REPORT ON

DIAMOND DRILLING

bу

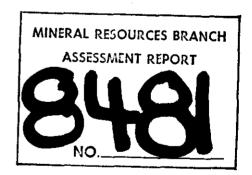
G.R. Peatfield, P.Eng.

on the

WESTERN M.C.

(part of the ROSE Property)

Situated east of Eddontenajon Lake in the Liard Mining Division


57°46'N, 129°55'W NTS 104H/13W

owned by

TEXASGULF CANADA LTD.

work by

TEXASGULF INC.

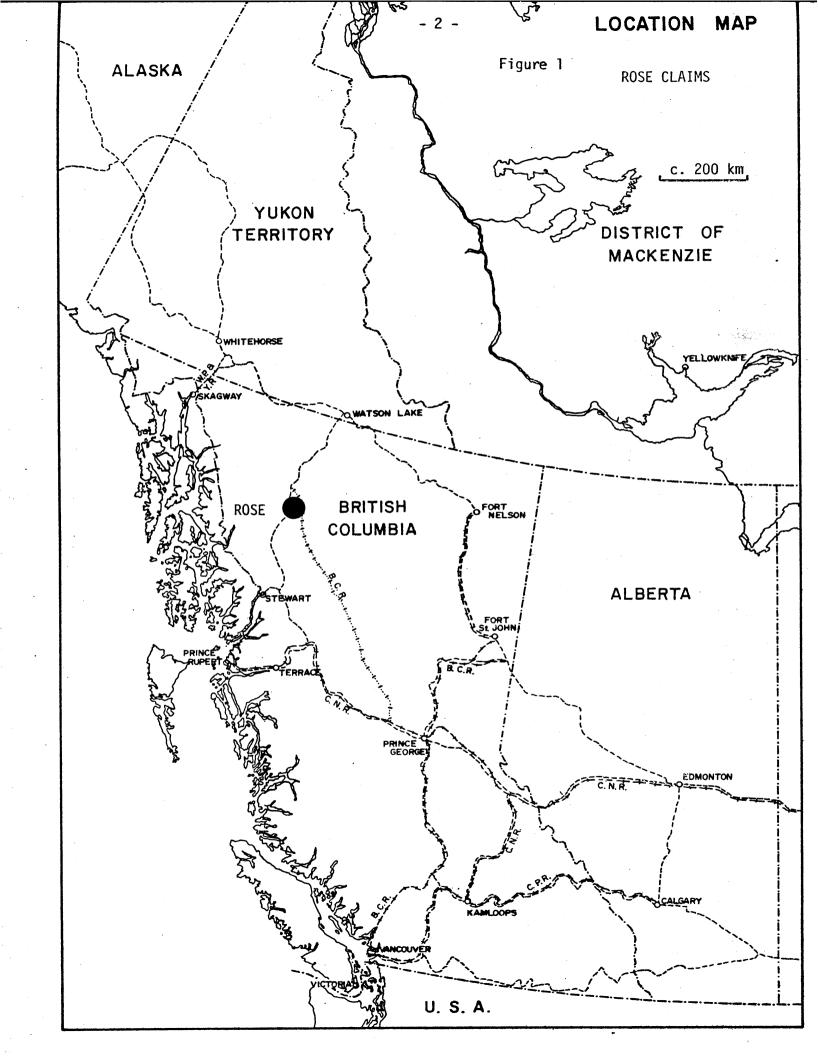
TABLE OF CONTENTS

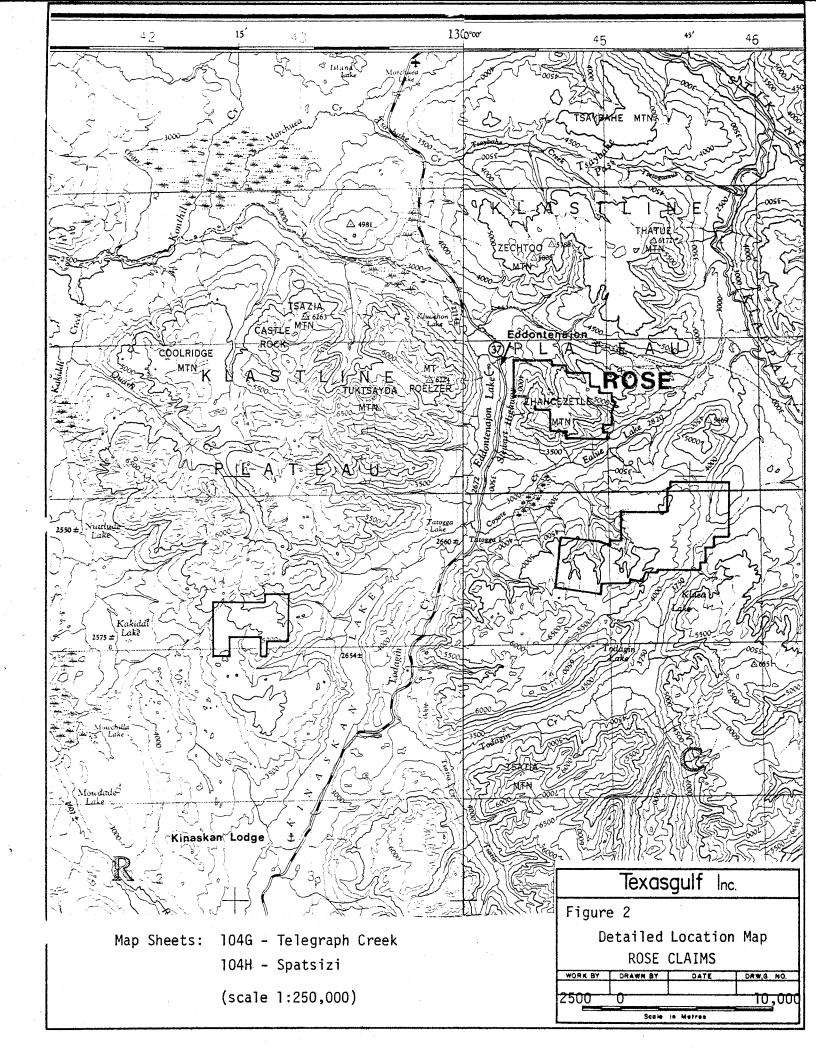
			PAGE
INTRODUCTION	1		
Location, Acc	1		
Property Hist	1		
Summary of Wo	ork Completed		5
Diamon	ite preparation I drilling stribution		5 5 5
GEOLOGY	Stribution		5
DIAMOND DRILL	.ING		5
BIBLIOGRAPHY			6
APPEND:	X A: Summary Dril	l Log	
APPEND:	X B: Summary of A	nalyses	
APPEND:	X C: Statements o	f Qualification	
APPEND:	X D: Statement of	Expenditures	
	LIST OF	FIGURES	
Fig. No.	Title	Scale	
1	Location Map	c. 1:9,100,	
2	Detailed Location	Map 1:250,	000 3
3	Claim Grouping Ske	tch 1:50,	000 4
4	Geology & Drill Ho	le Location 1:10.	000 in pocket

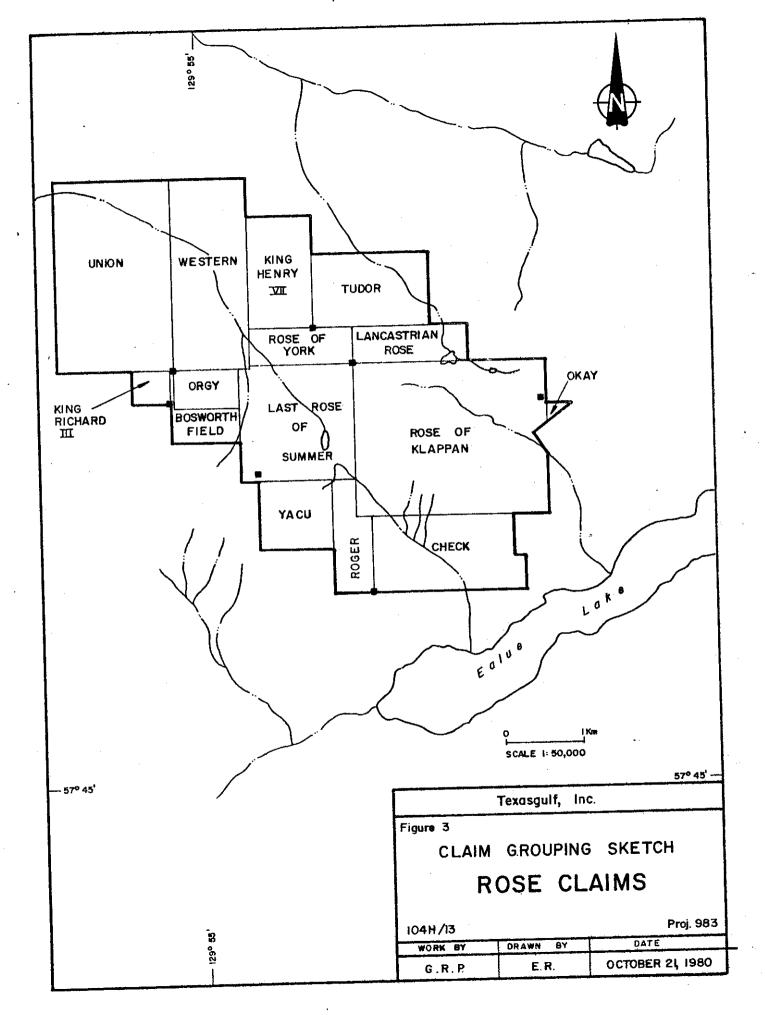
INTRODUCTION

Location, Access and Terrain

The ROSE property is located immediately east of Eddontenajon Lake, in northwestern British Columbia (see Figure 1). The most convenient supply and transportation centre is Terrace, some 370 km to the south.


Access to the claims is presently by helicopter from the Stewart-Cassiar highway. There is regular scheduled air service (in summer) from Terrace to Iskut (or Eddontenajon). Food, lodging and rudimentary services are available at Eddontenajon, where the base for the present programme was located (see Figure 2).


The claims cover most of a small massif lying between Eddontenajon and Eulue Lakes, and known as Ehahœzetle Mtn. Maximum elevations are about 1900 m, and the relief on the property is of the order of 1000 m. Most of the property lies above timber line, with some scrub trees on the lower slopes and in deep valleys. Terrain in the present drilling area is extremely rugged. Water is sufficient for drilling purposes, but must in most cases be pumped considerable distances uphill.


Property History and Definition

The earliest recorded activity in the area was on the "Klapan Rose" showing, immediately east of the ROSE property, which was explored by a short adit in 1929. During the 1960's, two large groups of claims, held by Yukonadian Mineral Explorations Ltd., and by Silver Standard Mines Ltd., covered essentially all the ground now held by the ROSE claims. When these older properties were allowed to lapse, the Rose of Klappan Claim was located in June 1975, and further staking was completed in that and subsequent years to produce the property as presently constituted (see Figure 3).

Work on the property has been completed by Texasgulf Inc. on behalf of its wholly owned subsidiary, Texasgulf Canada Ltd., the registered

owner of the claims. Investigations undertaken to date have been previously reported on (Peatfield, 1976; Donnelly, et al., 1977; Newell, 1979; Vyselaar, 1979) or made public (Cooper, 1978).

Summary of Work Completed

Drill site preparation

During early August, a drill site and helipad were blasted out and cribbed up on a steep eastward facing slope in the northwestern portion of the property (see Figure 4).

Diamond drilling

During the period Aug. 31 to Sept 9, 1980, one BQ diamond drill hole, totalling 257.9 m, was completed on the property. The core was analyzed geochemically for Cu, Mo, Ag and Au.

Work Distribution

The diamond drilling described in this report was restricted to the Western mineral claim (see Figure 4).

GEOLOGY

The geology of the property has been previously described (Cooper, 1978). The diamond drill hole location is shown on a geological map (Figure 4). The northwestern portion of the claims is underlain by a large strongly stained area (the "Edon Stain Zone"), presumed to be a monzonitic stock intrusive into andesitic volcanic and volcaniclastic rocks. Abundant pyrite, with traces of chalcopyrite and rare molybdenite, have been reported on surface in this area.

DIAMOND DRILLING

The report concerns the results of a programme consisting of a single diamond drill hole completed during 1980:

Ro-1-80 (250°/-60°) 257.9 m

Survey data for the hole are included with the summary log (Appendix A); rock geochemical analyses for the cores are tabulated in Appendix B. The core is stored at the camp on the Red-Chris property, some 10 km to the south.

The hole was drilled as an initial test of the "Edon Stain Zone". The location of the hole was more dependent upon availability of a reasonable place to construct a drill platform than upon the location of any specific geologic features.

The results of the drilling, as shown in the log and analytical summary, were not encouraging. The hole collared in pyritic intrusive porphyry and passed at depth into only weakly altered and pyritized andesitic volcanic and volcaniclastic rocks. No economic concentrations of sulphides were encountered; both base and precious metal values were uniformly low.

G.R. Petitetto P. Eng.

BIBLIOGRAPHY

- COOPER, M.F.J. 1978. Geology of the Rose Property porphyry copper occurrence northwestern British Columbia. Unpublished M.Sc. thesis, Queen's University, Kingston, 220 pp. Copy in library of Geological Survey of Canada, Vancouver.
- DONNELLY, D.A., PEATFIELD, G.R., and GASTEIGER, W.A. 1977. Report on geochemical and geophysical surveys and hand trenching on the ROSE Property (Lancaster & Rose Groups). Report submitted to the British Columbia Ministry of Mines and Petroleum Resources for assessment work credit.
- NEWELL, J.M. 1979. Report on geochemical survey on the ROSE Property. Report submitted to the British Columbia Ministry of Energy, Mines and Petroleum Resources for assessment work credit.
- PEATFIELD, G.R. 1976. Report on diamond drilling, line-cutting and hand trenching on the ROSE Property (York, Lancaster & Rose Groups). Report submitted to the British Columbia Department of Mines and Petroleum Resources for assessment work credit.
- VYSELAAR, J. 1979. Report on I.P. surveys, Rose Property. Report submitted to the British Columbia Ministry of Energy, Mines and Petroleum Resources for assessment work credit.

APPENDIX A Summary Drill Log

PROPERTY	: ROSE			TEXAS	20111	= INI	HOLE NO.				
LOCATION	(grid) on	"Edon Stain	Zone"	IEVAS	7 U L I	IIV	Ro-1-80				
LOCATION	(survey)	(see Figure	4)	DRILL HOLE LOG CLAIM: WESTERN							
AZIM: 25	0° ELEV	:c.1450m DIP	': -60°				SECTION:				
DEPTH:	257.9 m	CORE SIZ	E: BQ		OIP TEST		LOGGED BY: R.E. Meyers				
STARTED	: Sept	. 4, 1980		DEPTH	AZIM	DIP	DATE LOGGED: Sept. 1980				
COMPLET	' ED : Sept	. 9, 1980		257 m		-68°	DRILLING CO.: Longyear Canada				
CORE RE	COVERY:	fair to good									
DEI	PTH	REC'Y			DECODIDEION						
FROM	TO	RECT		DESCRIPTION							
0	7,9m	_	Casing								
7.9	20.9m	good	Monzonite	Monzonite - strongly altered and oxidized pyritic monzonite or feldspar po							
			rock shows	s moderate to st	moderate to strong quartz-sericite alteration, and locally abundant						
			j .	ine as tiny rosettes.							
		·									
20.9	28.0m	fair-good	Rock type	ype as above with some faulting and brecciation.							
28.0	77.Om	good	Monzonite	- as described	above but 1	<u>ess oxidiz</u> e	ed, with up to 5% pyrite and common				
			tourmaline	ne. The unweathered rock is green-grey.							
77.0	93.3m	good	Monzonite, but with a few narrow (50 cm) dykes of silicified rock of similar texture.								
			sometimes brecciated.								
93.3	111.Om	good	Feldspar porphyry - upper contact at a small fault. The rock is light grey-green with								
			5-25% of 2	2 mm bright green sericitized feldspar phenocrysts. There is abundant (to 5%)							
			disseminat	ted pyrite throughout. A few late veinlets contain gypsum.							
111.0	116.0m	fair	Fault zone in feldspar porphyry.								

TEX	ASGUL	F INC.	DRILL HOLE LOG HOLE NO. PAGE NO. Ro-1-80 2
DEPTH			DESCRIPTION
FROM	TO	REC'Y	DESCRIPTION
116.0	172.9m	good	Continues in feldspar porphyry, with some sections of faulting and breckiation.
			There is essentially no change from the above described porphyry, with the exception that
	,		there is a mottled texture caused by small clots of pyrite-sericite aggregate. Deeper
,.			in the section there are a few pyrite veinlets. Locally there are some clots which
			may be secondary biotite, and this feature increases with depth until the rock is
		·	purplish-brown with short sections where sericitic alteration has overprinted biotite.
172.9	180.0m	good	Diorite dyke - fine grained dark green chloritic rock with weak pyrite and abundant
			magnetite (1-2%).
180.0	223.4m	good	Back into feldspar porphyry as above the dyke, with about 5% pyrite. There are some
			short sections of strongly silicified breccia, especially 191.5 to 192.5 m. Some
			sections have more abundant pyrite, up to 8%.
223.4	257.9m	good	Grey-green volcanics - below a small fault, the rocks change to a complex sequence of
			volcanic and volcaniclastic rocks, probably of andesitic composition. The rocks have
			chlorite alteration with some sericitic sections and less common epidote. These rocks
			are very strongly fractured and locally faulted, and this tendency seems to increase
			with depth. Pyrite continues to be common (2-5%).
•			EFSC
			E.O.H. at 257.9 m
			G. V. Heartfiell
			3X 80
			VGINEER.

APPENDIX B Summary of Analyses

Summary of Analyses

Note:

Core samples were analyzed by Bondar-Clegg & Co. Ltd. in North Vancouver, for Cu, Mo, Ag and Au. For Cu, Mo, and Ag, the technique involved hot Lefort aqua regia extraction followed by atomic absorption analysis. For gold, extraction was by fire assay and hot aqua regia, followed by atomic absorption analysis. Gold analyses were done on composites only, as shown on the analysis summary.

HOLE No.: Ro-1-80 PAGE 1 of 3 PROPERTY: ROSE

LATITUDE: _____ AZIMUTH: 250°

INCLINATION: ____/ _68° at _257m

LONGITUDE: _____ DIP: ____60°

INCLINATION: ____/ ___at ____

ELEVATION: _____

INCLINATION: ____/ __at ____

SAMPLE	METR	ES	Cu		Au		Ag	Mo	
No.	FROM	Т0	ppm.		ppb.		ppm.	 ppm.	<u> </u>
16307	5.0	9.0	127				0.8	96	
8	9.0	12.0	165		<u> </u>		0.4	21	
9	12.0	15.0	168		- 170		0.6	59	
16310	15.0	18.0	184	·			0.7	36	
]	18.0	21.0	196				0.5	24	
22	21.0	24.0	149				0.5	55	
3	24.0	27.0	148			-	0.6	25	
4	27.0	30.0	128	·	135		1.1	84	
5	30.0	33.0	143				0.5	24	
6	33.0	36.0	162		·		0.4	18	
7	36.0	39.0	96				0.4	6	
8	39.0	42.0	122				0.6	15	
9	42.0	45.0	112		100		0.4	11	
16320	45.0	48.0	220				0.2	3	
]	48.0	51.0	220				0.2	6	
2	51.0	54.0	176				0.3	12	
3	54.0	57.0	128				0.3	13	:
4	57.0	60.0	96		106		0.2	10	
5	60.0	63.0	92				0.5	12	
6	63.0	66.0	90			-	0.4	5	,
7	66.0	69.0	80				0.3	24	
8	69.0	72.0	78				0.3	14	
9	72.0	75.0	97		110		0.6	10	
16330	75.0	78.0	79		<u></u>		0.3	11	
1	78.0	81.0	66				0.4	51	
2	81.0	84.0	90			-	0.3	36	
3	84.0	87.0	146				0.4	23	٠
4	87.0	90.0	178		130	1	0.4	24	
5	90.0	93.0	54				0.2	12	
6	93.0	96.0	225				0.2	16	
7	96.0	99.0	127				0.2	3	
8	99.0	102.0	136				0.4	3	
9	102.0	105.0	260		80		0.2	2	
16340	105.0	108.0	245				0.2	6	
1	108.0	111.0	187	<u></u>			0.2	4	<u></u>

HOLE No.: Ro-1-80 PAGE 2 of 3 PROPERTY: ROSE

LATITUDE: _____ AZIMUTH: _____250° INCLINATION: ____/ _-68° at _257m

INCLINATION: ____/ ___at ____ LONGITUDE: ____ DIP: ___ -60°

INCLINATION: ____/__at ____ ELEVATION: _____

SAMPLE	METR	ES	Cu		Au		Ag		Мо	
No.	FR0I4	Т0	ppm.		ppb.		ppm.		pom.	
16342	111.0	114.0	500				0.2		1	
3	114.0	117.0	123				0.4		60	
4	117.0	120.0	78		120		0.4		3	
5	120.0	123.0	184				0.2	•	5	
6	123.0	126.0	78				0.2		5	
7	126.0	129.0	46				0.2		7	
8	129.0	132.0	29				0.2	-	.9	
9	132.0	135.0	68		70		0.2		7	
16350	135.0	138.0	60				0.2		3	
1	138.0	141.0	92				0.2		5	
2	141.0	144.0	88				0.2		3	
3	144.0	147.0	73				0.2		5	
4	147.0	150.0	24	· .	50		0.2		2	
5	150.0	153.0	34				0.2		2	
6	153.0	156.0	50				0.2		2	
7	156.0	159.0	78				0.2		11	
8	159.0	162.0	34				0.2		4	
9	162.0	165.0	65		55		0.2		22	
16360	165.0	168.0	62	4			0.2		3	
1	168.0	171.0	66				0.2		1	
2	171.0	174.0	48			1	0.2		3	
3	174.0	177.0	90]			0.2		1	
4	177.0	180.0	50		55		0.2		2	
. 5	180.0	183.0	36				0.2		44	
6	183.0	186.0	70	1			0.2		3	
7	186.0	189.0	56	1		}	0.2		22	
8	189.0	192.0	61	1			0.2		6	
9	192.0	195.0	76		50	-	0.2			
16370	195.0	198.0	58	1			0.2		22	
1	198.0	201.0	48	1			0.2		1	
2	201.0	204.0	144	-	ļ	-	0.2		2	
3	204.0	207.0	22	-		1	0.2	1	1	
44	207.0	210.0	54	-	60	-	0.2	Į	2	
5	210.0	213.0	68	1			0.2	1	1	
16376	213.0	216.0	110		Caby		0.2	<u> </u>	4	<u> </u>

HOLE No.: Ro-1-80 PAGE 3 of 3 PROPERTY: ROSE LATITUDE: _____ AZIMUTH: 250° INCLINATION: $/-68^{\circ}$ at 257m-60° LONGITUDE: ____ DIP: ___ INCLINATION: ____/ __at ____ INCLINATION: ____/ ___at ____ ELEVATION:

SAMPLE	METR		Cu		Au		Ag		<u>14o</u>	
No.	FROM	T0	ppm.		ppb.		ppm.		ррт.	
16377	216.0	219.0	100				0.2		11	
8	219.0	222.0	58			ı	0.2		1	·
9	222.0	225.0	51	·	60		0.2		5	
16380	225.0	228.0	75				0.2		11	
1	228.0	231.0	145				0.2		2	
2	231.0	234.0	116				0.2		3	
3	234.0	237.0	142	•			0.2		3	
4	237.0	240.0	86		40		0.2		3	
5	240.0	243.0	72				0.2		3	
6	243.0	246.0	116				0.2		3	
7	246.0	249.0	130				0.2	:	3	
8	249.0	252.0	500		25		0.2		2	
9	252.0	255.0	180				0.2		2	
16390	255.0	257.9	147				0.2		2	
		·							·	
										
<u></u>										
										
		 								
· · · · · · · · · · · · · · · · · · ·	1	 								
									<u> </u>	
		 								

APPENDIX C

Statements of Qualification

STATEMENTS OF QUALIFICATION

R.E. Meyers - Geologist

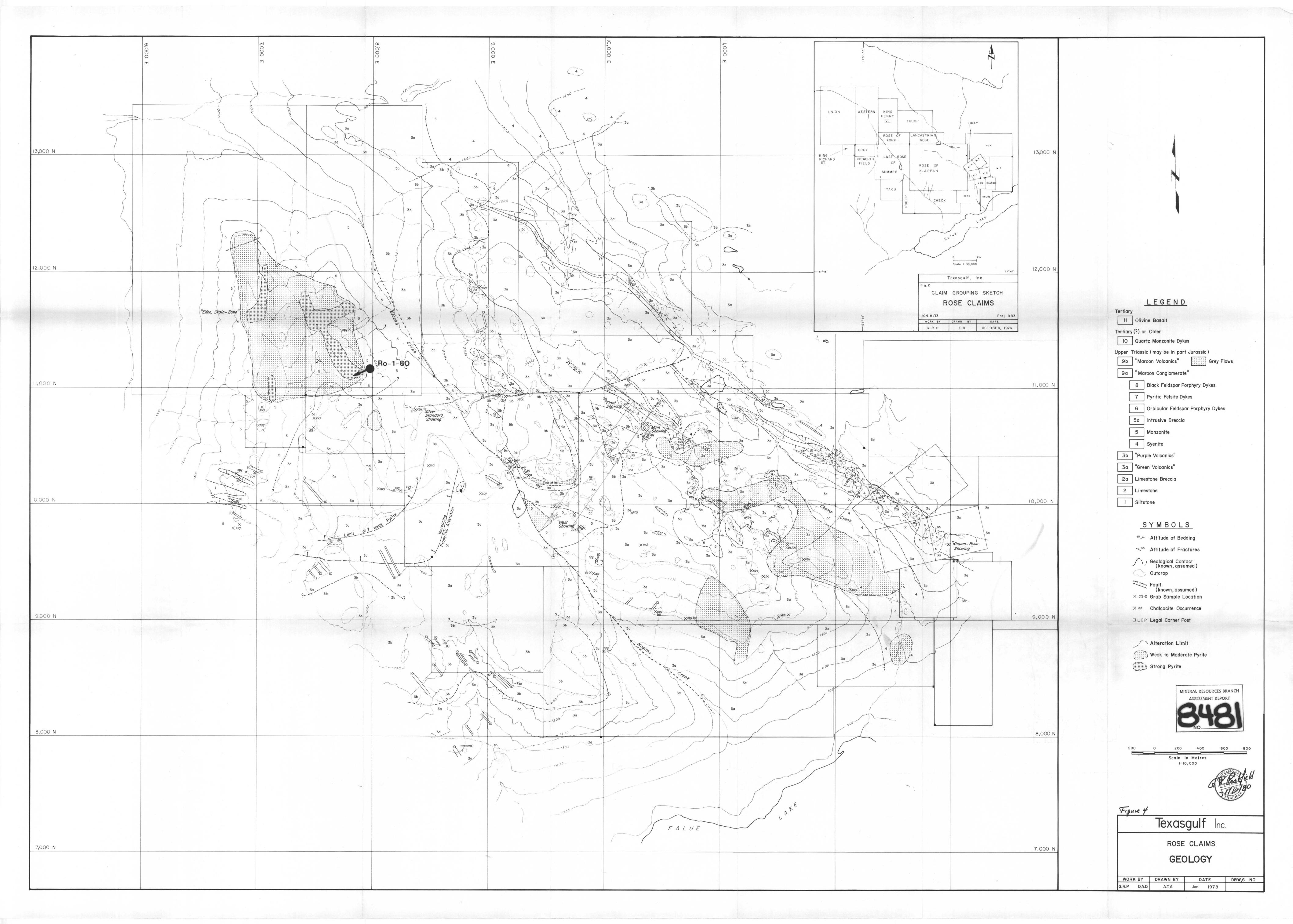
R.E. Meyers holds an M.Sc. degree in Geology from McGill University, granted in 1979. He has been employed by Texasgulf since December 1979, based in Vancouver.

H.R. Schmitt - Geologist

H.R. Schmitt obtained his B.Sc. degree in Geology from the University of British Columbia in 1977. He has been employed in a variety of position by Taxascult, for summer seasons from 1975, and was continuously employed by the Company from April 1978 to Sept. 1979. He is presently enrolled in post-graduate studies at U.B.C.

APPENDIX D

Statement of Expenditures


STATEMENT OF EXPENDITURES

ROSE PROPERTY

(Diamond Drilling)

LACTIES AND FRINGE BENFFITS, TEXASGULF INC.		
R.E. Meyers - Geologist Period Sept 10-13, 4 days 0 \$120	480.00	
H.R. Schmitt - Geologist Period Aug 31-Sept 2, 2 days @ \$90	180.00	
R. Freeman - Assistant Period Sept 11-13 3 days @ \$35	105.00 765.00	765.00
ROOM AND BOARD		
Tg personnel 9 man-days @ \$50 Longyear 56 man-days @ \$50	450.00 2,800.00 3,250.00	3,250.00
HELICOPTER SUPPORT		
Texasgulf Bell 206B 11.6 hrs @ \$330 Northern Mtn. Helicopters Bell 206B (Pro-rated share of invoice)	3,828.00 10,126.00 13,954.00	13,954.00
DIAMOND DRILLING		
Longyear Canada, invoice charges for drilling, survey, core boxes, supplies, moving time, water dalys, Camobilization, etc.		25,607.17
NALYTICAL CUSTS		
84 Cu, Mo, Ag analyses @ \$5.15 17 Au analyses @ \$4.25	432.60 <u>72.45</u> 504.85	504.85
REPORT PREPARA: ICN		
G.R. Peatfield, F.Eng. 4 days @ \$180 Secretarial, dramating, ecc.	720.00 250.00 970.00	970.00
		45,051.02

