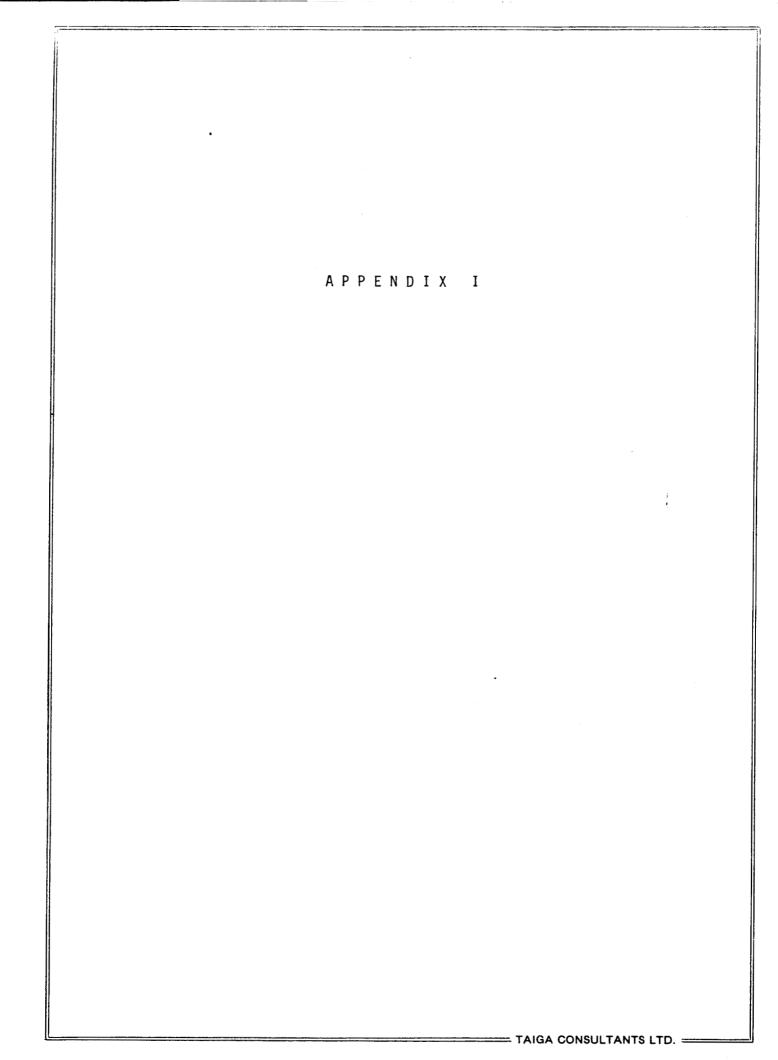
-

and an annandmen

SUMMARY OF EXPENDITU FRASER LAKE, BRITISH CO OMINECA MINING DIVIS	LUMBIA	
CLAIM: MJM-3 RECORD NO	. 837	
TIME PERIOD: June 14 to July 10, 1980		
PRE-FIELD PREPARATION		340.0
PERSONNEL Project Supervisor 2 man days @ \$275/d Project Geologist 3 man days @ \$240/d Prospectors 14 man days @ \$140/d	ay 720.00	3,230.0
TRANSPORTATION & TRAVEL Travel expenses 4x4 truck (Jimmy) 3 days @ \$35/day Automobile 4 days @ \$25/day 3/4-ton truck 2 days @ \$35/day	550.00 105.00 100.00 70.00	825.0
CAMP & ACCOMMODATION Lodging 19 man days @ \$10/da Food 19 man days @ \$17/da Fuel Field equipment rentals and misc.		i . 1
supplies 19 man days @ \$15/da GEOCHEMICAL ANALYSES 177 soil samples analyzed for Mo, Mn, Fe, Zn @ \$3.00/sample 10 rock samples assayed for Total Mo, MoS ₂ @ \$11.50/sample 10 rock samples analyzed for Total Cu, Mn Fe, Ag, Zn, W, Au @ \$9.75/sample	531.00	843.0 743.5
MISCELLANEOUS Maps, publications, reproductions Telephone Freight	75.00 75.00 20.00	170.0
POST-FIELD COMPILATION Report writing Drafting and secretarial	650.00 215.00	865.0
	SUB-TOTAL	\$ 7,016.5
ADMINISTRATION @ 10%	TOTAL	701.6 \$ 7,718.1

-

SUMMARY OF EXPENDITURES "FRASER LAKE, BRITISH COLUMB OMINECA MINING DIVISION	IA	
CLAIM: MJM-4 RECORD NO. 838	8	
TIME PERIOD: June 14 to July 10, 1980		
11HE FERIOD. Dune 14 to outy 10, 1900		
PRE-FIELD PREPARATION		340.00
PERSONNEL Project Supervisor 2 man days @ \$275/day Project Geologist 3 man days @ \$240/day Prospectors 14 man days @ \$140/day	550.00 720.00 1,960.00	3,230.00
	1,000.00	0,200.00
TRANSPORTATION & TRAVEL Travel expenses 4x4 truck (Jimmy) 3 days @ \$35/day Automobile 4 days @ \$25/day 3/4-ton truck 2 days @ \$35/day	550.00 105.00 100.00 70.00	825.00
CAMP & ACCOMMODATION		9 8
Lodging 19 man days @ \$10/day Food 19 man days @ \$17/day	190.00 323.00	
Fuel Field equipment rentals and misc. supplies 19 man days @ \$15/day	45.00 285.00	843.00
GEOCHEMICAL ANALYSES 285 soil samples analyzed for Mo, Mn, Fe, Zn @ \$3.00/sample 7 rock samples assayed for Total Mo,	855.00	
MoS ₂ @ \$11.50/sample :	80.50	
7 rock samples analyzed for Total Cu, Mn, Fe, Ag, Zn, W, Au @ \$9.75/sample	68.25	1,003.75
MISCELLANEOUS Maps, publications, reproductions Telephone Freight	75.00 75.00 20.00	170.00
•		270100
POST-FIELD COMPILATION Report writing Drafting and secretarial	650.00 215.00	865.00
	SUB-TOTAL	\$ 7,276.75
ADMINISTRATION @ 10%		727.67
	TOTAL	\$ 8,004.42


SUMMARY OF EXPENDITURES FRASER LAKE, BRITISH COLUMB OMINECA MINING DIVISION	BIA	
CLAIM: MJM-5 RECORD NO. 83	39	
TIME PERIOD: June 14 to July 10, 1980		
PRE-FIELD PREPARATION		340.00
PERSONNEL Project Supervisor 2 man days @ \$275/day Project Geologist 3 man days @ \$240/day Prospectors 14 man days @ \$140/day	550.00 720.00 2,100.00	3,370.00
TRANSPORTATION & TRAVEL Travel expenses 4x4 truck (Jimmy) 5 days @ \$35/day Automobile 6 days @ \$25/day 3/4-ton truck 1 day @ \$35/day	550.00 175.00 150.00 35.00	910.00
CAMP & ACCOMMODATION Lodging 20 man days @ \$10/day Food 20 man days @ \$17/day Fuel Field equipment rentals and misc.	200.00 340.00 45.00	, , ,
supplies 20 man days @ \$15/day GEOCHEMICAL ANALYSES 394 soil samples analyzed for Mo, Mn, Fe, Zn @ \$3.00/sample 1 rock sample assayed for Total Mo, MoS ₂ @ \$11.50/sample 1 rock sample analyzed for Total Cu, Mn, Fe, Ag, Zn, W, Au @ \$9.75/sample	300.00 1,182.00 11.50 9.75	885.00
MISCELLANEOUS Maps, publications, reproductions Telephone Freight	75.00 75.00 20.00	170.00
POST-FIELD COMPILATION Report writing Drafting and secretarial	650.00 215.00	.865.00
	SUB-TOTAL	\$ 7,743.25
ADMINISTRATION @ 10%	TOTAL	774.32 \$ 8,517.57

	OMINECA MINING DIVISION	-	
CLAIM: STREP	RECORD NO. 80	1	
TIME PERIOD: June 14 to	July 10, 1980		
PRE-FIELD PREPARATION			340.0
PERSONNEL			
	2 man days @ \$275/day 3 man days @ \$240/day	550.00 720.00	
Prospectors	14 man days @ \$140/day	1,960.00	3,230.0
TRANSPORTATION & TRAVEL			
Travel expenses		550.00	
4x4 truck (Jimmy) Automobile	4 days @ \$35/day 4 days @ \$25/day	140.00 100.00	790.0
	,		
CAMP & ACCOMMODATION Lodging	19 man days @ \$10/day	190.00	i
Food	19 man days @ \$17/day	323.00	•
Fuel		45.00	
Field equipment rent supplies	19 man days @ \$15/day	285.00	843.0
GEOCHEMICAL ANALYSES			
390 soil samples ana			
Fe, Zn	@ \$3.00/sample	1,170.00	
8 rock samples assay MoSo	@ \$11.50/sample	92.00	•
8 rock samples analy	zed for Total Cu, Mn,	70.00	1 040 0
Fe, Ag, Zn, W, A	u @ \$9.75/sample	78.00	1,340.0
MISCELLANEOUS		75 00	
Maps, publications,	reproductions	75.00 75.00	
Telephone Freight		20.00	170.0
-	·	· · · · · · · · · · · · · · · · · · ·	
POST-FIELD COMPILATION Report writing		050.00	
Drafting and secreta	irial	215.00	865.0
		SUB-TOTAL	\$ 7,578.0

·····

SUMMARY OF EXPENDITURES ٠, FRASER LAKE, BRITISH COLUMBIA OMINECA MINING DIVISION RECORD NO.'s: 15166-15179, CLAIMS: Molly #1-#14, #17, #18 15182,15183 TIME PERIOD: June 14 to June 24, 1980 275.00 PRE-FIELD PREPARATION PERSONNEL 1 man day @ \$275/day Project Supervisor 275.00 3 man days @ \$240/day 720.00 Project Geologist 1,540.00 Prospectors 11 man days @ \$140/day 2,535.00 TRANSPORTATION & TRAVEL 100.00 Travel expenses 4 days @ \$35/day 240.00 4x4 truck (Jimmy) 140.00 CAMP & ACCOMMODATION 15 man days @ \$10/day Lodging 150.00 Food 15 man days @ \$17/day 255.00 Fue] 36.00 Field equipment rentals and misc. 15 man days @ \$15/day 225.00 666.00 supplies GEOCHEMICAL ANALYSES 394 soil samples analyzed for Mo, Mn, 1,182.00 Fe, Zn @ \$3.00/sample **MISCELLANEOUS** 40.00 Maps, publications, reproductions 40.00 Telephone 20.00 100.00 Freight POST-FIELD COMPILATION 620.00 Report writing 200.00 820.00 Drafting and secretarial \$ 5,818.00 TOTAL

Rossbacher Laboratory Ltd.

2225 S. SPRINGER AVE., BURNABY, B.C CANADA TELEPHONE: 299-6910 AREA CODE: 604

SAMPLE PREPARATION AND ASSAY PROCEDURE FOR MOLYEDENUM.

A. SAMPLE PREPARATION.

- 1. Crush entire split core sample to $\frac{1}{4}$ inch, using Jaw Crusher.
- 2. Split out assay portion of approx 400 gram, using Jones Riffle.
- 3. Dry, and pulverize assay portion to minus 100 Mesh, using Plate Pulverizer.
- 4. Mix by rolling, and weigh for assay.

B. ASSAY PROCEDURE.

- 1. Weigh 2.00 to 4.00 gram of minus 100 mesh sample into 250 ml beaker.
- 2. Add 5 ml HNO, , 10 ml HCl , and 10 ml HClO₄.
- 3. Cover and digest for 30 min. on hotplate.
- 4. Remove cover, and take to strong HC101 fumes.
- 5. Cool, add about 50 ml of water, cover and boil for several minutes.
- 6. Cool, and filter through a # 40 Whatman paper. Wash several times with hot water.
- 7. Add 2.5 ml 18 % Aluminum Chloride solution, and dilute to 100 ml with water.
- 8. Analyze the solution by Atomic Absorption Spectroscopy, according to standard procedure.

August 1, 1979.

Rossbacher Laboratory Ltd.

2225 C SPRINGER AVE , BURNABY, B C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

Jan. 1980.

ANALYTICAL METHODS CURRENTLY IN USE AT ROSSBACHER LABORATORY LTD.

A. SAMPLE PREPARATION.

1. Geochem. Soil and Silt: Samples are dried, and sifted to minus 100 Mesh, through stainless steel, or nylon screens.

2. Geochem. Rock : Samples are dried, crushed to minus $\frac{1}{4}$ inch, split, and pulverized to minus 100 mesh.

B. METHOD OF ANALYSIS.

1. Multi element. (Mo, Cu, Ni, Co, Mn, Fe, Ag, Zn, Pb.): 0.5 Gram sample is digested for four hours with a 15:85 mixture of Nitric-Perchloric acid. The resulting extract is analyzed by Atomic Absorption spectroscopy, using Eackground Correction where appropriate.

of an Ion Selective Electrode.

2. Tungsten:

1.0 Gram sample is sintered with a carbonate flux, and dissolved. The resulting extract is analyzed colorimetrically, after reduction with Stannous Chloride, by use of Potassium Thiocyanate.

3. Tin:

Iodide, and dissolved. The resulting solution is analyzed colorimetrically by use of Gallein.

0.5 Gram sample is sublimated by fusion with Ammonium

J.5 Gram sample is fused with a Carbonate Flux, and dissolved. The resulting solution is analyzed for Fluorine by use

5. Gold:

4. Fluorine:

10.0 Gram sample is dissolved in Aqua Regia. The resulting solution is subjected to a Methylisobutyl Ketone extraction, which extract is analyzed for Gold using Atomic Absorption Spectroscopy.

6. pH:

An aqueous suspension of soil, or silt is prepared, and its pH is measured by use of a pH meter.

(1)

METHOD OF ANALYSIS, (CONT.)

ć

.

7.	Arsenic:	0.25 Gram sample is digested with Nitric-Percloric acid.
		Arsenic from the solution is converted to arsine, which
		in turn reacts with silver D.D.C. The resulting solution
		is analyzed by colorimetry.
8.	Antimony:	0.50 Gram sample is fused with Ammonium Chloride and dissoved.
		The resulting solution is analyzed colorimetrically by use of brilliant green.
9.	Barium:	$0.50~{\rm Gram}$ sample is repeatedly digested with ${\rm HClO}_4-{\rm HEO}_3$ and HF.
		The solution is analyzed by Atomic Absorption Spectroscopy.
10.	Mercury:	1.00 Cram sample is digested with ENO3.
10.	Mercury:	The solution is analyzed by Atomic Absorption Spectroscopy,
		using a cold vapor generation technique.
11.	Rapid Silicate	0 10 Gram cample is fused with Lithium Metaborate, and
11.	Rapid Silicate Analysis:	0.10 Gram sample is fused with Lithium Metaborate, and dissolved in HNO2.
11.		dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2,
11.		dissolved in ENO3.
	Analysis:	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2 P2O5, and MnO.
11.	Analysis: Partial Extractio	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2 P2O5, and MnO.
	Analysis: Partial Extractio	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2 P2O5, and MnO.
	Analysis: Partial Extractio	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2 P2O5, and MnO. n O.5 Gram sample is extracted using one of the following: Hot or cold O.5 N. HCL, 2.5% E.D.T.A, Ammonium Citrate, or other selected organic acids.
	Analysis: Partial Extractio	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2 P2O5, and MnO. n 0.5 Gram sample is extracted using one of the following: Hot or cold 0.5 N. HCL, 2.5% E.D.T.A, Ammonium Citrate,
12.	Analysis: Partial Extractio and Fe/Mn oxides:	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, A1203, Fe203, MgO, CaO, Na20, K2O, TiO2 P205, and MnO. O.5 Gram sample is extracted using one of the following: Hot or cold 0.5 N. HCL, 2.5% E.D.T.A, Ammonium Citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorption Spectroscopy.
12.	Analysis: Partial Extractio	dissolved in BN03. The solution is analyzed by Atomic Absorbtion for Si02, A1203, Fe203, Mg0, Ca0, Na20, K20, Ti02 P205, and Mn0. n 0.5 Gram sample is extracted using one of the following: Hot or cold 0.5 N. HCL, 2.5% E.D.T.A, Ammonium Citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorption Spectroscopy. Samples are dried, and ashed at 550°C. and the resulting
12.	Analysis: Partial Extractio and Fe/Mn oxides:	dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, A1203, Fe203, MgO, CaO, Na20, K2O, TiO2 P205, and MnO. O.5 Gram sample is extracted using one of the following: Hot or cold 0.5 N. HCL, 2.5% E.D.T.A, Ammonium Citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorption Spectroscopy.

.

(11)

. .

APPENDIX II

•

•••••••

•

TAIGA CONSULTANTS LTD. ==

į

Rossbacher Laboratory Ltd.

2225 S. SPRINGER AVE., BURNABY, B. C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE OF ANALYSIS

TO: TAIGA CONSULTANTS LTD. 1300 δth St. S.W. Calgary, Alta CERTIFICATE NO. 80343

INVOICE NO. 0238

DATE RECEIVED

DATE ANALYSED July 23,1980

ATTN: B.C. 80-7 Mr. C. Aussant

SAMPLE NO.:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	tot. Mo	MÔOx		
	0.454	asMoS2 0.504	asMo\$2 0.050		
	0.026	0.044	0.018		
	0.018	0.017	0.009		-
4		· 0.017	0.005		
6	0.064				
· · · · · · · · · · · · · · · · · · ·	0.158	0.215	0.057 0.064		
	0.102	0,166	,		
8	0.800	1.08	0.280		
9	0.016	0.028	0.012		
10	0.112	0.178	0.066		
11	0.522	1.05	0.528		
CA 2	0.033	0.179	0.146		,
3	0.150	0.330	0.180		
4	0.130	0.160	0.030		
5	0.024	0.030	0.006		
6	0,005	0.010	0.005		·····
7	0.001	0.021	0.020		
8	0.001	0.029	0.028		
L7+70E+11+50S	0.413	0.464	0.051		
L19+90E-1+00N	0.023	0.049	0.026		
L1+55E-13+00S	0.071	0.080	0.009		
L21+40E-7+07N	0.406	0.424	0.018		
L20+65E-0+50N	0.553	0.584	0.031		
L20+65E-0+70N	0.019	0.047	0.028		
L23+63E-3+21N	0.130	0.165	0.035		
1.25+90E-5+1.3N	0.033	0.051	0,018		
L19+90E-13+50N	0.356	0.390	0.034		
JD 12	0.008	0.022	0.014		
13	0.046	0.096	0.050		
ป้	0.714	0.780	0.066		
122-90E-2-20N	0,011		0.027	_ <u></u>	
,					

* Please note that <u>all</u> Mo values are expressed as % MoS₂ for Comparison purpose.

2215 S SPRINGER AVE . Rossbacher Laboratory BURNABY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80338-1 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS LTD 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 TO: PROJECT 80-BC-T CALGARY. me Ma Sample pН No Fe Zn No. 240 20 64 01 01 7+951)-9x218 02 260 26 86 02 7+9521-5750 03 68 6 27 03 57008 640 68 04 500 4150 2.6 64 ١. 200 05 05 4100 2900 54 З \$60 >10.0 5 31.40 154 06 06 38000 6-5 07 3+00S 1156 07 20 460 2.6 48 80 80 7+9541-2+005 2 09 4 860 3.6 92 09 1250 10 3. 2,2 50 10 HDD 80 2.8 11 3 11 0.500 460 42 10+241-12+501 12 2.1 12 200 . 42 13 440 13 1.9 13+DD | 420 14 2.1 46 14 バトレウム 280 2.4 15 15 34 14HUN ١ 480 1.8 44 16 16 Ł MYSON 17 15+1PA 260 1.9 36 17 18 380 20 ٢Ż 18 ISBON 800 2.4 62 19 19 16+DON 6002.3 20 1ht Ch \mathcal{H}_{o} 20 21 660 2.2 21 HΨ ITHLEN 480 1.3 22 22 えん 1715CN ۱ 23 RHON 32 23 440 1.5 24 りゃくしにトノタトムしゃ 24 240 1.8 20 ŧ 25 25 191 EN 160 1.8 34 1.7 L 26 26 *20+0*0.× 160 32 27 1.8 27 20130K 180 ŧ. 28 3L 28 2/HUN 160 1.6 ŧ 240 30 29 29 10+052+-12+50x ١ 1.8 30 30 360 2.3 42 ぼれ ۱. 260 2.1 28 31 31 BHUK ŧ 460 23 54 32 32 141101 2.5 44 36 33 33 420 14BCN 1 34 360 2.3 34 15HUK ١ 35 35 15KON 66 ŧ 800 2.2 36 16100x 36 র্নত E 37 11.150N 580 2.1 37 38 17HQN 38 39 39 1750N 2.5 128 40 40 43 120 G 2 Certified by 1. Abisbac

Rossbacher Laboratory

2225 S SPHINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910

ý A

ί

(

	GEOCHEMIC	AL A	NALYST	rs & Ass	AYERS		9					00:	220	
			c	ERTIF	САТ	F OF		1 751	c	CERTIF	ICATE NO	500 SV	338	-7
	TRIG	20							3	INVOIC	E NO.			
0: •	1300	14		4 ST	. 5	$\langle 1 \rangle$	CIU			DATE A	NALYSE	500	Y 19	8
	CAL	ar	2	7 37	. 0					PROJEC	т	21-5	20-7	7
No.	Sample	рн	Mo	Me	Fe	Zn		Γ			$\overline{1}$			N
01 /4					1E	27,			+					01
02	19511-18taw			1840	2.0	74			+					02
03	/0/X//V		2	260	2.2	54	··	<u> </u>				-		03
04			2	100	1.3	26					- †		1	04
05	2111301		2	220	2.4	74			1					05
06	LOHON		2	320	2.4	64 50								06
07	21HACK		.5	340	3. Ý	54								07
08 ///	45515-12+50N	<u> </u>		340	25	62		ļ	ļ				<u> </u>	08
09	BTACK		<u> </u>	. 240	22	40		ļ			_		 	09
10	BBON	\square	2	300	2.3	50		 						10
<u>11 .</u>	144001	[]		240	2.4	68 86	<u> </u>						┨	11
12	/#+3//N	$\left[\right]$	3	980	3.0	06 72							╆━	13
13 14	13HON		3	260	2.5	-11		<u> </u>	+					14
15	ITADA		- 3	340 400	2.8	50								1:
16 ///	USH LITANA	<u>;</u>	- Ŭ	240	2.0	54		<u>+</u>						16
17 //	HELLI-DE HARDA		4	320	2.3	44						-	1	17
18 ///	HSSLF KIRN		-5	300	25	84								18
19	ABUN		Ý	220	2.2	46								15
20	ZOHEN		Ý	240	2,0	44 84							ļ	20
21	20130N		1	640	2.6	- 84		 					<u> </u>	2
22	21HON	 	2	240	2.4	70		ļ			_	_ <u></u>	<u> </u>	22
1	1-2015-12+50N	[50	2,5	182							· 	23
24	· BADA	<u>├</u>	<u>,</u> 、	390 500	2.3	106 74			<u> </u>				<u> </u>	24
25 26 ///	13+50N 43U/-14+50N	╞──┤	ر ن	540	29 2.5	52			+				<u> </u>	20
27	STION		4	300	2.3	50			1				1	27
	HILI-16HILAN	r 1	3	400	2.4	410		 						28
29	16+50N		3	360		56								25
30	. ITHON		Ý	280	24	66								30
31	ITHON			300	2.2	36			<u> </u>				ļ	31
	23241-18750N	 	3	560	ک ک	1.06			┨───					32
33	194201	├	-!	320	2.3	40		 		_			╉╼─────	3:
34	MISON		1	360	2.4	54		<u> </u>			<u> </u>	+		3. 3.
35 36	20HAN XIHIN	╞──┤	<u> </u>	340 280	22	54			+	<u> </u>		+		3
37	21HON	┟───┨	 	240	$\frac{2}{1.5}$	42		<u> </u>	<u> </u>			-	<u> </u>	37
	4051-1450S		<i>I</i>	640	2.5	64			1	•		-	1	30
39	12+108	<u> </u>	 ;	280	2.0	46								39
40	6 10		1 if	340	2.4	70		·		1	~			40

Certified by U. Ulsophach

Rossbacher Laboratory 2225 S. STRINGER AVE. BURMARY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80338-3 CERTIFICATE OF ANALYSIS INVOICE NO. TAIGIA CONSULTANTS LTD 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 TO: PROJECT RC-80-7 CALGARY ALTA -Cw Sample рH Mo No. Fe No. Mn Zn 2h0 1.8 ろ 14+15/1-12+50 1.9 ł 1.9 17+420 1.9 III A MAR 2.1 ス 2.8 1.3 RANI-AAKA 1,5 Ô8 1.7 1.7 つっちわく 2.1 3tars 26d2.3 2.6 2.1 41.UŠ ł 1.9 I 9 00 我 , STORK 1 00 1.5 5+5120 1.8 Ż ちょちゃら U 1.6 THÙS d h 2. X THSUS 2.8 8+00 381) ł 8+505 2ho 9+00).0 . 1.5 1.9 10,400 2.3 10+405 2.1 1.9 2.4 2.5 2.4 14+M 2.2 40d 2.0 KAN \mathbf{a} 2.8 10-9511-0-50 1400 C 420 28 Certified by 1. Norsborck

Ę

(

ł

Rossbacher Laboratory

2228 S SCRINCER INVEL BURNABY, B.C. CANADA TELEPHONE: 299-6910

l

ĺ

GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80338-4 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGIA CONSULTANTS LTD 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 TO: PROJECT BC-80-7 CALGARY No. Sample pН Mo The No. Hn Fe Zn 110A5LI-2+11C 2.2 2.8 21.505 I 300 2.8 ł 2.9 3:505 2.6 ςD Ł 42 4450S 5APS 2.6 2.7 67AUS 2.1 btslS THES 2.8 2.4 だちのら 81/05 2.3 2.0 9HALS 2.5 9+505 () KH00S ¥ 2.3 1BHSP IHAN /Ò 2.4 12+125 . 2.7 12+400 40d 620 2.2 13+11.0 2.3 V bo 2.6 . 14411/ 2.5 MASUS 28 UPISSU-ASON 4.0 Y 2.7 HOON 2.0 HSON 2-2.0 *100* N 2+30Ň 1040 39 400 2.7 <u>3700 Ñ</u> 31.50N 2.2 400 2.6 4100N t 2.5 45ON 460 4.5 5700N 420 7.0 5750N \mathcal{F} 6700N 34n 2.6 GIO 1. Nonbac

Rossbacher Laboratory

2215 S SPRINGER AVE. BURNASY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80338-5

INVOICE NO.

CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD DATE ANALYSED JULY 1980 TO: 1300 8TH ST. S.W PROJECT RC-80-CREGARY ALTO. Ma No. Zn کمک Sample рH Fe Mo No. 420 3.2 12:551)-150N 940 3.1 THANN THON 3.4 SHÛÛN RIDA 4.1 qh <u>ځړ</u> 9+00 i v 2.6 2.7 d 9+5CN 2.7 IDHOON 10+50K 3R0| 2.3 1/+00r U 440 2.1 bb 11+SON ŽЬ 12+00% 2.1 240 200 ю 12+30K 3.0 アル 12+35LF Desta 1.9 HAC 22d 1.7 ANC 3. 2.4 400 21 34d 2.4 HINS 2.0 2.6 4+105 120 23 SHR \mathcal{H} <u>zu</u>d 1.06 420 2.4 . ちょくじち 340 2.4 6+4135 Tho 2.5 *+00* S 123+15E-4+50W 1.2 113+801.1-12+50N 2.5 2.7 13400 M 2.5 13FUN l 4zd 14 tûl N 320 2.4 HASON 400 3.0 J KHUN 2.9 いびのへ द 16700ir ¥ 340 2-4 2,2 ヹ THUN 2.1 TSON 2.5 GID . Morsbac

Rossbacher Laboratory 1225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80338-6 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS LTD 1300 8TH AVE S.W. DATE ANALYSED JULY 1980 TO: BC-80-7 CALGARY, ALTA PROJECT 56 Zn No. Sampie рH Ma No. Fe Mn 28 d R+SOLF BHON 1.9 44 01-01 02 18HON 1.9 02 990 44 (1.8 03 Ŭ6 IGHNA 24d 03 ŧ 38 04 1.6 04 19730h 220 ŧ 70 05 05 201128 I. 2.7 440 2 2.0 66 *201*00 260 06 260 \$4 2.5 07 2HAIN 07 <u>3.3</u> 2.8 64 80 520 80 8+556-12+50N Ŧ 420 56 09 09 13+UN ŧ 2lcd2.0 35 10 t 10 13+50N 3.6 Ħ 620 90 11 14+220 ŧ 56 3.4 t 12 12 1475DN 320 2.3 60 13 13 15700N 942 ŧ .2.1 14 44 14 15750N ţ 210 2.8 72 15 15 ſ 360 ILTRON 60 41. A 2.4 16 ť 16 11.50h 200 17 11+DN 2. 5 44 17 24 18 200 10 17501 18 t 52 2.3 19 18+00K 300 19 1 2.2 20 20 18+501 57a 80 380 2.4 72 IGHNON 21 21 Ł 2.3 280 22 19750N 22 I. 1.9 23 23 18 321 20HAX ł 2.2 24 540 100 24 20+501 ŧ 2.3 66 25 21+111 760 . 25 (5.2 26 BRUI-CHON 2 460 40 26 96 27 astan 3 5.0 27 220 400 2.6 38 28 HADN 28 ł 920 4.3 29 29 1+50K 2 110 2.4 42 30 320 30 2*+00* N ŧ 2.3 62 2+50N 461 31 31 280 46 2.4 1.9 32 32 3*†00*N 33 320 36 33 3150N 260 2.2 40 34 34 4HON 35 60 35 4+50N 420 3.6 £. 36 490 78 36 STOON 6.0 1 2.3 37 37 57.50N 280 34 ŧ 2.3 l 38 bran 280 36 38 520 3.2 39 39 ł 76 5+50N 340 74 40⁄ 14 2.5 40 Gin . Montas

(

Rossbacher Laboratory 2225 S. SPRINGER AVE . BURNABY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80338-7 CERTIFICATE OF ANALYSIS INVOICE NO. TAIGA CONSULTATIS LTD 1300 8TH ST. S.W. DATE ANALYSED JULY, 1980 · TO: PROJECT BC-80-7 CALGARY ALTA pН Mo Æ No. Sample Zn No. Fe Mn BBALI-THAIN 3,0 TISON I. 2.6 8+00 N ł 2.1 2.8 8±50N ţ 9+00N 2.0 9150N ı. 2.2 ICHDON ł 2.7 1045C/N THOOR ŧ IHSON • 4.3 12+BOK 2,2 12+501 2.2 2.(ちょりタレー 12 ドロメ ſ 12HUN 2.2 13+50N 2.9 2lr0. 14+CCN WILLIN ŧ 2.6 ISHEN 2.8 15+5CN 3.3 HI CON t 2.4 16tSON 17FLOK 56d 3,2 175CN 3.9 18tBIN 2,6 BISON 2.2 1910.0N Ŧ 19+5AN 2.0 £ 20+UUN 20150N *d* ł 21+00ñ 19+30L]-*T+00*S 5,7 2.2 7+505 Ł 2,6 *8†00* S ŧ 3,0 RESOS ų. 700| 9+00 (1.9 280 -2.1 1.9 2.8 9 V Certified by U. Olombore G_{I} 2.

ŧ

í

Rossbacher Laboratory 2225 S SERINGER AVE . BURNARY, B.C. CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80338-8 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS LTD. 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 · TO: PROJECT RC-80-7. CALGARY, ACTA Sample pН No. Mo Mn No. Fe ₹u 19+5011-111505 1.8 12HU 1.9 E Ы 7.0 40 2.0 i4 KN 2.0 • • 14+40 H . 19+1011-5+1 2.8 10 1915061-0+×0 1,8 2+W S 2.4 ì 2.9 \$. 31.50 2.3 h Ū 2.0 7.3 17+9561-6+60 <u>مر 2</u> ł 2.2 6+50 i *THOO* S 1.9 2.2 NS 8+11 380 8750 S . 114941-9250 2,0 2.[IBYBRS ア 2.4 10+50 3.0 2.3 \mathcal{H} 12+505 .7 90 Ĩ 2.1 کړ HO 3.0 15+005 74,0 38 194911-12450N 2.7 ス 13+00N 2.5 2.6 Certified by P. Combac

ţ

Rossbacher Laboratory 1225 S SPERGER AVE. BURNADY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80338-4 CERTIFICATE OF ANALYSIS INVOICE NO. TAIGA CONSULTANTS LTD 1300 8TH AVE, S.W. DATE ANALYSED JULY 1980 TO: PROJECT B.C. 80-7 CACGARY, ALTA Zn في الم Mn No. Fe Sample ۶H Mo Cy/ No. 3.7 19+3061-13HM .4 2.4 14 H.ON 2.6 32C 44 En 99. 15HUN 4.6 いをわ () 1/ PAN 1.0 165ON 7.7 17+AN 1.9 24.0 17; {CN 2.3 18+12N 2.0 RI.ON 2.2 19+00N 2.2 19HSON 1.5 RADN 2.1 . 20+50N • ! 2.3 2HUN 2.8 GI 31. 16 . Norsbas Certified by

Rossbacher Laboratory

2225 S S RENGER AVE., BURNABY, C.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305 -./ INVOICE NO.

CERTIFICATE OF ANALYSIS

TO:

ţ

ł

TRIGA CONSULTANTS (TD 1300 874 ST. S.W CALGARY

DATE ANALYSED JULY 1980 PROJECT PA-DA-7

No.	C P L C Semple	pН	Mo	<u>معر</u>	М.	<i>r</i> .	1		ROJECT		$-\epsilon$	<u> PO-1</u>	
	_	μn /			Mr	Fe_ 3.6	Zn	-	 			+	0
02	13+15E-9421		17		280 220	2.5	100 54		 	<u> </u>		+	0
03	950N		3		220	<u>d.5</u>	42		 		 	+	0
04	IDHON IDHSON		3		200	2.1 2.8	68		 		<u> </u>	+	0
05	II+SUN		4	· · · –	340 280	2.7	64		 	·	<u> </u>	+	
05		r	60		320	26	76		 		<u> </u>	+	
07	11+50N 12HWN	,	5%		300	2.1	58		 <u>–</u> -	-	†	+	
08	12+50N	· 1	4		220		38		 		<u> </u>		1
09	12+1111		3		360	2.7	44		 		1	-	
10	13+50N	,	3		240		54				 		1
11	14+00	/	2		300	3.1	64		 · .	<u> </u>	0.	· · · · · · · · · · · · · · · · · · ·	
12	14+50N				<u> </u>	2.5	54		 	<u> </u>		1	1
13	ISTUIN		<u>4</u>		240		50						1
14	1575UN	/	3		220	2.0	38		 		1	1	1
15	IGADAN		4		260		44		 ·,				1
16	161-50N	,	1		300		64		 		;	+	1
17	ITHOON	,	3		240	2.2	44		 •	1	<u> </u>		1
18	17450iN		4		200	97	44		 		†	1	1
19	ISTOON		4		260	2.2	60				[1	1
20	18+50N	′	3		240	24	50		 				1
21	19HOON	/	1		280	19	46						2
22	19150N	,	2		280	2.7	56						
23	20mar	,]	2		280	2.	54						2
24	LOISON	/	3		300	2.7	60						2
25	21HCCN	/	2		220	2.4	68	·	 				1
26	21+50x	/	1		220	2.6	56		 				2
27	22+001	/			220	2.7	54		 		L	 _+	2
28	221301	/			200	2.3	70		 	ļ		ļ	2
29	2.3+CCN	/	_		300	2.6	80		 				2
30	23+50N				220	1.8	42 56		 				3
<u>n</u>	24+001								 1***	[3
32	24+30N	ļ	_1		280	1.4	52		 _				
	15+APE- 9+CON		7		680	2.6	130		 				3
34	9HON		24		580	3.8	106		 	 			3
35	1 MAON				220	-1.8	32						3
36	IGHON		3		220	24	50		 <u> </u>				3
37	IIH UN		18		420	2.3	52		 				3
38	IHSON		2			2.7	110		 			+	3
39	12+OUN		2		180	2.8	122		 				<u>r</u> 3
40	621		37		240	2.4	138			\lfloor / \rfloor	1: af	Jaro	

Rossbacher Laboratory 2225 S. SPIKINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80305-2 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS (TD) DATE ANALYSED JULY 1980 TO: 1300 STA AVE S.W RD-20-7 PROJECT CALGARY 8. Fe No. pН Zn No. Sample Mo 3.3 级的 US+40E-12+50N BUN 3.0 3.8 12+201 3.7 14+00N 3.8 2.5 15HON Ĵ 15+5/12 4.0 3.0 16700N IL-YON 4.7 70D ITHOON lð 3.7 ຸລ 17+50N 3.1 18+OBN 1875ON 64 3.2 19700N 3.6 19+50N 3. POT TON 9.4 42 64 2HON Ĩ 2.7 21+30N 3.0 FERN 2150N 1.0 2.9 23+00N 2.7 1 80 2345BN H 24HAN 3.1 2.9 68 . . 27750N 3.0 SELON 2.4 2575ON ÉHRON <u>32</u> - 1 25750N <u>2 7+00</u>N 2.1 L20 98 98 2.9 27,450N 3.7 32 UKTE- 9HOON 3. 9+50N 3.5 ю IGHUN IDHSON 2.8 2.9 11+PON 58 90 11+5CN 12 HAD N 3. /39 17-12N . Horston G6 2.0

Rossbacher Laboratory

2125 S SPRINGER AVE. EURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-3

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

(

INVOICE NO. BTH ST. S.W. IRIGA DATE ANALYSED JULY 1980 TO: PROJECT RC-80-CALGARY FWN Fe Zn Sample pН Mó No. No. 3.2 fr 54 1/+1×F-12+1200 2.5 13-571 2.9 3.0 14HOL Ÿ 2/0 ξ 15HUN 51 36 2.5 157 KDir 16HON 82 3.2 16+5CM 3.2 5C 2.8 ITERON 4.1 18+ ADN 3.0 18150N 2.6 *+00*× Ý IGHON 2.2 2.0 2DHIIN 2.7 29C 20+ON b 21HDN 2.5 5 1.9 21+50N 42 2.9 22+190K 1.9 2275DN 2.0 23700N ĥ 23+50N 2.2 24HAAN 2.4 24BON 25 HDN 2.1 2.3 21700N 2.3 PLEON 34C 1.3 27+AIN 2.2 1.3 27+50N 2er 2.2 31 VIANSE-GMON 3An 9HON 2.4 2.3 IDHDN 2.6 IDISTIN 24R 3.7 THOON 68 5.7 1.4.20人 ほんのへ L-2 440 2.3 12HSON Y BHONN 2.1 A 2.9 G2

Rossbacher Laboratory

CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS (TD 1300 8TH ST. S.W.

TO:

(

INVOICE NO.

2228 S SPRINGER AVE .

TELEPHONE: 299-6910

BURNABY, B. C. CANADA

DATE ANALYSED JULY 1980 7 0

CERTIFICATE NO. 80305-4

	CAL	Gr	9RY	/		•		PI	ROJECT	RL	<u>1-80</u>	
No.	Sample	ρН	Mo	Str.	Шe	Zn						No
01	114-652-13+572		1	320	2.6	70		-				01,
02	· 14122		1	200	2.1	84						02
8	141521		1	220	2.0	56						03
04	15+BON			200	2.0	52						04
05	15750N			260	2.0	50						05
06	ILTOON		3	240	2.0	48						06
07	161500		ə	200	1.6	38						07
08	ITHOON		2	220	1.7	44						08
09	17+50N		2_	200	1.8	40					ļ	09
10	IBHADN	·	4	_ 440	2.0	60						10
11	. BHON		3	240	2.2	52					<u> </u>	
12	19HAN		14	9.80	L.5	70					-	12
13	19+5ON	·		1120	3.6	88						13
14	20HŨŨŇ		3	180		52						14
15	20+50N	,		200	2.1	70					<u></u>	
16	2HON	,	3	<u>9</u> 20	2.5	1.4				·-···	· · · · · · · · · · · · · · · · · · ·	16
17	21+SUN		2	920	1.6	56						17
18	22HUN			360	- []	-16-						18
19	22+5AN		2	360 500 260	1.4	82						20
20	23.400N		<u>a</u> 2	200		7 0					<u> </u>	21
21	2375CN			340	2.4	46						22
22	14tulin		3	200	2.3	76 38						23
23 24	- THIS IV		1	240	1.3	- <u>38</u> - 67					· ·	24
25	23TOUN		22	200 260	1.8	26						25
25	LITHSE-GrCCN		3	260	17	140						26
20	91021V 9+501			280	2.0	160						27
28	ICHAIN	,	16	980	2.3	560						28
29	IDTSUN		4	180	1.8	64						29
30	IHOON		Ý	100	1.5	46						30
31	11+50N		é	280	3.2	84						31
32	12+12N		29	720		316						32
33	12+SON	,	6	220	1.6	62						33
34	13tillin	r	7	240	2.8	72					ļļ	34
35	ISTON		6	240	9.9	66						35
36	14HR	ł	5	240 260	3.6	62			<u> </u>		ļļ	36
37	14+50N		5	200	3.5	(2)					ļ	37
38	ISHAN	<u> </u>	3	280	3.0	60		•			Į	38
39	15750N	/	4	280	2.8	132					 	39
40	<u> </u>		Y6	240	2.7	152			Ļ	$\Box \gamma$	└──┤	49
	```						Certified 1	oy 🕖	1.1	1/2	<i></i>	act

Rossbacher Laboratory

Mo

4

5

4

10

2225 S. STRINGER AVE. EURNAEN, B.C. CANADA TELEPHONE: 299-6910

No.

01

02

03

04

CERTIFICATE OF ANALYSIS

TO:

No.

01

02

03

04

Ę

ţ

1300

Sample

דאגאד -אגאראנאיז

16+500

17+AAN

17550N

CALGARY,

pН

CERTIFICATE NO. 80305-3 INVOICE NO. TRIGA CONSULTANTS (TD 1300 8TH ST S.W. DATE ANALYSED JUCY 1980 RIBERTA PROJECT *RC-80-7* Mn 56 Zn Fe. iR 2.1 62 2.8 180 54 2.8 46 180 sə 4( 2,7 9M 20 21

Kossbacher Laboratory

### **CERTIFICATE OF ANALYSIS**

2225 S. SPRINGER AVE. CURNARY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-6 INVOICE NO.

TO:

TAIGA CONSULTANTS LTD 1300 8 TH ST. S.W

DATE ANALYSED JUCY 1980

	$C_{15}$	24	GAI	? ? <u>\</u>			•		PROJE		<u>C-86</u>	<u>1-7</u>
No.	Sample	рH	Mo	,ec	Mr	FL	In					No
01	UL-HOE-1945ON		1		240	2,3	72					01
02	ZOHOON		1		280	2.7	50					02
03	2AHDIN		I		240	2,6	54					03
04	2140AN		1		220	2,6	52					04
05	21+50N		1		200	2.3	40					05
06	22+acm		1		200	2.4	- 66					06
07	2450N		1		140	1.7	32					07
08	23tCON		1		940 210	2.6	- 88					08
09	2350N		2		200	2,6	82	·				09
10	24 thin		2		440	2.1	102	ļ.				10
11	- 24+50N		2		200	2.9	72				.↓	<u> </u>
12	1B+90E-9HOON		5		120	1:9	52	· · · · · · · · · · · · · · · · · · ·	·		<u> </u>	12
13	9150N		166 -	l	1460	3.8	62	.   				13
14	· DHUN		3		220	2.2	36					14
15	NISON		5		140	1.6	30	<u> </u>				15
16	IH CON		12		140	1.8	32				· ·	16
17	IHSON		3		160	2.0	_44					17
18	12HUN		29		440	23	106				ļ	18
19	12+50N		21		1640	3,0						19
20	BHON		5		300	2.0	_52					20
21	13+501		1		/40	2.0	-68				<u>↓</u>	21
22	14 HOON				160	2.4	25					22
23	INTIN		1		200	2.2	58				<u> </u>	23
24	SHUN				280	(.3	46		<u>}</u> _		╀───┤─	24
25	BATTA		!		200	2.5	56					25
26	<u>lettern</u>		٩		160	20	38					26
27	16500		1		180	2.3	86				+	27 28
28	17+921		1		160	2.5	56					28
29	17+50N		1		120	2.1	49				+	30
30 31	18tati				200 1960		44 56				╂	31
31	187501		8			2.9	- <u>&gt;</u> 42		·		+ -+-	31
32 33	145ULAN		<u>├-</u> !		900 180	2.0	- 64				╉╍╌═╌╃╌	32
33	14TS/M		ľ		160	2,3				· · ·	+	34
34	101000	,		- <u></u>	290	2.4	- 50 82			····	++-	35
36	LVXVIV DILASA				Vor	2.4	14				++	36
37	<u></u>		<u> </u>		200	2.7	80				++-	37
38					120	2.1	46		•			38
39	1215ON		1		190	2.2	44	,	<u></u>		++-	39
40	(2 10		10		240	2.2	72			7 ~		10
				<u> </u>	<u> </u>		<u></u>		11-0		280	/

Kossbacher Laboratory

#### CERTIFICATE OF ANALYSIS

TO:

"DICORY

TRIGA CONSULTANTS LTD. 1300 8TH. ST. S.W.

TOTO S. SPHINCER AVE. EURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-7

INVOICE NO.

DATE ANALYSED JULY 1980 PROJECT DR- 80-87

	CALGAI	~Y	•					PROJECT	_ <u></u>	<u>   - (</u>	<u> 80 -</u>	· B
No.	Sample	рH	Mo	Mn	to	Zn						N
01	13+92-23-20N		え	200		62					L	0
02	23. MN		2	300	2.5	54						0
03	24HON		2	360	20	54 50						0
04	24150N		2	280		46						0
05	121+ADE- GHORN		41	180		218						0
06	945ON		21	260		216						
07	KHERN		20	220		4Å						0
80	ICHSON		14	200	2.6	112						C
09	IHACN		36	200	3,1	116			1			0
10	1H50N		20	220		70						1
11	12+aan		12.	2.20	2.1	90						1
12	12+30N		10	220		132						1
13	13+ACN		8	160	2,2	48 42					T	1
14	13HSON		5	120	1.9	42					1	1
15	14HON		12	120		74					1	1
16	14+ KN		12	180	1.6	32				į		1
17	154CM	,	3	80	1.0	6						1
18	1575CM		2	100	0. T							1
19	IGTOON			220	2.8	12 58						1
20	16+50N		4	1100		122						1
21	TTHOON			200	23	38						2
22	17+50N		4	140	1.9	- 38 32						2
23	18+AM		2	180	2.5	34						1 2
24	18+5CN		3	200		39 36						2
25	19 HOON	·	3	320	24	40					]	
26	GISTAN		Ŷ	200	2.6	44						2
27	20+62		11	500	27	36						1
28	20:50N		10	200		36						2
29	21100N		9	500	3.9	78						2
30	2/15PN		92	260	2.8	58					1	
31	22+000		え	340								3
32	27+50N		7	1060		74					T	3
33	125+BE-D-SON		8	\$20		150				···		
34	HON		18	640		114						3
35	HANN		74	3160	2.5	308						
36	2+CON	 '	14	380		42			1			3
37	2+50N		16	7.20	2.5	240						
38	3HUN			· 1120		240 96		•				
39	3. ON		14	980	25	158						
40	STPA		/	440	2.7	28					lac	V

Rossbacher Laboratory

# CERTIFICATE OF ANALYSIS

IAIGA CONSULTANTS (TD 1300 8714 ST. S.W. CALGARY.

2225 S. SPRINGER AVE., EURNABY, B. C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-8

INVOICE NO.

DATE ANALYSED JULY 1980

TO:	1300	~	8714	57.5	$\sim \omega$	•				30-0	01_7 01_7
	CRIZ	. G'	RRY.		• <b>7</b> . ]			PROJE		<u> </u>	í í
No.	Somple	рH	Mo	Mn	10Fr	Zn					No.
01	115ASI-HANN		16	440	2.7	<u> 82</u>					01
02	HON		22	1920	2.8 2.7	242					╄╼╌╌╼╶╉──╸
03	SHUN		28	680	J.7	188		·			03
04	SHOW		20 8	3.10	Z.S Z.3	146					04
05	braan		8		2.3	16					06
06	LISON		40	2480	J.( J.(				·	-	07
07	THOON	r	23	340 280	2.2	20B					08
08 09	VIGHISE-ALCON		11	400	2.8	298 308				_	09
10	9+50N 10+CCN		7	220	2.6	208			-		10
11	ICTSON		4	220	2.5	70			-		11
12	1HON		6	200	2.4	68 34					12
13	11+SCN		6		8./	34					13
14	12+ION	1	16	220 180	1.8	48					14
15	12+50N		7	180	1.1	32					15
16	13+CON	1	8	180	2.7	18					- 16
17	13+500	ł	3	220	J.6	122				_	17
18	IHTEN	1	6	160	1.3	42 2	·				18
19	14+50N	1	18	100	ابتر	Z					19
20	15+00N	<u> </u>	4	220	J.)	80					20
21	15750N	<u> </u>	╞╴┛─┾	200	<u>9.5</u>	48					22
22	16taan	1	<u>                                     </u>	200 220	<u> .8</u> ].8						23
23	16tSON	1—	<u>↓ - !</u> - <del> </del>	2/00	1.0 2.0	30					24
24	ITAINA	<u> </u>	9	320	3.0	41	· ·				25
25 26	ITSUN BANK	<u>}</u>	┼╌╴╏╶┼╸	260	2.8						26
20	18HON	}		260	1.2	44		_			27
28	19100N		2	200	1.9	24	1				28
29	Ighon	1	3	160	1.5	14				=	29
30	20+00n	1	9	700							30
31	20+501	1	2	260	[.9	52					31
32	21+CON		4	260	2.6	42					32
33	21+500	4	2	260	7.8	96	<u> </u>				33
34	12+00N	4	3	260		56					35
35	22.00N	1	2	200		20	<u>}</u>				36
36	23thon	4	$\frac{2}{2}$	220	9.3 9.2	<u>32</u> 34					37
37			2 2 3	260	T 9 ()	24	]	•			38
38	24+00h	1	+2	<u> </u>		62					39
39 40	241501	1	3 49	22.3			<b></b>		2 1	1	40
	570 42	<u> </u>	41		<u>1 al - (</u> ]	100			ilo.	alic	rch

Rossbacher Laboratory

1225 S STAFLGER AVE. BURNADY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-9 INVOICE NO.

TO:

(

CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD 1300 8TH ST. S.W. CALGARY.

DATE ANALYSED JUCY 1980 PRAISER PARA, 7

No.	Sample	pН	Mo	Mn	Fe	Zn				<u>~-\$0-7</u>
01	122+15E-9+00N		26	46						0
02	94501		18	301	2.6	/20				03
03	DIGON		12	42	2.4	152				0:
04	DISON		4	20	19	28				04
05	IHOON		2	140	1-8	2B 32 48				0:
06	11+50N	•	8	1100	2.1	48				00
07	12+DON		<u> </u>	100	1.0	8				0
80	12+50N		16	120		38				01
09	13+ACN		5	60	03	2				01
10	13+50M		7		[.6 2.]	28				10
11	14HOON		22	140	2.1	44				11
12	122+15F-15+00W		3	100	06	6				12
13	15750N		2	160	1.9	12 76 36				13
14	127+15E-1675ON		3	22	2.7	26				14
15	ITHACIN		)	20		36		_		15
16	17750N		<u> </u>	220	J.Y	28				16
17	ISTOON			160	1.1 2.6 2.8	28 32				17
18	18+500			201	2.6	29				11
19	PHEDON			160	2.5	e 58				19
20	19+5CN			24	<u> 2.2</u>	.40				20
21	2 BH ACM		2	2.60		80				2
22	20tson		3	27	2.4	38		_		22
23	2HOON		16	3/00	39	72 46 62				2:
24	2HSON				2 26	46				2
25	22+AON		5	320	3.6	62	·			2!
26	<u>22KON</u>			280		40				20
	125+90E-0+50N			442		174 98				27
28	IHUN		14	34 166	9.9 9.4	90				28
29	HSON		58			202		+		30
30	2+00N		39	1700		218		·		
31	2+50N		47	520		110		+		31
32			<u>7 - 7 - 7</u>	540	3.0	78				32
33	3+5CN		- 23	2140		66				33
34	4+000		38	1180	1.7	56				34
35	HISON		13	(20		104				35
36	5+MAX		111.	240		44		+		30
37 / 38 /	ASTYCE CTURIN			500		160 68		<u> </u>		37
38 39	ISTNE-475UM		6	2×0 240	<u>9.0</u> 1.8			+		38
40	DANN		3 47		4 -			+		
••	STD G2		7/1	214	1. 2.1	104	tified by Z	H J	7	

Rossbacher Laboratory GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE OF ANALYSIS TRIGR CONSULTANTS LTD. 1300 BTH ST. S.W. CREEPY

1125 S. SPRINGER AVE., PLENABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-10 INVOICE NO.

TO:

t

DATE ANALYSED JULY 1980

<b>o</b> .	Sample	рΗ	Mo	Mr	Fe	Zn				
)1	1K+90E-10+30N		6	: 280	2.6	98				
)2	IHOON		9	280	3.0	53				
13	11+50N		3	220	23	5 <b>3</b> 54				
4	12+aan		14	380	2.3 2.2	124				
)5	121500		4	200	2.6	80				
6	12+50W 13+12W		5	160	2.7	14				
7	13750M	· .	7	180	2.8	56				
8	14 HUN		4	220	2.7					! ·
19	14tENN			200	2.5					
0	15+DON		4	240	3.1	34				
1	. ISTSOM		2	260	23	32				·
2	IBTOON		2	220	2.7 3.1	38				
3	16tSCN		2	240						
4	ITHONN		3	300	9.7	40		_		-
5	17:50		4	240	_	54				
6	18HAM		4	240					;	
7	1815TM			25(0	2.3					
8	IGHCON		17	500		40				
9	19150N		ス	220	2.3	28				
0	20HOCN		2	240	9.7	42				
1	PCBON		15 · 3	Soo	2.5	60				
2	2HLON		· 3	200	1.5	12 22 50				_ <b>_</b>
3	21+50N		4	240	1.0 2.7	12				_
4	22+000		{	280		50				
5	27+50N		2	280	<u>9.1</u>	22 28	· ·			
6	23+08N			240		20				
7	23:50N		2	260	Z.1	30 54				
8	244 Min		2	320	2.3			-		
9	24500			300	2.1	34 80				
)	25+00N		3	540	2.6	00				
1	25+57M		16	580						
2	26hin	<u>-</u>		200	1.6	12		•		
3			4	260	2.1					
4			· · · · · · · · · · · · · · · · · · ·	280		20				
5	27+50NI		2	240	2.0					-
5	120+15E-9+00M	· · · ·		220	1.9 2.1	30		-		
7	9+50N			260				•		++
B	ID TOON		2	<u> </u>	<u>2.2</u>	<u> </u>				
9 0	ICHSON		1							
<u> </u>	<u> </u>		54	240	<u>a.</u>	100	<u>_</u>	-7	lons	

Ressbacher Laboratory

CERTIFICATE OF ANALYSIS

2225 S. SPRINGER AND . BURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-11

INVOICE NO.

TO:

1

TRIGA CONSULTANTS (TD 1300 8TH ST. S.W.

DATE ANALYSED JULY 1980 PROJECT RP-80-7

	CAL	GY	マドン	× ,					PROJECT	$\underline{}$	<u>;- 80</u>	
10.	Semple	pH	Mo	G/	Ma	Fr	Zn					N
)1	LAHSE-IHAAN		15		140	9.6	80					01
)2	LITESE TALIV		10		160	2.6	102					02
83	12+DON		8		140	2.0	78					03
X	RH DIN		9		180	1.1	72					04
05	ISTOON		- 4 -		140		28					0
66	13+50N		5		120	1.3	26 56 76			ļ		06
07	IHHACM	1	6		120	1.6	56			<u> </u>	┇	07
08	IHISON		6		مدا	2.3	76			ļ	ļ	01
09	ISTOON		5		120	1.2	24				┇	0
10	15750N		3		no	1-9	- 36			 		10
11	· IBTOON		3		160	2.4	98			ļ	∔	11
12	IBISON		3		120	2.0	40				<b></b>	12
13	IHAN		2		140	1.9 2.5	30			<u> </u>		1:
14	THSON		Ý		160	2.5	28			<u> </u>		14
15	18+00N	,	3		260	2.2	32 26			ļ	ļ	1
16	1845AN	,	2		160	1.6	<u>26</u>			<u> </u>	· ·	
17	19+00	<u></u>	2		240	7.1	44			<b></b>		1:
18	17-50N		1		200	2.1	52			<u> </u>	┇	1
19	2.2.4.2M		4		160	1.8	30					19
20	EOHON		2		220	2.4	44 38	·				20
21	PIRCN		5		260	2.8	- 38				╉───╉	2
22	2130N		3		220	2.4	42				┥──┥	. 2
23	22HRN		9		280	2.4	52				++	2
24	22+50N				220	2.6	62					2
	19490F-9+DON		35		260	2.1 2.5	310	1				2
26	9+50N		13		220 200	0.3	124 98			+	<u> </u>	2
27	INTON		10		120	2.5	72					2
28	10-50N				220	1.9 2.6 2.3	11			+	+ +	2
29	IHOCN		16		No	9.2	116			1		3
30	INSON		10	<u> </u>	<u>940</u>	2.6	104			1	+	3
31	12+121		9 5		200	1.9	50	·		-		3
32	12+50W				80	0.8	2					3
33 34	13tAN		200		140	2.0	Ad					3
34	13150N 14+10N		12		180		44 44				1	3
36	14+501	<u> </u>		NG	,	a.v.	┟┈╶┺╌╄					3
37	1570NN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	155/	NG			<u> </u>					3
38	IST.SON	1			140	2.1	28		•			3
39	ISTSUN		1		140	J.b						<i>.</i> 7. 3
40			340	<u> </u>	250	1.7	306		1	$\square$	, Ao	

- 1/1 Kossbacher Laboratory

## CERTIFICATE OF ANALYSIS

TO:

TAIGA CONSULTANTS LTD 1300 8TH ST. S.W.

2225 S SPEINGER ANE . BURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80305-12

INVOICE NO.

DATE ANALYSED JUCY 1980

No.	Sample	pН	Мо	i.	Mn	Fe	Zn	•					4
01	119+90E-1650N	,	I		260	3.5	54						0
02	ITANN				180	2.2 2.6	18			•			0
03	ITASIN		1		220	2.6	18 22						
04	18MM		1		220	3.0	62						
05	- 18+50N		1		220	3.2	64 28 22 45						
06	19m20N		3		260	2.6	28						_
07	Igison		33		200 260	2.1	22						(
08	ZANAN		3			3.5	TS						
09	20HON		1		280	2.6	. 40						(
10	21+OUN				320 580 620	2.2 2.8	40						
11	. 2450N		15		580	2.8	56					ļ	1
12	21HUN		8			3.2 2.6	H 64						`
13	12+50N				220								
14	<u> </u>	, 			300	3.2	402					ļ	
15	9HAN		3		220	2.9	168 50					<b>↓</b>	
16	12+37N		6		240	2.7						,	'
17	Intan		25	•	260	3.4	154					ļ	
18	11421N		5		202	3.0	80 92						
19	IH TON		2		190								
20	12HAN		10		160	3.3	120						
21	PISON				180	3.0	108						
22	13.400N				مدر	2.9	54						
23	13450N		12		220 170	3.1 2.9	134					· · · · · · · · · · · · · · · · · · ·	:
24	14 ACM	, 	6			_ <u>J.9</u>	48 54					<u> </u>	
25	14+501		4		200	3.5	54		-	<u> </u>			
26	ISTAAN	, 	3		220		32						
27	1550N		3		1100	<u>I.B</u>	30						
28	ILTOON		1		120	2.1	22 60					╡──┤	
29	ILTON		3		240	3.5							
10	/7+ACN				<u>2</u> /2	2.8	48						
11	THEON		10		240	3.4 2.6	76						
32	18+000	·			<u> </u>	2.6	47 36		-				
33	18+501		/		240		- 36						
34	. <u>19+20</u> N	, .	1		220	23	26 60						
35	. PHON				360	3.2	60						
36	<u> </u>	,	4		340	2.7	48					<u>↓</u>	_
37	201501		4		280	J.8	116						
38	2HON		3		240	2.5	44		•			<u> </u>	
39	2/15/W		7		440	2.7	60			$\sim$		<u>}</u>	
10	570 69		50		220	9.7	144			$\angle \angle$	<u>,</u>	store	Ļ

Rossbacher Laboratory

2225 S. SPRINGER AVE BUCHABY, E.C. CANADA TELEPHONE: 299-6910 4. ^{*}

CERTIFICATE NO. 80505-13

CERTIFICATE OF ANALYSIS

Cossbacher Laboratory

1225 S. STHINDER HVE. BURMAEY 8 C. CANADA TELEPHONE: 299-6910 AREA CODE: 604 CERTIFICATE NO. 80305-14

CERTIFICATE OF ANALYSIS

TO:

(

TRIGA CONSULTANTS LTD 8TH ST. S.W. . 1300 BLGARY

INVOICE NO.

DATE ANALYSED JULY 1980

CGARY PROJECT B.C.	- 80-
W D	
1 0	
3 0	
4 0	
5, 5	
6 0	
7	
8 0	
7 0	
0 0	
2 0 3 0	
3 0	
5 5	
5 0 0	
	·
8 2	
-11+505 0	
- 1 tool 0	
+13+005 0	
+ 7+ 70 N 0	
+ OYSOM 2	
+ 0+701 2	
$= 4 3 + 21 N \qquad 0 \qquad \cdot \qquad \\ = 4 5 + 43 N \qquad 0 \qquad \cdot \qquad \\ $	
2 0 3 0	
2+20N 0	
•	
2 PPM W. Certified by	260

Rossbacher Laboratory

BURNAEY, B. C. CANADA TELEPHONE: 299-6910

TE SUCTION COM

INVOICE NO.

CERTIFICATE NO. 80220-1 188

CERTIFICATE OF ANALYSIS TRIGR CONSULTANTS (T) TO: CREGRRY ALBERTR.

DATE ANALYSED JULY 2, 1930 PROJECT R1-81-7

Sample 1111151 11501 11501 11501 21120 21120 21120 21120 31501 41001 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 51501 501	1	6 7 9 2 0 3 - - - - - - - - - - - - -	<ul> <li>M.</li> <li>660</li> <li>340</li> <li>420</li> <li>330</li> <li>270</li> <li>500</li> <li>250</li> <li>360</li> <li>390</li> <li>270</li> <li>270</li> <li>270</li> <li>270</li> <li>270</li> <li>270</li> <li>270</li> <li>270</li> <li>270</li> <li>360</li> <li>360</li> <li>360</li> <li>360</li> <li>360</li> <li>360</li> <li>360</li> </ul>	(-9 2.5 3.0 2.7 2.7 3.4 2.7 2.8 3.4 2.7 2.8 3.4 2.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.0 3.3 3.0 3.3 3.0 3.3 3.0 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.0 3.4 3.4 2.7 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 2.7 3.4 3.4 2.7 3.4 3.4 2.7 3.4 3.4 2.7 3.4 3.4 3.4 3.4 3.5 3.5 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	$\frac{7}{148}$ 170 290 148 168 152 172 76 192 94 142 92 88 70 88 70 94 134 108 68					N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17211 1750N 2702N 2702N 2750N 3750N 3750N 4750N 5750N 5750N 5750N 5750N 5750N 5750N 5750N 5750N 7750N	 	1 4 2 2 3 - - - - - - - - - - - - -	340 420 330 270 560 250 580 360 360 390 270 270 240 300 260 270 250	3.0 2.7 2.7 3.4 2.7 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.5 3.6 3.7 3.6 4.0 3.2	290 148 168 152 172 172 172 172 176 16 104 142 92 80 88 70 88 70 88 70 94 134					0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
17211 1750N 2702N 2702N 2750N 3750N 3750N 4750N 5750N 5750N 5750N 5750N 5750N 5750N 5750N 5750N 7750N	 	1 4 2 2 3 - - - - - - - - - - - - -	340 420 330 270 560 250 580 360 360 390 270 270 240 300 260 270 250	3.0 2.7 2.7 3.4 2.7 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.5 3.6 3.7 3.6 4.0 3.2	290 148 168 152 172 172 172 172 176 16 104 142 92 80 88 70 88 70 88 70 94 134					0: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2+501 2+201 3+501 4+001 4+501 5+501 5+501 5+501 5+501 5+501 5+501 7+201 7+501	10 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 5 5 1 1 1 2 5 5 1 1 1 1		420 332 270 500 250 360 360 360 370 270 240 300 260 270 250	2.7 2.7 3.4 2.7 2.8 2.7 2.8 3.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3.4 2.8 3.5 3.6 4.0 3.2	148 168 152 172 76 76 70 142 92 92 92 88 70 88 70 94 134					0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
2+501 2+201 3+501 4+001 4+501 5+501 5+501 5+501 5+501 5+501 5+501 7+201 7+501	2 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 3 9 4	33D 270 560 25D 580 360 390 270 270 240 300 240 250	2.7 3.4 2.8 2.7 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.7 3.6 4.0 3.2	168 152 177 76 194 142 92 80 88 70 88 70 94 134					0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
2+501 2+201 3+501 4+001 4+501 5+501 5+501 5+501 5+501 5+501 5+501 7+201 7+501	2 iy I I I I I I I I I I I I I		270 500 25D 380 360 390 270 270 240 300 260 270 250	3.4 2.8 2.7 2.8 3.4 2.4 2.8 2.9 2.8 3.4 2.8 3.4 2.8 3.5 3.5 4.0 3.2	152 172 76 194 142 92 90 88 70 88 70 94 134					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3150N 4100N 4150N 5120N 5150N 6120N 6150N 7120N 7150N	ių 1 2 1 19 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1		500 25D 580 360 390 270 270 240 300 260 270 250	2.8 2.7 2.8 3.4 2.4 2.8 2.8 3.7 3.0 3.7 3.0 4.0 3.2	177 76 104 142 92 80 88 70 88 70 94 (34					00 01 03 10 11 11 12 13 14
4100N 4150N 5750N 5750N 6760N 6750N 7760N 7750N	 	2	580 360 390 270 270 240 300 260 270 250	2.7 2.8 3.4 2.4 2.8 2.8 3.0 3.7 3.0 4.0 3.2	/04 142 80 88 70 84 134					0 01 05 10 11 12 13 14
5 HIIN 5750N 6 HANN 6 HANN 7 HANN 7 HANN 7 HANN	2  19  59  59  59  10  10  79  10  7	0 3. 	360 390 270 270 240 300 260 270 250	2.8 3.4 2.4 2.8 2.8 3.0 3.7 3.0 4.0 3.2	/04 142 80 88 70 84 134					09 10 11 12 13 14
5 HIIN 5750N 6 HANN 6 HANN 7 HANN 7 HANN 7 HANN	  9  9  5  9  1  1  9  10  2	3 - - - - - - - - - - - - - - - - - - -	390 270 270 240 300 260 270 250	3.4 2.4 2.8 3.0 3.7 3.0 4.0 3.2	142 92 80 88 70 94 134					10 11 12 13 14
6+50N 7+20N 7+51N	- 19 - 5 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- - - - - - - - - - - - - - - - - - -	278 220 240 300 260 270 250	2.8 2.8 3.0 3.3 3.0 4.0 3.2	92 80 88 70 94 134					11 12 13 14
6+50N 7+20N 7+51N	- 5 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- - - - - - - - - - - - - - - - - - -	270 240 300 260 270 250	2.8 3.0 3.3 3.0 4.0 3.2	70 84 134					12 13 14
6+50N 7+20N 7+51N	8 5 1 1 1 9 10 2	9	240 300 260 270 250	30 3.3 3.6 4.0 3.2	70 84 134					13
7 <i>+201</i> / 7+521	5                           	9	300 260 270 250	3.3 3.0 4.0 3.2	70 84 134					14
7 <i>+201</i> / 7+521	                   	9	260 270 250	3.0 4.0 3.2	'84 134					
	/ / 	9	270 250	40	134 108 68					15
87122 87522 9710 9752 10700 10700	9  		250	3.2	108					
<u>8+57</u> 1N 9+1/0N 9+573M 10+1/2/N			250	3.2	68			. (	•	16
<u>911/01</u> 91501 1011/01/1	Ĵ		360							17
GHSEN IDHDÛN IDHDÛN		1		3.0	70					18
10+12/11/1 10+131	110		240	Z.5	<u>44</u> 58					19
10-1-1-211	<u> </u>	,	260	3.2	58					20
Charles 1	14		220	2.4	134					21
UTLON	21		250	2.2	96					22
1450M	2°	<i>t</i>	540	Z.6	92					23
12HAN	4		370	z.6	52					24
12+50N	3	_	276	2:1	40					25
13722M	3		260	2.3	50.					26
	2	-	260	Z.8	58					27
	4		260	2.5	56			-		28
14-32N	1 7	1		24	48					29
BHUN			340	2.6	68					30
1575M	4		250	2.6	74					31
1000N	2		220	2.7	72					32
16750N	3	-	310	2.3	54					33
ITHIN		·	2.50	2.9	68					34
17+53M	12	<u> </u>	260	ZY	56					35
18TUN					48					. 36
17-5/21					50					37
14 HOLIN				2.5	4.5	_	·			38
	$-\frac{2}{2}$	·		2.5	66	_				39
0 661	50		330	2.0	360			$2 \perp$		40
	13+4734 14+3774 14+3774 15+6274 15+6274 15+6274 15+6274 15+6274 15+6274 15+6274 18+6274 18+6274 18+6274 18+6274 18+6274 19+5074	13+500 2 14-500 4 14-500 4 15+600 8 15+600 4 15+500 4 15+500 2 15+500 2 17+500 2 17+500 2 17+500 2 18+500 5 19+500 2	13+101 2 14+101 4 14+101 4 14+101 4 15+101 8 15+101 2 16+101 2 16+101 2 17+101 2 17+101 2 17+101 2 18+101 8 19+101 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

12 Kossbacher Laboratory

2213 SUSFRICTSEN AVE., BURNABY, 2.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 8022

INVOICE NO.

TO:

TRIGA CONSULTANTS LTD CALGARY ALBERTA

DATE ANALYSED JULY 2,1980

188

	CALG	- A /	<i>RΥ</i>	142	BER				P	ROJEC	BL	<u>1 - 80</u>	<u>-7</u>	
No.	Sample	ρH	Mo	2	M	[-9	t-							N
01	18 Mars 20 mil	1	ł		270	3.0	52					T		0
02	1 NHONIS-A+501	•	72		7940		384				1	1		0
03	I+ADN	, ,	20	<u> </u>	430		280	· ·				1		0
04	HEON	_	30		310	1.9	234	<u> </u> }						0
05	ZIAN		30		390	2.5	560							0
06	245ON		11	[	850	2.4	478							0
07	3+AIN		79	[	390	39	150				ļ			0
08	3+5AN		15		850	3.1	138					<u> </u>		0
09			18	- <u>-</u>	820	2.4	280 236					ļ		0
10	4+50N		29	-	620	2.8	236					ļ	<u> </u>	1
11	. STAN		23		400	3.4	158	<u> </u>		• ···	ļ	ļ	 	1
12	5150N		3		290	3.0	<u>_tz</u>			. <u>.</u>	ļ	l 	·	1:
13	<u> </u>		1		430	2.9	160				<u> </u>			1:
14	6+50N		13		Z40	3.1	- 94				<u> </u>			14
15			14		300	3.9	£2_						 	1:
16	1+3/1		4		160	1.7	32					ļ	<u></u>	11
17	Stell		17		230	3.5	- 28				<u> </u>			11
18	Strun		14		370	3.3	78				<b> </b>	<u> </u>		11
19	4TUNA		8		330	3.6	<u><u> </u></u>							19
20 21	 12 1 2 20		10		290	4.4 2. <del>1</del>	76 58			. <u>.</u> .				20
22	INTUNY		<u>_6</u> 4		260							<u> </u>		2
23	C 11/2/201				320	<u>z.4</u>	46							2:
24	SITTUN		43		240	2.7	32						•	2
25	121101		- 7 - 3		180	z.5	32			····	<u>†</u>			2
26	1245/11		14		200	2.6	<u>50</u>	25		·····	<u> </u>			20
27	12+12/1				210	3.0	54			·····				27
28	12+5/31	· · · · · · · · · · · · · · · · · · ·	2		270	7.9	64							28
29	IHTOON		3		360	2.6	68							25
30	14HON	Ĩ	3		350	3.1	58							3(
31	ISTOON		3		380	2.3	60							31
32	15750N		2		240	2.5	54							32
33	IBTION		3		300	2.7	100							33
34	IBTSON		3 5		1160	2.8	371				İ			34
35	ITHON		8		410	2.8	132							3:
36	TH.SON		é		410	3.0	136				<b></b>	<u> </u>		30
37	18 HAIN		6		570	2.7	82				<b> </b>	<b> </b>		37
38			2		270	2.8	62			•				31
39	IGHON		12		450	3.5	54				<b> </b>			39
10	STD GI		4	]	230	29	108		ł	$\overline{\mathcal{P}}$	$\swarrow$	sto		AC

Rossbacher Laboratory

2025 S ETH WOLF AVE . BURNASH, P. T. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80220-3 INVOICE NO. 188

TO:

TRIGA CONSULTIONTS LTD CALGARY, ALBERTA.

DATE ANALYSED JULY 2, 1980

lo.	Sample	- LI	!							
		ρΗ	Mo	60	Mm	1-2	<u> </u>			
	19+521-19+521	,	5		640	2.7	70			
)2	23411		4		570	2.7	70			
)3	11522	(	64		470	3./	60			
34	12/HUN	/	6		410	3.1	. 52			
05 K	×11 21+30N	/	jO		860	3.1	68			
8	22+ANN	· · · ·	5		280	2.6	74			
)7	22+501	·	6		360	2.7	· 58. 78			ļ
8	23HDN	,	6		400	28	78			
79	23750N		8		330	2.3	38			
0	24+00N				210	1.8	32			
1 2	21-DUJ-DHSOK	·	53		400	2.9	390			
2	IHDN		24		340	2.0	174			<b> </b>
3	ItSON		51		520	2.6	254			
4	<u>2HUN</u>		37		560	<u>Z.3</u>	158			
5	250N		102		400	3.4	200			
6	3tOUN		. 7		1120	2.6	218		,	<b>  </b> _
7	3+50N		19		460		204			
8	HANN		43		500	<u>z.</u> 4	84			ļ
9	4+50M		45		210 920	1.9	42			
0	SHAN		10		420	3.0	178			
1	15750M		9		280	2.8	+ 7 10 +			
2 (	<u> GADN</u>		7		200	2.0	34			ļ
3	Sta 5150N		14		280	35	16			· .
4	1 Italin		44		110	<u>_{.</u> ,	- 24			
5	<i>1+50</i> /		21		240	3.3	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			
6	<u> </u>		4		220	2.6	78			
7	<u>8757</u> M		10		350	3.6	90			
8	<u> </u>		+		360	2.9				
9	973/11		4		330	2.5				
1			6		200	2.4	34			
2			3		160	1.7				
3	ITTUGIV		17		130	3.0	60			
4	121AAXX				1/0 120	1.7	· 28			
5	121XAN		13		190	7.5				
6	IZINAX		12		240	1.8	40			
7	124KANI		10		380	20	172			
8	INTON		16		1270	24	250	•		
9	14+521		8		720	2-5	130			
	STD G?		16		120	p.S.	440			

Cossbacher Laboratory

2218 SUSPENCER AVE. BURNABY, B. C. CANADA TELEPHONE: 299-6910

TO:

CERTIFICATE OF ANALYSIS TRIGIA CONSULTANTS LTD CALGARY, ALBERTA

INVOICE NO. 189 DATE ANALYSED JULY 2,1980

CERTIFICATE NO. 80220-4

			• )	··	, = , = ,	-			P	ROJECT	RI	1-30	2-7	•
 No.	Sample	pН	Mo	24	Mu	<b>[-2</b>	Zn							No.
01	121mmil-15mm	,	7		360	2.6	120							01
02	137-57	, 1	10	<u> </u>	260	1.3	66					t	· · · ·	02
<u>03</u>	1/1/2/1		4	1	270	2.8					·			03
04	1/+2nnh		3	<b></b>	360	2.8	106 78			· · · ·		1		04
05	IT+DDN	- 1	4		500	2.7	72					1		05
)6	17450N		3	-	280	2.8	66					1		06
7	18+12N		5		500	2.6	84							07
8	18t5an		4		360	3. D	76							08
8	IGHAN		4		310	2.7	64 50							09
0	19+50N		<u>38</u> 3		1080	7.0	50							10
1	2NHAN		3		330	2.7	52							11
2	POTSON		12		1360	4.4	98							12
3	CP 21FON		7	 	370	2.5	46							13
4	-421+5M		6		300	2.4	123					<u> </u>		14
5	22+MIN		10	L	640	3.4	106					ļ.,		15
6	22HBAN		3		230	3.0	,14					1		16
7	23tran		え		180	2.0	46							17
B	23+573N		3	 	280	25	48					Ĺ		18
9	24 HON		4		740	2.5						ļ	ļ	19
0	LETRE-A-SIN		9	ļ	240	26		<u>.</u> .						20
1	ITOUN		6		260	7.3	72							21
2	1+50N		15		260	2.8	/58				-	<b></b>		2:
3	2+00N				240	2.4	108						·	23
4	2+50N		10		260	4.1	102					<b>.</b>		24
5	3700N		10		340	3.6	94		•					25
5	3750N		4		240	2.4	64							26 27
7	HHIN		13		200	3.3	64							27
3	14+50N				130	1.5	34							29
> ( )	15toon		12		396	<u>1.6</u> Z·8								30
1	5+501		<u> </u>		540		126. 228							31
2	6+00N 6+50N		4			2.9	266	<del> </del> _						. 32
3	T+DON		-72		1420	2.2	92		· · ·					33
;			2		270	3.5	42				· · ·			34
5	Stan		10		560	3.4	10		·		-			35
5	8+50M		26		380	2.2	36							36
7	9+00M		$\overline{1}$		200	3.1	58						•.	37
8	9+50N		8		320	2.9	68			•	· · · · · · · · · · · · · · · · · · ·	[		38
9	10 +GON		7		220	2.7	66						*	/39
0	570 99	- 1	12		130	0.9	440				.7	stic	. 2.	40

Rossbacher Laboratory

2225 S. SPRINGER 4. E. BURNABY, B. C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80220-5 INVOICE NO. 189 DATE ANALYSED JULY 2,1980

TO:

TRIGA CONSULTANTS LTD CALGARY ALBERTA

CERTIFICATE OF ANALYSIS

PROJECT BC-80-7

No.	Somple	рH	Mo	Q	My	[-0	Zn						No.
01	LO POE-KINDA		6		210	2.5	64	iX				L	01
02	IIHAN		23		150	1.1							02
03	11+5DN	1	5		260	2.7	24 62						03
04	12+OUN				190	2.6	60						04
05	EtSON		4		270	Z.3	108						05
06	131001	r	3	·	410	2.7	90		<b>_</b>			<b>  </b>	06
07	13+30N	<u> </u>	3		260	2.7	60					<b> </b>	07
08	14+1.30N		2-		210	2.2	56			<u> </u>		<b> </b>	08
09/	14+501	<u> </u>			250	2.9			<u> </u>	ļ		<b> </b>	09
Vo	ISTOON	ř	ろってろ		380	2.7	142					┟╶┈╺┼	10
11	· 15+500	r	2		220	2.2	44 78 90 62				<b>_</b>		11
12		<u> </u>	3		280	2.7	78		╡	<u> </u>			12
13	16+50N		4		320	2.6	90				·		13
14	ITHOBIN	r	5		:70	2.2	62		┇	l			14
15	UHSE-DISON IHDON		7	·	250	Z:5 Z:6	78		<u> </u>		<u> </u>		
16		<b>[</b>	23		280	<u> </u>	86 86					,	16
17	1+50N	/ 			310	2.5	80		<u> </u>	ļ	ļ		17
18	2+00N	<u> </u>	4		410	<u> </u>	118		·				18
19	2+50N	<b>[</b>	٢		220		68		<u> </u>			┦	19
20	3tanv		4		290	2.7	108				+	<u> </u>	20
21	3+50N	<u> </u>			240 280	<i>1.9</i> <i>3</i> .0	40 94		+			<u> </u>	21
22	4+00N	[	4		200	10			<u> </u>	<u> </u>	+		. 23
23	4+5MN	<b> </b>	24		270	2.5 2.9	54					╂╍───┼	24
24	STOON				620	2.8	236		<del> </del>		+		25
25	STSON btôon	[	15/5		260	2.8	68			<u> </u>	<u>+</u>		26
26	OTULIN		5		920	2.6	122					++	27
27	DT.3UN	-	16		410	2.5	124			<u> </u>	1		28
29	T+SON		16		770		126 84	15			1		29
30	8+00N		37		370 470	7.6	178	1	+	1		11	30
31	B+5DN		6		160	3.6	178				-		31
32	9+00N	/	12		140	2.4	30		1	1		1	32
33	9+50N	1	10		230	2.7	62			1			33
34	13+13AN	<u>}</u>	15		140	1.1	22	-					34
35	1075ON		12		500	7.9	52						35
36	IITAAN	}	19		150	2.1	32						36
37	11+5CN	ł	5		220	2.8	42						37
38	12+00N	ł	られる		260	2.5	66			•			38
39	12+50N	1	2		26.0	2.7	72	×.			4		1 39
40	STD GIO	1	12		290					1	1/	6	, 40
·										1. []	100	Ra	S
							С	ertified	by				

1120 J. 1638 J. . . . . .  $\langle \rangle$ Rossbacher Laboratory BURNABY, 8.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80220-6 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS LTD DATE ANALYSED JULY 2,198 TO: CALGARY, ALBERTA. PROJECT BC-80-7 No. 1-2 C. M pН Mo No. Sample 3.3 LINSE-BOON 2.9 13t5ON 390 3.3 バットウレン 3.3 14+50N 3.6 15+100 2.9 15+50N õ Z. 6 16+OCK 210 2.4 11-+SCN 400 2.9 17+1/1 3.6 17+5/1 3.8 11-バトヘハ Zid 18+50N 310 34 19 FORK 19+501 260 2.7 20+UN , 3.3 2-7-502 ス 220 2.7 21+CON 21+5CM 2.7 22+NN 340 7.6 610 Z.5 22+50N 2.2 23HAAN 550 2.4 23+50N 2.9 24HAN . • 1. Marstote Certified by

(

Rossbacher Laboratory

2025 S SPRINCER ANE . BURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80247-1 INVOICE NO. 188

TO:

l

TAIGA CONSULTANTS LTD CALGARY ALBERTA

CERTIFICATE OF ANALYSIS

DATE ANALYSED JULY 3,198

No.	Sample		Mo	ઉપ્		~	2					<u>9 - 80</u> 1	N
		рH		્ય	12m	<u> </u>	え						
01	LIHSSE-DHOS		2		380	23	84					ļ	0
02	1+005		2		290	2.4	78						02
03	1+505		6		760	25	/34 98			_			03
04	2+005		5		240	3.0	'98						04
05	2+505		5 8		270	3.0 2.8	194						0
06	37665		11		250	27	36						0
07	37.503		17		290	3.7	96	•				<u> </u>	0
08	47603		3		350	3.0	98 146					<b></b>	01
09	47505		10		310	z.4	146						0
10	57003		7		280	3.1	96						10
11	57705		15		420	215	106						11
12	67005	-	31		390	2.2	88						12
<b>1</b> 3	6+503	•	10		250	2.1	54						13
14	Trades		4		260	2.0	60						14
15	Tras		3	_	200	1.4	-60 58						14
16	27005		13		220	Z.1						,	10
17	8+505		5		240	23	44		Ì				1
18	9+005		8		270	2.5	54						1
19	2. 9+50S		10	-	1480	2.3	-54 350						19
20	10100S		25		\$80	1.6	580	····					20
21	10+505		6		Zleo	1.1	330						2
22	11+005		9		470	1.3	186						2:
23	17+505		4		690	2.0							2:
24	12+003		4		240	1.4	104 68						2
25	12+505		5		2/00	1.7	104		·				2:
26	137005		9		630	1.3	212						20
27	13,503		47		3420	2.4	1140						27
28	14+005		12		1280	1.8	330						28
29	141500		8		1320	18.	330 940						25
30	15+005		()		1600	2.4	368						30
31	15:500		え		Zleo	2.1	60	-	-				31
32	14+0E-2450M		25		220	28	190						32
33	Iteen		5		300	2.7	114						33
34	1+50N		4		280	5.8	66 56 56						34
35	2HUN		17		190	18	36						3:
36	2+50N		18		1/00	1.6	56						30
37	STRON	Ī	7		1020	Z.L	206						37
38	3+5CM		12		300	31	(22)		•				31
39	HANN		12		180	2.6	230	1					39
40			14		310	2.7	72				2		//40

Ressbacher Laboratory

2225 S SPRINCER IN EL BURNADY, B.C. CANADA TELEPHONE: 299-6910

TO:

TRIGA CONSULTANTS CTD CALGARY, ALBERTA

CERTIFICATE NO. 80 247-2 INVOICE NO.

DATE ANALYSED JULY 4/80

188

10.	Sample	ρН	Mo	ୢ୵୵୶	Mn	Fe	Zn					N
01	14 AVE - 4+52W		11		280	3.0	130				1	0
02	SHER		- 5		710	2.6	254			1		0
03	STSEN		27		280	3.9	58			· ·	1	0
04	EHIN		8		200	3.9 3.1	106			1		0
05	Et Sin		13		170	3.0	76	·				0
06	THEN		23		240	35	220					0
07	715CM		20		140	2.6	72					0
80	SINN		20		6200	4.8	168		_			0
09	8 15CM		7		220		68				<u> </u>	0
10	9 ANN		- 4	- <u></u> -	320	2.7	52					1
11	· 9ton		_4_		230	2.7	68 40 68	··				1
12	16tan	•	5		160	2.6	48				ļ	1
13	BHERN	•	6		440	3.0	68.			ļ		1
14	IHRAN		2		130 90	1.9	40.					1
15	11157.00		4		+	<u>i_</u>	22			<u></u> .		1
16	12HAM		7		140	3.2	54 64				! !	1
17	121371				160	Z.9	64					1
18	130AM		5		190	3.0	58 62			ļ	ļ	1
19	197571	·	6		370	2.7	62			ļ	<u> </u>	
20	144125	·	5		250	1.9	44			ļ	<u> </u>	2
21	144501		<u> </u>		220	<u>z</u> \$	44 80 62					2
22	BREW		2		230	3.2	62				<b>↓</b>	2
23	157561		ス 5		170	Z.5	44			ļ	<u> </u>	2
24	Inder				220	2.4	118					2
25			<u>4</u> 3		460	2.5 Z.0	180					2
26	ITHEN			<u> </u>	200		-738					2
27	THIN		10 4		270 240	2.6	94 48			<u> </u>		2
28	IS HOW		3		200		64					2
29 30	ISISCIN HE MAN				270	2.2 3.3	((2					3
31	Brach		2		400	3.0	86			<u> </u>	<u>├</u>	3
32	19+50N			·	290		24					3
33	LCHEN AUST		2		570	2.6	74 88					3
34	2142N		5		240	Z.4	54					3
35	21+5CN		3		230	Zig	62					3
36	22Hin		2		180	24	66			1	<u> </u>	3
37	ZENSON		22		240	2.4	26					3
38	23HADN		3		250	3.0	66 50 64	-	•		<u> </u>	3
39	2315AN		10	· · · ·	251	2.7	62	- + -		<u> </u>		/3
10	STD GIO		15	·	290	2.6	80			1	260	- N 4

Laboratory Sossbacher

1115 S SPRINCER ANE. EURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 20247-3 INVOICE NO. 188

TO:

## CERTIFICATE OF ANALYSIS TRIGA. CONSULTANTS LTD CALGARY, ALBERTA

JULY4/80 DATE ANALYSED

ło.	Sample	pН	Mo	Sr	Ma	Fe	2~						<u>2-7</u>
	14+ TE-241AVI		4		220	2.0	50			<u>†</u>	1	1	
	13+12 - 1-505		3		420	2.7				+			
03	17005		q		238	1.5	F16 29						
04	142718		14		420	1.8	92		······				
05	2+005		26		270	1.2	30			1		1	
06	21505		27		270 820	55	158						
07	3+305		3		40	3.0	116						
08	47CP S		.4		390	2.7	96						
09	4+305		12		1120	Z.7	96 184						
10	51005		11		480	22	210	_					
11	· 57505		3		260	1.8			·		ļ		
12	EADS		14		290	Z.3	56						
13	6+565		· 9		420	2.6	<b>96</b> 88				<u> </u>		
14	THES		29		580	1.4	88				ļ		
15	74505		77		460	1.4	94			-	1		
16	£.4:15		23		290	0.3	12				ļ		
ท	Pipe		154		370	Z.3	80 188 ·						
18	9772		22		260	_/.1	188.			ļ			
19	- 9109		- 5		170 280	0.3	90	-			ļ		
20-	- 10-12		6		280		152					┣────┝	
21	- 10:4575		8		370 340	1.4	264			<u> </u>	ļ		
22	11+1903		18		340	1.5	170				ļ		
23	11+575		12/		2530	2.3	346			ļ		· · ·	
24	124015		- 4		250	1.3	80						
25	12+575		6		250				•				
26	1941273		8	<u></u>	350	2.1	146			<b></b>	<u> </u>	┨───┤	
27	150571		3		380	2.0	160			<u> </u>	ļ		
28	144225		12		420	2.2	126					· · · · ·	
29	14752				[10	ag							
30	1544				420	2.0	38					-	
	13+20E-OHON		5		450	2.4	150			ļ			
12	122721		14		210 250	23	90 78						·
33 34	125.22		50		200				<u> </u>	<u>+</u>	<u> </u>	┟───┼	
35	24221					3.8	324	•			+		+
35	2+50N 3+00N		10		260 40D	2.9	150				+	<u>├</u>	
37	3150N		7		230	2.9	140			<u> </u>	1		
38			- 8		360	3.3	160		•	1		<u>├</u>	
19	L3+30E 47 521N	-	12		330	3.1	106		•			┣───┼	+
	L3+108 3+005 0	1	-5		340	2.6	- 720 1		<u> </u>	1	1	<u>├</u>	
					المتهار	- 0		<u> </u>		<u>+</u>	<u> </u>	26	 V

Rossbacher Laboratory

TALS S SPRINCER ANE . EURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 20247-3 INVOICE NO. 188

TO:

**CERTIFICATE OF ANALYSIS** TRIGA. CONSULTANTS LTD CALGARY, ALBERTA

DATE ANALYSED JULY4/80

PROJECT BE- 20-7

No.	Sample	pН	Mo	يمكر	Ma	Fe	22						N
01	14+ DE-241MV		4		220	2.0	50						0
	13+15-1-503		3		420	2.7	Flo						0
03	17005		9		230	1.5	76 29						0
04	14505		14			1.8 1.2	92						0
05	2+005		26		420	1.2	30						0
06	2+505		27		820	55	155					ļļ.	0
07	3+309		3		40	3.0	116		ļ	ļ	<u> </u>	<b> </b>	0
80	44105				390	2.7	96 184			ļ	<u> </u>		0
09	44305		12	• ·	1120	2.7	184		 	ļ		<b>_</b>	0
10	5+005				490	22	210-24		 		4	<b>↓</b> ↓	1
11	· 57505		3		260	1.8	24				ļ	<u> </u>	1
12	EMPS		_14		290	2.3	56		 			<u> </u>	1:
13	1565		· 9		420	26	96			ļ <u>-</u>	ļ	<u>      </u>  .	<u> </u>
-14	7#1.5		29		580	1.4	88			ļ			1
15	1+505		77		460	1.4	94			ļ			1
16	Stills		23		290	0.3	12				ļ	, ,	
p	2:00		154		370	2.3	80						1
18			22		260	1.1	188					↓	1
19	97709		5		170 280	0.3	90			·		<u>↓</u>	<u> </u>
20	- 137(2)5		6		280		152 264						2
21	- 10-575		3		37: 340	1.4	264						2
22	11+123		13		340	1.5	170			`·			2
23	11+333	-+	121		2530	2.3	346					<u> </u>	2
24	12+1275		4		250	1.9	90 80		•				2
25	12+172		6		250				•		+		2
26	194003		3		350	2.1	146		<b></b>	<b>_</b>	+	<u> </u> .	2
27	13-5571		3		280	2.0	160				+		2
28	144,275		-12		422	2.2 0.9	126 14				· · ·	╂╼╾╌╌┠	2
29	14-5-25				110	2.0					1	+	3
30	137223	,	7		420		38	·			+		3
31	13+30E-0+01		5		450 210	2.4	150			<b> </b>		┼	3
32	142711		24		250	$-\frac{1}{2}$	90 78					+ $+$ $+$	
33	125.21		50		200					<u> </u>		┼╌╍╍┦╴	3
34	24201				260	3.8	374	<u></u>			+	+	3
36	- 2+50N · 3+00N		10		400	2.9	150			<b> </b>	+		3
37			-4		230	2.9	140			L	+	<u> </u>	3
38	3tSON		- 8		360	3.3	160			<u> </u>		+ - +-	3
39	1 2 LOUR HIMAN		12		330	3.1	106		<u></u>	ł	1	<u>†                                     </u>	3
	L3+3UE 4+52111 L3+10E 3+005	, .	5	İ	340	2.6	- 20			1	1	<u>↓</u>	
	LJT 100 37005	<u></u>				- 0			L	└╌╱╱╴	1//	nla	

Rossbacher Laboratory

2227 D STRINGER AVE . BURMARY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. SC 247-44 INVOICE NO. 188

TO:

## TAIGA CONSULTANTS CTD CALGARY, ALBERTA

DATE ANALYSED JULY 4/80 PROJECT R1-50-7

No.	Sample	PН	Mo	<b>5</b> -7-2	Mn	Fe	Zn			1			
01	L3+30E-5HUN	,	12		ZJI	1.9	52						
02	SHSIN	·	11		230	2.7	68 70						
03	LANN		5	••	220	2.6	70						
04	KISON		6		270	3.4	104						
05	THRIN		12		230	3.4	74						
06	7+50N		11		220	2.0	74 48						
07	SIAN		7		320	3.8	104						
08	8150N		16		120	2.4	48						
8	JA27N		25		140	3.0	48.						
10	7+5+21N 12+21N		11	•	110	1.3	24						
11	· 12-421		18		190	32	78. 44 56		_				
12	DEDN		12		180	2.7	44						
<b>J</b> 3	1/-20/N		7		40	2.7	56	·					
14	11250N		12		170	3.0	56.						
15	12420N		g		240	2.5	72 154						
16	10+52W		-8		990		154	20		1		,	
17	13HAN	,	3		280	2.6	104						
18	. 13+30N		8		470	3.0	114						
19	· 14HOON	-	3		570	3.8	76	ļ				-	<u> </u>
20	14430N		<b>8</b>		180	1.9	74				<u> </u>		
21	ISTAN	[			270	2.7	74	ļ	· .			ļ	
22	1575CN		4		260	27	80.						
23	IBHANN		4		280	3.5	92				ļ	<u> </u>	
24	IB+501		3		Z30	2.5	128				1	ļ	
25	ITHOUN		9		250	39	140	·	•		<u> </u>	<b>_</b>	ļ
26	17+50N		12		420	3.2	16	×				<b> </b>	
27	18tillen		10		220	2-8	64			1			<u> </u>
28	ISTSTN IGTUUN		7_		220	2.6	11b	<u> </u>		1	·		+
29	IGTUUN		3		240	3.0	62	 			1		+
30	19+30N		6		220	2.5				-	}		<u></u>
31	20HANN		2		230	<u>z.4</u>		42		<u>↓</u>			+
32	ENTIN		4		480	3.3	106	<u> </u>		-			+
33	<u>21+22</u> N	·			400	3.4	86					+	<b>-</b>
34	21.50		1		330	2.2	66			‡ 	<u> </u>		
35	22tun				270	<u>2.3</u>	130			+		<u> </u>	+
36	· 22+50W		14		1540	4.0	60		- <u> </u>				+
37	23100N		3		270	2.4	60	<u> </u>			<u> </u>	┨────	<u> </u>
38	23150N		4		650	23	56			•	<u> </u>	<u> </u>	
39	2#+22M		4		650	<u>z.</u>	65	⁴⁸		-	<u> </u>		1
40	STD 610		13		320	2.6	1-72	ļ		1.7	$\perp 7$	L,	jae

Rossbacher Laboratory

LIES STATISTIC AVE, EUPMAEN, B. C. CANADA TELEPHONE. 299-6910

CERTIFICATE NO. SOLA7-5

TO:

## TRIGA CERTIFICATE OF ANALYSIS CALGARY, ALBERTA

INVOICE NO. 188 DATE ANALYSED JULY4/80

No.	Sample	pН	Mo	20	Mn	Fe	Zn							No
01	16+3E-DHEAN		31		2707	2.7	250					1		01
02	IHUN		76		710	3.4	160			1		1		02
03	HSON		32		320	3.4	230.						1	03
04	24000		25	• • • • • • • • • • • • • • • • • • •	7,801		460					1	++	04
05	SHON		21		230 270 290	315	122			1		-		05
06	3750N		12		[270]	2.8.	IIL							06
07	HADN		13		290	2.8. 2.9	166 122 218		<u></u> r					07
08	4150N		40		530	z.3.	622		, . <u>.</u>					08
09	5tain		8		510	3.0	218							09
10	5750M		20		800	7.3	290							10
11	<u> </u>		5		310	2.9	190						ļ	11
12	GISTIN		12		260	33	100					<u> </u>		12
13	THAIN		10		190	2.2	20				·	+	<u> </u>	<u>्</u> 13
14			12		200	3.8	16					_		14
15	8 HOON		13		280	3.9	172	<u> </u>					<u>   </u>	15
16	Stran		8		210	- 2.6	82		····	<u></u>		,		16
17	4+00N		26		270	3.5	190			1	_	<u></u>	++	17
18	9+30N	-	8		150	2.4	48	-,+		<b> </b>		<b>_</b>		18
19	INNIN	{	7		70	1.2	36	<del> </del>		. 		<u> </u>	<u> </u>	19
20	10+50N		47		690	5.3	202	~~~`+				<u> </u>		20
21	IH COM		4		160	1.7	42					+	+	21 22
22	11750N			-	170	2.7	40					+	++	
23 24	II HAVIN IP HSON		3		250	2.6	40	<del> </del>		<u> </u>		+	<u>}</u>	23 24
24	13+aan		4		Z30	42	46 40 98 68		• •			-		25
26	13750N		-76		380	3.5	80							26
27	14HOON		3		210	2.7	56					-	+	27
28	14501		5		430	2.9	146					1	<u>}-</u>	28
29	15HAN		5		190	1.9	70			•••••		+	1	29
30	157571		8		810	3.4	84					<u>†</u>	1	30
31	16HAAN		1		210	2.6	72					1	1 1	31
32	161501		3		1160	2.9	- <del>2</del>					1	1	32
33	ITHAN		21		230	3.0	92 70							33
34	THON		9		520	27	108							34
35	12HDN		4		210	2.8	-98							35
36	124000		10		700	2.8	80							36
37	PARN		6		570	2.9	58						↓↓	37
38	PHON		8		4.0	28.	(60		•	[		- <b> </b>	<b>↓</b> ↓	38
39	20+MM		2		480	2.5	·70					ļ	<b>↓</b> ↓	39
40	STD GIU		12		270	2.6	72			1	1.7	nl	بلــــــــــــــــــــــــــــــــــــ	/40

1 Rossbacher Laboratory

2215 S. SHAMICER AVE . SURNABY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80247-6 INVOICE NO.

TO:

CERTIFICATE OF ANALYSIS TAIGA CONSULTANTS LTD CALGARY, ALBERTA.

188 DATE ANALYSED JULY 4/80

No.	Sample	pH	Mo	Ser	Mh	Fe	Zn					<u>?-80-</u> ,	1
01	11+25E-2740W		5		220	2.5	56		1	<b>_</b>			1
02	21422	,	17		610	3.4	90						
03	21+571				230	2.5	62			1			
, d	224811		3		340	2.3	76.						
05	22HTTA)		4		300	2.5	46						
06	22. HAL	/	4		160	2.1	34						
07	2243011		5		260	z.	84 47						
08	24 Harr		3		240	2.4	47					L	
09	OME CHOS		36	i	120	Sig	54						
10	1+005		21		370	1.4	116						
11	IBES		8		300	1.9	66 Jo						-
12	2425		22		240	1.3	70		ļ				
13	2+525		14		1250	2.0	/00		<b>_</b>			<u> </u>	
14	3+665		5		340	3.3	180		<u> </u>	<u> </u>			
15	3+52?5		3		740	2.7	84				<u> </u>		$-\downarrow$
16	#HES		6		1260	2.7	128. 560	<del>.</del>	<b>_</b>	<u> </u>		,	
17	455		2		15200							<b>_</b>	
18	الت برج		5		20:00	2.5	346			. <b> </b>		 	
19	51325		5		420	1.9	76	·*	ļ				_+
20	<u>[H</u> ]-S		5	~	2900	2.2	60					<b>↓</b>	
21	6:575		2		6/00	2.2	50.				+		
22	THES		8		300	2.6	66					ļ	
23	7+505		6		260	2.4	56.	• ····	ļ	+		<u> </u>	
24	Stics		29		410 920	-4-	34			+			
25	81305		73		900	1.3	290	<u> </u>	· ·		·	<u>↓</u>	-+-
26	9HUS		81		952		500		<u> </u>	<u> </u>			
27	9-15-5		-11		200 1070	2.5	10b 660		┨────			<u> </u>	
28 29	KINKIS		37		<u>u / </u>	2.3	56	<b></b>	+	<u>}</u>			
30	10+57-5				460	2.0	46		╉╾────	+		+	
31	11100		- 6		· · · · · · · · · · · · · · · · · · ·	2.2	56			+	+		
32	12+00S		14		240 280	2.1	92		<u>†</u>				
33	12+455		12		320	1,8	84			+			
34	134005		37		1040	1.6	1142		1		-		
35	RATIC		1155	ING					·	+	+	<u>+</u>	-
36	MACS		18		1410	2.5	470		1	1			
37	144375		7		750	Z.3	292						
+	10 rJOE 1571215		5		490	2.2	92						
	LADE 101005		10		290	2.2	56.	10	ari	- the	7		
	STD GID		12-		340	2.6	58	·····	1		$X \leq I$	roba	

25 S. SPRINGER AVE EURNASY, B C. Laboratory CA'.ADA Kossbacher TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-1 CERTIFICATE OF ANALYSIS INVOICE NO. 204 DATE ANALYSED JULY 1980 TRIGA CONSULTANTS LTD TO: 1300 8TH ST. S.W. PROJECT RA-80-CALGARY 0/0 No. E. Somple pH Mo Fe Zn No. Mn 2.4 1P+45F-A+518 3.4 HODS 34. 2.7 2.4 2+008 9.4 21.505 1.8 ià 3+005 2.0 2.3 15740E-1450 S Ithe 1. 2.2 7.32 HEAS 2.9 2HAPS 2.2 2HOS 1.5 No 3tas 1.3 3+308 2.1 1 - -4HMC 2.0 5hills 1.1 28-1.4 Groos Gk 2.1. THOS 1.2 7,505 RHIPS 1.9 <60 1.7 9tas B 9250 C 10thes Kt505 1.1. 0.9 IHARC 1.0 IHSOS 12+105 1.6 12+505 1.8 13nas 3.0 13+505 14+215 1.6 :222 14+505 3.1-160, 15tmg 1.8 3.2 STAPE-ASON Certified by P. Monsback 9. STD 192

28 S SPRINGER AVE. Rossbacher SURNABY, B.C. aboratory CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80289-CERTIFICATE OF ANALYSIS INVOICE NO. TAIGA CONSULTANTS LTD DATE ANALYSED JUCY 180 8TH STREET S.W. CALGARY, TO: PROJECT RP-80-7 ALBERTA 0% No. pH Co. Sample Mo No. モル Mn Fo 2.8 USHACE-IHON 1450N 260 2.8 2+PPN 110 2.1 2+50N 2.8 3tann 240 2.8 3+50N 2.7 4ANN 4.3 45DN STON 2.3 GC 2.4 53ON 98-2.3 GARN 5.0 6+50N na THON 2.1 THEON 9.2 8MM 1, 5 8t50N 9tON 2.0 18tADE-Dttos 1.1. HAS 2tans 4.4 7 21.0 2+503 2.3 1. tr ... 4+005 1.5 2.0 2.5 STARS 9U 5+505 1.1 1.4 6tons 4) 1.00 THAS 1.5 7+505 1.3 Stors 1de 8+505 1.8 4tas 9+505 :0 2.1 SU 10+00S 1.2 NIS HHODS 40 STD 2.9 Gi Ilonbac

Rossbacher aboratory

TRIGA CONSULTANTS (TD

2220 5 SF IL GEN HUE BURNABY, E.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. INVOICE NO.

No.

TO:

No.

-

2. 1

STI

e

.

s

CALG.	AR	Y.			.10			F	ROJECT	BL	-80	1-1
ample	pН	Mo	4	Mr	FC	Zn		10				
E-1150S		26	1	700		11/2		-				
12429S 12429S 13429S 13430S 13430S 14429S 14450S 14450S		12		560	1.8	827684						
124500		6		280	1.33249	70						
12+110		10	-	1360	1.3	168						,
134205	1	959		720	1.2	188						
14125		5		720	1.4	54				_		
141505		9		540		44	_					
DE-ASON		36 38		620	2.0	bles				-	_	
HANN		38		240	1.6	42					-	
14200 14500 24300 24500 24500 34500 34500 41200 54500 54500 54500 64500 64500 64500 74000 74000 74000		11		200	1.6	54 86 56						
2HON		14 34		580	1.8	86						
230N		34		240	1.7	56	1			-	-	
3tOON		25		220	1.8	42						
· 32501	6. 	22		280	1.9	104	_					
HION	1	16		180	1.4	38		×	-	-		
4X50N		27 24		60	1.1	58	_				•	
SHOW	K	24		140	1.2	66	_			-		
5750N	<u> </u>	20		140	2.0	15			-			
Stan	(	22	_	160	2.4	215		-			-	
6750N	/	12		160		104 34 54 54 73 46 54 54 54 208				-		
THINK		50		200		20	-					
115CN		25		120	1.2	14		1				
STUDN		22		160	2.1	200		-		-		
8+00N 8+50N 1-9+10N		34		1 110	20	60				-		
D.XD.	-	123312	-	160	2.5	1 1-1						
PSON				110	20	60 80 96						
INFAN	-	6		200	3.4	46						
ICHSON IHAN		Q.	-	280	2.5	56						
INSON	- 1	2		200	2.7	60						
1)2LADA		amon al-		220	3.3	60	-					
12HPN 12HPN 12HPN 13HPN	-	2		350	2.8	70		12 . U.				
12HADAI		ĥ		480	9.7	70						
12+XDA		¥		720	2.5	124						
13+50N 14+103N		1		200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	560077255442						•
14BM	,	1		360	1.9	52						
14BON ISHON	(	1		200	9.4	84		-			1.	-
1575ON		2		260	2.3	44				1		
16 HON		1		200	2.3.	42						
D G10		12		240	2.6	20			1	1.	so	a

CERTIFICATE OF ANALYSIS

Rossbacher 2125 S LPRINCES INC. EURIALN, E.C Laboratory CALLEA TELEPHONE. 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80289-4 CERTIFICATE OF ANALYSIS 204 INVOICE NO. TAIGA CONSULTIANTS LTD DATE ANALYSED JULY '50 TO: 8TH STREET S.W. 1300 PROJECT RC-SO-7 CALCARY 0/2 Fe pН Sample Se No. No. Mo Mn Zn 200 2.3 80 01 01 10+8511-16+501 02 5 300 2.8 02 12+1511-**9**-50N 56 03 72 2.7 03 20 140 ICHON 04 Q 200 2.7 82 ٠ 04 10+501 15 3.4 05 280 154 05 IHAN 66 06 16 06 IIISAN 120 3.0 54 07 : 12HAR 1 tha 07 ~ 4800 2-3 Т 08 210 80 1250N Τ3 12000 2.8 09 13HON 516 09 245 21 10 1 122 137501 10 280 7.4 90 11 E 17 14AAK 11 2 150 12 540 2.3 12 ノムトロト d. 200 2.3 63 2 13 13 15HON 2 360 2.4 14 74 ISTON 14 96 5 15 2.4 15 IGAAN 360 3 2.4  $\overline{q}\overline{J}$ i 16 16150N 16 180 7 12+45E-0456W 5 2. 17 17 180 53 18 HAN 6 240 3 1 i, 4 18 2.51 ÝD 19 5 18d 19 IBON 23 11 200 130 20 2H.NN 20 2.3 6 180 116 21 PHON 21 2.4 55 22 22 200 3+AN 9 3.0 23 3tSON 1¥ 200 110 23 1.9 280 24 4HAN 2 24 106 108 • 2.5 25 45CM 320 25 3 2.7 26 5ANN 240 10ć 26 - SHOW 5 2.0 66 27 160 27 75 28  $2 v_{o}$ 28 HON 10 イス <u>74</u> 4.4 29 29 6tSON 8 300 4.3 76 320 30 30 7*10*0 r 13 53 3-4 31 260 52 31 7KTIN 8 2.9 8HUN 82 32 32  $\mathcal{H}_{0}$ 2.3 26 33 8250N 33 11. 120 G 28 34 9HPPN 44 34 11.0 35 12+45E-2+505 35 ---480 58 2.4 ~ 36 4MS i ( 36 9 5 9.2 37 4750S 74 37 200 5tas 8 180 38 44 38 2.2 39 5+505 9 200 70 739 2.6 132 40 STD 40 40 62 140 Certified by L. Monbaro

م ي ='aboratory Sossbacher

2225 S. SFRINGER AVE., BURNASY, B.C. ACANADA TELEPHONE: 299-6910

PROJECT

CERTIFICATE NO. 80289-204 INVOICE NO.

DATE ANALYSED JULY 1980

BC-80-7

No.

TO:

No.

**CERTIFICATE OF ANALYSIS** TAIGA CONSULTANTS LTD 1300 8TH. ST. S.W. CALGARY 0% Sample pН ككر Mo 01 1124112-1-200 11

	ונ	VILTHE-6HUS		240	1.6	$4\gamma$					01
	22	63278	10	160	1.6	112					02
1	D3	THIPS	27	140	10	44					03
	М	THSPS	20	200	(.C (.Q	184					04
	25	· Stars	18	1320	2.2	310					05
	8	31505	14	180	1.6	86 78					06
<u>e</u> [ (	37	94205	17	200	1.9	78					07
	8	ALSOS	17	- 260	1.070	102			_		08
-[0	)9	10+AVS	11	240	2.5	84					09
1	0	PHPS	25	× 200	<u>i.4</u>	48					10
-[]	11	IHAOS		260	15	44				·	11
	12.	11+505	13	-320	<u>.</u> 2.0	142					12
Ĺ	13	12HAS	12	300	1.4	38			_		13
11	4	12+575	7	260	1.0	<u> </u>					14
	15	13175	6	320	2.0	114				i	15
- F	6	131505	2	180	_1,4_	142				· · · · · · · · · · · · · · · · · · ·	16
	7	Itres		300	-1.6 24 3.7	122					17
	8	141505	2	440	24	186					18
	9	15MPS	1/2	940							19
1	20	157505	29	320	A.4	44					20
·	1	17+70E-17305		280	<b>A</b> .4						21
	2	Itios	20	240	1.8	206					22
	23	1+505	10	220	5.2	400			_	·	23
	4	24025	16	380	48	270 72	<u> </u>				24
-	25	2+505	5	260	2.6	7-11				<b>-</b>	25 26
- <del></del>	6	31035.	26	/020	26	394					20
	7	31305	6	320	2.5	127- 58	<u> </u>				27
	8.	4775	12	26 o 280	2.3	218					28
-	9	The second	16 28		2.6	180					30
		57005	20	320 . 420	2.5	108					31
	2		550	1620	1.8	216					32
	3		48	1760	2.2	334					33
-	4	THAS	24		2.3	94		· • •		· · · · · · · · · · · · · · · · · · ·	34
	15	7505	21	320	<u>פיפ</u> רר	102	· · · ·				35
- <u>+</u>	6		38	300	3.5	76					36
	7	8505	31	280	2.2	104			-		37
	8	9+005	52	480	2.5	110		4			38
	9	· 97505	71	320	2.2	102			1 1		39
		STD49	21	120	1.0	416		··· •		2	40
			<u> </u>	·	نىيى بىلى يەتى <u>بىلى</u>			[]	11-	slae	te_
						Ce	rtified by _	1.	1000		

Rossbacher 2225 S SPRINGER H.E. EURNABY, B.C. Laboratory CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80289-E CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS LTD. DATE ANALYSED JULY 1980 TO: 8TH ST. S.W. BC--8D--7 PROJECT CALGARY. 0/0 1~ Sample ρH Ĺ R No. Mo Mr No. 1.3 THDE-IPHOS 114.51 1.2 0.9 1.6 IR 820 2.3 1.4 1.5 <u>16</u>6 1.6 2.0 1.7 2.9 -280 3¥ トレン  $\pi$ 26c 3.0 2.6 14/2 , 2.9 2.7 SUC 3.1 < 41.500 2.6 2.6 <u>2,5</u> 610£ \$ . 2.0 いばへ  $\boldsymbol{arphi}$ 2,2 THOS だちにく SHE 3/2 2.1 RHN 2.0 21.0 1.8 2.6 io8 24d REPARC 2.6 10+40 1.0 1]+B**0**? 11+50 1.7 1.9 1.4 . -17.9 1.4 26 Y 0 İ Alsobac

by 💋

Kossbacher Laboratory

TO:

(

## CERTIFICATE OF ANALYSIS

TRIGA CONSULTION TS (T) 1300 8TH ST. S.W.

2125 S SEAMALTE FIEL BURMARY, 8 C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80289-7 204 INVOICE NO.

DATE ANALYSED JULY 1980

•	CALG	הדים		·					PROJ	ЕСТ	BL	28	0-7	7
No.	Sample	рH	Mo	50	Mn	Fe	Ag	Zn						No.
01	11+257-141195		2_		180	2.38	1	52						01
02	14.575		2		360	3.8	-	160						02
03	E BAROS		3		180	2.7	-	74 76						03
04	157505		7		680	3.3	•	76						04
05	14+TOF-A+50 S		)				-							05
06	IMPS		l	141551	NG.									06
07	Itsps		_ (										ļ	07
08	2HAS				· · ·		-							08
09	21505		<b>.</b>			·	-							09
, 10	34005						-				<u> </u>			10
11	3+505		23		260	2.4	-	94 108			_			11
12	41205		14		180	<u>_ح&gt;ک</u>	-	108						12
13	4+505		16		360	3.1	-	1501						13
-14	5HAS		42		3080	33.35	_	486	· · · · · · · · · · · · · · · · · · ·					14
15	57325		17		260	3.3	-	146				;	-	15
16	6thrs		13		280	3.8	-	100 -						16
17	67305		33		600	3,350	-	540						17
18	Ttes		43		920		-	500						18
19	7+505		<u> </u>		320		-	164		-+				19 20
20	- 37771S		9		243	44		·····						21
21	·		8		- <u>1</u> 20 - 320			190 124				_		22
22	97665	<b>.</b>	9		240			Tri '						23
24	97505		16		320	3.0		140 418 412				··		24
25	In shall		21	•	380	1.6		412	-					25
25	107565		76		287	1.2		164						26
27	ILLANO		152		940	2.5	-	380						27
28	12+0.035		30	<u>.</u>	120	3.0	-	330		- 1			1	28
29	: 12+505		29		640		-	990						29
30	13+000		7		360	1.8	<b></b> -	230						30
31	13+3738	_	19		560	2.2		302						31
32	14+605		Ę		320	2.1	-	142						32
33	141505		12		480	2.5	e	.60						33
34	154005	1	5		320	2.2	-	162						34
35	1575715				2Yc	9,0		Ho _					1	35
36	HANE TOG-BASOS		4		240	2.2	0.2	92					ļ	36
.37	· 141225		6		200	2.5	2.0	52						37
38	131005		11		840	1.4	0.2	286	•					38
39	124+ME-DASIN		10		240	3.6		-74						39
40	GI		6		200	33		108	/	7	$\gamma$	<i>f</i>	·L	40
-							Ce	ertified by	0.		101	360	ndi	<u>&gt;                                    </u>

2225 S. SPRINGER AVE . BURNABY, B.C. . Laboratory *Cossbacher* CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. SU289-5 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD. INVOICE NO. DATE ANALYSED JULY 1980 TO: 8TH ST. S.W. RP-&D-7 CALGARY PROJECT c/0 Fe Sample pН Jon Car No. Mo No. Mn In 430 2.2 Ζb 124+HIE-IMM 300 2.4 IN 2.5 2HUM 460 29 いちでん 2.6 SHAN 240 2.6 2.6 360 3.1 HHÜN 2.9 4+577 ちゃんれ 240 2.1 290 2.3 5HAN LHQN i 8 2.8 ~ 615ON 2.4 *+00* | \ 300 2.2 THOM 1û SHON J.X İЭ i RISON 2.70 7.(-8775N 232 7.3 21151-0-198 6:0 1.3 ¥.9 1+000 2.I.C. 2.4 1+00S ί. 27.505 Z う  $\overline{q}$ đ 3100S よう ĺ1 2.0 5+005 すたいち ĽŬ Wer. 6HARC 2( <u>8</u>¥ Λ. GtADS *100* S 1. 9. 7+505 ð.Ī 870S 8+5RC 9.3 9thes 2.1  $\overline{u}$ Å. 1.8 ICHOOS 1.9 10,50 S Ī THAS STDGI  $\mathbf{x}$ i tom

ï

2225 S. SEEH.CEE ALE . Rossbacher Laboratory BURNABY, E.C. CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. SUP 94-4 INVOICE NO. 204 CERTIFICATE OF ANALYSIS INVOICE NO. TAIGA CONSULTANTS LTD. 1300 8TH ST. S.W. CALGARY DATE ANALYSED JULY 1980 TO: PROJECT RC-SD-7

	CIPLG	$\mathbf{R}$	<u> ? Y _</u>			0/0			PROJ	IECT	<u></u>	2 - J	$\mathcal{U}^{-}$	<u> </u>
No.	Sample	pΗ	Mo	) Cre	Ma	Ēe	71							No.
01	122+13E-14-50S		10		540	1.8	50							01
02	IZHUS		8		720	2.0	58							02
03	124408		7		1540		264							03
04	1341105		10	· · ·	740	1.6	76							04
054	- 134505	•	12		380	1.9	32			· · · [			·····	05
06	1 IHTARS		4		420	1.9	46							06
107	14ths		4		300	1.8	54							07
08	7 15ANS		2	1	1580	2.0	78							08
09	15505		Ý		480	1.8	66							09
10	122+15E-DISON		50		1520	2.8	138							10
n	HOON		53		740	3.4	166 58 84							<u> 11</u>
12	HSPN			<u> </u>	:240		58	/						12
13	- PANN	``	10 20		220	1.7	- 84	`						13
14	2+5PN		13		180	2.1	64							14
15	· 3HAN	4	16		480	2.1	67					- <b>i</b>		15
16	3+501	1	12		220	2.3	36					,		16
17	4HON		34		200	1.5	42 36							17
18	4BON	•	22		180	1.9								18
_ 19	5HUN		64		180	2.5	58							19
· 20	STSON		26		-440	2.5	164							20
21	bton		13		<u>+ 420</u>	2.3	(76							21
22	6+30N		10		-260	2.3	98			<u> </u>				22
23	THOON		14		320	2.7	182							23
24	TtSUN STUNN		10		360	22	242 18							24
25	STUN				180 140	1.9	10					-		26
26	87.36/1		14			2.4								27
27	8+757X 122+15E-2m24X		14 - 14		240 2.80	2.5	72						·	28
. 28 	LITHE-BASOS		24		270	2.0	66							29
30	IHNC		20		960	2.0	70							30
31		L,	i.3		220	1.4	32					•		31
-32	22000		11	<u>.</u>	1100	1.7	94							32
33	PHAS		23		1320	1.7	58							33
34	3+1200		12		180	1.4	44							34
35	2+2715		18		180	17	36				,			35
36	4ANC		39		240	2.0	124							36
37	450S		6		180	1.6	34- 68							37
38	57005		Ĩ		280	7.8	68		•					38
39	57505		5		940	1.2	74							39
40	· G2		38		220	2.4	124	- [			<del>,</del>			40
	>>							_		/,/		zba	al	
							Ce	cufied by	<u>, U · /</u>	10			-5	. <u>.</u>

i

2020 S & 6 1 CER FYE. BURNABY, E.C. Laboratory Rossbacher CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80289-10 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGA CONSULTANTS (TD TO: DATE ANALYSED JULY 1980 8TH ST.S.W. PROJECT RP-80-7 CALGARY % F2 Sample pН Św Mn No. Mo Zn No. 1.0 121+415-14215 57.500 1.4 1.6 1.7 たよわぐ Ŵ 9-1-1 is2 91£ 11.20 1,Ý 1.2 106-0 1.6 ーイトチレ 1.8 1.6 158C 1. ¥6 2.Ý 1.80 んみ i 34 i 1.5 ? 4+51 i G 157/1 1. X /. 2+905-1450 ア 7.8 INC 7 Ý 450 9 NTT コトレロ .9 Ì1 • . 3+119 1. 7.Ò 2.4 47.5/10 J.0 2.2 5+11 5+500 2.3 1.8 67.57% ٢, 7+12 '. R 7+505 Ýΰ Q Q Y Y Y んそ 9HOS いり , ترجه م 5770 67 Y 11. Assbao

ŧ.

Rossbacher Laboratory

2213 S. STRINGER AVE . EURICAEM, E.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 802

204 INVOICE NO.

TO:

ſ

CERTIFICATE OF ANALYSIS TRIGH CONSULTANTS LTD 1300 8TH ST. S.W.

DATE ANALYSED JULY 1980 AN QA-T BROJECT

	CALG		- 7			6/2			·	PROJEC	<u>t 150</u>	<u>(- 80</u>	0-7
No.	Sample	рH	Mo	GL.	Mn	Fe	Zu						N
01	122HOE-10405		7		210	1.9	92						01
02	PISTS	_	4		200	1.5	96						02
03	IMARS		6		460	1.5	94						03
04	14278		5				176						04
05	12HUS		28		450 300	4.4	102						05
06	12+505		7		450	2.4	50					· • • • • • • • • • • • • • • • • • • •	06
07	- 13HOS		7		54C	2.7	57					ļ	07
08	- 13+505		8		420	2.3	44						08
09	141215		8		490	2.4	46		l	ļ			09
10	121 PRE-15HRS		9		320	2.2.	42			ļ			10
ji	157505		5	<u> </u>	510	2.4	62		ļ 			ļ	- 11
12	121HE-DATEN		20		340	1.9	66			-			12
13	HUNN		14		220	2.7	78		 				13
14	HSON		12		890,		76						14
15.	121HRE-2XON		13		Hec	2.5	80			<u> </u>			15
16	37AM		17		430	3.2	112		·	<u></u>	-	· ·	16
	121+HE-4HON		12		300	<b>X</b> 3	.94			<u> </u>	-		17
18	#1.5CM		12	<u> </u>	240	<u>,</u>	58		-		+	+	18
19	STANN		78		450	43	120						19
20	5750N		.21		230		50						20
21	21+4E-6tSON		33	-	250	3.1	150						21
22	21+40E-7+501	· · · ·	20		290	2.8	112 118	<u> </u>					22
23	- StOON		10		340	2.7		<u> </u>					· 23
24	Stolin		16		220	2.2	24	· –	•		+	+	24
25	HTRE-1150S		-72		340	35	154 258		<u>.</u>				26
26	YTHE-LIFYS		<u> </u>			25	148					+	27
27 28	IHAS		22 64		690 320	7.9 3.5	124			- <u>+</u>			28
29	2+005	-	39		640	1.9	124					+	29
30	I INA	-	47	,	300	3.3	104				1	+	30
31			-14		310-	27	74			+			31
32	21208		32		410	2.9	94			1	1.	+	32
33	UHAA C	4	7		230	J.6	60			1		1	33
34	4490	~	10		290	2.8	92			1			34
35	KHAR	†	15			2.5	274				1		35
36	5+500		9		420	2.8	68						36
37	· brans		8		90	1.1	44						37
38	67505		36		310	3.0	206			•		· .	38
39	THOPS		44		200	2.9	64						39
40	STD GI	•	6		180	25	84	-			2	1	40

Rossbacher Laboratory

2215 S SFRINGER ALE, EURNASY, B.C. CANADA

TO:

No.

.26

ssoasi	ler	' く	ab	0î A	LOF	Y .			CANADA TELEPHONE	E: 299-6	910		
GEOCHEMIC	AL AN	ALYST	s & Ass/	<b>AYERS</b>		0			CERTIFICA			190	2-,
		CE	RTIFI	CAT	E OF	ANA	LYSIS				00°,	204	
TRIOP	9 C	-oxs	ULTI	2NT	<u>ና</u> ረፓ	.D.			DATE ANA		To		108
1300 8	57	H 87	7. S	$\omega$	•	•							
CALG	AK	<u>'Y</u>			0/0		<u> </u>		PROJECT	Ľ	<u> (- c</u>	<u> 912 -</u>	$\leftarrow$
Sample	pН	Mo	هو	Mn	Fe	2n							No.
42E-77508		6		220	2.2	132							01
RHARS		20	· · · · ·	770	2.2	58							02
2124		16		220	2.4	140							03
GHANG		18		200	2.3	110							04
91505		25		370	1.3	282							05
10+005		14		430	1.8	560					ļ		06
101505		20		290	1.4	326			_				07
11+005		38		1690	2.0	380					<b> </b>		08
11+505		110		280	1.2	130						-	09
<u>127005</u>		50		560		400					•		10
127505		166	<u> </u>	1050	1. 7.	464						+	11
- 13+02°S		8		300	1.1	424	<del> </del>						12
13+505	·	14		440	£.0	199				<u> </u>	<u> </u>		13
141275		14		760		96		<u> </u>			<u> </u>	- <b> </b>	14
14505		15		580		+ ~ ~ + - + - + - + - + - + - + - + - +			-	<u>``</u>	i.	+	.+
157113		7		120	1.3	332		<u> </u>	1		<u> </u>	+	16
157505		G		300		148				-	-		17
VE-U-BIN		24		<u>570</u>	3.1	298					1	+	19
<u>ITUNIN</u>	-	67		180	<u>3.6</u>	100					<u> </u>	-	20
1511N		28		380	<u>3.0</u>	142							21
ETCY/V AILA		30		340		98					1	1	22
2+30N		50		240	2 1	100				/		· · ·	23
3HEN 3HEN		23	[_]	380	30	80					†	-	24
14/MAN		6	1	XU?	2.5	80 36		•					25
41271	,	19		FR	3.3	82					-		26
STICAN		10	<del> </del> €	230	2.7	118							27
5750N		16		230	33	66					ļ		28
6HON		17		260	33	62					ļ	<b>_</b>	29
GISON		35		250	2.6	54						<u> </u>	30
THUN	-	35 36 7		270	2.9	\$0	<b> </b>			<b>_</b>			31
THEN				210	2.6	48	<u>⊢</u> 【	<u> </u>		. <u></u>	<u> </u>	<b>_</b>	32
SHUN		25	<b> </b>	310	3.8	136	⊢					<u> </u>	33
SISTIN	·	16	· · · · · · · · · · · · · · · · · · ·	<u> 310</u>	3.9	164	┌───┥						34
9HUN		7		34	3.1	217	<u> </u>	<u> </u>			+		35
22/-950N	<b>r</b>	<u> </u>	·	128	7.6	54							36
KAUN		20	<b> </b> -	100	2.7	72	_ <b>_</b>						37
_ NOHSON		3. 5	, ,	900	3.0	90	<b> </b>			· · · · · ·	+		38
IIKUN			┝━━━━╋	J90		67				· · · -	+		10
TD109		15		110-	1.1.0	416	L				st	<b>A</b>	$\mathcal{H}^{\circ}$

Rossbacher Laboratory

2225 S L HINGER AVE . BURNORY, B.C. CANADA TELEPHONE: 299-6910

CERTIFICATE NO. 80289-

INVOICE NO.

TO:

CERTIFICATE OF ANALYSIS TRIGA CONSULTIONTS (TD

1300 8TH ST. S.W.

DATE ANALYSED JULY 1986

13

204

	1300 8				$\sim$ .				_				1 7.
	CALGI		Y			•/a		<u> </u>		PROJECT		2-84	1-1
No.	Sample	pН	Mo	Č.	Mn	Fr	Zh						N-
01	137321-11500		3		260	5.8	106				<u> </u>		01
02	BHAN		1		310	2.9	116						02
83	. PHON		j		200	3.1	136						03
04	ISHAN		1		200	2.8	60						04
05	13tSON	,	10		230	48	144				ļ		0:
06	Itaan		5		280	29	70				ļ	·	00
07	141501		5		540	2.2	94			ļ	₋		07
· 08	ISHAN		<u> </u>	··· <del>-·</del> -··· ·	450	2.6	92				· ·		08
.09	INHOF-PHENN	, 	16		680	2.7	160			ļ	ļ		. 09
10	IHUN		6		340	2.5	126				· · · ·		10
-11	HEN		23 23		220	29	143	<u> </u>				<u> </u>	11
12	2HON	· .	- 18		930	<u>Z-7</u>					<u> </u>	┨────┼	12
13	2+50N	~	16 8	n	180	2.8	-202			ļ			13
14	3HUN			·	190	29	20		• •	<u> </u>			14
15	3757 M		13		370	Z.1	لحرر			ļ	ļ	┟╌┊╸╀	15
16	HARN		6		150	<u>~</u> .7	- <del></del>				<u></u>		16
17	#BUN		Ŷ		100	7.3	64				ļ.·		17
18	WHUE -575TIN		5		152		174		_·		┢	₽	31
19			17		180	<u></u>	66		<u> </u>	<u> </u>	<u> </u>	<u>↓</u>	19
20	6tSUN		49		280	3.2	- <del>7</del> 0 - 24	_, <u>†</u>			<u> </u>	+	20
21	THEN		23		4(0	3.6	- 84 62		<u></u>	<del> </del>			21
22 23	TESON		. 13		3-20	3.1	70			<u> </u>		+	22
23 24	STUN		26		360 340	9.9 3.4	10						23
25	110,000 ALLOC		4		230	26	94	<u> </u>		<u> </u>			22
26	UNTRE-MOUS		8		340	76	120			<u> </u>			20
27	INC		8		680	4.5	172			<b> -</b>	 ,	<u>↓ · _ </u>	- 27
28	2+205				40	3.4				<u> </u>		<u>├</u> ───└├	28
29	2+505		4		210	2.7	- 78		······	<u>}</u>	ł	+	29
30	BHAOS	<u> </u>	8		270	Z.9	160			<u> </u>	<u> </u>	1	30
31	3+505		52		360	Con in	114						31
32	41605		10		260	7.3	12			1		<u>+</u> ↓	32
33	4505		11		270	2.3	84			· · ·	<u> </u>	<u>↓                                     </u>	33
34	1. 5+00S		31		150	1.4	38				<u>+</u>	1	34
35	575725				150	1.3	40						35
36			33	,	Acc	2.6-	186						36
37	61505		30		240	7.5	118						37
38	7+005		20		270	2.5	118		•				38
-39	. 7+509		24		250	2.6	16						39
40	570691		16		-140	1.0	424				2	sb	/40

Certified by ....

2005 S SPRINGER AVE. Rossbacher Laboratory PERNARY B.C. CANADA **TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-14 INVOICE NO. 204 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS (T) 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 TO: <u>_BC</u>-80-7 PROJECT CALGARY 0/2 No. Fe Con Sample eН Мо Mn Zn No. 2.3 WHAT - SHMS iÝ  $\mathcal{H}_{0}$ 1.8 II 9+121 1.6 らえ タトンハ 2.0 1.5 74 1.4 1.7 1.4 1.2 КĴ .6 Ю £.1 240.1.8 <u>کړ '</u> م 14 H J İ. ġ , i.L 5Ū -17 111+97F-17+87h ģ 2.1 24: 28 c 2.4 . ロメッシハ 3.I 2HINN 2+50N 98 3TUN 3.1 3+511 HIDN . 2. 4HSON 2.0 STOON  $\gamma_{\pm}$ <u>6 TUUN</u> 2.2 ろえ 1.0 6 t SON 2.9 *+00*Ň 200 2.5 7+5212 <u>37</u> 24 280 2.7 8 HOON 3.5 8+50M 220 .2.8 9Han 520 3.2 THLSE-OXCON 400 2.2 אתנאנא 609 2.5 HSON 138 ·200 2.8 2HON 200 2.4 2HSON 2.6 ÂC. 9¢ STDG1 Thombae

1.

Kossbacher 1216 S. L. H. Guller, ANE Laboratory 8UP1.485, 8 C CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-15 INVOICE NO. 204 DATE ANALYSED JULY 1980 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD 1300 8TH ST. S.W TO: PROJECT BU-SU-7 CALGARY, ALTA Ma Sample pН **C**re Fr No. No. Mo In Mo 3.2 117+152-37111 3.4 33m 4HAN 2.0 2.2 432N 3.8 SHALL 196 2.6 ちょくのん lli. ゴユ 2.2 6HPA 200 3.0 KISAN 320 4.8 まんわい 240 3.0 92 TISON п SHAN 160 2.8 TQL 200 2.4 8+50N \$P 160 3.0 9HOAN 240 2.2 7657-14-5128 5Ú 960 4.4 レドロにく 3.0 2+acs 1577 2.1-2+300 6-, 160 2 . 2.4 1V 3this 2.4 アル 3+505 2.4 4tiis Ē llañ ùl 1, Ğ 2.6 1040 2.0 280 2.0 -7 240 1.4 240 2.0 ちゃくつく 160 1.4 THUUS SU 7+50S 16011.4 480 Z.O *HO*OS 440 2.2 8+305 ko 9HOOS 1.0 240 2.0 400 26 10+00 RS 1.6 36 Ο Ż. 1.6 12+12 12+505 1.4 2.2 جن ا ہ اند 0.9 **TD** Issbac

_____

- Rossbacher -LLLS S STRINGER AVE, DURTARN, B.C. Laboratory CANACA. TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80289-16 CERTIFICATE OF ANALYSIS INVOICE NO. TAIGA CONSULTANTS (TD DATE ANALYSED JULY 1980 TO: 1300 8TH ST. S.W. PROJECT RC-RD-7 CALGARY, 0/0 Sample pН Mo ΈL. FC No. Zn No. Hn 1.0 1174/55-18-1018 . 1.6 .300 fo 1.6 20n Ъ 0.9 06 VIG+157-14+100 ¥ Dis 1.3 1.7 FR はわくだー しゅうへん  $\leq$ 2.7 ·HANA × ۲ 2.0 HEN H 2HSW 3.1 1.9 ¥8 13 11/1/KF-7+50W 10-. . 1.6 4HOM 4.1 4+30N 1.9 CO. SHERN 1.6 Y SHOW 11.0 3.8 BHIN (20 2.1 6150N C . 2 хL 30 z | THAN 0.4 / ठ THSON 1.21 SHEW 8HON Ũ 2.0 9HAN 135 MIS . 91 TIN 25. 1.6 26 VILTADE-OUTOC **f**4 200 1.10 Itals 1.4 200 2.1 2+00S 2.6 2.1 3+005 1.1 4+WS ١. 6L 4.505 1.4 5+128 1.4 57.50 1.4 4¢d 5tas 2.5 6+50S 1.8 *+00\$*\$ 40 5TD ŀ.

Rossbacher Laboratory 2222 J. SPP NGER AVE., EURNADY B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-11 INVOICE NO. 204 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD DATE ANALYSED JULY 1980 TO: 1300 874 57. S.w. CALGIARY PROJECT 0/0 Mố pН كتو No. Sample Fe No. ZA Mu 90 2.6 116+90E-7x508 01 32 01 200 02 QØ 02 180 /. 3 8+00 S 20 1.8 63 120 24 860 9+500 03 04 482 9+Als 4.7 51 i34 04 39 2.1 05 560 e4 05 06 ¥¥ 10+00 S 23 160 1.2 06 07 15 520 2.3 202 10+50 07 23 88 9 500 -08 08 · ]/HW 6 I.1 29 09 400 ZO 10 9, 7. 190 420 -10 12+1319 11 600 1.4 176 11 13 194508 18 1200 2.4 21012 12 13722 94 2.1 13 13 500 13450 i 0 166 14 7 14 7 ife 15 g. 380 9.6 15 14+508 170 92-16 3 280 90 16 ハッドわへら 234 157.505 1.7 17 60d 17 5 137.95E-ASON 2.7 50 18 12 18 200 9 200 3.1 19 HAN Ut. 19 20 14 240 4.3 1n8 20 HSON 33 11f 21 21 2AUN 180 16 2.9 14K 22 22 2,500 11 1401 23 25 46 23 3HUN 160 2.0 18 Ϋ. 24 2.1  $\psi v$ 24 3+5ON 200 52 . 2Š 2.2 25 17 120 4 PAN 66 26 İ 415ON İ1 280 4.2 26 180 2.8 58 27 13485*5-8+2*5N 27 V 16 4.2 162 28 2001 28 1 RH DN 45 3.2 222 29 29 ·8+75N えぞ 440 29 3.0 30 30[.] 200 110 9+DON 46 LŽ 240 2.5 31 31 113+15E-0+00S 200 2.0 32 <u>51</u> 32 04505 8 21 3.7 33 1+00S 260 156 33 34 i D 240 3.4 150 34 1+505 740 3.8 920 3.4 35 35 122 PHARS 63 53 36 /9**(**) 36 2+508. 37 3+005 8 3.9 100 37 160 9 200 54 38 3+505 2.5 38 200 39 3.4 142 39 47005 10 J.T. Ilonbad こう 40 STO GIO 13 200

2225 S. SERINGER AVE., Rossbacher aboratory BURNABY, B. C. CANADA TELEPHONE. 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** 80284-12 CERTIFICATE NO. CERTIFICATE OF ANALYSIS 204 INVOICE NO. 1 . TRIGA CONSULTANTS (TD DATE ANALYSED JULY 1980 TO: 57, S.W 8TH. 1300 RN-2N-7 PROJECT ALGARY c/c Mn No. Sample pН Zu Mo λCψ Ê£ No. 3.7 172 01 13+155-4+500 01 220 16 02 240 2.7 . 126 02 JH22S 13 94 03 Ĵ. 4 03 · Ho 57.505 8 98 04 2.1 14 04 360 ちゃわら 284 3.3 05 54 05 67505 800 184 2.1 THUS 06 06 37 420 07 .7+505 27 480 I-0 142 07 302 08 23 2.1 80 8+DC < 980 2.7 58 240 09 09 8+50S 41 11Ŧ 10 180 1.8 10 9+00S la 34 11 1.4 11 9+505 4 120 4 74 12 15 480 12 ... ioroos 1. 13 18 9 100 13 360 1. 10+505 64 14 220 Lũ. 14 31 11400 15 15  $i, \dot{\varphi}$ 70.-200 1450S 15 1.9 16 200 5: . 16 12+00\$ 2 17 17 **x**. (-272 12405 26 100 18 18  $\mathcal{D}^{\mathcal{U}}$ 137005 i4  $\leq 2 \pi$ ÷. Z 8 1.9 ĽŰ . 19 19 320 13+405 12 <u>i</u>-20 20 280 5 1.5 14+125 200 2-2 ₹ų 21 21 3 144505 280 -2-3 6¥ 22 22 6 ノミキハわく 1.9 1.86 23 360 23 15585 5 Z. <u>22+90E-0+50N</u> .234 24 24 12 280 27 440 Z.4 BO . 25 25 HUN 300 X.3 126 26 26 HSON IU. 180 2.3 27 94 27 2HON 16 26 28 0.7 28 2+5CN 22 170 144 29 2.2 35 29 3*†00*N 720 30 160 2.6 30 94 32 3±50N 200 3.4 118 31 31 4+CCN i٢ 280 2.9 32 94 32 4+50N 28 33 22+90E-550N 2.5 124 33 41 340 166 280 q.8 19 34 34 6HUN 180 2.5. 35 92 35 6tSON 7 106 200 2.5 36 36 4 THON 192 1.4 37 37 720 7+50N 6 -160 1.8 8tan 128 38 38 23 Z34 39 400 2.3 39 8+50M 7 A 2 40 510 9 140 GL lombao

ŧ

· _ · ·

2225 S. SPRHILEH AVE . Rossbacher Laboratory BURHLASY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-14 CERTIFICATE OF ANALYSIS INVOICE NO. TRIGH CONSULTANTS (TD. 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 TO: CALGARY PROJECT RP-RD-7 Mn Sample ьH Mo Fe Ag No. ∽⊂بر No. Zn 220 2.9 120+152-0-505 9,8 96 3.0 370 2.4 1.8 2+115 9.0 56 3+225 2.3 · 3150 .20 220 2.0 2.2 4+208 2.3 5+105 ଟ୍ଟ Ś 1802.0 I, J 6+005 Trals 1.7 .17-7+50C 1.4 8tios 1.7 iθ 8+410 2.8 んえ 1.5 2.1 -9+5225 1.7 to 41+1725 2.2 MANS 2.5 54-32d 2.4 レトキやく 2.2 12+00\$ 1.9 13+1100 26. 2.8 14tans 5.6 i l 2.8 14-15 3.0 15+00 4 2.3 3.0 わったちーヘッ・ちゃくつへ 2.4 HOON 2.6 HSON 2.8 fte 70 2 + 2N3.2 2-50N 200 2.D 18. <u>3†UU</u>N · 180 3.2 220 2.4 3±5DN 4HUN 2.7 H DTC onstar

Rossbacher Laboratory 2225 S. SPRINGER / VE BURNABY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. SOLS9-20 INVOICE NO. 204 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD. 1300 8 TH ST. S.W. DATE ANALYSED JULY 1980 TO: CALGARY, RD-80-7 PROJECT 0/0 حير рH Fe No. Sample Мо No. Mix Zu, 2.9 24/5E-4-50N ЬŻ 24d 2.1 .8 SHOW 7.78 2.7 6+00N 2.3 6+501 fo 11:0 んみ THEON 1.5 フィッコン 3.0 8tCCN 1.3 8+50h 3-2 121+H2E-b+00K 36 2.2 121+40F-3+50K 1.5 123+155-6+211 3 2.6 XL IHCO'S ~ 1450°S λ 🕻 ラス 2+1200 Y 11.0 Ŀ R 2.5 '4 1-. 4+10S 1.1 20 123+15E-5+1303 ri. ž8 え 0. 0.9 100-1.3 67.5275 2.0 <u>7+00 </u> . / 0 Å てょちはら 25-1. X 8HUS UŽ 9+00S 1.3 flo 9+405 1.2 Ý 10+00 S んろ BARE-11+COS ጋ  $\varphi$ 1.2 1.9 12+00 2.4 PO ろ 12+12 D ĥΨ 13+50 Y 14+11 C 4.3 40 j n.J <u>G9</u> lĖ Torstan

Rossbacher Laboratory 2225 S. SCHLICE- AVE . SURNABY, B.C. CANADA TELEPHONE: 299-6910 CERTIFICATE NO. 80289-21 INVOICE NO. 204 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE OF ANALYSIS TAIGIA CONSULTIANTS LTD. 1300 8TH ST. S.W. DATE ANALYSED JULY 1980 TO: PROJECT BU-80-7 CALGARY, AGA. 0/0 Sample pН Mo √Cų Mn Fe それ No. No. 440 1.3 23+15-15+505 122+6KE-DYSON 2200 20 (09 520 3.0 IHAN 2.0 1+50K 2+00N ad 2HON 2.6 37AN  $2\alpha$ 32a 9.0 37.50N R 2.7 4 HANN 0.9 23H5E-5HON 2.0 STSON 2.3 12. LFOON 6750N 220 2.1 llo2.1 -*+00*N 280 2.6 7+50N 2.1 8tein 9.7 8+500 . 7 UU3 J.F : FE 1 14+425-17+475 Ż 1.7 -1+122 1-8 zlo 2400-2+305 1. 1.2 3HUS i 8 3+505 <del>70</del> 4HUS -'z lha 5+00\$ Ŕ 6+00C **b**+50 S fo Ý3 9.7 *+00S* 1.6 7+50 S 1.0 8+00S 1.7 Ľ 8+505 2.2 9+CCS 36 İ 9+505 Ø 1.8 IN+OUS Y 1.3 10+205 11+005 1.6 M 2. Torstore D 1. T

ieu ur

2015 S. STETLIER AVE. Rossbacher Laboratory DURNABY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. SU289-22 INVOICE NO. 204 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD DATE ANALYSED JULY 1580 TO: 8TH 57. 5.W. BC-20-7 PROJECT CALGARY ALTA °/6 No. pН ₹n Fe · Mo Ma Sample N. No. 1.3 01 124 +42E-11+5125 1.5 12+00S 2.1 12th ł ろえ 1:4 13+008 1.4 12/505 7.3  $\mathcal{O}$ 1.5 14+500 1.9 15tnak 5.5 15+50 .2 1.7 1741415-157/2AS 11 V19+15E-0+50 UL 1.2 HBCS 5X 1.3 119+15E-2+105 1.6 ~ ZED. 2.0 *†01*3 ¥ 2.6 3+500 4+172 ≤ SC. 1.1 Q o L.7 5+125 0.7 1. いえ 7+695 [.3 11.2 7+505 . 8+123 1-8 اي در مرجع . 56.C قر ا 9ties Ξ. rb GITTS üЬ 1.6 ictees 9U 1.6 · IDtSOS んぞ 1/2/25 ħ.  $h\dot{\psi}$ . 1.4 12+00-5 g 12+515  $\mathcal{H}$ 1.1 3.4 <u>24</u> 3 12+200 1.0 88û 14+225 J [.1 1.1 ج و زيونجه ا 40 < L Ilantao

i

2116 - LERINGEN AND, Kossbacher Laboratory DURNARY E.C. CANADA TELEPHONE: 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. SOL 89-23 INVOICE NO. 204 CERTIFICATE OF ANALYSIS TRIGA CONSUUTANTS LTD DATE ANALYSED JULY 1980 1300 ETHST. S.W. BC-80-7 CALEARY, ALTA. PROJECT 0/0 -R No. βH Mo .Mo Ma Nó. Fe それ 96 1720 んす 200 . 01 12 157510 01 02 <u>ہ</u> 180 2.4 £Ĺ ٦. 19 19+15E-D+EDA <u>02</u> 120 D.Z 20 03 03 41 0.] ĬŰ 04 04 29 100 , 3.1 180 112 05 05 AUN 1~ 22 1.0 14 102 60 2+50N 160 Ż ¥.4• Ho 07 3tach 120 07 110 08 ¥ 9 270 2. 80 3+500 31 09 - HACON 500 2.1 144 09 1.8 24C 10 10 200 4+50h 15 R llb11 200 11 ·STOON 3 4 94 12 160 Ł 575ON 12 / c 3 13 /2 <u>LtCC</u>A 240 12 13 14 520 d 126 2-14 6t5BN 15 TFRON 480 1.8 15 Ų 128 2 200 5 T4 16 .16 TH BON 2 <del>çi</del> 17 17 STUUN 17 1400 チ 8 74 240 2:5 18 St.SON 18 レル 180 19 29 19 Mr JOE-CHSCS 2.4 8 68 20 2 26 ن ما ا HUUS 20 J.L. テン 21 200 23 21 17505 160 3.4 22 240 25 22 2+005 ٠ 180 23 280.3.4 **9**3 24:05 13 186 2.3 24 30 24 3<u>720 S</u> 140 R .2 660 25 . 440 3+505 2.1 ٠._ ٠, 25 286 26 50 120 4tees 26 L. • 1 27 J. 4 78 6 4125 27 360 28 120 ùU •28 Gras Q 9L 29 29 575125 140 80 2 30 30-240 6+00S 7 220 21 51 31 16 31 61505 46 1.4 32 280 32 THOOS 14 Ł.Î 33 33 200 7*+50S* 5 7  $\lambda$ 9 34 8+005 J 36c 76 34 12 2.9 35 8+5CS 35 16 363 ŚŪ 56 36 94005 240 36 ユ 37 3 7 74 37 200 91.205 45 38 9 -160 38 IDHÛÛ S 6 39 39 240 1.7 9C 104505 2.8 108 40 40 Ì G7 iv-5 מדמ llanbao Q

Contrad by

2225 S. LERINGER HALE, Rossbacher Laboratory BURNASY, B.C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80239-24 INVOICE NO. 804 CERTIFICATE OF ANALYSIS BTH ST. S.W TAIGA DATE ANALYSED JULY 1980 TO: BC-813-7 PROJECT CALGARY. -10 No. pН Sample Mo £ Zn No. Fe Mn 1.8 INTRE-JITCH 1.7 2.0 12+005 2.0 2.5 0Z. 14+1/1 <u>1.7</u> 14+5170 1.8 25R0 1-9 15+505 300 2.7 9+917-0+501 0.5 INCON 0.6 16d HSON 2.8 CHEEN 2+500 1.1 2.3 - 8 STON 37.5021 2.4 HIGAN 2.8 4150N STON 2.4 STOW 2X C 240 2.7 6tCCN 3.2 LISON 3.0 T+C2N 180 2.5 . 19+905-8+021 . **I**.9 SHON 3.1 14+917-9+11/ C 2.5 28 116+15E-CT505 Ļ 9.5 H50S 4-<u>90</u> 2.8 PHANS マナトわぐ · ( 1.6 <u>72</u> 3+224 3+305 . ۷ 1.0 2.3 2.0 5+120 18 57.505 1.8 GHCOS //40 GI Manbac

ť

Kossbacher ECRNARY, B.C. Laboratory CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-2 CERTIFICATE OF ANALYSIS 204 TRIGA CONSULTANTS LTD. INVOICE NO. DATE ANALYSED JULY 1980 1300 8TH ST. S.W. TO: PROJECT RP-80-7 ALTA. CALGARY Cu No. pН Sample Мо Zn. No. Mn Fe An 160 1.5 58 01 01 11/11/57-61505 16 02 1.4 134 02 THERS 340 10 216 03 03 7+500 13 120 2.0 314 1400 2.5 04 8+005 04 16 480 Z.6フス 05 05 Q) 20 2.1 <u>13</u>8 9HM 14 260 06 06 148 07. ·· .9+511 10 280 5.3 07 YY08 15 トマ 270 80 240 1.9 09 54 09 IDIANC 11 260 1.5 44 10 10 11 11+60 160 88 11 1.1 11  $\leq$ 11+408 6 280 62 12 12×13C 1.5 12 118 13 3 320 2.0 12+508 13 1.7 14 660 142 14 131005 6 . 80 15 D.4 10.2 16 15 コハ İΟ <u>_</u>___ 0.7 3 6 20 T-2 16 16 6 O.L. 48 17 . 7z 60 17 4 0.4 <u>-3</u>85 ? <u>?</u> 18 5 52 ר 18 20  $\mathcal{D}$ W 180 26 19 Ь 1.0 7.7 19 7 8 ÷ /₿ 1-1 22 20 62 20 16 8.4 16 40 Oct Ÿ 21 21 ÷ 30 9 ŝ 6 140 Ci4 22 D. z 22 23 23 ; Ľ 45 13 820 0.2 54 10 24 D.7 24. JD 6 60 0.5 // 25 2 ż 80 0.5 24 . CA0.4 10 25 3 26 Ũ, 0.4 8 40 0.7 26 4 20 27 0.2 27 4 1.4 22 28 540 63  $\boldsymbol{\zeta}$ 5.7 28 D. 7 1 29 140 0-6 D. Z 29 5 16 6, 30 ťΛ 30 7 120 0.4 0.7 16 Ż  $\Omega$ 31 .CA 100 DIL 31 2 16 10 12 2.2 32 32 17FTEE-11+505 100 0.6 16 b, 33 33 LIGTANE- ItCON 240 03 0.2 16 16 0.8 34 34 11+55E-13rc235 200 0.4 22 ρĴ 35 VA+40F-T+CTN 8 12 35 0-2 100 0.4 36 0.2 6 10 36 120+65E-0+50W 1603 X 64 0.2 37 30 ¥ 37 420+65E-0+TON 12 0.6 0.7 38 38 122+96E-2+20M 10 140 39 6 r Ul 0-2 39 123+65E-3+21N 140 8 590 2.8 æ 40 İ 280 D.L 70 910 11,0 mbaa

ed by ____

LLC L S-RINGER FIEL

2225 L CRHHADLE AVE Kossbacher Laboratory BUFNAEY, B. C. CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80289-26 INVOICE NO. 204 DATE ANALYSED JULY 1980 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD. 1300 8TH ST. S.W. TO: PROJECT BC-20-7 CALGARY. pН Cu Sample No No. Zn No. Mn FC 0.6 04 125+90E-57#3N X R 0.7 0.4 K++9CE-13+5DK 0.9 2.0 10 0.9 0.2 10 Ð エハ 0.504 . ι. _13 . ۹. , . , 33 ¦ . 39⁄ Horbao Certified by

1218 S CPRINCER ALL SUINABY, B. C. Cossbacher Laboratory CALADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80343-1 CERTIFICATE OF ANALYSIS AUG. 1980 INVOICE NO. TRIGA CONSULTANTS LTD DATE ANALYSED TO: 874 ST. S.W. 61-80-CALGARY PROJECT No. ς Mn Zn Sample pН Mo Fe No. 3.4 TATEF- GASON 2.0 PHIN 3.1 3.0 3.4 くょしつへ 2.5 Ч 2.9 13+1201 C RHYIN 2.5 2.6 15+101 2.8 15+50X L 2.8 16+121 Ł 2.3 <del>3</del>60 16+EPN 17+19/1 THSON 2.0 5kc 18HUN 3.7 3.6 18+5121 ペチョウハ 2.6 IGISON ,7 PHINN 2.6 PARTON ÷ 4. 2 HAAN 3.4 2HSON 2HIN 9.9 2.8 22+.50N 23+DBN Ý 2.7 23+5/20 J.7 • -24+AN 2.3 24+SON 2-TSF-JQ+SON 9.4 3.5 2040N • } PALON 2.8 · 1 21+DIN 2.6 2115TN í PLACIN 2.6 2.5 22+50M J.D 39, 2.7 23+50N 40 STO 69 1.0 Tombae

Carest's +

2225 S 20 1 215 4.2. Laboratory BURMARN, B.C. Kessbacher CANADA TELEPHONE. 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 30343-2 INVOICE NO. 272 CERTIFICATE OF ANALYSIS TAIGA CONSULTANTS LTD 1300 8TH ST. S.W. DATE ANALYSED AUG. 1980 TQ: 1300 RP-80-7 ALTA PROJECT CALGARY Έų Zn Sample ρН Mo m. Fe-No. No. 80 1DATSI-24AAN 380 01 2.4 01 3 02 2.2 24BON 02 340 42 1 2.7 03 1652-9HON 220 66 123. 03 22 3.2 04 200 178 04 9+40N 220 220 3.3 54 5 05 IGHLON 05 29 II. 60 06 12+52N 60 2.8 260 58 ģ. 07 IHIIN 07 8 <u>96</u> 80 **∆**00 4.9 08 IHSON 2.9 09 5 290 La. 09 12+M 2.8 46 10 260 10 1225/20 L 51 2.5 920 11 11 133000 12 12 220 9.4 48 12+101 ł 260 2.6 13 13 44 14.MM L 460 2.8 4+XNN -14 14 72 16 2.9 480 15 12 15 14 AMAN 7 260 28 62 16 16 15 MA 1 240 52 2.6 17 17 1. FRAN 1 2.6 240 56 18 18 145CN 2.6 260 46 - 19 19 17+12N 2.9 240 20 20 THAN 80 28 200 2.5 SHUN 21 21 445216 420 22 18+50N 7 22 23 23 72.d 90 19+147N 2.6 24-17-AIL - 7+005 760 24 2.6 88 25 800 2.8 7:505 152 . 25 Stars 3.0 3/6 26 620 26 . 2.5 94 72 27 420 RHSOS 1 27 2.3 28 500 9HDS • , 28 440 2.4 29 29 aros 16 ŧ 2.0 260 52 30 30 10+005 240 2.8 31 RHDS 54 31 240 24 11811-20-DA 32 32 48 21<u>HUN</u> 2.2 33 33 I 90 44 21+500 2.6 52 34 34 200 2.2 46 35 35 22+CUN Ł 260 200 50 36 22+50N 24 36 24 420 78 37 37 3MON 3 2.4 460 52 38 38 2315OM 4 39 340 27 84 37 2+ADN 4 260 *k* 40 | STD GI ZY 8 72 16 mbore

(

Laboratory Rosspacher

(

Ξ. lash i i 16 8 2 V BURNATY, P. C. CANADA TELEPHONE. 299-6910

CERTIFICATE NO. 80.343-3 INVOICE NO. 272 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD DATE ANALYSED AUG. 1980 ST. S.W. TO: 1300 8TH R1-81-PROJECT CALGARY ALTA . FZ No. Gu Mn Zn Sample pН Mo No. 66 01 2.5 340 119:1-24-5W 01 02 16A 500 19HE- GHAN 3.2 02 14 38 03 1.4 9HAN 120 03 20 3.2 04 04 70 DHAN 15 400 4 05 2.1 180 05 INANN 17 BE 06 2.B 66 IMAN 11 200 96 07 \$ 240 3.1 11STAN 07 04 80 2.6 14 320 08 12+£ÛN 3 122 09 4.3 240 09 12+50N 240 60 10 ろ 24 10 13+CON 11 220 56 2.3 3 11 13+57W 12 3 220 2.9 48 14+LION 12 13 4.1 118 820 9 13 14+50N 14 320 2.6 60 < 15+17N 14 15 66 2.5 240 15 15+5M 7 4 X • 16 12-1-5-14+5-21 1.9 185 16 ł 40 1.9 17 17 ITOON 1 220 2.3 SP 18 200 17+50N 18 76 96 19 280 2.5 19 18+CON ŧ 3.8 20 240 ź0 12+500 4 **5**4 21 20 200 21 IGTÚN 62 • 22 280 19+50N 25 22 t 62 23 300 2.8 23 POLON 11 2.4 2.2 24 57 400 24-211 AN 2 25 . 52 200 21HIN 2 25 3 26 52 2.0 120 • 21+3ON 26 2.3 27 3 200 ЬА 71:UN 27 28 420 62 2.8 22+50N 3 28 29 4 380 66 54 -2.6 CHOUN 29 30 360 2.6 23tSON 30 3 31 2.9 720 102 24-AUN 31 1 32 -MISSING SAMPLE 32 24-SON -2.7 54 33 260 DrAE-19+50N 33 1 54 34 180 2.6 34 20+**0**0N 2 54 35 2.5 2 240 35 20450N 2.8 36 52 260 2 21HON 36 82 37 3.5 280 ¥ 37 21BON 2.0 3 68 38 340 <u>22+00</u>M 38 39 260 23 3 76 39 2245ON Certified by .... 40 2.7 200 06 40 STD 61 tr

 $\langle j \rangle$ ŧ Laboratory Kossbacher

1120 S SFI NLEF ANC . DURNAEM, B.C. CANADA TELEPHONE: 299-6910

certificate no. 80343-4 Invoice no. 272

TO:

CERTIFICATE OF ANALYSIS

TRIGIT CONSULTANTS LTD 1300 8TH ST. S.W.

DATE ANALYSED AUG, 1980 PROJECT RA-20-7

	CALGA	R	Y  i H	ALTS.	7				Pl	ROJECT	B	<u>[</u>	<u> 80-1</u>	
No.	Sample	ρН	Mo	The	Mn	ال	Zn							No
01	110-901-23422		1		260	1.B	ST							01
02	22+52				260	2.	76							02
03	24Hank		2		480	2.3	112							03
04	24+500		2		400	1.4	84							04
05	LIOT YOE - MISON		1		220	1.0	¥					<u> </u>		05
06	16+911-12+517N		1		200	2.4	62					<u> </u>	-4	60
07	13tGON		1		400	2.2	58					<u> </u>		07
80	BISON		2		520	3.0	70					ļ		08
09	- 14+CON		2		500	2.5			<u> </u>		τ	<u> </u>		09
10	14+50N		1		400	2.6	60 88					<u></u> =		10
11	· 15+00N		3		880	39	88				·			11
12	ISTSON		1		220	1.9	52						++	12
13	15+55W-12+50N		2		340	2.6	80				<u> </u>			13
14	13TPON		2		360	2.3	80 84					ļ		14
15	13+522N		2		200	3.4	- 34				•			15
16	14tien		1		520	49	84		/	F		! +·····		16
17	14H3TIN				380	z. C		ļ						17
18	15HUN		t		360	2.4	60							18
19	15730N	r	r		420	2.6	58	·	~			<u> </u>		19
20	UPHE-9+00N		4		260		.90							20
21	9+50N		19		300	3.4	150			· · · · · · · · · · · · · · · · · · ·				21
22	IGHCON		38		300	2.7	- 72 - 96						-	22
23	inson		54		340	2.9	96							23
24	IHCON	[	8	<u> </u>	180	1.9	36	<u> </u>						24
25	1H.SON	ſ	31		980	35	90			·				25
26	VIDALSE-BADON	<u> </u>	25		360	1.9	50					<u> </u>		26 27
27	BANN		1	<u>_</u>	200	1.7					ļ	<u> </u>		27
28	14400N	[			160	2.1	52 74 42		<u> </u>	-		<u> </u>		29
29	14150N	r	2	<b>_</b>	600	2.2	17			· · · · · · · · · · · · · · · · · · ·	ļ			30
30	15700N		7		200		42	• ·	<b>2</b> /1		<b>.</b>	<u> </u>		
31	15+50N	<u> </u>	7		320	24	57	<u> </u>		,	· -			31
32	ibrian	<u> </u>	.6	ļ	380	2.6	66	<b>  </b>			ļ	+		32
33	101501	1	3	-	240	9.3	50	<b> </b>			<u> </u>			33
34		1	2	1	580	2.7				ļ				34
35	11.00				200		70	<u> </u>			<u> </u>			35
36					220		69	┦		ļ				36
37		<u> </u>	1	ļ	240		74 40	'		<u> </u>	<u> </u>			37
38	1 TIVUT X	1	1	<u> </u>	200	1.0	40	<u> </u>		ļ	┣────		╺╋╼──┤	38
39	111111	<u> </u>		<u> </u>	1,80	2.1	44	+						39
40	STD 69	ĺ	17	<u> </u>	140	1.0	420			17	17-		<u> // //</u>	40
	•								/	1 1	ΆÞ	nk	such	_
							C	ertified by	_/_	<u> </u>				

 $\langle f \rangle$ 14 I 1215 S OF NOTER ANE BURMARY, P.C. Kossbacher Lavoratory CANADA TELEPHONE. 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80343 CERTIFICATE OF ANALYSIS TRIGA CONSULTAINTS OD DATE ANALYSED AUG, 1980 TO: 874 5T. S.W. 1300 PROJECT BC-80-7 CALGARY PLTA . كر Mn Fr Sample pН Mo zn No. No. 56 2.2 16-15E-2042N 01 01 240 1 02 22 60 02 20ston 240 Ł 54 03 2.1 03 けんむへ 240 88 04 280 3.0 2450N 04 } 2.0 96 88 82 280 05 22*11.*UN 2 05 24 60 22+40N 360 ł 06 2.5 07 <u>23 thìN</u> 2 07 200 48 52 80 220 20 08 2315/21 09 245 2.1 09 24HUN Ł 58 10 320 2.2 10 244501 ł 98 76 3.4 11 14+801+12+01 360 11 2 3.1 12 12 BHŨN 260 2 670 (14 13 BBUN 3.0 13 82 540 14 2.7 ł 14 14/1/1 2.6 15 15 580 94 14,50N Ł 2.5 60 16 KTOON 16 300 2.6 76 17 2 1375UN 462 17 2_ 18 520 30 18 4n15W-12BON 170 4.0 162 44d 19 19 BHUN <u>3</u>.2 ΪĹΒ 20 BHYUN 360 20 2.6 21 21 280 12 HHON ł 2.7 22 Æ 22 14. ON 460 l 23 3 4.6 23 15700N <u>320</u> 1540 2.B 116 24 24 260 15HEIN 2 9À 25 3.6 2HE-BESON 360 25 L ふえ 124 340 26 14400N 26 2 102 3.4 27 14+471 27 2 300 2.8 104 28 BUUN 400 28 1 66 82 29 2 2.7 29 15HON 24.0 30 2.2 30 אאוואא Ł 220 68 31 31 はくでい 240 2.6 2.7 118 240 32 32 17 AUN 2 92 33 280 2.0 33 33 1752W <u>66</u> 34 200 2.3 34 RHIN 33 49, 260 35 35 181.500 3.0 I.J 80 36 36 IGHIN 240 <u>10</u>0 3.2 37 19+500 9 37 520 112 2.B 38 3 500 38 EOHAN 152 2.4 39, 39 280 . 20HUN 3 s de 570 69 40 15 100 1.0 02 12 mbaie

2215 S. Britiskules P. Z., SUTNER'S D.C. Kosseacher Laboratory ULLAUA TELEPHONE. 299-6910 GEOCHEMICAL ANALYSTS & ASSAYERS CERTIFICATE NO. 80343-6 CERTIFICATE OF ANALYSIS TRIGA CONSULTANTS LTD. INVOICE NO. DATE ANALYSED AUG, 1980 8TH ST. S.W TO: CALGARY, PROJECT ALTA <u> 1819-7</u> Sample mr Fr 7n No. pН Mo YC. No. 3135F-13550N 3.3 14+ann 3.0 4HON 3.0 KIAN 2.6 - 1 くちょちしろへ 2.2 KHUN 2.9 16.15DN 44 68 PARE-10-CON 2.2 IDESON भूम 2.6 IHAN 2.5 14. KON **4**0 2.6 12+00N 2.5 IB SON 2.3 BILLIN 2.4 2.5 14AM 2.6 54 ILINAN LAC 15HAN . 15+50N ILAN ILISUN 2.0 1710M 2.3 1713an 46 1.9 18HCON 2.1 -1815IN __ 2.5 19HUN I 2.2 14+55W-C+50 S 2.7 HADS ł 2.0 はちもち 2+00 < 2.3 82 2.5 2+505 ł 3.4 3.5 1141341-3+508 +tOCS 2.0 . 4150S 2.3 5HOS 2.6 . 5750S 2.4 ちゃんくち 52 360 3.4 ちょうち <u>7+W</u>S 2.5 2.6 Mondad ଟ JTD

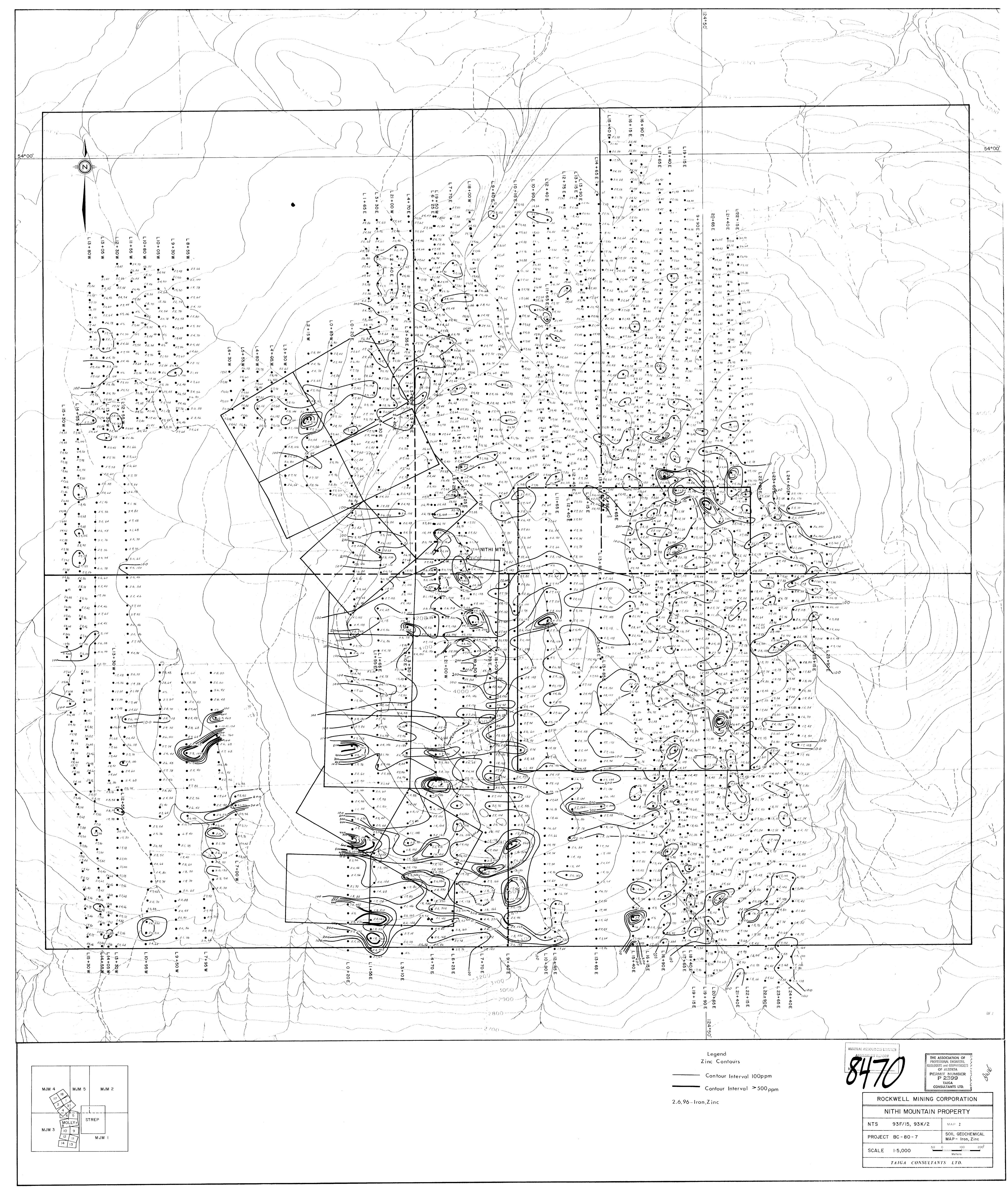
İ

£

2228 8 SF 10 Cafe - Na Kossbacher BURNABY, B.C. Laboratory CANADA TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80343-7 INVOICE NO. 272 CERTIFICATE OF ANALYSIS TAIGA CONSULTANTS LTD DATE ANALYSED AUG, 1980 TO: 8TH ST. S.W <u>BC-80-7</u> ALTA PROJECT CALGARY MnFe Fa No. Sample pН Mo No. 2.8 14+45/1-7+475 Stars 2.7. 2+410 90 2.9 *HD*S 2.7 2.1 נמתו ICHOS 2.0 2.2 68d レチャック 32n DUM I.0 П 1.8 ţ. 1.9 13+470 t 2.4 2.2 2.2 157:33 5.6 14+33-1-A+5DN ÷ 4.4 ~ HOON 2.7 HERN 96 2.8 2+00N 3.8 250N 2.2 33 3HUN 345DN 2.8 , ⁻ 260 4H:CN 2.2 4.5W 25. SHIN 4.4 BACAN 2.5 Ł 2.8 LANN 7HÛN l 0 80 3.5 FISON 2.4 2.2, 1.B 8HOW 81.5CM 6.0 9+CON . 3.5  $\boldsymbol{\varphi}$ 9150N ICION Ż 98 2.0 10x50N 2.7 11+00N JÁ 11tSON 40/ 1.0 lostas

ĺ

2225 S. GFR-7364 4.2 f BURNABY, B. C. Laboratory Rossbacher CANADA C TELEPHONE: 299-6910 **GEOCHEMICAL ANALYSTS & ASSAYERS** CERTIFICATE NO. 80343-8 INVOICE NO. 272 DATE ANALYSED AUG, 1980 CERTIFICATE OF ANALYSIS CONSULTIONTS LTD 8TH ST. S.W. TRIGA TO: 1300 RP-RD-CALGARY, ALTA PROJECT pН Sample Mo C_v M <del>7</del>~ No. No. Fi 4 01 14121-12411 <u>4.</u>6 01 100 700 02 02 2 54 12.30N 2.00 9.3 03 860 104 18+2011-12-202 6.4 6 03 ... 48 04 2 240 1.9 04 HADN 2.3 2.8 3 240 HSON 05 05 46 240 260 4 66 シャハハハ 64 06  $\dot{2}$ 07 2+5cm 23 40 07 3 320 24 **08** 3#UN 30 80 4 09 300 54 2.6 3+5CM 09 <u>3.</u>4 10 ¥ 80 UST 2011 - 4450N 460 10 240 3B 11 5+00N 11 11 3 300 くろ 52 12 57.500 3 12 2.3 28 3 260 13 13 b+00iv 2.2 38. 52 14 14 2 240 トナトロル 15 2.4 15 7*+ 00i*N 320 3 200 1.9 16 7+50N 44 16 220 44 17 8+00N 24 17 200 نر 18 8-50N 18 90 Ł 240 19 9*+00*N 21. -19 ŧ 66 20 115+321-10+CON <u>IBO</u> 1.2 20 ł 21 260 68 <u>60</u> 21 IGISON ŝh 22 240 2.0 22 IHRON 280 2.0 23 匆 23 1H YON £ ۰. 7.3 14 24 t 220 24 12+12/1 . ſ 20d -: 25 12+50N 1.4 25 22 68 ん 500 23 26 26 V15+2011-8+1095 540 68 3.7 27 27 8+505 3 _ 2.0 28 260 50 28 9+00S <del>R</del>b 3.3 29 **4**40 29 à_ 4KM 1.9 50 30 30 340 t 1.9 44 300 31 31 1.9 32 ___ 320 60 32 112008 12 33 72  $\hat{}$ . 3 400 33 11+50 1.6 -34 260 40 34 35 1.3 36 35 ノウィキハ 240 ۴ 280 36 TB 20 36 1311.15 • 2 17 *4*6 3<u>20</u> 37 2 37 13+820 80 1.9 38 [ 3*zo* 38 14+00 2.4 39 172 39 L 320 14+200 1 mback 2.8 FU 40 STD 34n 610 t.


. . . . . . . . .

*	Cossback						1		r	ELEPHON				
	GEOCHEMIC	AL A	NALYST	S & AS	SAYERS				C	CERTIFIC NVOICE DATE AN	ATE NO	. R/J	24	2-
	Tak	~	CE	ERTIF	ICAT	E OF	ANAI	LYSIS	; ;	NVOICE	NO.	$\mathcal{O}\mathcal{O}$	27:	5
TO:	////0/	REALTRATE OF ANALTSIS R CONSULTANTS LTD 8TH ST. S.W. GARY ALTR								ATE AN		A	ບດົ	_ /9.
	/300	01	5	ン. C	$s.\omega$	•							00	·
r	<u> </u>			<u></u>	HIH H				۶ 	ROJECT		2-0	<u>50-</u>	4
No.		рН	Mo	Ś	Mn	Fe	Zn		W	PPB			1	N
01	11573245-15700S		2		280	2.5	46			ł	1	1		0
02	V157341-17500		3		240	2.7	64			1			1	0
03	14005		2		240	Z.4		4			· ·	1	1	0
04	14505		2		320	2.3	54			1		1		0
05	2+0CS		4		360	3.4	134						1	0
06	· 27505		2		220	26	44							0
07	3+005				322	2.4	_ 50			ļ	Ļ	<u> </u>		0
08	3+505	-			340	22	SE	. <b>_</b>				l 		0
09	4+005		.2	··· <b>-</b>	280	_2.1	56				ļ	<u> </u>	<u>\</u>	0
10	4+505		3		280	ュユ	54			<u> </u>	ļ	ļ	ļ	1
11	· 5+005		1		300	2.8	60			ļ	ļ	ļ		1
12	57575		3		580	2.9	72			<b>_</b>		<u> </u>	<u> </u>	1
13	67605				340	_2.7	56				<b> </b>	 		1
14	6.150.5		-1		3.20	2.4	- 44					 		
15	THRS		1		300	25							<u> </u>	1
16	7+505		3		300 300	38	94 36					- <b>.</b>	<u> </u>	10
17	16N-//		28		<u>∳</u> }	1.6						ļ	<u> </u>	
19	16N-1/H		50 500		260	1.7	44 26		5		}		+	1
20	TA-15	<u>.</u>	305.		60	1.2	18		2	40		<b> </b>		2
21	16		107		480	2.0	20		<u>2</u>	10			+	2
22	17		370.		100	47	14		- × Ø	, · · · · ·	<u> </u>	1.	1	2
23	18		230.		2/20	1.2	18		5	10		<u> </u>	1.	2
24	19		28		40	1.0	12		2	13		<u> </u>	+	2
25	20		2.0		160	Dif	16		-2	10				2
26	JD-21		450		140	0.7	14		5	10-				2
27	5712 69		19		120	09	392							2
28											, ,	 		2
29											-	1	<u> </u>	2
30	ļ									ļ		ļ		3
31										ļ	<u> </u>		ļ	3
32							<del>,</del>				, 	ļ	ļ	3
33	<u> </u>				<b> </b> -					<u> </u>		<u> </u>		3
34	<u> </u>				-	<b> </b>						<u> </u>		3
35		{											<del> </del>	3
36	<u> </u>				┝────┾						<u>}</u>		+	3
37			·		<b> </b>					 	<u> </u>		<u> </u>	-
38	<u> </u>								·····	<u> </u>	<u> </u>	ļ	+	3
40										$\sim$	1		17-	+7
L	! !				<b>_</b>	l	L			< /		se	Kry &	¥

-

		DCHEMIC.			AREA CODE: 604 CERTIFICATE NO. 80343 INVOICE NO. 272										
	TAIGA CONSUCTANT 1300 8TH ST. S.W							(70	· · · · ·						
. <b>TO</b> :	1300 8			TH	57.	5.W				. <b>.</b>	ATE AN	ALYSED	70	6,19	~~
•	$\leq$	91G	R1	22			- *		$A_{i+1}(x) = 0$	F	ROJECT	<u> </u>	<u> - 8</u>	-0-	/
No.	San	nple	ρH	Mo -	Cu		PPM		PPB AL	· ·					
01	RRi	= /		·	4		5				<u>+</u>				+
02	JD	15					2		40 20	· ,	<u> </u>		1		T
03	JD	16					2		10						T
04	JD	17					0		10						T
05	JD	18			·				10						
06	JD	19					22		10		<u> </u>				$\perp$
07	JD	20					2		10			·			$\downarrow$
08	JD	21					.5		10	••	<u> </u>				4
09	ļ		·	<u> </u>	ļ		ļ				ļ			<u> </u>	4
10		, .					<u> </u>				ļ	<u>, .</u>		<u> </u>	$\downarrow$
11													<u> </u>		-+
12	<u> </u>						ļ				<del> </del>	<u> </u>			+
13		·····-		· · ·	ļ	-					<u> </u>	<u> </u>			+
.14	<u> </u>							<b> </b>							-
15	<u> </u>							<u>.</u>					- !		+
16 17	<u> </u>							; ;			<u> </u>		<u> </u>	·	+
18	<b>.</b>						1	<u>.</u>			<u> </u>	-	<u> </u>		+
19	<u> </u>			•			1	1	<u> .                                    </u>		<u>.</u>				+
20							+	1			1		1		+
21											·				-+
22								<b> </b>		· · · -		1			1
23															1
24	<b>*</b>											· · · · ·		-	
25					•										
26													· · · ·		
27														,	
28											<b>_</b>		ļ		
29							<u> </u>				ļ		1.		_
30	ļ										<u> </u>	<b></b>	· .		$\downarrow$
31											· · · · · · · · · · · · · · · · · · ·	· ·			_
32				-							ļ				$\downarrow$
33	ļ						ļ		•		.1		<b> </b>	<u> </u>	$\downarrow$
34	· · ·			-				 			ļ				4
35				•			ļ				+	1			4
36										•	· · ·				+
37					· · · ·					•	+	<u>                                      </u>	<u> </u>	+	+
38 39	· · · ·			· · ·	e Secondaria	-		n er i i Lista Miz						-	+
40						i		<u> </u>			+		1		┽
<b></b>	l		<b>[</b>			L	Ļ	l <u></u>	<u>!</u>	L	-		ـــــــــــــــــــــــــــــــــــــ	Karp	ナン



