COMINCO LTD.

EXPLORATION	SULLIVAN MINE
N.T.S. $82 \mathrm{G} / 12$	
$82 \mathrm{~F} / 9$	

MYRTLE MTV FLEM AND

MAGNETOMETER SURVEY
Latitude $49^{\circ} 40^{\prime} \mathrm{N}$; Longitude $116^{\circ} 00^{\prime} \mathrm{W}$

Work Performed: September 10, 11, 13, 14, 20, 21, and 22, 1979
Claims Covered: MOHAWK GROUP
Claim Owner and Operator: COMINCO Ltd.

February 1980
Jules J. Lajoie

TABLE OF CONTENTS

Page
List of Claims 1
Personnel Employed 2
Introduction 2
Survey Layout and Grid 2
Field Work 3
Data Presentation 3
Interpretation 4
Conclusions 6
Statement
Exhibit 'A' Statement of Expenditures
Certification
Plate 164-79-1 Location Map (in text)
Plate 164-79-la Claim Map (in-envelope).
Plate 164-79-2 Myrtle Mtn. Horizontal loop EM (in envelope)
Plate 164-79-3 Myrtle Mtn. Detail EM (in envelope)
Plate 164-79-4 Myrtle Mtn. Detail EM with 222 Hz In-Phase subtracted (in envelope)Plate 164-79-5 Myrtle Mtn. HLEM (1970) (in envelope)Plate 164-79-6 Proton Mag Data (in envelope)Plate 164-79-7 Horizontal Loop EM Interpretation (in envelope)

COMINCO LTD.

EXPLORATION

SULLIVAN MINE

February, 1980

MYRTLE MTN HLEM AND

MAGNETOMETER SURVEY

LIST OF CLAIMS - MOHAWK GROUP

Mohawk	*CGMC,	Lot	13825
Jumb			
Bisbee	CGMC,	Lot	13824
Kitty	CGMC,	Lot	13819
Spring	CGMC,	Lot	13817
Jerry	CGMC,	Lot	13826
Annex FR	CGMC,	Lot	13818
Annie Fr	CGMC,	Lot	13949
CGMC,	Lot	14282	

Late 89	16934	April	22/71	1987	\$ 600	1990
Late 77	16926	April	22/71	1987	S 600	1990
Late 78	16927	April	22/71	1987	S 600	1990
Late 76A	16925	April	22/71	1986	S 800	1990
Late 85	16931	April	22/71	1987	\$ 600	1990
Late 86	16932	April	22/71	1987	S 600	1990
Late 87	16933.	April	22/71	1987	S 600	1990
Late 3 FR	16939	April	22/71	1988	s 400	1990
Jack Pot FR	17844	Dec.	29/71	1985	\$1000	1990
Late 2 FR	16938	April	22/71	1987	200	1988
Late. 90	16935	April	22/71	1987	\$ 200	1988
Late 80,	16929	April	22/71	1987	\$ 200	1988
Late 63	16911	April	22/71	1987	\$ 400	1989
Late 79	16928	April	22/71	1987	\$ 400	1989
Late 61	16909	April	22/71	1987	\$ 400	1989
Late 59	16907	April	22/71	1987	\$ 400	1989

*CGMC = Crown Grant Mineral Claim

Personnel employed by Cominco Ltd. during the course of the survey were:

Name	DATES		Address
Dr. Jules J. Lajoie Geophysicist	$\begin{gathered} \text { Sept . } 10, \\ 1979 . \end{gathered}$	$\begin{aligned} & 11,13,14, \\ & 21 \text {, and } 22 \text {, } \end{aligned}$	```Cominco Ltd. 8th Floor 409 Granville St. Vancouver, B.C. V6C 1T2```
Kevin Fennessey Assistant	$\begin{gathered} \text { Sept. } 10, \\ \text { 20, } \\ 1979 . \end{gathered}$	$\begin{array}{ll} 11, & 13, \\ \text { and } & 21, \end{array}$	Kootenay Exploration 2450 Cranbrook St. Cranbrook, B.C. VlL 3T4

INTRODUCTION

This report describes a HLEM survey in an area southeast of North Star . Hill and west of Kimberley. The area is outlined in Plate 164-79-1 which also shows two access roads. Note'that the mine grid coordinates are different from the geophysics grid coordinates.

The area was covered in the mid 1970's by airborne EM with both Aerodat and McPhar systems. The results suggested an airborne FM conductor at about mine grid 7000 S and 5200E, at the center of the survey area described herein.

The survey area was also previously covered by ground EM: Turam on lines 2400' apart and EM-17 HLEM on lines 800' apart. The HLEM data was acquired with a.coil spacing of 400' and frequency of 1600 Hz , is shown in Plate 164-79-5, and will be further discussed later. The HLEM data indicated conductive zones, some of which were not substantiated by the Turam data and vice. versa. It would have been premature to recommend drilling on the existing data and so it was decided to resurvey the area on a 400 line spacing with more modern HLEM equipment.

SURVEY LAYOUT AND GRID

A new survey grid was cut and superimposed on the old grid which had a line spacing of 800^{\prime}. That is, the old lines were used when they could be found. Slope chaining was used to install the 'pickets.

This procedure simplifies the logistics of the HLEM surveying. Twelve lines were prepared at a spacing of 400^{\prime} from 200S to 7400 S extending from 600W to 2600E (geophysics grid coordinates, see Plate 164-79-1). Chainage and inclinometer data between the pickets were supplied by the linecutter. A T159 calculator was programmed to facilitate the computation of coil separation corrections and tilt angles so that, in the field, the coils would be exactly at the nominal coil separation and coplanar.

FIELD WORK

A max-Min II horizontal loop EM system was used with a coil separation (C.S.) of 150 metres. All five frequencies were used: 222 Hz , $444 \mathrm{~Hz}, 888 \mathrm{~Hz}, 1777 \mathrm{~Hz}$, and 3555 Hz . The basic station interval was 50 metres with some sections at 25 metres over anomalies.

Subsequently detail EM with a coil separation of 50 m and station interval of 12.5 m was done on four lines with anomalies of special interest: 2600S, 4355S, 4800S, and 5200S. For the detail survey the 12.5 meter stations had to be paced in. Coil separation and tilt angles had to be estimated as best as possible in the field.

Magnetometer surveying was also done on the above detail lines with a Geometries "Unimag" 10γ accuracy magnetometer. Drift was checked in the normal manner but no drift corrections were required.

The EM field work was performed by Dr. J. Lajoie with the assistance of K . Fennessey on the following dates: September 10, 11; 13, 14, 20, and 21, of 1979. The magnetometer work was performed by Dr. J. Lajoie on September 22, 1979.

DATA PRESENTATION

$\begin{aligned} & \text { Plate 164-79-1 } \\ & \text { (in text) } \end{aligned}$	Location map Scale 1"=800'
Plate 164-79-1a (in envelope).	Claim Map Scale $1^{\prime \prime}=2000^{\prime}$
Plate 164-79-2 (in envelope)	```Myrtle Mtn HLEM (c.s. = 150m) Frequencies: 222, 444, 888,: 1777, & 3555 Hz Horizontal Scale: 1"= 400' Vertical Scale: : .1"= 40%```
Plate 164-79-3 (inenvelope)	```Myrtle Mtn detail HLEM (c.s. = 50m) Frequencies: 222, 444, 888, 1777, & 3555 Hz Horizontal Scale: 1" = 400' Vertical Scale: : 1" = 20%```
$\begin{aligned} & \text { Plate 164-79-4 } \\ & \text { (in envelope) } \end{aligned}$	Myrtle Mtn detail HLEM (c.s. $=50 \mathrm{~m}$) 222 In-phase subtracted' Frequencies: 444,888 , $1777 \& 3555 \mathrm{~Hz}{ }^{\prime}$ Horizontal Scale: $1^{\prime \prime}=400$ ' Vertical Scale : $1^{\prime \prime}=20 \%$

DATA PRESENTATION (continued)

Plate 164-79-5 (in envelope)

Plate 164-79-6 (in envelope)

Myrtle Mtn HLEM (old data) (c.s. = 400')
Frequency: 1600 Hz
Horizontal Scale: $1^{\prime \prime}=400^{\prime}$
Vertical Scale : $1^{\prime \prime}=40 \%$
Myrtle Mtn proton magnetometer data
Horizontal Scale: $1^{\prime \prime}=400^{\prime}$
Vertical Scale : $1 "=200$ gammas
Plate 164-79-7 Myrtle Mtn HLEM interpretation compilation
Base: 888 Hz HLEM (c.s. $=150 \mathrm{~m}$) data
Horizontal Scale: $1^{\prime \prime}=400^{\prime}$
Vertical Scale : $1^{\prime \prime}=40 \%$
NOTE: Slope chaining was us\& in the field. For plotting, however, all station locations were corrected so that they.are plotted at the proper horizontal distance from the baseline. The coordinates (600W to 2100E) shown in the Plates are therefore true Imperial horizontal coordinates. Therefore, note that the horizontal coordinate of a conductor in the Plate will not correspond exactly with the picket coordinate in the field. Therefore; in the interpretation compilation in Plate 164-79-7, the field picket location of each conductor is identified (e.g. P418E).

INTERPRETATION

The five frequencies of HLEM (c.s. $=150 \mathrm{~m}$) data are shown in Plate 164-79-2. The data is judged to beef excellent quality with a noise level of about $\pm 1 \%$ overall, lending support to the scheme for computing and applying coil corrections and tilt corrections. There are, however, two locations with rough topography where the in-phase data are somewhat suspicious because there appears to be little change with varying frequency:
a) In-phase anomaly at 950E on line 4000 S
b) In-phase anomaly at 2350E on line 6000 S

Interpretation of σt and depth was not done on either of these,
For the detail data shown in Plate 164-79-3, the coil separation and tilt correction procedure applied for the 150 m data could not be applied because the picket interval was not tight enough. In the field, it was attempted as best as possible to achieve constant coil separation and coplanariry. Due to very rough topography, there is considerable in-phase noise on lines 4400 S and 4800 S .

In order to see through this noise, the data at frequencies 444 to 3555 Hz were replotted after subtracting the in-phase 222 Hz data, thus removing most of the topographic noise from the in-phase but also removing an unknown percentage of the in-phase anomaly. This data is shown in Plate 164-79-4. Fortunately, on both lines 4355S and 48005 the increase in the in-phase component from 222 Hz to 444 Hz is so small that the in-phase anomaly amplitude at 222 Hz is estimated to be near zero. Therefore, for the detail HLEM data, Plate 164-79-4 was used for interpreting the data on lines 4355S and 48005, while Plate 164-79-3 was used for interpreting the detail data on.lines 3600 S and 5200S.

The interpretationis compiled on Plate 164-79-7 using the 888 Hz , C.S. = 150m data as a base. The conductive zones are shown by solid and dashed bars using both the 150 m and 50 m coil separation data. The' solid bars indicate conductor widthbased on the 888 Hz inphase data, while dashed bars indicate conductor width based on the 888 Hz out-of-phase data. This helps to give some idea of the overall conductor width and where, within it, the highest conductivity zone is located. One notes that the 50 m C.S. anomalies are always on the western edge or somewhat to the west of the 150 m C.S. anomalies. This suggests an easterly dip to the conductors. On the. other hand, a shallow easterly dip is notsupported by the anomaly shape because no anomaly shows a strong positive shoulder on the.east side.

The anomaly amplitudes at all frequencies for both reconnaissance and detail data were plottedon phasor diagrams. All show strong evidence of current channelling characterized by much stronger quadrature response with increasing frequency than ispredicted by free air modelling. This may well be caused by poorly conducting sulphides around the main conductors. A few examples of anomaly spectral- responses are shown in Figures 2 a to 2 e . All were studied to see if spectral signatures could be used to differentiate between the conductive zones. However, nothing concrete resulted. The ot and depth interpretations were based on the 222 Hz (or extrapolated 222 Hz data and are shown for both 150 m C.S. data in Plate 164-79-7.

The conductive zones are labelled A to E. Conductor A has consistently high conductivities and strikes NW-SE across the survey area. On lines. 4355 S and especially on line 4800 S it widens considerably. Note that this may only'be an apparent thickening because of the steep slopes near here. On line 4800 S the difference between the steep and long c.s. data indicates that the conductor increases in both width and conductivity with depth. The highest interpreted σt of the survey occurs on line 5200 S where a σ t of 180 mhos was obtained with, the short coil separation. 'When current channelling is occurring one expects a higher ot interpretation with a shorter coil separation if the conductor does not vary much with depth.

Conductors B and C are nearly parallel in strike direction which is more northerly than that for conductor A. Generally; their fit's are
lower to the north and increase to 'the south. Conductor B-appears to merge with conductor A where the latter comes much thicker. Conductor B coincides' directly with a mapped contact between sedimentary rocks and a meta-gabbro sill on lines 3200 S and 2600 S . North of line 3200 S conductor B strikes north whearas the contact appears to strike NW according to' outcrop on line 2200S. The increase in conductivity and decrease in depth to top with the shorter coil separation on line 3600 S , for both conductors B and C, is as expected.

Conductor D has a rather high conductivity of 40 mhos. It also correlates very closely with the mapped contact between sediments and sill on line 6000S.

Conductor E appears isolated and there is no geological data available in its vicinity due to widespread overburden.

The magnetic data is shown in Plate 164-79-6 for the lines on which detail EM work was done. There is a direct coincidence of magnetic anomalies with conductor A on line 5200 , and the two conductive zones (HLEM C.S. $=50 \mathrm{~m}$, Plate 164-79-4) on, line 4800S. On line 4355S; there is considerable magnetic activity directly over the conductive zone. On line 3600 S the correlation of magnetics and EM is uncertain.

The old HLEM data was replotted by computer on Plate 164-79-5 jin order to provide a direct comparison with the newer data. The only evidence that the coil separation used was 400^{\prime} comes from outlines marked on old maps in the geoloqy office in Kimberley. This data should be comparable with the 150 m (492') 1777 Hz data of the new survey. The noise level of the old survey.is much higher. The conductors as interpreted from the new data are shown superimposed. There is no clear and confident indication of the conductive zones in the old. data, as can be seen in. the new 'data; This is understandable however, when considering the equipment and procedures used at that time and that it was impractical to do better.

CONCLUSIONS

The horizontal loop EM and magnetometer work on the Myrtle Mtn grid outlined a number of interesting conductors. The direct correlation of conductors B and D with contacts betweensedimentary and meta gabbro rocks suggests a genetic relationship between the conductors and the intrusive. The anomaly shapes indicate steeply dipping vein-type conductors. Weak magnetic responsesover the best conductors indicate pyrrhotite as a possible, cause of the anomalies as it is known that the pyrrhotite in the Sullivan orebody is only weakly'magnetic.

Distribution:
Mining Recorder,
Cranbrook
Sullivan Mine (2)
Western District Expl.
(1)

Expl. Admin. (1)
Tech. Support (1)

HLET
PHASOR DIAGRAM
AVEAAGE PEAN TO PEAK AMRITUDES
$\theta=\mu_{0} \cdot \omega \cdot s \cdot \sigma t$
$s=c_{01}$
$S=$ Coll sepraation
$d=d e p$

76
IN PHASE \qquad O反万מN EY Jת
$\frac{3, a^{2} 5}{20 \pi}$ Soicle: Joik Betz
Fig. 1a: Phasor diagram for conductor B, line $20005,850 E$. 1.....ำ

PHASOR OIAGRAM
(AVCRAGE $P \equiv A O^{\prime}$ TO PEAK PMPITUDES)

VERTIGAL THIA SHEET.
$\theta=\mu_{0} \cdot \omega \cdot s \cdot \sigma t$
$S=C A L$ SEPRZATION
$d=$ depth to top
$\sim n$
MYATLE MTN

- MAx \quad IIN 1979

$$
c .5=156 \mathrm{M}
$$

Fig. 1b: Phasor diagram for IN PHASE conductor A, line 3200S, 120 E .

PHASOR DIAGRAM

AVEAGGE PEAO TO PEAK AMPITUDES)
$\theta=\mu_{0} \cdot \omega \cdot s \cdot \sigma t$
$S=C$ CIL SEPARATION $d=$ depth to top
$+7$
-2

MYTLE MTN DAXning 1974
c. $5=154 M$
-INE -3200
ono. B; 960 E

$\begin{array}{ll}222 & 0 \\ 444 & 0 \\ 888 & 0 \\ 1277 & -i \\ 1555 & \end{array}$

 -

PHASOR OIAGRAM

IVEAGGE $P=A A^{\prime}$ TS PEAK AMPITUDES)
VERTICGL THIFI SHEET
$\theta=\mu_{0} \cdot w \cdot s \cdot \sigma t$ $S=$ COIL SEPDAATION $d=$ depth to top
 x Din 197%
$s=156 \mathrm{M}$
NE -4800

ㅇ. $n A w ;$, $100 E$

22 -
 14
 78

\pm
VERTICAL THIA' SHEET.
$\theta=\mu_{0} \cdot \omega \cdot S \cdot \sigma t$
$S=$ CAIL SEPRZATION $=$ depth to top

IN THE MATTER OF THE B.C. MINERAL ACT

AND In the MATPER Of a Geopeysical PROGRAMME
CARRIED'OUT ON MOHAWK CLAIM GROUP
LOCATED DIRECTLY WEST OF KIMBERLEY, B.C.
IN THE FORT STEELE MINING DIVISION OF THE
PROVINCE OF BRITISH COLUMBIA MORE PARTICUIARLY

$$
\text { N.T.S. F/9, N.T.S. } 82 \text { G/12 }
$$

STATEMENT

I, Jules J. Lajoie of the City of West Vancouver in the Province of British Columbia, make oath and say:

1. That I am employed as a geophysicist by Cominco Itd. and as such have a personal knowledge of the facts to which I hereinafter dispose;
2. That annexed hereto and marked as "Exhibit A ", to this statement is a true copy of expenditures incurred on geophysical survey on the MOHAWK mineral claim group;
3. That the said expenditures were incurred on September 10, 11, 13, 14, 20, 21, and 22, 1979, for the purpose of mineral exploration of the above noted claims.

EXHIBIT 'A'

MOHAWK GROUP

STATEMENT OF EXPENDITURES

(Linecutting, Em and Magnetometer Survey)

Salaries
a) September 10, 11, 13, 14, 20, and 21, 1979:
Dr. J. J. Lajoie (geophysicist)
6 days @ \$150/day
\$ 900
K. Fennessey (assistant) 6 days @ $\$ 42 /$ day 252
b) September 22, 1979:

Dr. J. J. Lajoie (geophysicist 1 day @ \$150/day 150
c) Report preparation:
J. Snyder (draftsperson)
2 days @ \$ 85/day
170

Miscellaneous

Room and Board: 1 man $x \$ 50 /$ day $x 7$ days 350

Truck (4x4): 7 days $x \$ 25 /$ day	175

Fuel and Oil: 7 days x \$5/day 35
Operating Day Charge: 7 days x \$175/day 1225
Geophysical Equipment Rental (Incl. travel)
(EM) 11 days $x \$ 35 /$ day
385
$\begin{array}{ll}\text { (Mag) } 1 \text { day } x \$ 10 / \text { day } & 10\end{array}$
Linecutting
Contractor: P. Xlewchuck, 3-436 Chapman Street Kimberley, B.C.
8.78 miles @ $300 / \mathrm{mile}$ 2635
TOTAL

CERTIFICATION'

I; Jules J. Lajoie, of 5655 Keith goad, in the City of West Vancouver, in the Province of British Columbia, do hereby certify that:-

1. I graduated from the University of Ottawa in 1968 with an Honours B.Sc. in Physics, from the University of British Columbia in 1970 with a M.Sc. in Geophysics, and from the University of Toronto in 1973 with a Ph.D. in Geophysics.
2. I am a registered member of the Association of Professional Engineers of the Province of British Columbia, the Society of Exploration Geophysicists, and the British Columbia Geophysical Society.
3. I have been practicing my profession for the past seven years.

Orawn by: Traced by: $^{\text {Tr }}$

HORIZONTAL LOOP EM GRID

LOCATION MAP

FORT STEELE MD.,B.C

600W,40OW,20OW, O 200E 600E 1000E 1400E 1000E 2200E 2600 E	
\%	
+ 4 , 43555	

$\cdots+\cdots+-400 \mathrm{c}$

3555 Hz
1777 Hz

$$
=1 \times x^{36005}
$$

Le min. oftall hi
max-min I

SCALE $=$ "" $=400$
Data scale $I "=20 \%$

8511

3555 Hz

777 Hz

- 3600 s

(

LEEENE
mytle min detall hlem
max-min if
he 22 hat in phase data is subtracted
coll sefaration = 50 M
Scale I" $=400$
Data scale $1 "=20 \%$

8511

\%omem		myrtle min detall hlem
		222 Hz IN Phase subtracted
		fort stele m.d, b. c.
		Seo - Dine janvary

MYRTLE MIN HLEM C.S. $=400 \mathrm{FT}$ F $=1600 \mathrm{HZ} 1^{\prime \prime}=400^{\prime} 1^{\prime \prime}=40 \%$ OLD $1970(?)$ DATA

FEET
NOTE: CONDUCTORS A TO E ARE FROM DATA ON PLATE 164-T9-7

MYRTLE MTN PROTON MAG DATA (UNIMAG); GAMMAS (LESS 58150); $1^{\prime \prime}=400^{\prime} ; 1^{\prime \prime}=200 \mathrm{GAMMAS}$

Instoyment:
CEOMETRICS UNIMAG PROTOM MAQNETOMETER

FEET

TO accompant a report or u. lajoie pho peng. Nelef chaforís.
MYRTLE MOUNTAIN (SULLIVAN MINE)

