80-755-#8-22

1980 Geochemical and Geological Assessment Report

TITLE

Anticlimax Property

CLAIMS

Hunch 1 to 5 inclusive

COMMODITY

Mo

LOCATED

west

20 km north-nerth of Little Fort
Latitude 51°35½'N Longitude 120°18½'W
Kamloops Mining Division 92 P/9W

BY

S.G. Enns

FOR

AMAX of Canada Limited

WORK PERIOD

June 1 to August 22, 1980

AMAX VANCOUVER OFFICE

3492

TABLE OF CONTENTS

SUMMARY				1
Lo	ne:	ral S tion,	tatement	2
REGIONA	L (GEOLO	GY	4
Ro St Mi GEOCHEM	ne ck ru ne	ral S Unit cture raliz	tatements	4 6 6
Re	su.	lts		7
			APPENDICES	
APPENDI	X :	I	 Geochemical Analyses and Procedures for Collection and Processing of Geochemical Samples 	
	:	ΙΙ	- Statement of Costs	
	:	III	- Statement of Qualifications	
			ILLUSTRATIONS	
-			ation MapAfter P	_
			im MapAfter P logy MapI:10,000In Pock	-

4 - Geochemical Map-----1:10,000-----In Pocket

SUMMARY

This report presents results on geological mapping and geochemical soil sampling on the HUNCH 1 to 5 claims of the Anticlimax property conducted between June 1 and August 22, 1980. The property consists of five claims totalling 81 units, wholly owned by AMAX of Canada Limited and located 20 km north-northwest of Little Fort, B.C.

The claims surround the old Anticlimax molybdenite prospect, and cover a portion of the Early Tertiary high-level granite stock (Tuloon Stock) situated in the Quesnel Trough near its eastern fault-bounded contact with the Shuswap Metamorphic Complex. Jurassic andesitic agglomerate forms the country rock to the mineralized Tuloon stock, which consists of leucocratic quartz feldspar porphyry, leucocratic coarse granite, aplite, quartz porphyry, felsite and a late quartz feldspar porphyry. Mineralization near the southeast end of the stock consists of sparse quartz-molybdenite veinlets and minor white quartz-wolframite veins. These veins are commonly accompanied by quartz-sericite-pyrite envelopes.

Soil sampling traverses over the property outlined five anomalous environments. These are:

- a strong W and Mo anomaly over mineralized quartz feldspar porphyry at the southeast end of the Tuloon stock
- 2) a strong Ag anomaly with elevated Mo background partly coincident with the northwest contact zone of the stock
- 3) a Zn-Mo anomaly immediately east of the road east of Moose Lake associated with black argillite
- 4) a weak Zn anomaly in the southeast corner of the Hunch 2 claim overlying argillite and andesitic agglomerate
- 5) an unexplained local Mo anomaly immediately east of central Tuloon Lake.

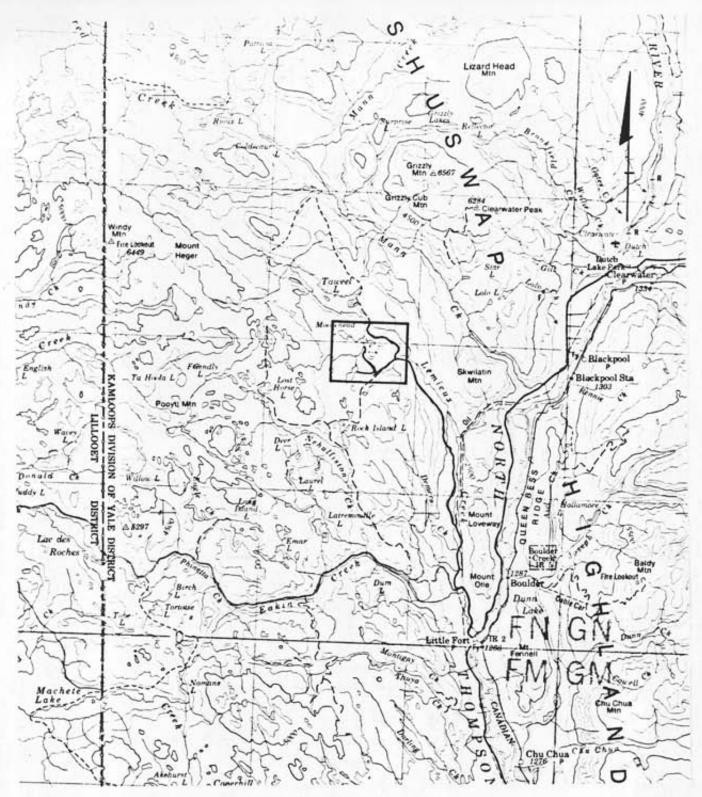
INTRODUCTION

General Statement

Results are presented of 1980 geologic mapping and geochemical sampling on the HUNCH 1-5 claims. Work was conducted during the period June 1 to August 22, 1980 by S. Enns and S. Gentleman assisted by S. Stallard and G. Skok.

Location, Access and Topography

The HUNCH claims (81 units) surround the old Anticlimax property and are situated near the headwaters of Lemieux and Fourteen Mile Creeks, immediately south of Taweel Lake, approximately 20 km north-northwest of Little Fort. The claims are centred at latitude 51°35½', longitude 120°18½'W.

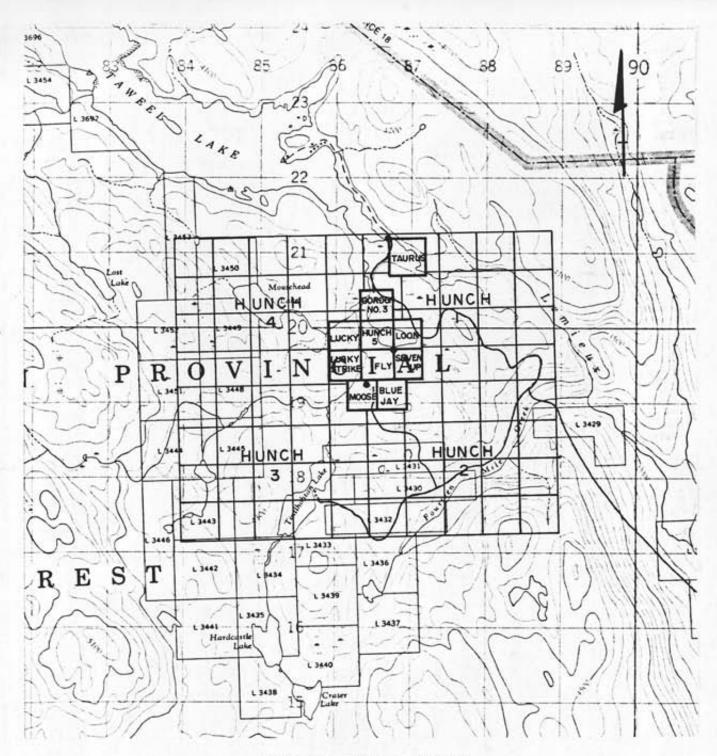

Access is by road approximately 25 km from Little Fort, along Lemieux Creek. The last 12 km require a fourwheel drive vehicle, particularly in wet weather.

Accommodations are available at the Tuloon Lake Lodge and the Nehalliston Fishing Lodge on the south tip of Taweel Lake.

The property lies near the eastern border of the Fraser Plateau just within the Thompson Plateau physiographic province. Topography is gently rolling with elevations ranging from 3,500 feet (1370 m) to 4,500 feet (1070 m). Bush is relatively open jackpine and outcrop is scarce except along ridge tops; the low lying areas are commonly occupied by wet swamps and thicker bush consisting of willow, alder and devil's club in a few places.

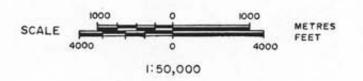
Claims Data

The Hunch 1 to 5 claims are located in the Kamloops Mining Division and their disposition is shown on Figure 2. These claims surround eight prior claims (Seven Up, Blue Jay, Moose, etc.) which cover most of the Anticlimax prospect and are owned by Ken Calder of White Rock, B.C.


AMAX OF CANADA LIMITED

ANTICLIMAX PROPERTY KAMLOOPS MINING DIVISION - BRITISH COLUMBIA

LOCATION MAP


N.T.S. Ref. 92 P 9

AMAX OF CANADA LIMITED

ANTICLIMAX PROPERTY
KAMLOOPS MINING DIVISION - BRITISH COLUMBIA

CLAIM MAP

N.T.S. Ref. 92 P 9 FIG. 2

Pertinent claims data are summarized in the following table:

CLAIM	(Units)	Record No.	Туре	Location	Date of Recording	Expiry
			,	· · · · -		
Hunch 1	20	2241	MGS	10/21/79	10/24/79	10/24/82
Hunch 2	20	2242	MGS	10/21/79	10/24/79	10/24/82
Hunch 3	20	2243	MGS	10/21/79	10/24/79	10/24/82
Hunch 4	20	2244	MGS	10/21/79	10/24/79	10/24/82
Hunch 5	1	49270	MGS	01/31/80	02/05/80	02/05/83
	* A	after applica	ation of	1980 work	to claims	
Seven Up	1	13874	2 Post	07/24/54	08/09/54	08/09/89
Blue Jay	1	13875	2 Post	07/24/54	08/09/54	08/09/89
Moose	1	13876	2 Post	07/24/54	08/09/54	08/09/89
Lucky Strike	1	13877	2 Post	07/24/54	08/09/54	08/09/89
Loon	1	46679	2 Post	07/02/64	07/06/64	07/06/89
Fly	1	46680	2 Post	07/02/64	07/06/64	07/06/89
Lucky	1	46681	2 Post	07/02/64	07/06/64	07/06/89
Gordon No. 3	1	43991	2 Post	07/10/63	07/22/63	07/22/89

REGIONAL GEOLOGY

The property lies within the Quesnel Trough, near its eastern border with the Shuswap Metamorphic Complex. A northwest splay of the north-trending North Thompson fault passes near the northern margin of the property.

A small mineralized granitic stock (the Tuloon Stock) of possibly Early Tertiary age intruded Triassic-Jurassic augite, andesitic agglomerate and black argillite, and is the focus of exploration interest. The Raft batholith, 15 km to the north and the Baldy batholith, 25 km to the southeast have both been dated as Cretaceous in age.

Block faults of mid-Tertiary age, common throughout the Central British Columbia Interior probably underlie prominant north-northeast trending valleys in the vicinity of the property.

Ice movement during the last continental glaciation on the property was towards the south-southeast.

PROPERTY GEOLOGY

General Statement

Field mapping was conducted on the HUNCH 1 to 5 claims surrounding the main Anticlimax showing using hip-chain and compass traverses. A 1:5,000 scale uncontrolled air-photo mosaic was used for ground control. Much of the country is overlain by glacial drift and outcrops are sparse.

Rock Units

Six mappable units in the area of Figure 3 are described in order of decreasing age.

Triassic-Jurassic black argillite, grey phyllite and minor greywacke (Unit 1) underlies the northeast portion of the property. The strata display well developed slaty cleavage, generally subparallel to the northwesterly striking bedding.

Siliceous interbeds of quartzite and thinly bedded tuff are present. These strata generally form subdued outcrops with best exposures in incised stream courses along Lemieux and an unnamed Creek in the southeast corner of Hunch 2.

Hornfelsed argillite (Unit lb) is present in the vicinity of the Tuloon stock east of Moosehead Lake and near Rong Lake.

Dark green andesitic agglomerate (Unit 2) forms rounded and massive outcrops over much of the property. Large green clasts 10 to 30 cm across and composed of coarse pyroxene porphyry andesite are set in a crystal and lithic matrix of chlorite, pyroxene and biotite. Rare, thin, fine grained black pyroxene porphyry flows are present. Patches and irregular veins of epidote, calcite and minor pyrite are present locally. In the vicinity of Tuloon Lake argillite is interbedded with agglomerate.

Leucocratic quartz feldspar porphyry (Unit 3) of the Tuloon stock underlies Hunch 2. This unit, best exposed in the old trenches east of Rong Lake is made up of 20-40% smokey bipyramidal quartz, 20-30% subhedral 3-6 mm orthoclase and 10-15% subhedral 1-2 mm plagioclase. Biotite is usually absent and textural variation, particularly in grain size is common. Feldspar and quartz phenocrysts are locally foliated.

Coarse grained leucocratic granite (Unit 4) identical to that in the main Tuloon stock is exposed in small isolated outcrops east of Moosehead Lake. This unit is compositionally very similar to the porphyry unit and varies texturally from subporphyritic to equigranular. Although biotite deficient, the rock contains 1-2% biotite locally in pockets. Field relations on the Anticlimax prospect suggest that Unit 4 is related to, though slightly younger than, quartz feldspar porphyry (Unit 3).

One small isolated outcrop of aplite (Unit 5) was mapped west of Moose Lake. Relation of this aplite to either Unit 3 or 4 is unknown. At least two phases of aplite are known to be present within the main Tuloon stock on the Anticlimax prospect.

Quartz feldspar porphyry (Unit 6) is a late phase dyke exposed in Trench 14, east of Rong Lake.

Basalt dykes (Unit 7) are the youngest rocks in the vicinity and have been mapped only on the Anticlimax prospect.

Structure

There is an overall northwesterly structural grain reflected by the slaty cleavage of the black argillite, interbedded quartzose bands in the sediment and the elongate direction of the Tuloon stock.

Several inferred transverse topographic and photo lineaments are indicated on Figure 3. The possibility of differential uplift of segments of the mineralized Tuloon stock is suggested by these transverse structures.

Mineralization and Alteration

One 10 cm quartz-wolframite-pyrite vein is exposed in Trench 14 east of Rong Lake. Molybdenite occurs in widespaced quartz-molybdenite veinlets commonly accompanied by envelopes of quartz-sericite-pyrite. Rare fluorite accompanies both types of veins. The rock has, overall, an unaltered appearance.

Hornfels alteration of argillite is present along the stream draining Rong Lake and also east of Moosehead Lake.

GEOCHEMICAL SURVEY

General Statement

A total of 303 soil and stream sediment samples were collected along traverses spaced approximately 500 m apart (Figure 4). Soil samples were collected at a depth of 20 cm every 100 m, and consisted of the iron rich (B) horizon of woodland brown soils.

All samples were submitted to Rossbacher Laboratories, Burnaby, B.C. and analyzed by Atomic Absorption for Mo,Cu,Ag, Pb,Zn. Some samples were additionally analyzed for W and F. Analytical methods are given in Appendix I.

Results

Analysis for individual samples are given in Appendix I and anomalous areas are outlined on Figure 4 using the following thresholds determined by inspection:

Metal	Threshold (ppm)	Peak (ppm)
Mo	+ 10	86
Ag	+ 2.0	5.0
Ag Zn	+300	640
W	+ 50	450

A broad and intense W-Mo soil anomaly overlies the southeast portion of the intrusive stock on Hunch 2, in the vicinity of Rong Lake.

Several soil samples taken immediately east of central Tuloon Lake range in value from 12 to 30 ppm Mo. This anomaly is unexplained.

A strong Ag anomaly with soils ranging from 2.0 to 5.0 ppm Ag and with associated elevated background Mo values is situated on Hunch 4 between Moosehead and Moose Lakes and is open to the south. This anomaly is underlain by small outcrops of andesitic agglomerate, hornfels altered sediments and granite and in part coincides with the inferred northwest

contact of the Tuloon stock. A stream sediment taken in lower Lost Creek contains 27 ppm Mo.

A small Zn-Ag anomaly with soils 300 to 600 ppm Zn and Mo ranging 6 to 25 ppm lies east of the road, east of Moose Lake. This anomaly is underlain by black argillite and phyllite.

On the extreme southeast corner of Hunch 2 claim several soil samples taken over argillite and andesitic agglomerate contain weakly anomalous Zn values (364 to 422 ppm).

S.G. Enns

APPENDIX I

Kossbacher Laboratory

GEOCHEMICAL ANALYSTS & ASSAYERS

CANADA
TELEPHONE: 299 6910
AREA CODE 604

April 30, 1974

SUMMARY OF SOME ANALYTICAL TECHNIQUES CURRENTLY IN USE AT ROSSBACHER LABORATORY

A ANALYTICAL TECHNIQUES FOR GEOCHEMICAL SAMPLES

SAMPLE PREPARATION

Packages of samples are opened as soon as they arrive at the laboratory and the bags placed in numerical sequence in an electrically heated sample drier (maximum temperature 70°C).

After drying soil and sediment samples they are lightly pounded with a wooden block to break up aggregates of fine particles and are then passed through a 35 mesh stainless steel sieve. The coarse material is discarded and the minus 35 mesh fraction replaced in the original bag providing that this is undamaged and not excessively dirty.

Rock samples are exposed to the air until the outside surfaces are dry; only if abnormally wet are rocks placed in the sample drier. Rock samples are processed in such manner that a fully representative 1/2 g. sample can be obtained for analysis. The entire amount of each sample is passed through a jaw crusher and thus reduced to fragments of 2 mm. size or less. A minimum of 1 kg. is then passed through a pulverizer with plates set such that 95% of the product will pass through a 100 mesh

Rock Chine

Commosite rock thin samples centrally consist of some ten small fragments broken from unweathered outcrop with a steel hammer. Each fragment weighs some 50 cms. Samples are placed in strong polythene bags and sealed with non-contaminating wire tabs. Samples are restricted to a single rock type and obvious mineralization is avoided.

Soil, sediment and rock samples are packed securely in cardboard boxes or canvas sacks and dispatched by road or air.

Procedures for Collection and Processing of Geochemical Samples

Analytical Methods for Ag, Mo, Cu, Pb, Zn, Fe, Nn, Ni, Co and N in sediments and soils; Mo, Cu, Zn, Ni and SO4 in waters.

Amax Exploration, Inc. Vancouver Office.

September 1970

SNIPLE COLLECTION

Soils

B horizon material is sampled and thus organic rich topsoil and leached upper subsoil are avoided. Occasionally organic rich samples have to be taken in swampy depressions.

Samples are taken by hand from a small excavation made with a cast iron mattock. Approximately 200 gms of finer grained material is taken and placed in a numbered, high wetstrength, Kraft paper bag. The bags are closed by folding and do not have metal tabs.

Observations as to the nature of the sample and the environment of the sample site are made in the field.

Drainage Sediments

Active sediments are taken by hand from tributary drainages which are generally of five square miles catchment or less. Composite samples are taken of the finest material available from as near as possible to the centre of the drainage channel thus avoiding collapsed banks. More than one sample is taken if marked mineralogical or textural segregation of the sediments is evident.

Some 200 gm of finer material is collected unless the sediment is unusually coarse in which case the weight is increased to 1 kg. Samples are placed in the same type of Kraft paper bag as are employed in soil sampling. Water samples are taken at all appropriate sites. Approximately 100 mls are sampled and placed in a clean, screw sealed, polythene bottle. Observations are made at each site regarding the environment and nature of the sample.

nersen. There can block are appropriately beautiful than 7 of the sector at it coild after jaw or raing by seams of a Jones not there. After privarising the sample is mixed by rolling on paper and in them placed in a Graft paper bag.

SNIPER DEGROTECH

Disention tuber (100 x 15 mm) are marked at the 5 ml level with a Glawond pencil. Tubes are cleaned with hot water and concentrated HCL. 0.5 g camples are weighed accurately, uning a Fisher Dial-C-Gram balance, and placed in the appropriate tubes.

To each of the ramples thus prepared are added 2 ml of an acid mixture comprising 15% mitric and 5% perchloric acids. Table of tubes are then placed on an electrical bot plate, brought to a gentle boil (1 hour) and digested for 42 hours. Sa ples unusually rich in organic material are first larged in a percelain critible heated by a bussen burner before the acid mixture is aided. Digestion is performed in a stain-less steel five book.

After digestion tuber are removed from the hot plate and the volume is brought up to 5 ml with deionized water.

The tubes are shaken to mix the solution and then centrifuged for one minute. The resulting clear upper layer is used for C., No. Ph. En. Ag. Fo. No. Ni and Co determination by a Perkindler 2.08 atomic absorption spectrophotometer. Analytical pages, and are given on the following pages.

ANALYTICAL PROCEDURES

Silver

- Scope This procedure covers a range of silver in the sample from less than .5 to 1000 ppm
- Summary of Method The sample is treated with nitric and perchloric acid mixture to oxidize organics and sulphides. The silver then is present as perchlorate in aqueous solution. The concentration is determined by atomic absorption spectrophotometer
- 3. Interferences Silver below 1 gamma/ml is not very stable in solution. Maintaining the solution in 20% perchloric prevents silver being absorbed on the glass container. Determination must be completed on the same day as the digestion.

Samples high in dissolved solids, especially calcium, cause high background absorbance. This background absorbance must be corrected using an adjacent Ag line.

Silver AA Settings P.E. 290

Lamp - Ag

Current 4 ma position 3

Slit 7 A

Wavelength 3231A Dial 287.4

Fuel - acetylene - flow - 14

Oxidant - air - flow - 14

Burner - techtron AB 51 in line

Maximum Conc. 3 to 4x

Calibration

- 1. Set 1 gamma/ml to read 40 equivalent to 20 gamma/gm Factor 1 x meter reading Check standards 4, 10, 20, 40 ppm Ag in sample
- 2. Set 15 gamma/ml to 100 equivalent to 100 ppm Check standards 40, 100 ppm Pactor directly in ppm Ag
- 3. Rotate burner to maximum angle Set 10.0 gamma/ml Ag to read 100 Check standards 100, 200, 400, 1000 ppm Ag Pactor 10x scale reading
- 4. Samples higher than 1000 ppm should be re-analyzed by assay procedure
- 5. Background correction for sample reading between 1 to 5 ppm Calibrate AA in step 1 Dial wavelength to 300 (peak) Read the samples again Subtract the background reading from the first reading

Standards

- 1. 1000 gamma/ml Ag 0.720 gm Ag₂SO₄ dissolved in 20 mls Hx10₃ and dilute to 500 mls
- 2. 100 gamma/ml Ag 10 mls of above + 20 mls HClO4, dilute to 100 mls

3. Resovery spiked standard

5 gamma/al Ag - 5 mls 100 gamma/al dilute to 100 als with "mixed" acid

Working AA Standards

Pipette .2, .5, 1, 2, 5, 10 mls of 100 gamma/ml and 2, 5 mls 1.00 gamma/ml dilute to 100 mls with 20% HClO4. This equivalent to 4, 10, 20, 40, 100, 200, 400, and 1000 ppm Ag in the sample .50 g diluted to 10 mls.

Recovery Standard

Pipette 2 mls of 5 gamma/ml Ag in mix acids into a sample and carry through the digestion. This should give a reading of 20 ppm Ag + original sample content.

Follow the general geochemical procedure for sample preparation and digestion.

For low assay Ag, the same procedure is used. Ag is then calculated in oz/ton.

'I ppm = .0292 oz/ton conversion factor oz/ton = .0292 x ppm Aq

Min Goodhomical AA Sctting

Lamp Multi element Ca. Ni. Co. Mn Cr

Current 10 #4 Slit 7A

Wave length 4030.8 Dial 425.2

Fuel - Acetylene Flow 14.0

Oxidant - Air Flow 14.0

Burner - P.E. short path (or AB 50)

Range

- 0 100 gamma/ml Factor 20x 0 to 2000 ppm
- 0 200 ganma/ml Factor 40x 0 to 4000 ppm

Burner 90°

- 0 1000 gamma/ml Factor 200x 0 to 20,000 ppm
- 0 2000 gamma/ml Factor 400x 0 to 40,000 ppm

EDTA Extraction - use AB 51 in line

0 - 20 gamma/ml Factor 4x - 0 to 400 ppm

Standards

Fisher 10,000 gamma/ml (ml)

10x Dilution 1000 gamma/ml

Pippette

- .5, 1, 2, 3, 5, 8, 10, ml of 1000 gamma/ml
- 2, 3, 5, 8, 10, 15, 20 ml of 10,000 gamma/ml dilute to 100 mls with 20% HClO4. This gives
- 5, 10, 20, 30, 50, 80, 100, 200, 300, 500, 300, 1000, 1500, 2000 gamma/ml

Mo Goodhemical MA Satting

Lamp ASL H/C Mo

Current 5 #5 Slit 7A

Wavelength 3133 Dial 260.2

Fuel - Acetylene Flow 12.0 to give 1" red feather

Oxidant - Nitrous oxide Flow 14.0

Burner - AB 50 in line

Caution read the operation using N_2O and acetylene flame at end of general AA procedure

Range

- 0 10 gamma/ml Factor 2x 0 to 200 ppm

 Rotate burner to max. angle
 - 0 50 gamma/ml Factor 10 x 0 to 1000 ppm
 - 0 100 gamma/ml Factor 20 x 0 to 2000 ppm

Standards 1000 gamma/ml

Dissolve .750 gms MoO3 (acid molybdic) with 20 mls $\rm H_2O$, 6 lumps NaCH, when all dissolved, add 20 mls HCl, dilute to 500 mls 100 gamma/ml - 10 x dilution

Pipette

- .2, .5, 1, 2, 3, 5, 2, 10 mls of 100 ganda/ml
- 2, 3, 5, 9, 10 mls of 1000 genuma/ml add 5 mls 10% AlCl $_3$ and dilute to 100 mls with 20% HClO $_4$

This gives

.2, .5, 1, 2, 3, 5, S, 10, 20, 30, 50, 80, 100 gamma/m2 No

Zn Geochemical AA Setting

Lamp Zn

Current 8 #3 Slit 20A

Wave length 2133 Dial 84.9

Fuel - Acetylene Flow 14

Oxidant - Air Plow 14

Burner - P.E. short path 90°

Range

Pipette

0 - 20 gamma/ml Factor 4x - 0 to 400 ppm

0 - 50 gamma/ml Factor 10x -0 to 1000 ppm

For Waters - Burner AB- 51 in line 1 gamma/ml read 100 to give 0 to 1000 ppb

High Zn Burner Boling in line. Wavelength 3075. Dial 250 Slit 7A
Fuel 14 Air 14.5

0 to 1000 gamma/ml read 0 to 20 Factor 400 x

Pure Standard 10,000 gamma/ml

1 gm Zn dissolved, $\rm H_2O$, $\rm HCl$, $\rm HNO_3$, $\rm HClO_4$, fumed to $\rm HClO_4$ -make up to 100 mls $\rm H_2O$ 1000, 100 gamma/ml and 100 ml by dilution in 20 % $\rm HClO_4$ 0 to 200 gamma/ml Zn use combined Cu, Ni, Co, Pb, Zn standards

1, 2, 3, 5, 8, 10 mls of 10,000 gamma/ml \sim dilute to 100 mls with 20% HClO4 to give

100, 200, 300, 500, 800, 1000 gamma/ml Zn for high standards

Co Goochemical AA Setting

Lamp - 5 multi element

Current 10 #4 Slit 2A

Wavelength 2407 Dial 133.1

Fuel - Acetylene Flow 14

Oxidant - Air Plow 14

Burner - AB 51 in line

Range

0 - 10 gamma/ml read 100 Factor 2 x reading to 200 ppm

0 - 20 gamma ml read 100 Factor 4 x reading to 400 ppm

Burner at maximum angle

0 - 100 gamma/ml read 100 Factor 20 x reading to 2000 ppm

0 - 200 gamma/ml read 100 Factor 40 x reading to 4000 ppm Standards - 1000 gamma/ml

1.000 gm cobalt metal dissolved in HCl, HNO, and funed into HClO₄, dilute to 1 liter

Pipette

1, 2, 10, 20 mls into 100 ml vol flasks diluted to mark with 20% $HClO_{\delta}$

This gives

10, 20, 100, 200 gamma/ml Co

Mixed - combination standards of Cu, Ni, Co, Pb, Zn of

1, 2, 5, 10, 20, 30, 50, 30, 100, 150, 200 gandma/ml are used for calibration

du Grochemical AA Setting

Lamp Single Cu or

5 multi element

Current 10 for multi element #4 Slit 7A

4 for single #3 Slit 7A

Wavelength 3247 Dial 280

Burner Techtron AB 51 (For Cu in natural waters)

P.E. Short Path (For geochem)

Fuel Acetylene Flow 14

Oxidant Air Flow 14

Range

- 0 5 gamma/ml Factor 1x to 100 ppm (for low Cu)
- 0 20 gamma/ml Pactor 4x to 400 ppm

Burner 90°

0 - 200 gamma/ml Factor 40x to 4000 ppm

Wavelength 2492 Dial 147

Burner in line

Range

- 0 1000 gamma/ml Factor 200x to 20,000 ppm
- 0 2000 gamma/ml Factor 400x to 40,000 ppm

Higher range than 40,000 ppm requires 10x dilution

Standard<u>s</u>

- 10,000 gamma/ml
- 1.000 gm metal powder, $\rm H_2O$, $\rm HCl$, $\rm HNO_3$ until dissolved, add $\rm HClO_4$, fume dilute to 100 mls

1000 gamma/ml 10x dilution above in 20% HClO4

2000 gamma/ml 20 mls 10,000 gamma/ml - dilute to 100 mls in 20% $\rm HClO_A$

100 gamma/ml 10x dilution 1000 gamma/ml dilute to 100 mls in 20% $HClO_4$

200 gamma/m1 10x dilution 2000 gamma/m1 dilute to 100 m3s in 20% $HC10_4$

Pipette

2, 3, 5, 8, 10 mls 100 gamma/ml - dilute to 100 mls with
 20% HClO₄ to give 1, 2, 3, 5, 3, 10 gamma/ml
 Combined standards Cu, Ni, Co, Pb, Zn

1, 2, 5, 10, 20, 30, 50, 80, 100, 150, 200 gamma/ml

Fo Geochemical AA Setting

Lamp - Fe

- Do not use multi element Fe

Current 10 #4 Slit 2A

Wavelength 3440.6 Dial 317.5

Fuel - Acetylene Flow 14.0

Oxidant - Air Flow 14.0

Burner - PE Short Path 90°

Range

 $0 - 5000 \text{ gamma/nd} 0.1 \times \% - 0 \text{ to } 10.0\%$

0 - 10,000 gamma/ml 0.2 x % - 0 to 20.0%

Higher Fe - 10 x dilution

Standards 10,000 gamma/ml

Weigh 5.000 gms iron wires, into beaker, add $\rm H_2O$, HC1, HNO3, HC104, heat to HC104 fumes. Add HC104 to 100 mls + 100 mls $\rm H_2O$, warm, dilute to 500 mls

Pipette

1, 5, 10, 20, 30, 50, 80 mls 10,000 gamma/ml dilute to 100 mls with 20% HClO4 to give

100, 500, 1000, 2000, 3000, 5000, 3000 gamma/ml to be equivalent to .2, 1.0, 2.0, 4.0, 6.0, 10.0%, 16.0% Fe in geochem sample

Ni Goochemical AA Setting

Lamp P.E. H/C. Ni or multi element Cu, Ni, Co, Mn, Cr

Current 10 #4, Slit 2A

Wave length 3415 Dial 312.5

Fule - Acetlylene Flow 14.0

Oxidant - Air Plow 14.0

Burner AB 51 in line

Range

- 0 20 gamma/ml Factor 4x 0 400 ppm
- 0 100 gamma/ml Factor 20x 0 2000 gamma
- 45° 0 200 gamma/ml Factor 40x 0 4000 ppm
 - 0 500 gamma/ml Factor 100x 0 10,000 ppm

Ni in waters and very low ranges

Wave length 2320 Dial 113

Range 0 - 5 gamma/ml Factor 1x - 0 - 100 ppm

Standards 10,000 gamma/ml

1.000 gm pure Ni metal dissolved in HCl, HNO_3 , $HClO_4$ to perchloric fumes, dilute to 100 ml H_2O

1000 gamma/ml and 100 gamma/ml Successive 10x dilutions in 20% HClO;

- 1, 2, 5, 8, 10 mis of 100 ganma/ml
- 2, 5, 9, 10 mls 1000 gamma/ml
- 2, 5, 8, 10 mls 10,000 gamma/ml dilute to 100 mls in 20% HClO4. This gives
- 2, 5, 8, 10, 20, 50, 80, 100, 200, 560, 860, 1000 grama/ml N.
 Combined Standards Cu, Ni, Co, Pb, Zn is used as a working standard

- Sinter in rotary for 2 to 3 minutes (Flux dull read for one minute)
- 3. Cool, add 10 mls $\rm H_2O$, heat in sand bath to boiling, cool, let sit overnight
- 4. Stir, crush, and mix. Let settle
- 5. Take 2 ml aliquot into screw cap test tube
- 6. Add 7 mls SnCl2, heat in hot water bath for 5 minutes (80°C)
- 7. Cool to less than 15°C
- Add 1 ml 20% KSCN, mix (if lemmon yellow; compare color standard 10x)
- 9. Add 3 ml extractant, cap, shake vigorously 1 minute
- 10. Compare color

Molybdenum in Water Samples

- 1. Transfer 50 mls to 125 separatory funnel
- 2. Add 5 ml .2% ferric chloride in conc HCl
- 3. Add 5 mls of mixed KSCN and SnCl2
- 4. Add 1.2 mls isopropyl ether, shake for 1 minute, and allow phases to separate
- 5. Drain off water
- 6. Compare the color of extractant

Standardization

Pipette 0, .2, .5, 1, 2, 3, 4, 5, mls of 1 gamma/ml and 1, 1.5,

2, mls of 10 gamma/ml dilute to 50 mls with demineral zed $\rm H_2O$, as continue step #2.

T is equivalent to

1, 4, 10, 20, 40, 60, 30, 100, 200, 300, 400 ppb ${\rm Ho}$ Artificial color - Nabob orange extract dilute with 1:1 ${\rm H}_2{\rm O}$ to methanol to match. Seal tightly

SnCl2 - 15% in 15% HCl

300 gm $SnCl_2$. $2H_2O$ + 300 mls HCl_2 until $SnCl_2$ dissolved dilute to 2 liters

KSCN - 5% in H2O

Mixed SnCl2 - KSCN

3 parts SnCl₂ to 2 parts KSCN

Pb Geochemical AA Setting

Lamp ASL H/c Pb

Current 5 ma Slit 7A

Wave length 2833 Dial 208

Fuel - acetylene Flow 14

Oxidant - air Flow 14

Burner AB 51 in line

Range

0 - 20 gamma/ml to read 0 to 30. Factor 5x 0 to 500 ppm

0 - 200 gamma/ml to read 0 to 00. Factor 50x 0 to 5000 ppm Standards - 10,000 gamma/ml

1.000 pure metal, dissolved in 1200_3 , fumed to $HClO_4$ make up to 100 mls in 20% $HClO_4$

1000 gamma/ml and 100 gamma/ml Successive 10x dilutions in 20% HClO4

Pipette

1, 2, 5, 8, 10 mls 100 gamma/ml

2, 5, 3, 10, 20 mls 1000 gamma/ml dilute to 100 mls in 20% HClO₄ this gives

2, 5, 9, 10, 20, 50, 30, 100, 200 gamma/m.I
 Combined Standards Cu, Ni, Co, Pb, Zn, are used as working standards

W in Soils and Silts

Reagents and apparatus

Test tubes - pyrex disposable

Test tubes - screw cap

Bunsen Burner

Flux - 5 parts Na₂CO₂

4 parts NaCl

1 part KNO3 pulverized to -80 mesh

7% SnCl2 in 70% HCl

20% KSCN in HoO

Extractant - 1 part tri-n-butyl phosphate

9 parts carbon tetrachloride

Standards

1000 gamma/ml W

.18 gms Na_2WO_4 2H₂O dissolved in H₂O, make up to 100 mls 100 gamma/ml, 10 gamma/ml by dilution

Standardization ·

Pipette .5, 1, 2, 3, 5, 8, 10 ml of 10 gamma/ml and 1.5, 2 mls of 100 gamma/ml - dilute to 10 mls continue from step #4

Artificial colors - Nabob pure Lemon Extract, dilute with 1:1 ethanol and water to match. Tightly seal these for permanent standards

Procedure

1. Weigh 1.0 gram sample, add 2 gm flux, mix

Water Samples Run for AA

- 1. Cu 2 gamma/ml reads 80 scale therefore 1 unit = 25 ppb
- 2. Zn 1 gamma/ml reads full scale therefore 1 unit = 10 ppb
- 3. Ni 2.5 gamma/ml reads 50 scale therefore 1 unit = 50 ppb

Burner: long slot techtron burner in line

xxi

Sulphate in Natural Waters

- 1. Pipette 0.5 ml sulphate reagent mix into a colorimetric tube
- 2. Add 5 ml water sample and mix
- 3. Read at 343 Muagainst a demineralized water blank
- 4. Read again at 400% and subtract from sulphate reading
- 5. Calculate ppm sulphate from the graph

Reagent

Dissolve 54 grams red mercuric oxide (J.T. Baker 2620- Can Lab) in 185 ml 70% perchloric acid and 20 ml $\rm H_2O$, shake for one hour. Add 46.3 grams ferric perchlorate $\rm E$ Fe(ClO₄)₃ . 6H₂O I (GFS 39) and 47 grams aluminum perchlorate $\rm E$ Al (ClO₄)₃ . $\rm OH_2O$ I (GFS 2) Add 400 ml water to dissolve, let settle overnight, decant into bottle and make to 1 liter

pH MEASUREMENTS

Soil and drainage sediment samples are dampened with water in a glass beaker to a pasty consistency. Demineralized water is used for this purpose as it has a low buffer capacity and thus does not influence the pH of the sample. Measurement is made with a Fisher Acument pH meter. Electrodes are stored in buffer overnight. A 30 minute warm up time is allowed for the instrument each morning. A 10 ml aliquot is taken from water samples for pH measurement.

ROSSBACHER LABORATORY

Rossbacher

- Kossbacher

Rossbacher Laboratory

GEOCHEMICAL ANALYSTS & ASSAYERS

TO: AMAX MINERALS EXPLORATION

CERTIFICATE OF ANALYSIS

2225 S SPRINGER AVE BURNABY, B.C. CANADA TELEPHONE 299 6910 AREA CODE: 604 CERTIFICATE NO.

INVOICE NO.

DATE ANALYSED JUNE 20,1980

60.	Sample	pH	Me	Cu	As	3-	Ch			Ne
13	2030881		10	326	2:6	540	16			01
11			3	58	08	220	10			02
	3		3	36	04	2.76	8			03
2	14		2	60	1.0	264	12			04
05	- 2		7	52	04	176	8			05
26	the second secon	-	4.	32	04	156	9			06
27	4		1	20	04	130	9			07
18	- 8		1	42	0.6	120	3			08
90	0		4	84	10	364	6			09
10	10		3	32	02	122	4			10
11	1 11		6	68	03	244	(11
12	12		4	42	04	272	8			12
13	13		3	14	D. 2	212	4		19 3	13
14	14		1	26	o.K	150	6			14
15	15		3	22	02	128	4			15
16	16		2	36	0.4	220	6			16
17	17		3	48	0.2	126	4			17
18			1	44	6.8	132	2			18
19	1/3		2	62	0.2	130	4			19
20	STD E		3	80	0.2	136	14			20
21	20		2	92	0.2	90	2,			21
22	021		3	52	0.4	142	6			22
23	25		4	86	0.2	206	6			23
24	23		3	64	0.2	138	4			24
25	1.24		2	74	0.2	150	3			25
26	0.25		3	52	0.4	198	P			26
27	26		2	52	0.2	84	6			27
28	27		2	42	0.2	136	6			28
29	28		1	32	02	2/0	6			29
30	20		2	40	04	364	10			ж
31	30		3	40	04	366	6			31
32	3/		4	94	06	370	4			32
33	32		2	90	v 3	422	19			33
34	23		2	16	04	174	8			34
35	54		1	56	02	258	6			35
36	33		1	62	02	112	6			34
37	36		3	120	0.2	140	12			37
38	37		1	44	0 2	96	6			31
39	33		1	46	0.2	110	2		-	31
40	57D =		4	02	0 2	144	14	1	Ross	1 6 4

Rossbacher Laboratory

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

2225 S. SPRI BURNABY, B. CANADA TELEPHONE 299-6910 AREA CODE: 604 CERTIFICATE NO. X

INVOICE NO.

TO: AMAX MINERALS EXPLORATION 601 - 535 THURLOW ST. VANCOUVER, B.C.

DATE ANALYSED JUNG 20 1980 PROJECT/OLY, ANTICLIMITY

No.	Sample	pH	No	Cw	By	弘	06							No.
01	KOASS 39		1	af	0.2	92	2							91
02	30ASS 39		1	112	0.2	92	2							02
03	544		4	36	0.2	74	4							03
04	4		2	is	0.4	204 128	6							04
05	43		2	16	0.2	204	4							05
06	144		3	36	02	128	6474							06
07	45		3 2	30	02	98	4							07
OB.	4/		7	34	0.2	98	14				-		-119	80
09	47 47 43 44 50 57		2	26	02	112 114 132 78 92	14							09
10	40		3	48	2.7	114	4							10
11	40		1	24	3 L	132	4							11
12	207		1	28	0.2	78	46466848626							12
13	51		2	36	04	92	4							13
14	32		2	48	04	106	7							14
15	23		7	30	0.2	106	7							15
16	54		379	14	2.4	110	P							16
17	152		3	66	- 4	104	4							17
18	253 S56		a	124	7.4	172	1							18
19			1	120	0.2	130	6							19
20	- 2		6	30	0.2	40	72				1500			20
21	4) 4)		4	30	0.2	141	6							21
22	39		44.5	30	08	192	6							22
23	60		+	61	0.2	101	6							23
24	61		-	46	0.2	148	6						- 0	24
25	64 63 64 63		5 4 2	46	24	158							-53	25
26	23		2	26	24	136	448	1						26
27	1.0		3	26	04	152	4							27
28	128	1	3	12	04	152	8							28
29	-			-	-									29
30													10	30
31														31
32														32
33														33
34				100	W.									34
35			-			1			100	-	1			35
36													-	36
37						100								37
38											1			38
39			-			1							16	39
40			1							10	100	0.9	-11	40

2226 S. SPRINGER AVE. BURNABY, B. C. CANADA RELEPHONE 299-6910

AREA CODE: 604 CERTIFICATE NO. Y

GEOCHEMICAL ANALYSTS & ASSAYERS

INVOICE NO.

CERTIFICATE OF ANALYSIS

TO: AMAX MINERALS EXPLORATION

601 - 535 THURLOW ST. VANCOUVER, B.C.

VANCOUVER OFFICBATE ANALYSED JULY 1980 PROJECT /B/4

io.	Sample	pH	Mo	Cv	Ag	Zn	Pb			No
01	2008867	1	4	28	C.S	116	6			01
02	68	1	5	88	0.2	242	4			02
03	69	1	1	12	0.2	70	2			03
04	70	1	2	42	0.4	188	12			04
05	7/	1	3	54	10	160	10			0.5
06	72	1	3	18	0.2	136	2 2			.04
07	73	1	3	24	0.2	120	2			07
08	74	1	4	44	0.8	248	2			06
09	75	1	3	16	0.4	84	2			09
10	20DC576	V	3	18	0,8	94	2			10
11	77	1	3	24	0.6	82	2			- 11
12	78	7	2	20	0.4	52	2			12
13	79	1	3	80	1.0	120	2			13
14	80	- 1	2	14	0.2	62	2			14
15	81	1	2	28	0.4	83	2			15
16	8/	1	3	110	0.2	104	1 2 Z			16
17	83	1	1	10	0.2	58	2			17
18	84	1	3	24	0.2	148	4			18
19	84	/	4	20	0.2	108	78			19
20		/	17	190	0.4	108	78			20
21	80 KSS 86	1	3	32	0.2	262	10			21
22	87	1	2	20	0.4	114	2 2			22
23	88	1	4	32	0.2	490	2			23
24	87 87 89	1	3	36	0.2	142	4			24
25	90	1	12	32	0.2	156	\$			25
26	91	1	16	68	0.2	154	8			26
27	92	1	9	28	0.2	350	8			27
28	114	1	9	34	0.2		X	-	_	28
29	115	1	1	24	0.2	186	2			29
30	80ASS116	1	2	34	0.2	3.78	2.	-		×
31	117	1	3	78	0.2	250 240 136	166			31
32	118	1	4	140	0.2	240	4			32
33	119	1	3	53		136	2			33
34	120	1	1	6	0 2	114	1			34
35	121	13	2	14	0.2	104	2	_		35
36	122		2	3.2	0.2	138	4			34
37	123	/	4	68	0.2	142	4			37
38	-> 125	1	3	24	c 3	640	d			31
39	80ASS126	1	4	132	0 2	132	4		4	/31
40	5100		18	184	04	116	28	10	o not	A 40

Rossbacher Laboratory

GEOCHEMICAL ANALYSTS & ASSAY

CERTIFICATE OF ANALYSIS TO: AMAX MINERALS EXPLORATION 601 - 535 THURLOW ST. VANCOUVER, B.C.

VANCOUVER OFFICE

2225 S. SPRIN BURNABY, B. C. CANADA TELEPHONE: 299 6910 AREA CODE 604

PROJECT 1064

CERTIFICATE NO. 8029

INVOICE NO.

DATE ANALYSED JULY 1980

No.	Semple	pH	Me	Ag	cu	Zn	Pb				No.
01	80 ASS 127	1	1	0.2	24	174	4				01
02		4	2	02	24	134	8				02
03	128 129 130 131 133 134 135	1	1	0.2	28	170	1			7 1	03
04	130	1	4	0.6	34	130		0			04
05	131	1	1	0.4	37	144	12212				05
06	132	1	2	02	28	170	Z				06
07	133	1	2	0.2	52	93	1				07
08	134	10	2	0.2	70	132	2				08
09	134	1	2	2.2	46	170	L				09
10		1	3	0.2	36 18 18	326	2	Section 1			10
11	129	1	5	02	18	106	10				11
12	13.9	1	ソス	0.4	18	182	6				12
13		1	6	0.2	58	172	12		4		13
14		1	7	02	3 6	189	14				14
15		1/	11	02	36	126	10				15
16	143	1	18	0.2	44	13/2	10				16
17		1/	18	0.8	80	194	12		1		17
18	144	17	3	0.2	JX	130	9				18
19			12	0.2	32	290	2	1			19
20	510 A		5	6.2	20	26	18				20
21	30ASS 147	1	33	0.2	20	730 290 260 228	13				21
22			14	0.2	28	120	6				22
23	144	17	18	0.2	36	184	6				23
24		11	49		34	1772	8				24
25	151	17	34	0.2	152	132	6				25

31	157	40	4	0.2	3.8	92	6				31
32	13:8	7	×	0.4	100	112	14				32
	180	/	3	0.2	28	106	8				33
13	160	1	3	0.6	16	106	76				34
35	161	2	3	0.4	34	28	6				35
36	162	12	2	0.2	6	52	6				34
37	163	1	4	0.2	28	90	3				33
38	154	1	3	0 2	8	110	6				38
39	20100111	2	7	02	36	178	6			-	35
40	cea 1		6	0.3	20	32	14	1	- 7	10	40

Certified by

GEOCHEMICAL ANALYSTS & ASSAYERS

2275 S SPRINGER AVE. BURNABY, B.C. CANADA

TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE NO. 2/

DATE ANALYSED JULY 1970

VANCOUVER OFFICE PROJECT 1064 TO: AMAX MINERALS EXPLORATION 601 - 535 THURLOW ST. VANCOUVER, B.C.

CERTIFICATE OF ANALYSIS

No.	Sample	pH	Ho	Cw	An	Zn	40			No
01	80ASS/67		3	28	1.0	332	12			01
02	163	1	14	184	04	102				02
03	1/0	1	1	16	0,0	120	74			03
04	170	9	2	20	0,4	58	18			04
05	171		7	12	02	56	180 244 244			05
26	172			8	0.9	10	2			06
17	173	QO.	-f.	8	0.2	44	4			0.7
08	174	5	1	20	0.4	136	8			08
09	175	19	1	4	1.2	40	4			09
10	176	1	-1	20	6.4	12	R			10
11	177	35	1	48	0.2	94	10			11
12	80AS\$118	100	1	32	02	16	4			12
13	STOR		29	160	0.8	138	98			13
14				-	14.5	1000	1983		CUA PROPERTY	14
15										15
16										14
17										17
18										18
19		-						201 0		19
0										20
1										21
22										22
23										23
24										24
25				1						25
16		-								26
7										27
										28
9										29
0										30
1		7.17								31
2										32
33										33
14										34
15										35
6										36
17										37
38										36
39									1	39
40									Mont	40

Rossbacher Laboratory

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

VANCOUVER OFFICE

BURNABY, B CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE NO. 80443

INVOICE NO.

DATE ANALYSED PUG, 1980

	AMAX MINERALS EX 801 - 535 THURLOW VANCOUVER, B.C.						OFFICE	PROJE	100 m	AUG, 19
No.	Sample	pH	Mo	Cu	43	2n	Pb			No
01	80 ASS 93		12	88	0.8	120	10			01
02	94		30	78	1.4	190	8			02
03	95		20	100	1.4	174	6			03
04	96		6	52	1.4	136	6			04
05	97		3	24	1.0	146 146 138	10			05
06	98		3	22	0.4	146	10			06
07	99		3	20	0,2	92	8			07
06	100		4	68	1.0	138	10			06
99	161		14	72	08	136	10			09
10	BOASS 102		9	20	0.4	62	10			10
11	103		149	74	2.5	184	6			11
12	104		7	38	02	176	6			12
13	105		4	88	0.4	298	2			13
14	106		2	34	1.0	120	28			14
15	107		5	36	0,6	132	/2			15
16	108		5	34	040	100	10			16
17	109		17	94	02	126	8			17
18	110		11	38	0.2	126	6			18
19	111		4	44	0.2	116	10			19
20	5103		32	152	08	144 148 278	102			20
21	80ASS 112		3	62	1.0	148	12			21
22	113		4	86	1.0	2.18	10			22
23	80ASS 124		3	68	1.0	244	12			23
24	80ASS 179		11	82	0.4	364	20	-	-	24
25	180		25	46	1.4	36	28	-		25
26	181		2	16	06	132	12	-	-	24
27	181		1	20	0,4	166	10	-	-	27
28	183		3	16	0.2	249	78		-	25
29	184		3	20	0.6	156		_		×
30	80 ASS 185		3	18	0.2					31
31	186		3	14	0.1	138	16	_		
32	187		1	4	0.4		25	-	-	30
33	188		4	28	0.6	2(4	20	1		34
34	189 189 190		3	20	1.2	234	14	-	-	31
35	140		8	-2	00		10		-	3
36	191	-		18	0.6	32	4			3
37	192	-	1	20	0.4	32	6			31
38	193		4	14	0.8	189			+	3
40	5703		52	:48	0.6	916	96	+	-	4

Certified by 1. Marshar

CERTIFICATE OF ANALYSIS GEOCHEMICAL ANALYSTS & ASSAYERS XHIUD

J. 90 D כיי *Idead PROJECT VANCOUVER, B.C. 4901 VANCOUVE TS WOJHUHT 868 - 108

085 18 -01 461 40

009 00/ 9/ 881 20

039 036 72 101 40

TO: AMAX MINERALS EXPLORATION

440

845

THE 554 08 01

13

11

01

11

4.5

31

0 11	Victoria de la constante de la				
h101	piogr	20	1242	vas	501
7	1	. /	1	1	1
	,	U	,	,	U

BURNABY, B. C.

0991 DUR GBSYJANA BTAG

d3\$ 111 GEOCHEMICAL ANALYSTS & ASSAYERS

*Iqmet

12 WOJPUHT 868 - 108

TO: AMAX MINERALS EXPLORATION

VANCOUVER, B.C.

70 58 9 92 120 111 81€ 52 01 52 10 LIE 34 34 100 910 CZ 23 512 70 33 971 33 ah1 70 00 412 3540 8 15 12 825 17 o oll 50 50 512 90 61 25/ 21 212 18 81 41 10 112 41 Thi his 210 91 91 600 7/2 70 51 \$1 BOE / OE 75 12/ 100 *1 *1 781 70 £1 Ct. 13 151 07 7 900 13 ti. 22 505 278 90 05 11. 11 007 200 402 554 08 01 01 h CIZ 80 ~ 502 40 60 001 43 702 150 90 80 9/1/92 91 5 708 40 40 200 811 50 90 90 861 0th 70 50 71 50 8 T61 90 10 hL 161 CO 20 03 €6 80 01 03 01 11 S6155408 10 10

CERTIFICATE OF ANALYSIS

90	000	_C/	01	00%	8.0	66	~	bee	90
32	988	08	2	hil	K 0.	66	-	ger	32
re	cos	006	77	751	20	90	6	Lec	PC
33	006	300	71	18	14.0	DI	6	9.00	33

	52.	cher	00/	00	1								
90	1//	100		1									01
46	0												60
38													86
33													41
96					100								90
SE													\$0
14											E STATE		PI
CC													C
25													15
10								100	1000	100			11
Œ					000	08	20	16	10	176	01	A 070	00
55					-	100 lb	-	-	-	-	77 370	99e 55408	64
58					068	091	01	071	4.0	01		616	80
u					340	06	2	06	50	or	0.5	354	1
59					098	06.	01	06	£.0	81	-65	LTE	90
52					018	06	15	281	9.0	81	11	925	51
31					350	150	8	78 787	C'a	58 58	11	STE	17
53					330	21	9	287	4	58	5	45e	€2
33					OhE	8.	2	18	1,0	87 25	<	8-16	21
12	-				Ohh,	100	01	861	80	125	4	CAC 55408	
30					085		20	88	5.2	The.	4	4 076	00
61					250	99	11	27/	60	81	33	110	6
_	_			_	-11	SAC	-	0.7	144 173	100.00	6.6	0.50	

00 //	100											07
4E -										100		38
38												96
16												16
96		- 7		9								96
SE												25
PE 34												PC
CC												CC
33				0.00								35
10											VIOLE	11
OC 30				000	30	DE	48	-10	16	01	4016	OC.
58			5	100	100	-	-	-	-	17	31111 09e 55408	62
58				076	091	0)	07/	4.0	01		616	28
II.					06	2	06	50	20	0.5	854	u
56				098		01	06	£.0	8	-65	Lie	98
52				018	06	12/	281	9.0	81	1/	920	32
34	0.1			350	18	8	78	100	22	11	STE	34
23				330	21	9	284	48	08	15	45€	23
22				OhE	8.	12	48	1,0	87 25	<	E.74	22
31					oh	0!	861	8.0		4	CAC 554 08	
30				085		20	88	2.0	The.	1	4 0%	30
61				250	199	17	1991	60	8/	58	170	61
81				069	995		24	50		35	0.14	81
<i>L</i> 1				055		22		4.0	7	170	640	41
91.	1000			06.5	06	00	hE/	4.0	30	61	35	91

DATE ANALYSED CUM; 1980 'ON BOIDANI

13

11

10

8- 8440 8 00 443 - 3 TELEPHONE 299-6910

CVAYDY BURNABY B.C. NIHAS S SEZZ

100 3000 Y3HE DIEP 662 BNOH43731 CANADA

3AV HIDNINGS S SCCC

CERTIFICATE NO.

INVOICE NO.

VANCOUVER OFFICE PROJECT 1064

Rossbacher Laboratory

GEOCHEMICAL ANALYSTS & ASSAYERS

TO: AMAX MINERALS EXPLORATION 601 - 535 THURLOW ST.

VANCOUVER, B.C.

CERTIFICATE OF ANALYSIS

VANCOUVER

2225 S. SPRINGER AVE.,

INVOICE NO.

DATE ANALYSED AUG 1980

PROJECT 1064

Po A9 20

BURNABY, B.C. CANADA TELEPHONE 299-6910 AREA CODE 604 CERTIFICATE NO. 80443-A

GEOCHEMICAL ANALYSTS & ASSAYERS

TO: AMAX MINERALS EXPLORATION

601 - 535 THURLOW ST.

Rossbacher Laboratory AMAX

BURNABY, B.L. CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE NO. 80443-8

INVOICE NO.

2225 S. SPRIN

DATE ANALYSED Chur 1980

PROJECT

VANCOUVER OFFICE VANCOUVER, B.C. 42 2n Pb W Semple

CERTIFICATE OF ANALYSIS

11	49 16	6	0.4	134	12	280	530		- 11
2 .	50 29	22	0.4	336	14		600		12
3	51 4	12	0.8	98 264	10	35	380		13
4	12 4	40	0.6	264	10	15	480		14
5	53 39 55 6 56 8 57 5	110	42	290	26	140			15
6	t4 9	112 12	0,2	290 76	10	30	490		16
7	55 6	19	0.6	150	10	35	UVO		17
4	55 B	12	6,6	220	/2	25	440 700		18
9 3	57 8	12	0.4	126	10	30	440		19
570	6 33	143	12	144	98	15	700		20
1 BOAKS	58 13	38	02	76	6	60	500		21
2	58 13	40	0,4	144 76 154	10	90	500 380		22
13	60 41	36	0.2	64	8	40	330 320		23
4	9 43	24	0.6	272	10	20	320		24
15			0.2	116	14	30	270		25
6	63 8	8	0.1	46	6	35	270		26
7 6	23 24 24 18	20	0.6	144	10	10	300		27
1	5 18	24	0.6	132	12 22	80	410 500		28
9	66 68	26	06	118	22	400	500		29
· 80AKS	67 86	34	0,4	172	22	450	600		30
11	18 8	34	0.1	132 118 178 164	4	80	480		31
12	69 5	38	0,6	257	12	50	400		32
13	70 4	38 74	0,6	306 10 76	6	30	600 480 400 580		33
14	7/ 19	52	1.2	70	14	100	470		34
15	72 15	0.0	1.8	26	12	90	470		35
16	73. 13	40	0.8	66	12	20	430		36
1 BOAKSI	4 16	40 62	4.6	79:	10	50	310		37
# MO(154	14	144	100	15	200		38
19				10					39
10				CEOR!				2 2	/40

	32 33	12	34	- 1	144	20 240	010	-	33
41	33	8	8	0.2	56	8 20	330		34

3/	36	10	10	3.2	154	12	60	260	F		-	37
	80AX538	8	3.2	0.4	280	14	5	440				39
40	Sto o	2	130	41.	5/4	116	8	370	-	27	100	40

Kossbacner LaboratoryMAX

GEOCHEMICAL ANALYSTS & ASSAYERS

601 - 535 THURLOW ST.

CERTIFICATE OF ANALYSES TO: AMAX MINERALS EXPLORATION

BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

2229 S SPHINGER AVE.

CERTIFICATE NO. 80 550 -/ INVOICE NO.

VANCOUVER OFFICE

DATE ANALYSED SEPT. 1980 PROJECT 1014

No.	Sample	phi	Me	C.	Zn	Pl.	49	W.			64		1
01	AKS 75		3	8	76	10	1.4	0					
02	76		2	2	28	6	6.8	10					1
03	77		3	12	96	10	1-4	2					T
04	28		- 1	24	110	8	106	0					T
05	79		3	195	136	8	1.6	0					T
06	80		1	4	38	8	2.8	5			-		
07	81		2	20	74	8	1.6	5				1 1	
08	82		2	80	130	10	1.6	0					
09	83		1	28	118	6	1.6	0					
10	AK5 84		2	20	108	6	1.4	5					T
11	85		2	14	140	10	1.2	0					
12	86		4	54	126	8	1.8	0					
13	87		5	42	800.	12	202	0					Е
14	28		4	28	210	8	1.8	0					
15	19		1	14	264	10	1.8	0					
16	90		3	24	116	8	1.0	0					
17	91		6	34	348	8	1.6	0			- 21		
18	92		3	46	144	6	1.8	0	-				1
19	AX5 93		3	54	136	6	1.8	0					
20			-		_	-			1 0	77	-		1
21	94		5	52	90	12	20	0	100	-	-		
22	95		4	30	114	16	1.4	0					
23	96		1	30	108	12	1.4	0				1	
24	97		6	49	144	10	2.2	0		-		14	4
25	98		3	68	120	4	2.0	0	-	-			ļ.
26	99		6	36	240	26	1.6	0					1
27	AK5/00	-		36	230	12	(-8)	0					L
28	101		3	28	292	12	1.6	0	-	-	-		L
29	100	1	-	37	384	10	1.8	0	_	-	-		H
30	AKS 103		1		406	16	1.8	0		-		_	+-
31	104		4	38	164	8	2.4	0	-		-	_	H
32	105		4	46	114	10	1.8	0	-	-			ŀ
33	106	-	4	44	138	10	1.4	0					H
34	107	\rightarrow	.5	42	130	18		0	-	-		_	-
35	108		3	28	130	111	1.6	0				-	H
16 17	109			94	48	19	4.8	0				_	1
38	110		5	58	190	14	3.0	0				_	
19	111		3	86	206			0		1		1	1
-	AKS 112		11			(0	3.0	0	-	-	17.	#	1
40	G.9.		16	106	370	322	1.0	ellina by (1.00	7	1	L	

Annin Rossbacher Laboratory GEOCHEMICAL ANALYSTS & ASSAYERS

TO: AMAX MINERALS EXPLORATION

CANADA TELEPHONE 299-6910 AREA CODE: 604 CERTIFICATE NO. 80696-2

OFFICE INVOICE NO.

DATE ANALYSED SEPT. 1980 PROJECT 649 1064

2225 S. SFHIN

BURNABY, B.C.

No.	Sample	pH	Mo	Cu	Ay.	Zn	Pb						N
01	80 AEL151		27	44.	0.4	-	10	-					01
02			4	8	0.7	16	2	de	30,5	2			02
03	163		180	6	12	6	4	12 R	~ T4	F*			0
04	SOAET 154		52	26	4.2		20	J. 3			150		0
05	40 G		28	128	0.8	140	94						0
06				-		05 2.5	1337						0
07							-	1					
08					1 10								0
09							185						0
10				-		100					100		1
11			1	100			-				100		1
12			100		1							-	- 1
13				131			100				17		
14					100						1		
15						0.00							
16						105.00		100					
17	112, 11 .7				1130	136							
18								100					
19	The state of					-		100			-		
20		4		100									
21			100	100			100		1			100	
22				100		1.0							
23						-			-7		100		
24													
25													4.1
26								100					
27								10.5					14
28												-	-
29											3		
30				1 - 1	20								
31				40.0		100	1						
32			100						1				
33													
34					1								
35		-											
36	-			-									
37													
38													
39			-							-	1		
40		-	-	-	-	-	_	+		177	1		

certified by ! Mossicust

APPENDIX II - STATEMENT OF COSTS

Anticlimax Property - Hunch 1-5 claims

Summary of Work - Geological Mapping and Geochemical Sampling

PERSONNEL	
S.G. Enns - Staff Geologist, 601-535 Thurlow Street, Vancouver 14 days @ \$158.40	2,217.60
S.M. Gentleman - Geologist, 3400 Barclay Avenue, #14, Montreal 37 days @ \$ 63.12	2,335.44
 S.L. Stallard - Jr. Assistant, 112-2401 Ord Road, Kamloops 35 days @ \$ 37.57 G.O. Skok - Jr. Assistant, 2279 Berkley Road, N. Vancouver 	1,314.95
3 days @ \$ 35.51	106.53
ACCOMMODATION	
Tuloon Lake Fishing Resort, Ltd. Inv. #30, 18, 6 83 man days @ \$ 37.50	3,112.50
Nehalliston Fishing Lodge Inv. #1 6 man days @ \$ 30.90	185.40
GEOCHEMICAL ANALYSIS	
Rossbacher Laboratory Ltd. Inv. #182,232,281 213 samples for Mo,Cu,Ag,Pb,Zn @ \$3.30 24 samples for Mo,Cu,Ag,Pb,Zn,W,F @ \$8.55 66 samples for Mo,Cu,Ag,Pb,Zn,W @ \$5.55	702.90 205.20 366.30
TRANSPORTATION	
4x4 Toyota w/winch 14 days @ \$30.00 4x4 Toyota w/winch 37 days @ \$30.00	420.00 1,110.00
Bowmac Truck Rental Inv. #74909 4 days @ \$57.16	228.62
DRAFTING AND REPORT PREPARATION	500.00
	
TOTAL	\$12,805.44
	2277777
PAC Account Transferral Request	\$3,400.00

Value to be applied as per application on Hunch 1 to 5 claims (81 units) inclusive - 2 years

APPENDIX III

STATEMENT OF QUALIFICATIONS

NAME

S.G. Enns

ADDRESS

601-535 Thurlow Street

Vancouver, B.C.

EDUCATION

4 year BSc (Honours Geology) 1967

University of Manitoba

MSc (Ec. Geology) 1971 University of Manitoba

EXPERIENCE

Geol. Assistant Manitoba Mines Branch 1964(field season

1979-

Geol. Assistant Sherritt Gordon Mines 1965

Geol. Assistant AMAX Exploration 1966-1970 '

Staff Geologist Cerro Mining of Can. 1971 Staff Geologist Hudson's Bay Oil & Gas 1972

Staff Geologist BP Minerals of Canada 1973-1975 Staff Geologist BP Alaska Exploration 1975-1979

Staff Geologist AMAX of Canada

STATEMENT OF QUALIFICATIONS

NAME

S.M. Gentleman

ADDRESS

3400 Barclay Avenue #14

Montreal, Quebec H3S 1K4

EDUCATION

University of Waterloo 1970-1974

B.Sc. Earth Sciences

Univeristy of Toronto 1974-1975

Special Student

EXPERIENCE

Research Assistant - Department of Geology

Univeristy of Toronto 1975-1978

Geological Assistant

AMAX Minerals Exploration, Toronto

May 1978 - September 1978

Geological Assistant

Ontario Geological Survey, Toronto

October 1978 - November 1979

Senior Geological Assistant

AMAX of Canada Limited, Vancouver

May 1980 - August 1980

STATEMENT OF QUALIFICATIONS

NAME

S.L. Stallard

ADDRESS

112-2401 Ord Road Kamloops, B.C.

EDUCATION

Secondary School Kamloops, B.C.

EXPERIENCE

Labourer/Junior Assistant AMAX of Canada Limited May 1980 - July 1980

September 1980 - October 1980

STATEMENT OF QUALIFICATIONS

NAME

G.O. Skok

ADDRESS

2279 Berkley Road

North Vancouver, B.C. V7H 1Z6

EDUCATION

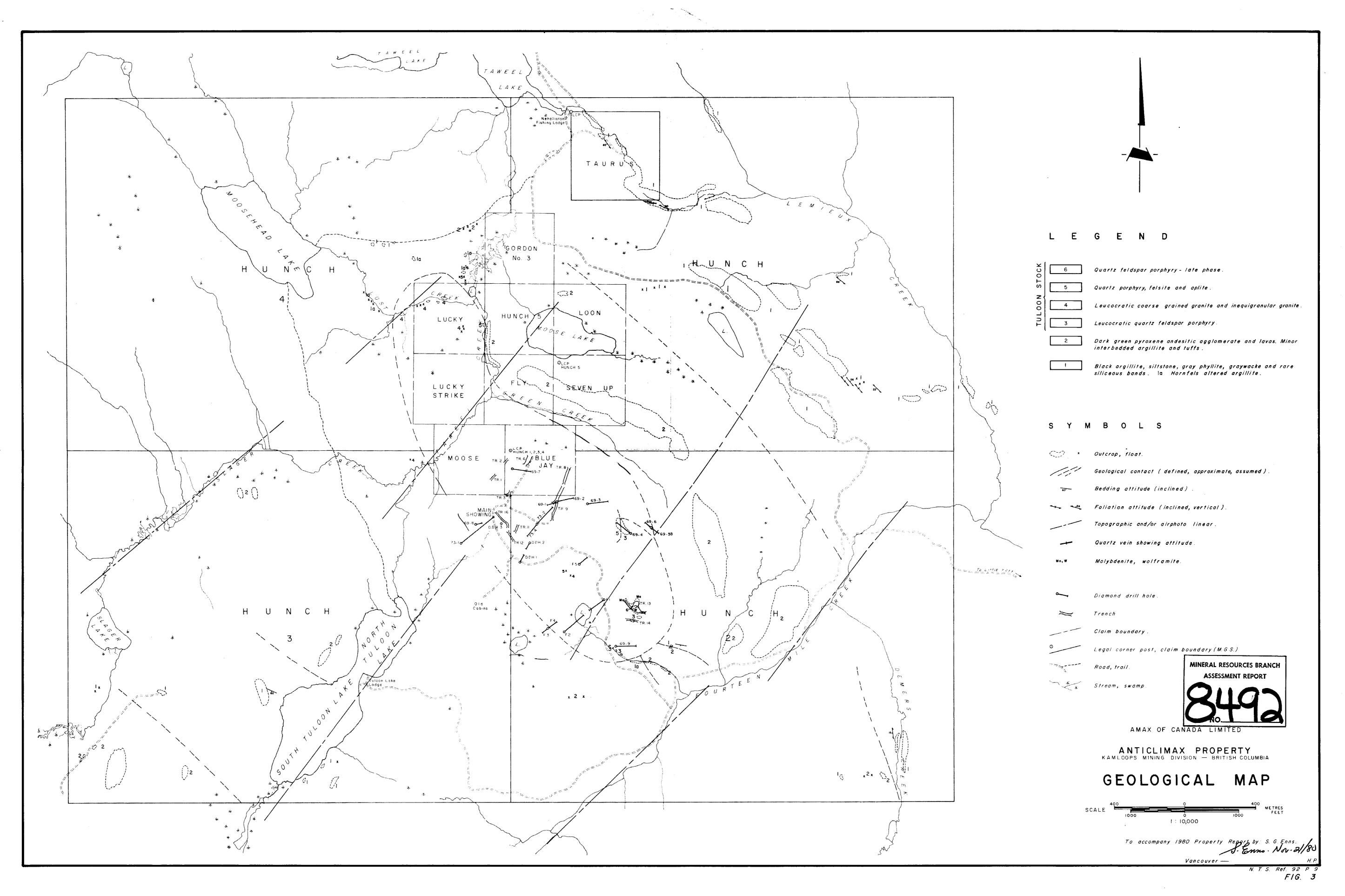
Windsor Secondary Vancouver, B.C.

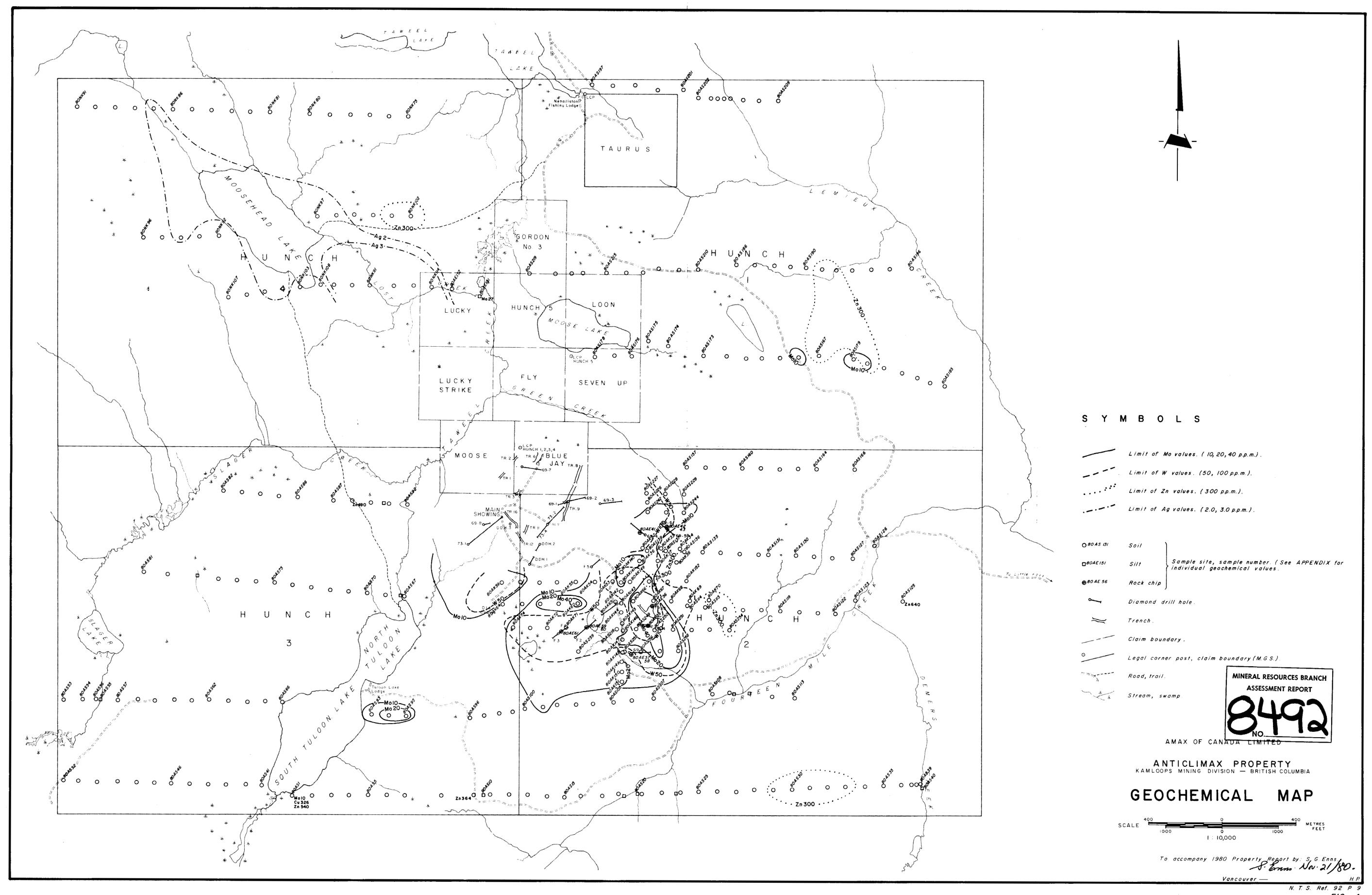
EXPERIENCE

Laboratory Assistant

Rossbacher Laboratory, Burnaby

1978-1970


Lumberland Building Materials


Burnaby 1979

Junior Assistant

AMAX of Canada Limited, Vancouver

May 1980 - October, 1980

