AN ASSESSMENT REPORT DETAILING
THE 1980 DIAMOND DRILLING PROGRAM
ON THE M.U.T. 5 CLAIM
located in the NELSON MINING DIVISION
14 km . south of SALMO, B.C.
NTS $82 \mathrm{~F} / 3$
$49^{\circ} 05^{\prime}$ NORTH LATITUDE: $117^{\circ} 12^{\prime}$ WEST LONGITUDE

> by
M.D. Bradley
'80-807-85. Meszaros November 28, 1980
AN ASSESSMENT REPORT DETAILING
THE 1980 DIAMOND DRILLING PROGRAM
ON THE M.U.T. 5 CLAIM
located in the NELSON MINING DIVISION 14 km . south of SALMO, B.C.
NTS 82F/3
$49^{\circ} 05^{\prime}$ NORTH LATITUDE; $117^{\circ} 12^{\prime}$ WEST LONGITUDE

Page No.
SUMMARY
INTRODUCTION 1
LOCATION and ACCESS 1
CIAIMS OWNERSHIP, STATUS and ASSESSMENT CREDITS 3
HISTORY 6
GENERAL GEOLOGY 8
DIAMOND DRILLING REPORT 12
i) Physical Work 12
ii) Geology of Diamond Drill Hole M.D.H. 80-1 12
iii) " " " " M.D.H. 80-2 15
iv) " " " " M.D.H. 80-3 23
v) Results 24
vi) Conclusions 39
vii) Recommendations 40

LIST OF FIGURES

FIGURE 1 M.U.T. CLAIMS LOCATION MAP 2
2 M.U.T. CLAIMS STATUS MAP 4
3 General Geology and Drill Hole 9Location Map
4 Geological Cross Section of Drill 18 Holes 77-1, 80-2, 78-2

LIST OF TABLES
TABLE 1 Trace Element Analysis of M.D.H. 80-1 Core 25
2 " " " " " 80-2 " 26-33

Page No.

APPENDIX: 1. Statement of Qualifications.
2. Statement of Costs.
3. Geochemical Assay Results of Drill Core from Holes M.D.H. 80-1, 2, 3.

4A Geological Logs for Drill Hole M.D.H. 80-1.

4B Geological Logs for Drill Hole M.D.H. 80-2.

4C Geological Logs for Drill Hole M.D.H. 80-3.

SUMMARY:

During the period April 11 to May 15, 1980 a total of 478.7 m of diamond drilling was completed in three holes over 'M.U.T. Hill" on the M.U.T. 5 claim. The M.U.T. claims (84 units) are owned by Mr. I. Sutherland and Mr. J. Mirko under option to Benson Mines and BP Minera1s Limited. The work described in this report was paid for by BP Minerals.

Hole M.D.H. $80-1$ was abandoned at 44.66 m due to technical problems.

Hole M.D.H. 80-2 was sited between previously drilled holes 77-1 and 78-2. The target was an MoS_{2} mineralized intrusion indicated at the bottom of the previous holes. Hole 2 cored 169.38 m of hornfelsed argillite to encounter subeconomic MoS_{2} concentrated in quartz \pm sericite veinlets, in numerous granitic dykes. A hydrothermal system in the area is suggested by: numerous veins and skarns in the hornfelsed argillite, by aplite dykes - barren in the upper hornfels section but MoS_{2} mineralized at lower levels and by progressively increasing veining and alteration of the argillite toward the bottom of the hole.

Hole M.D.H. 80-3 was collared 680 m west of hole 80-2 and drilled 200 m of monotonous, unaltered argillite.

A single intrusion of some size was not intersected.
The target of an Mo-W mineralized porphyry system is
indicated but remained untested. Further drilling in the area of Hole M.D.H. 80-2 is recommended.

INTRODUCTION:

During the period April 11 to May 15, 1980 a total of 478.7 m (1570') BQ diameter diamond drilling was completed in 3 holes on the M.U.T. 5 claim. The drilling was contracted to Wright Drilling Ltd. of Kamloops, B.C. A Komatzue 65 E bulldozer was contracted from Pine Tree Logging of Salmo, B.C., to plow and grade the access road, to construct 2 water reservoirs and to mobilize, move and demobilize the diamond drill.

The total cost of the drilling program was approximately $\$ 58,775$. The drilling was sited to: a) transect a mineralizer intrusive inferred from previous drilling and surface exploration and b) to test a zone of $\mathrm{Zn}-\mathrm{Ag}-\mathrm{Mo}-\mathrm{Cu} / \mathrm{F}$ geochemical anomaly located during 1979 surveys.

The core was logged and sp1it on site and is currently stored at the 1979 campsite on "M.U.T. Hill". The lower 65 m of hole $80-2$ and selected sections of holes $80-1,2,3$ are stored in Vancouver. The bulk of the core is stored on site at the 1979 drill camp on 'M.U.T. Hill".

This report is submitted in support of applied assessment credits to a total of $\$ 58,775$.

LOCATION AND ACCESS: (See Figure 1 and 2)
The M.U.T. claims are located in southeastern B.C. in the Nelson Mining Division (N.T.S. $82 \mathrm{~F} / 3$ at $49^{\circ} 05^{\prime}$

2 One IMCH 20250 HIES	6 BP Minerals Limited		
	LOCATION MAP SALMO PROJECT MUT CLAIMS, B.C.		
	Scale	NT3 62 F3	
	DWG.No. 80-39 [OATE FEE 1980	raos. 517	

North Latitude and $117^{\circ} 12^{\prime}$ West Longitude). The claims cover the north and south sides of the Lost Creek Valley road approximately 38.4 air kilomtres east of Trail and 14 air kilometres east-southeast of Salmo, B.C.

The drill camp on "M.U.T. Hill", between Wilson Creek and Lost Creek, and much of M.U.T. claims 5 and 6 are accessible by a good 4 wheel drive road, which runs 6.5 kilometres north from Highway 3, at a point 2.2 kilometres east of Highway 6 (Salmo-Nelway).
M.U.T. claims 1 and 2 are accessbile by a poor quality 4 wheel drive road, located on the north side of Lost Creek. The road trends eastward from the Jersey Mine and closely follows the 1,250 metre elevation contour. Access to Nevada Mountain is by helicopter from Trail; 40 air kilometres to the west, or from Castlegar; 42 kilometres to the northwest.

CLAIMS OWNERSHIP, STATUS AND ASSESSMENT CREDIT: (See Figure 2)

The M.U.T. claims are owned by Mr. John M. Mirko and Mr. Ian G. Sutherland and held by Benson Mines Ltd., under an option agreement. An option agreement between Benson Mines Ltd. and BP Minerals Limited for further exploration, was finalized on June 5, 1979.

The M.U.T. property comprises 6 mineral claims, containing 84 units. These claims are regrouped (Noevember 28 , 1980) as M.U.T. 'D".

The component claims of M.U.T. Group "D" are as follows:

Former Grouping	Claims	Units	Record No.	Anniversary
M.U.T. Group A	M.U.T. 1	10	371 (11)	Nov. 30/84
	M.U.T. 4	16	374 (11)	Nov. 30/84
M.U.T. Group B	M.U.T. 2	10	372 (11)	Nov. 30/82
	M.U.T. 3	16	373 (11)	Nov. 30/82
M.U.T. Group C	M.U.T. 5	16	377 (12)	Dec. 7/85
	M.U.T. 6	16	378 (12)	Dec. 7/85

1980 assessment work credits are applied as follows:-

$\underline{\text { Claim }}$	Units	Credit Years Applied	Assmt. Credit Dollar Value	New Anniver Date
M.U.T. 1	10	$2 \mathrm{yrs}$.	\$ 4,000.00	Nov. 30/86
2	10	3 yrs.	6,000.00	Nov. 30/85
3	16	3 yrs.	9,600.00	Nov. 30/85
4	16	2 yrs.	6,400.00	Nov. 30/85
5	16	5 yrs.	16,000.00	Dec. 7/90
6	16	5 yrs.	16,000.00	Dec. 7/90

Total Assessment			
Credits:-	84	\quad	20 yrs.
:---			

HISTORY:

The M.U.T. claims were staked in November and December of 1976 by J. Mirko and I. Sutherland to secure ground adjacent to the Molly and Jumbo c1aims, suspected to contain economic concentrations of molybdenum and tungsten.

The general area has been extensively prospected since 1895, when the Southern Belle group (including the United Verde claims) were staked over silver-lead-zincgold mineralized quartz veins, south of Wilson Creek. Replacement lead-zinc-pyrite deposits in carbonate rocks were mined at the H.B., Jersey, Reeves-McDona1d, and Hunter V mines from 1902 until 1957. Skarn tungsten deposits were mined at the Emerald, Feeney and Dodger properties during the $1950^{\prime} s$. The Molly Mine, owned by Cominco, was operated from 1914-1917 and produced 25,000 pounds of molybdenite concentrate. Tungsten as scheelite, in association with molybdenite, was discovered in 1952 by J. Gallo. Trenching was initiated over a wide area of the Molly claims and on what is now the M.U.T. claims.

In 1977, Westwind Mines under option agreement with Mirko and Sutherland, conducted geological mapping, selective sampling of showings, grid establishment, road repair and 156.5 metres of $A Q$ diameter diamond dril1ing in hole 77-1. Supervision and reporting on the 1977 project was by J. Montgomery, P. Eng., and G. Von Rosen, P. Eng.

An Assessment Report (\#6667) by V.M. Ramalingaswamy indicates an aplitic intrusion was intersected in hole 77-1 from $149.5 \mathrm{~m}-156.5 \mathrm{~m}$. The target for the drilling was skarn tungsten-molybdenite mineralization at an hypothesized granitelimestone band contact.

In 1978, Benson Mines Ltd., drilled 454 metres of $A Q$ core in diamond drill holes 78-1, 78-2, 78-3. Hole 78-1 penetrated 116.7 m of argillite and minor limy argillite before termination in broken ground. Hole 78-2, declined 70°, bearing northwest, cored 226.52 m of argillite and terminated at 236.28 m in aplite. Hole 78-3 was collared 5 m south of the M.U.T. Adit on Lost Creek, and drilled vertically for a total of 101.8 metres. The hole intersected granite and interbedded argillite, siliceous sediments, skarn and argillite. Narrow intersections of skarn assayed from $.18 \%$ to $1.6 \% \mathrm{Wo}_{3}$ with accessory MoS_{2} from 0.02% to 0.03%. Additional mapping, road drill site construction sampling of the M.U.T. Adit, United Verde and 1% showings were also completed during this summer.

In 1978 Cominco completed a substantial diamond drilling program in the limestone - Lost Creek granite contact area of the Molly claims. The extent and results of this program are not known to the author.

BP Minerals optioned the M.U.T. claims from Benson Mines in 1979. A $150 \mathrm{~m} x 50 \mathrm{~m}$ cut grid was established on M.U.T. claims 3-6. Geological mapping was completed at
a scale of $1: 5,000$ and 1,175 soil samples were collected on the M.U.T. grid. A ground magnetometer, scintillometer, and E.M. -16 survey were also completed on the grid.

Recommendations in the 1979 BP report included further drill testing of: a) the aplitic intrusion indicated at the bottom of drill holes 77-1 and 78-2 and b) of an elliptical, zoned $\mathrm{Zn}-\mathrm{Mo}-\mathrm{Cu} / \mathrm{F}$ geochemical anomaly on the north side of M.U.T. Hill.

This report discusses the 1980 diamond drilling program on M.U.T. claim 5, which was conducted by BP Minerals Limited.

GENERAL GEOLOGY: (See Figure 3)

The M.U.T. claims lie near the southern end of the Kootenay Arc; a curvilinear structural belt of upper Proterozoic to lower Palaeozoic, miogeosynclinal metasediments. The Paleozoic formations are separated into 3 northeast to north trending belts, by 2 southeastward dipping thrust faults of regional extent.

The belt rocks have been subjected to two periods of intense folding. Bedding and thrust faults are common, particularly in the argillites. Structure in the belt rocks is everywhere subparallel to the curvature of the Kootenay Arc. The Kootenay Arc has a marked flexion from northerly to east-west in the M.U.T. claims area.

The western "Mine Belt" and the "Eastern Belt" are comprised of Cambrian rocks of the Laib, Reno and Quartzite Range Formations. Dolomitized zones in limestone of the Reeves Member of the Laib Formation, have been productive for $\mathrm{Pb}-\mathrm{Zn}$ deposits in the "Mine Belt".

A central "Black Argillite Belt" contains argillite and lesser calcareous argillite, limestone, and skarn of the ordovician Active Formation.

The M.U.T. claims are underlain by rocks of the "Black Argillite" and "Eastern Belts", intruded by granite of the Lost Creek Stock. The contact between the two belts is marked by the Black Bluff Thrust Fault, which trends northeastward along the eastern side of Wilson Creek.

The oldest rocks of the Eastern Belt are quartzites; they form the core of the Sheep Creek Anticline, which is centered on Lost Mountain, to the southeast of the claims. To the northwest, and upsection, the quartzites contact Reeves Member limestone of the Laib Formation. The Reeves member is overlain by intensively deformed phyllite and muscovite schist of the (Cambrian) upper Laib Formation. The phyllites are thrust over argillites of the ordovician Active Formation, along the Black Bluff Fault.

Exploration activity on the M.U.T. and Molly claims has focused on the Active Formation and its contact areas
with the Lost Creek Stock. The formation is predominantly composed of black argillite with thin interbeds of carbonaceous limy argillite and quartzite. A bed of carbonaceous to argillaceous limestone which occurs on M.U.T. 6 above Lost Creek, grades eastward into siliceous limy quartzite and hornfels. The bed is altered to mineralized, pyrrhotite-garnet-diopside skarn, in contact with aplitic granite, at the margin of the Lost Creek Stock.

Several hornfels zones are noted in argillite on "M.U.T. Hill". Numerous tremolite-wollastonite skarns occur in narrow limy argillite beds on M.U.T. 5 and 6 ; these contain variable but commonly low-grade quantities of scheelite. A small but very high grade MoS_{2} deposit, was mined on the Molly claims from 1914-1917. The MoS_{2} is concentrated in a jointed zone of fine-grained to aplitic granite at the southwestern margin of the Lost Creek Stock contacting Active Formation argillite and limy argillites. Tungsten as scheelite is found in nearby bedded replacement bodies which occur in $1-3 \mathrm{~m}$ thick beds of limestone.

The presence of a porphyry molybdenum system beneath the "M.U.T. Hill" is suggested by a) finegrained MoS_{2} in cross cutting quartz veins with potassic and phyllic alteration selvedges, in aplite intersected at the bottom of drill holes 77-1 and 78-2, and b)
geochemical anomalies on the northwest slopes of "M.U.T." Hi11'.

DIAMOND DRILLING REPORT:
i) Physical Work:

A Komatzue 65 E bulldozer was contracted from Pine Tree Logging of Salmo, B.C. to clear the M.U.T. access road and drill camp of snow. In addition, two reservoir pits were dug to pond local seepages for use in the drilling program. The bulldozer mobilized the drill and supplies from Highway 3 to "M.U.T. Hill", leveled drill sites, then moved and demobilized the drill at project end.

The machine was used during the period April 11th to May 13 th, 1980 for a total of 42 hours, at a contract rate of $\$ 53.50 /$ hour.
ii) Geological Description of Diamond Dri11 Hole M.D.H. 80-1:

Hole M.D.H. 80-1 was sited approximately 130 m northwest of hole 78-2, at an elevation of $1,494 \mathrm{~m}$. The hole was declined -80° on a bearing of azimuth 315° and drilled to a depth of 44.66 m . A synopsis of the hole follows:-

Interval	Main Lithology	Secondary Features	
0-2.85 m	$\begin{aligned} & \text { Casing in Black } \\ & \text { Argiliite } \end{aligned}$	Limonite on fol	iation
2.85-43.97	Black Argillite	2.85-3 m	Tremolite Skarn
	" "	6.56-7.36 m	Aplite Dyke
	" "	16.7-17.14 m:	Scapolite Hornfels plus 8\% pyrite
	" "	29-29.4 m:	```silicified bx + 10% f.g. py```
	" "	30.7 m :	Fault
	" "	38.24-38.8 m:)	Qtz-Biotite Hornfels
	" "	37-37.8 m:	
	" "	37.8-38.24 m:	Aplite Dyke
	" "	41.75-42.1 m:	Fault?
	" "	41.75-41.9 m:	Sheared, graphite on frac.
	" "	42.4-.6m:	Chloritized aplitic(?) dyke

43.97-44.51 Aplite
44.51-44.54 $\begin{aligned} & \text { Fragments of } \\ & \text { Graphite and } \\ & \text { Argillite }\end{aligned}$

Chloritized

Bit shatters and hole is abandoned.

END OF HOLE:

The predominant unit cored in this hole is Black Argillite.
The unit is characteristically carbonaceous and well bedded at $75^{\circ}-85^{\circ}$ to the core axis (t.c.a.). Bedding is marked by thin laminations and by small vugs. A prominent foliation is noted in the interval 20 m to 28 m at $55^{\circ}-65^{\circ} \mathrm{t} . \mathrm{c} . \mathrm{a}$. A 1 m thick calcareous bed at 35 m downhole is porous and friable due to alternating thinly laminated, silty and calcareous layers. Argillite is commonly unaltered to weakly hornfelsed
and contains $1 / 2 \%$ fine-grained blebby pyrite and, pyrrhotite with lesser sphalerite. The section from $26-44 \mathrm{~m}$ contains > 1% fine-grained pyrite and lesser pyrrhotite, along bedding and in occassional 1 cm thick bands. Limonite and goethite commonly occur in fractures down to 13 m , suggesting that leaching of sulphides is active to this depth.

Altered zones in the argillite unit; (listed under Secondary Features above) such as tremolite skarn, scapolite hornfels, silicified breccia (bx) and quartz-biotite hornfels occur over narrow intervals. The altered zones are marked by increased silica and pyrite content. The higher temperature, quartz-biotite hornfels occurs as an alteration envelope to a narrow aplite dyke. The hornfels envelope below this dyke is highly quartz veined and contains minor disseminated finegrained scheelite and very fine-grained molybdenite.

The aplite dykes are fine-grained, equigranular, grey, grey-brown and green coloured rocks; similar in appearance to an arenite. The dykes contain minor carbonate and up to 1% very fine-grained matrix biotite, in part altered to chlorite. The dyke at 37.8 m contains 3% disseminated finegrained magnetite and has strongly altered the argillite country rock.

The silicified pyritic breccia at 29 m contains subrounded to subangular fragments of silicified argillite
up to 2 cm in diameter, outlined by fine-grained pyrite.

The hole was abandoned at 44.54 m . The drill was left unattended with the rods downhole during a lightning storm. When drilling resumed after the storm abated, coring would not proceed. The rods were pulled and it was discovered that the reaming shell was fractured and the bit shattered, leaving the bit crown downhole. Unsuccessful attempts were made to chop out and drill through the bit crown. It is speculated that a lightening strike caused destruction of the bit.
iii) Geological Description of Diamond Drill Hole M.D.H. 80-2: Hole 2 was drilled vertically from the collar of hole 1.

Interval	Main Lithology	
casing in Black Argillite	limonite on fractures and foliation	

Interval \quad Main Lithology	Secondary Features - moderate to strong hornfelsing of argillite throughout
	numerous zones of intense silici-
	fication
	quartz-biotite hornfels common
	near contact with the granite
	a few gypsum fracture-fill veins
	noted near top of section

169.38-169.51 Ap1ite

- upper contact high1y silicified with trace $\mathrm{MoS}_{\text {, }}$, pyrite, contact sharply gradational
- cut by f.g. granite dyke
- weak pervasive sericitization
- v.f.g. MoS plus pyrite in numerous gray quartz veins and micro veinlets and in fractures
- MoS - qtz. vs. cut by sheeted hairline fr. infilled with sericite
- pervasive weak sericitization except intense granite contact
186.9-188.05 Ap1ite and $187.3 \rightarrow$. 7 .
- very numerous qtz. $-\mathrm{MoS}_{2}$ veins and micro veinlets, some x^{2} cutting

Interval	Main Lithology	Secondary Features
188.05-195.47	Quartz-Biotite Hornfels	- v.f.g. MoS_{2} in a few qtz.ser. micro-vs. - hornfels altered to biotite hornfels - biotite hornfels cut by qtz. ser.vs. and silicified
195.47-196.52	Fine-Grained Granite	- silicified and seritized zones - minor MoS_{2} with 2 qtz.-ser vs.
196.52-200.72	Quartz-Biotite Hornfels	- strongly silicified zones - qtz.vs. w. garnet selvedges carry po, py minor sphalerite - biotites, altered to chlorite

200.72-206	Quartz-Biotite Hornfels with Aplite Dykes	- a few qtz. micro-v. carry MoS_{2} - Aplite: $200.55 \rightarrow .6,200.72-$ $201.12,202.16 \rightarrow .8,203.16 \rightarrow .56$ $205.44 \quad 206 \text {. }$
206-211.47	Fine-Grained Granite with Aplite Dykes	$\begin{aligned} & \text { - numerous } \mathrm{MoS}_{2} \text { bearing qtz.- } \\ & \text { ser. } \pm \text { py. micro vs. in aplite, } \\ & \text { fewer seen in granite } \\ & \text { - Aplite } 206.33 \rightarrow .63,206.9 \\ & 207.3,207.65 \rightarrow .95,208.08 \rightarrow .45, \\ & 209.04 \rightarrow .1,209.9-210.6, \\ & 211 \rightarrow .47 \end{aligned}$

N.W.

The upper 80 m of the B1ack Argillite unit is well bedded and is altered in only a few narrow, widespaced zones. Bedding is common at $70^{\circ}-85^{\circ}$ t.c.a. and is well marked by vuggy sulphide laminations, by quartz microlaminations and by a few sections of thinly laminated silt and carbonate layers. A single foliation is present, varying in orientation from $50^{\circ}-65^{\circ}$ and marked by deformed and offset beds and by graphitic partings. Pyrite and lesser, pyrrhotite are common on bedding, in quantities up to 5% by volume of the rock. Sphalerite, as "Black Jack', is occasionally found on bedding as 2-5 mm diameter aggregates. Pyrite, pyrrhotite, and sphalerite (rarely chalcopyrite and galena are found in greater concentrations as disseminations', vein and fracture fill in the altered zones. The hornfels zones are marked by obscured bedding and a fine-grained, dense appearance in the argillite. Hornblende, actionolite, phlogopite, epidote, quartz and pyrrhotite are common in the hornfels. Quartz veining and silicification are more common in the lower part of this section and veins are oriented subparallel to foliation. Aplite dykes appear to intrude along foliation and superficially resemble weakly altered arenites. The dykes are equigranular fine-grained, light gray-green in colour and contain minor epidote, biotite and chlorite. The higher level dykes are barren of sulphides and commonly have sharp, weakly altered contacts with the enclosing argillites.

The section 80-146 m is characterized by weak pervasive
hornfelsing of the argillite. The argillite is dense and compact, though more fractured than in the upper 80 m . Bedding is rarely seen but a prominent "cryptic foliation" is commonly outlined by white quartz microveinlets. The effects of regional metamorphism are suggested by the prominent foliation and by subparallel, white, barren quartz veins and micro veinlets "sweated" into place during compaction and dewatering of the argillites. Graphite occurs on several fractures and shears. Hydrothermal effects are suggested by the increased occurrence of calc-silicate hornfels and silicified zones and by numerous sulphide bearing quartz veins and micro-veinlets with alteration envelopes. Pyrite, and pyrrhotite with lesser sphalerite and/or chalcopyrite are found more frequently in quartz veins and altered zones, than is matrix disseminations. A few widely scattered quartz veinlets, in the interval 107.6 to 146 m , are found to contain minor concentrations of very fine-grained MoS_{2} on their walls.

The interval 146 to 169.38 m is moderately to strongly hornfelsed. The section has numerous pervasive zones of intense silicification and calc-silicate hornfels, containing sulphides. Quartz veins with $1 / 2-1 \%$ pyrite, pyrrhotite and lesser sphalerite and chalcopyrite are common in the section. The veins commonly have fine-grained garnets lining their walls and selvedges of silica and of black biotite moderately altered to chlorite. Numerous hair-line fractures contain biotite altered to chlorite. Zones of biotitization are
common in the interval 165-169.38, near contact with the aplite. Very few MoS_{2} bearing quartz veins are noted in the hornfels section.

The interval from 169.38 m to the bottom of the hole at 233.84 m contains equal amounts of Biotite Hornfels and Granitic dykes. The biotite hornfels is cut by 5-10 quartz (\pm sericite \pm garnet \pm pyrrhotite \pm pyrite) veins per meter and locally silicified and chloritized. While quartz-sericite veinlets with quartz-sericite envelopes are most common in the hornfels, quartz-biotite veins carrying sulphides, with biotite envelopes are also present. The hornfelsed sections contain 2 to 5 (rarely 9) grey quartz \pm biotite or \pm sericite veins per meter, which carry visible MoS_{2}. The hornfels is cut by numerous narrow aplite dykes and by fewer but larger, fine-grained granite dykes. Dyke contacts are commonly irregular at $60^{\circ}-75^{\circ}$ t.c.a. and are sharply gradational. The gradational zone is marked by silicification and peripheral chloritization of biotite.

Fine-Grained Granite is the most voluminous of the intrusive dykes, occupying three times the volume of the section as does aplite. The granite dykes are light gray to gray-green in colour, contain up to 3% fine-grained biotite and rarely, 2% fine- grained, subporphyritic quartz phenocrysts. The larger dyke in the interval 169.5 to 186.9 m is pervasively weakly sericitized - occasionally strongly so adjacent to quartz veins. The smaller granite dykes are
strongly silicified and sericitized adjacent to quartzsericite veins. The granite contains trace disseminated and up to $1 / 2 \%$ vein and fracture fill, fine-grained pyrite. Granite is cut by numerous quartz and quartz-sericite veins at $15^{\circ}-30^{\circ}$ t.c.a. It is noted that barren quartz-sericite veins at 45° t.c.a. and sheeted sericite hair-line fractures at 20° t.c.a. are seen to cross-cut and (rarely)offset, quartz- MnS_{2} veins at $20-30^{\circ}$ t.c.a. An average of 3 to 5 quartz \pm sericite veins per meter, in the main dyke, contain visible fine-grained MoS_{2}. Where the granite is cut by aplite dykes ($55^{\circ}-65^{\circ}$ t.c.a.) it is strongly sericitized and the number of quartz-sericite and quartz $-\operatorname{MoS}_{2} \pm$ sericite veins increases. The contact relationships between finegrained granite and aplite, suggest that they were intruded jenecontemporaneously. In three instances granite dykes in hornfels have gradational aplitic contacts. In one such instance a narrow fine-grained granite dyke intrudes aplite. Numerous sheeted aplite dykes cut and alter granite in the interval 206-211.47 m.

Aplite dykes cut both the hornfels and granite dykes and commonly are less than 1 meter in apparent width. The aplites are very fine-grained equigranular, light gray to green in colour and contain up to 3% irregularly distributed fine-grained biotite. The aplite is cut and locally strong1y sericitized, by numerous quartz veins. Ap1ite may contain sections of sheeted fractures infilled with sericite.

Aplite dykes commonly contain numerous MoS_{2} bearing quartz \pm sericite veins and microveinlets.

Hole 2 was terminated at 233.84 m in biotite hornfels when cave from a fault, located at 216.8 m , could not be stabilized, filled the hole and caused continuous excessive bit wear.
iv) Geological Description of Diamond Drill Hole M.D.H. 80-3:

Hole M.D.H. 80-3 was collared 500 m north of the main access road at $501+45 \mathrm{~N}, 492+60 \mathrm{~m}$ near the edge of the steep north slope of "M.U.T. Hill"; elevation $1,265 \mathrm{~m}$. The hole was drilled vertically to a depth of 200 m . The purpose of the hole was to locate a subsurface, possibly hydrothermal, source for the zoned $\mathrm{Zn} / \mathrm{Ag} / \mathrm{Mo} / \mathrm{Cu} / \mathrm{F}$ geochemical anomaly positioned on the slopes of 'M.U.T. Hill'. Several prospecting traverses over the anomaly zone failed to locate concentrations of economic sulphide minerals.

The hole cored a 200 m section of monotonous, greyblack argillite. The argillite has a persistent, prominent and convoluted bedding foliation at 50° to 70° t.c.a., marked by alternating laminations of graphitic material and quartz. The narrow quartz laminae commonly contain less than 1% fine-grained pyrrhotite and lesser pyrite. A single 10 cm wide aplite dyke was found subparallel to foliation at 29.05 m . A quartz veinlet nearby at 27.7 m carrys minor fine-grained MoS_{2}. The section 91 m to 95 m contains several quartz veins with siliceous alteration envelopes
and quartz-scapolite-amphibole veins containing up to 2% pyrrhotite, $1 / 2 \%$ pyrite and 3% sphalerite. Quartz-scapolite veins also occur in the intervals 117 to $120 \mathrm{~m}, 131 \mathrm{~m}, 135$ to $144 \mathrm{~m}, 153$ to $162 \mathrm{~m}, 189$ to 191 m . Larger quartz veins containing pyrrhotite, pyrite and sphalerite become more numerous below 100 m .

A few quartz veins containing sulphides with epidote \pm garnet selvedges occur from 108 to 114 m and below 183 m . A highly graphitic zone from 106.7 to 107.5 m is healed with quartz and calcite and contains some sphalerite. This zone may mark a major fault at 60° t.c.a., as bedding foliation on the footwall is highly convoluted and laminae contain more massive concentrations of vein quartz \pm garnet plus pyrite, pyrrhotite, and spahlerite to 3% by volume. The convoluted massive quartz veins give the argillite a "marbled" appearance.

While numerous sulphide bearing quartz and quartzscapolite veins occur over narrow sections, the argillite unit as a whole showed but little alteration down to 200 m . It was decided that a hydrothermal source for the veins was at some depth and/or lateral distance and that the hole should therefore be terminated.
v) Results:

The results of geochemical analysis of diamond drill core for $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Sn}, \mathrm{W}, \mathrm{F}$ are presented in Tables 1 to 3

TABIL:
TRACE GLIMENT ANLIYSIS OF M.IT.H. B0-1 CORE

Sample I.D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Feature of Interest	Mo	Cu	$\underline{\mathrm{Pb}}$	Zn	Ag	$\underline{\mathrm{Sn}}$	W	F
579280	9-12	Black Argillite	1/2\% f.g. bedded pyrite	15	54	4	480	1.0	0	18	940
579281	15-18	Black Argillite	16.7-17.14: hornfels W. 8\% diss. py. + py.vs.	11	52	2	680	1.2	0	10	750
579282	27-30	Black Argillite	29-29.4: sil. hornfels bx. $+10 \%$ diss. and f.f. py.	20	60	4	1560	1.2	2	2	1010
579283	36-39	Black Argillite	37.3 .8: hornfels; 37.8-38.24 aplite +3 훔 mgt.	31	116	4	1920	0.4	2	90	2370

TABLE 2

			IILACL ILIMBNTS (ppm)								
Sample I.D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Feature of Interest	M)	Cir	Pb	Zn	Ag	$\underline{\mathrm{Sn}}$	W	F
579201	1-3	Black Argillite	2\% f.g. py. on bedding fractures	16	40	2	128	1.2	2	120	540
579202	3-6	Black Argillite	2\% f.g. py. on bedding fractures	14	44	2	96	1.2	2	50	800
579203	6-9	Black Argillite	2\% f.g. py. on bekling fractures	17	48	2	146	1.2	2	20	740
579204	9-12	Black Argillite	2\% f.g. py. on bedding fractures diabase dyke 8.84-9.05 m	-	-	-	N.^.	-		-	-
579205	12-15	Black Argillite; Aplite 12.05-14.13	1/2-1\% py in vugs on bedding	-	-	-	N.A.	-	-	-	-
579207	15-18	Black Argillite	1/2-1\% py in vugs on bedding	9	62	2	1040	2.2	0	2	900
579206	18-21	Black Argillite; wk. hornfels 19-20	$2-5 \% \text { py in vugs, } 20 \% \text { py }+ \text { po }$ in local bands	-	-	-	N.A.	-	-	-	-
579208	21-21	Black Argillite; w. hornfels bands	$2-5 \%$ py on vigs, 20% py + po in local bands	-	-	-	N.A.	-	-	-	-
579209	21-27	Black Argillite	$\begin{aligned} & 2-5 \% \text { py on vugs, } 20 \% \text { py }+ \text { po } \\ & \text { in local bands } \end{aligned}$	11	i0	2	236	0.8	2	15	800
579210	27-30	Elack Argillite	2-5\% py on vugs, $20 \% \mathrm{py}+\mathrm{po}$ in local bands	19	50	2	540	1.0	0	5	750

TABLI: 2 (Continued)
TMAC: BIMMNT ANNIYSIS OF M.D.II. 80-2 CORE:

TABLI: 2 (Contimucd)
TRACE HBIMENI ANAIYSIS OF M.D.II. $80-2$ CORE
IRNCI: B:IMM:NTS (pun)

Sample I.D.	$\frac{\text { Interval }}{(\text { metres })}$	Rock Tyje	Feature of Interest	Mo	(i)	16	Zn	$\mathrm{Ag}^{\text {a }}$	Sn	W	F
579221	60-63	Black Argillite	5-10\% po, py, prominent in hornfels $60.23 \rightarrow 60.71$	-	\checkmark	-	N. ${ }^{\text {a }}$	-	-	-	-
579222	63-66	Black Argillite	10\% po + py in vugs	15	50	6	190	0.2	2	0	900
579223	66-69	Siliccous ltornfels	po, py in vugs and bands	-	-	-	N.^.	-	-	-	-
579224	69-72	Black Argillite	$71.1 \rightarrow 71.5$ fault marked by bx, frac. and qtz. v.	25	60	6	490	0.2	2	10	1350
579225	72-75	Argillite and Ihomfels	shear zones $72.1,74,74.3 \mathrm{~m}$	-	-	-	N.A.	-	-	-	-
579226	75-78	Black Argillite	tr. Mo w. sericite adjacent qtz. $v ; 2$ shear zones	24	72	16	540	0.6	0	2	1000
579227	78-71	Black Argillite	79-80 silicified veined zone. py diss. po in vs;	-	-	-	-	-	-	-	-
579228	81-84	Ilornfelsed Argillite	po. in homfels; qtz.vs. few sulphides	27	70	10	840	0.2	0	40	1900
579229	84-87	Argillite and Hornfels	qtz. vs. carry magnetite, hematite, pyrite	-	-	-	N.^.	-	-	-	-
579230	87-90	Hornfelsed Argillite	qtz. vs; zones of k-feldspar or garnet	35	114	6	3100	0.2	2	1400	2500.

TABLE 2 (Continued)

TRACE ELLMENT ANALYSIS OF M.D.II. BO- 2 CORE

Sample I.D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Peature of Interest	N ${ }^{\text {r }}$	TRACE ELIMENTS (ppm)				$\underline{\mathrm{Sn}}$	W	F
					CH	Pb	$\underline{\mathrm{Zn}}$	Ag			
579231	90-93	Iornfelsed Argillite	$\begin{aligned} & \text { py, po on foliation; bx. qtz.v. + } \\ & \text { py, po, sph } \end{aligned}$	-	-	-	N.A.	-	-	-	-
579232	93-96	Wrafelsed Argillite	py, po on fol. also 1-3\% in qtz. vs .	36	58	8	450	0.2	2	30	1200
579233	96-99	Iornfelsed Argillite	$\begin{aligned} & \text { silica alt. env. to gtz. vs. } \\ & \text { ' } 10 \text {, py } \end{aligned}$	-	-	-	N.^.	-	-	-	-
579234	99-102	Hornfelsed Argillite	numerous qtz. vs.on fol. + py, po, sph	33	64	8	650	0.2	2	15	1200
579235	102-105	Hornfels and Argillite	numerous qtz.micro v. ${ }^{+}$py, po	-	-	-	N.A.	-	-	-	-
579236	105-108	Iornfelsed Argillite	skarned; MoS_{2} in 1 gtz v ; po, py in qtz.vs.	11	62	4	860	0.2	0	12	2000
579237	108-111	Iornfelsed Argillite	qtz.vs. with silica and sericite env. MoS_{2} in 1 vein	-	-	-	N.^.	-	-	-	-
579238	111-114	Hornfelsed Argillite	qtz.vs. with silica and sericite env. MoS_{2} in 2 qtz. vs.	53	58	2	710	0.2	-	20	2050
579239	114-117	Fornfelsed Argillite	biotite and silica env. to qtz vs; MoS_{2} in 4 qtz. vs.	-	-	-	N.A.	-	-	-	-
579240	117-120	Iornfelsed Argillite	qtz vs and silicification, MoS_{2} in 2 qtz.vs.	42	60	2	880	0.2	0	12	1050

TABLE 2 (Continued)
TRACE ELIMENT MMLYSIS OF M.D.II 80-2 CORE

Sample I.U.	$\frac{\text { Interval }}{\text { (netres) }}$	Rock Type	Feature of Interest	TRAC: ELIMMENTS (Dpm)					$\underline{\mathrm{Sn}}$	W	F
				Nh	(il	Ib	Zn	$\Delta \mathrm{g}$			
579241	120-123	lornfelsed Argillite	tr. scheelite and 5\% po in skarn bands	-	-	-	N.A.	-	-	-	-
579242	123-126	lornfelsed Argillite	trace scheelite and 5\% po in skarn bands	29	94	2	4500	0.2	2	70	2450
579243	126-129	Hornfelsed Argillite	silicified zones, skam himels, trace $\mathrm{MoS}_{2}+$ scheclite in sil. zones	-	-	-	N.A.	-	-	-	-
579244	129-132	Hornfelsed Argillite	pervasive silicification, $2 \mathrm{MoS}_{2}$ qtz. vs. + bi/sil. sclvidges	37	64	2	520	0.2	0	70	1950
579245	126-129	Hornfelsed Argillite	$\begin{aligned} & \text { silicified zones, } 4 \text { qtz vs. }+\mathrm{MoS}_{2} \text {, } \\ & \text { garnet skarn }+\mathrm{F} \end{aligned}$	-	-	-	N.A.	-	-	-	-
579246	135-1.38	Hornfelsed Argillite	silicification; f qtz.v. $+\mathrm{MoS}_{2}$, qtz.vs.+ py (bi)	44	76	2	980	0.2	2	20	4600
579247	138-141	Hornfelsed Argillite	silicification; semi massive py. bands;	-	-	-	N. Λ.	-	-	-	-
579248	141-144	Hornfelsed Argillite	silicified zones; silica-garnet env. to qtz.vs.	32	56	4	338	0.2	0	0	1400
579249	144-147	Hornfels	silicified; biotite and silica-garnet env. to qtz.vs. $-4 \mathrm{MoS}_{2}$ qtz.vs.	-	-	-	N.A.	-	-	-	-
579250	147-150	Hornfels	$1 \mathrm{qtz}-\mathrm{MoS}_{2} \mathrm{v}$ + garnet-diopside selv.	57	84	4	740	0.2	0	20	1650

TARLE 2 (Continued)

Sample I.D.	$\frac{\text { Interval }}{\text { (inetres) }}$	Rock Type	Seature of Interest	Mh,	Cir	Pb	Zn	Ag	$\underline{\mathrm{Sn}}$	W	$\underline{\mathbf{F}}$
579251	150-153	Ifornfels	qtz-garnet and qtz-epidote selv. to gtz.vs.	-	-	-	N.A.	-	-	-	-
579252	153-156	lornfels	$\begin{aligned} & 2 \text { gtz. } \mathrm{MoS}_{2} \text { vs }+\mathrm{po} / \mathrm{sph} / \mathrm{cp}+\text { rrags. qtz. } \\ & \text { and Cold. } \end{aligned}$	50	74	4	1600	0.2	2	20	1350
579253	156-159	Hornfels	qtz.vs.carry po, sph w, ganet envelopes	-	-	-	N.A.	-	-	-	-
579254	159-162	Hornfels	garnet-epidote skarn bands; qtz.vs.+ po/sph	40	56	4	380	0.2	0	5	1300
579256	162-166	Hornfels	$\begin{aligned} & \text { silicified; qtz. vs. }+ \text { po/sph; scheelite } \\ & \text { in po band } \end{aligned}$	40	90	2	870	0.2	0	35	580
579257	166-169	Quartz Biotite Hornfels	silicified; minor $\mathrm{po} / \mathrm{MoS}_{2} / \mathrm{cp} / \mathrm{py}$ in fracs.	27	116	2	1540	0.8	2	210	1730
579258	169-171	F.G. Granite	minor aplite; sericite cut by 22 qtz. veinlets + v.f.g. MoS_{2}	84	14	2	20	0.4	0	12	340
579259	171-174	F.G. Granite	16 qtz. veinlets carry v.f.g. MoS_{2}	110	4	6	10	1.0	0	15	300
579260	174-177	F.G. Granite	$\begin{aligned} & 10 \mathrm{qtz} . \text { veinlets carry trace v.f.g. } \\ & \mathrm{MoS}_{2} \end{aligned}$	90	2	6	40	0.4	2	10	300
579261	177-180	F.G. Granite	$8 \mathrm{MoS}_{2}$ qtz.vs: cut by sheeted sericitic hairline fr.	156	2	4	8	0.4	2	12	260

TABLE 2 (Continued)

TRACI: BIPMINT ANAISSIS OI: M.D.II. BO-2 CORI:

Sample I.D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Feature of Interest	Nk	Cil	1 B	$\underline{\mathrm{Zn}}$	Ag	$\underline{\mathrm{Sn}}$	W	\underline{F}
579262	180-183	F.G. Granite	${ }^{8}$ gtz.vs. $+\mathrm{MoS}_{2}$; tr. Mos_{2} on sheeted ser. ff.	168	4	8	10	0.4	2	10	230
579263	183-186.9	F.G. Granite	$19 \mathrm{qtz} . \mathrm{vs} .+\mathrm{MoS}_{2}+\mathrm{py}+$ sericite + py enve lopes		4	8	8	0.6	0	25	230
579264	186.9-188.05	Aplite (Altered)	v.f.s. Mos_{2} dissm and in fr. In 30 qtz. vs.		6	6	38	0.6	2	10	960
579265	188.05-192	Biotite łornfels	$\underset{\text { v.f.g. }}{\text { q. }} \mathrm{MoS}_{2}$ dissem and in fr in 10 qtz.vs.	42	48	2	520	0.6	0	18	1160
579266	192-195.47	Biotite Hornfels	2 qtz-sericite veinlets $+\mathrm{MoS}_{2}$	58	50	2	550	0.4	0	20	1310
579267	195.17-198	Hornfels and Granite	F.G. Granite $195.47 \rightarrow 196.52$ cut by 4 qtz-ser. $v+\mathrm{MoS}_{2}$	90	36	2	104	0.4	2	15	1000
579268	198-201	llorntels	Aplite $200.55 \rightarrow 201 ; \mathrm{MoS}_{2}$ in 5 qtz. gamet vs.	60	32	1	4.14	0.4	0	0	1450
579269	201-205.44	Hornfels	$\begin{aligned} & \text { Ap1ite 202.16-202.8, 203.16-203.56; } \\ & 9 \mathrm{MoS}_{2} \text { vs. } \end{aligned}$	58	24	2	690	0.2	2	20	1950
579270	$\begin{aligned} & 205.44-206 \\ & 206.33-.63 \\ & 206.9-207.3 \end{aligned}$	Aplite Dykes	13 qtz-ser. vs $+\mathrm{MoS}_{2}$	470	8	4	84	0.4	2	25	750
579271	$\begin{aligned} & 206-206.33 \\ & 206.63-.9 \\ & 207.3-210 \\ & \hline \end{aligned}$	F.G. Granite	sericite altn; minor aplite; $10 \mathrm{qtz} \cdot \mathrm{MoS}_{2}$ vs.	44	32	6	10	0.4	2	10	460

TABLE 2 (Cont inued)
TRACI BIDMENT ANAI,YSIS OF M.O.11. B0-2 COMI:
TRACE BIMTNTS (pom)

Sample I.D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Pature of Interest	Mh)	Ci	Pb	Zn	$\underline{\mathrm{Ag}}$	$\underline{\mathrm{Sn}}$	W	F
579272	210-213	Biotite Hornfels	aplite $210 \rightarrow .6,211 \rightarrow .47$, $8 \mathrm{q} \mid \mathrm{z}-\mathrm{MoS}_{2}$ vs. +py	320	26	8	400	0.2	2	2	$9(1)$
579273	213-216	Iornfels	numerous qtz-ser: zones; 11 qtz- ser. vs. $+\mathrm{MOS}_{2} \pm 1 \mathrm{~m} / \mathrm{py} / \mathrm{cp}$	126	48	6	1000	0.2	2	5	920
579274	216-219	Hornfels	$\begin{aligned} & \text { aplite } 2 \mathrm{~J} 6 \text {. } 14 ; 7 \text { qtz-ser.vs. } \\ & +\mathrm{MoS}_{2} \end{aligned}$	89	48	2	100	0.2	2	2	580
579275	219-222	Aplite and Hornfels	hornfels 220.87-222; 20 qtz-ser. vs. $+\mathrm{MoS}_{2}$	140	18	10	68	0.2	0	0	880
579276	222-226	Biotite Hornfels	aplite $222.34 \rightarrow$.98; 12 qtz. ser. vs $+\mathrm{MoS}_{2}$	57	38	6	72	0.2	0	0	86
579277	226-230	lornfels	$\begin{aligned} & \text { fault } 224.7 \rightarrow .85 ; 15 \text { qtz.vs. }+ \\ & \mathrm{MoS}_{2} \end{aligned}$	40	54	2	82	0.4	2	10	840
579278	230.1-230.6	Aplite	```sericitized; 18 qtz.-ser.vs. + MoS2```	192	52	6	104	0.6	0	2	110
579279	$\begin{aligned} & 230.6-232.86 \\ & \text { END } \end{aligned}$	F.G. Granite	$\begin{aligned} & \text { sericite hairline } \mathrm{fr} ; \quad 35 \mathrm{qtz} \text { - } \\ & \text { ser. hairlines }+\mathrm{MoS}_{2} \end{aligned}$	344	14	10	38	0.6	0	5	1000

TABLE 3

TRACI BLIMENT ANAIYSIS OF M.10.II. 80-3 COHS

			TRNCI HMMNSS (mxn)								
Sample 1.1).	$\frac{\text { Interval }}{(\text { metres })}$	Rock Typo	leature of Interest	Mas.	Cu	H	2 n	$\underline{\mathrm{ng}}$	$\underline{\mathrm{Sn}}$	W	F
579284	3-6	Black Argillite	f.g. po disseminated in silica laminations	22	76	4	770	0.6	0	0	820
579285	9-12	Grey Rlack Argillite	po/py in qtz. micro-vs. and graphite on fol.	22	104	16	820	2.6	0	0	1300
579286	15-18	Grey Black Argillite	po/py in qtz. micro-vs. and graphite on fol.	21	84	16	730	1.4	0	0	750
579287	21-24	Grey Black Argillite	silicification $21.1 \rightarrow 21.7$	16	86	20	700	2.4	0	0	970
579288	27-30	Grey Black Argillite	MoS_{2} in qtz. veinlet, 27.7 m ; 29.65 : aplite dyke	20	92	16	1110	1.4	0	0	920
579289	33-36	Grey Black Argillite	disseminated f.g. po on foliation	16	84	10	680	0.8	0	0	1150
579290	39-42	Grey Black Argillite	qtz veins parallel foliation	20	62	10	410	1.0	0	0	620
579291	45-48	Grey Black Argillite	qtz vein $+2{ }^{\text {\% }}$ po crosscuts fol.	21	46	12	418	0.6	0	0	570
579292	51-54	Grey Black Argillite	$\begin{aligned} & 53.5 \rightarrow 54: \text { silicified w. po }+\mathrm{py} \\ & \text { but } \leqslant 1 \% \text { total } \end{aligned}$	4	92	10	620	2.8	0	0	2250
579293	57-60	Grey Black Argillite	numerous qtz. veins on convoluted foliation	10	110	20	970	3.2	0	0	2050

TABIE 3 (Contimud)

			俉	TRACI SMMENTS (pmm)							
Sumple I. D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Feature of Interest	Mo	Cis	$\underline{\mathrm{Pb}}$	2 n	$\underline{\mathrm{ng}}$	$\underline{\mathrm{Sn}}$	w	F
579294	63-66	Grey Black Argillite	numerous qtz veins on convoluted foliation, qtz.vs. have assoc. F.g. polpy<1.	6	128	20	820	3.4	0	0	1800
579295	69-72	Grey Black Argillite	as above. minor sphalerite with po/py	7	124	22	720	3.4	0	0	2200
579296	75-78	Grey Black Argillite	as above.	10	168	16	1220	6.4	0	5	2850
579297	81-84	Grey Black Argillite	as above.	5	114	12	860	2.8	0	0	2500
579298	87-90	Grey Black Argilite	as above.	5	96	8	1110	2.4	0	0	2700
579299	93-96	Grey Black Argillite	several 10 cm wide qtz-scapoliteactinolite - sulphicle vs.	5	104	6	1000	1.8	0	0	2300
579300	99-102	Grey Black Argillite	qtz.micro-veinlets carry po + py \simeq 1\%	16	154	10	1270	4.4	0	2	2500
579301	105-108	Grey Black Argillite	$\begin{aligned} & \text { shear zone }+ \text { qtz, calcite, sph } \\ & \text { at } 106.7 \mathrm{~m} \end{aligned}$	14	152	6	1000	3.8	0	2	2600
579317	108.9-109.2	```Argillite w. Qtz. Marbling```	py/po/sph $2-3 \%$ in qtz.vs.	10	78	2	290	1.4	0	0	1150

TABIE 3 (Continucd)
TTACE ELINUNT ANAI,YSIS OI: M.D.II. 80-3 COM:

TABM: 3 (Continucd)

Sample I.D.	$\frac{\text { Interval }}{\text { (metres) }}$	Rock Type	Feature of Interest	M0	Cu	macie elimints (-pm)			$\underline{\mathrm{Sn}}$	$\stackrel{\text { W }}{\sim}$	F
						Pb	$\underline{\mathrm{n}}$	Ag			
579310	159-162	Grey Black Argillite	qtz-scapolite-sulphide sill (?) with silica env. Prom $161.1 \rightarrow 162 \mathrm{~m}$	16	106	12	600	2.4	0	0	1750
579311	165-168	Grey Black Argillite	5\% po/py in qtz. micro-vs.	13	186	30	900	4.0	0	0	2000
579312	171-174	Grey Black Argillite	as above.	7	166	18	720	3.6	0	0	2850
579313	177-180	Grey Ralck Argillite	1-2\% f.g. dissem py/po/sph in qtz. 1 aminae	9	142	28	1250	3.8	0	2	1900
579314	183-186	Grey Black Argillite	$183.7 \rightarrow 184$: massive $\mathrm{sph} / \mathrm{po} / \mathrm{py}$ in qtz.v.	14	156	20	1600	3.8	0	0	2150
579315	189-192	Grey Black Argillite	several qtz-scapolite zones; sulphides with qtz.v.	14	140	24	1760	4.0	0	0	2200
579316	195-198	Grey Black Argillite	much po/py/sph in a rew qtz.vs.	15	166	22	1120	4.8	0	2	2050

for drill holes M.D.H. 80-1 to 3 respectively.

The results of hole 3 from unaltered, visually homogeneous argillite are worthwhile examining first as they provide some information on background values for the Black Argillite unit. Hydrothermal effects in the argillite and backgrounds for the hornfels and intrusive rocks can then be evaluated.

The upper 90 m of hole 3 showed little evidence of alteration or hydrothermal veining. Background ranges for various elements follow:-

The sections containing the aplite dyke and lower marbled argillite and quartz-scapolite zones (noted to contain visibly more sphalerite) returned elemental values well within the background range for the argillite.

A marked overall increase in Fluorine (F), Silver (Ag) , Copper (Cu), and $\mathrm{Zinc}(\mathrm{Zn})$ content is noted below 51 m in the hole. Values for Tungsten (W) and Tin (Sn) commonly associated with igneous-hyrdrothermal processes are very low throughout the hole.

The results for hole 1 in the interval 36-39 m suggest that the aplite is the cause of higher $F, W, Z n$,

Cu , and Mo and lower Ag values when contrasted to the preceeding argillite.

In hole 2 the fine-grained granite in the interval 169-186.9 is typically low in F (230-340 ppm), $\mathrm{Ag}(0.4-1)$, $\mathrm{Zn}(8-40), \mathrm{Pb}(2-8)$ and $\mathrm{Cu}(2-14)$ but contains rather high Mo values ($84-156 \mathrm{ppm}$ increasing to 168 ppm in contact with aplite). The aplite has a similar chemical signature to the granite but contains even greater amounts of Mo (340-470 ppm). In the Hornfelsed Argillite below 80 m , generally higher values are noted for $M o, C u, F$ and W while Pb and Sn are similar and Zn and Ag are generally lower, than in the upper 80 m , or in hole 3 . Certain skarn bands as at 123-126m are high in Zn (1700-4600 ppm). Hornfelsed zones in the upper 80 m of the Black Argillite unit; e.g., 36-45 m are high in Zn (1420-5100 ppm), F (1630-2350) and/or Mo (31-77) and W (35 ppm).
iv Conclusions:

Hole M.D.H. 80-2 encountered subeconomic molybdenite concentrated in quartz \pm sericite veins and veinlets in granite and aplite dykes,below 169 m . The aplite dykes contain approximately twice as much MoS_{2} as the granite. The aplite appears to be a siliceous contact phase of the finegrained granite dykes; however, the aplite is also seen to cut and alter the granite.

Alteration of the argillite increases downhole to moderately high-grade, biotite hornfels, in contact with the granitic dykes. A hydrothermal system of some size is evidenced by veins and skarns extending well above the dykes, which are enriched in base metal content. It is as yet unclear whether: 1 . the granitic source for this hydrothermal system lies directly below or lateral to the botton of the hole M.D.H. 80-2 or 2: whether the granitic source is a cupola lateral to the Lost Creek Stock or a separate and later event.

vi) Recommendations:

Further drilling in area of M.D.H. $80-2$ is recommended to locate a sizable mineralizer intrusion, indicated to lie beneath M.U.T. Hill. The target model is a Mo-W porphyry system.

APPENDIX 1

STATEMENTS OF QUALIFICATIONS

STATEMENT OF QUALTEICATICNS

x, Michael D. Bradley of \#1007-1111 West Hastings Street, in Vancouver, in the Province of British Columbia, Do Hereby State:

1. That $I \approx \equiv \equiv$ Eraduate 0 E the University of British Columbia, Vancouver, B.C., winere I obtainec a B.Sc. degree in Physics-Geology in 1973.
2. That I $0=3 \mathrm{~m}=\mathrm{A}$ an M.Sc. degree in 1975 from Scripps Institute of Oceanogeainy, Ia Jolla, California.
3. That I an a merber in good standing of The Canadian Institute of Mining and vetallurgy and the Prospectors and Developers Association.
4. That I have been active in mineral exploration since 1968.
5. That I have practiced my profession continuously as a staff geologist for BP Minerals Limited, since 1975

STATEMENT OF QUALIFICATIONS

I, Ernie E. Meszaros, of 749 Scenic Drive, Hamilton, in the Province of Ontario, do hereby state that:

1) I obtained a B.Sc. degree in Geology from McMaster University, Ontario in May, 1980.
2) I have been active in exploration as a geological assistant during the summers of 1977, 1978 and 1979.
E. Meszaros

July 30,1980 , Vancouver, B.C.

APPENDIX 2

1. CONTRACTORS

A. DRILLING: (Wright Drilling Ltd.)

(i) Footage:
(I) Casing:

Hole MDH 80-1 2^{\prime} '
MDH 80-2 4^{\prime}
MDH 80-3 $2{ }^{\prime}$
8^{\prime} @ $\$ 16 /$ ft. $\$ 128.00$
(II) Coring:

Hole MDH 80-1
145' @ \$15.50/ft. 2,247.50
MDH 80-2
396' @ \$15.50/ft. 6,138.00 367' @ \$16.35/ft. 6,000.45

MDH 80-3
398' @ \$15.50/ft. 6,169.00
256' @ \$16.35/ft. $\frac{4,185.60}{\$ 24,869.00}$
$\$ 24,869.00$
$\$ 24,869.00$
(ii) Drill Rental:

51 hours @ \$18/hr.
\$ 918.00
(iii) Labour:

109 hrs . - Mobilization
161 hrs. - Camp and Drill setup
$232 \mathrm{hrs}$. - Drill Moves and Demobilization
502 hrs. - Total man/hrs. a $\$ 16.50 / \mathrm{hr}$. $\$ 8,283.00$
(iv) Truck Rental:
4×4 Truck - 51 hours @ $\$ 6 / \mathrm{hr}$. and 30 hours @ $\$ 6.50 / \mathrm{hr}$.

- \$ 501.00
4×4 Truck Repairs
- 222.00

4 Ton Truck - 1 month - $1,043.00$
Overload Permit
$-\frac{33.00}{\$ 1,799.00}$
\$ 1,799.00
(v) Materials Consumed or Lost:

1 - B.W. Casing Shoe \$ 140.00
1 - 2' B.W. Casing 26.25
1 - 10^{\prime} Casing 86.55
142 I Kutwell Oi1 116.85
Thiesen Equip. Inv. (mud) \#7352 254.70
66-Coreboxes @ \$4.15/box. 273.90
B.C. S.S. Tax @ 4% of $\$ 273.90$
10.96
\$ 909.21
15% of $\$ 909.21$ (handling charge)
163.38

1 - Coffee Pot	14.30
Gas	598.00
Meals and Rooms	698.00

(vi) Bit Wear:

1 - BQ 100 Series Diamond Bit
\$ 356.00
1 - BQ 200 Series Diamond Bit
392.27
B.C. S.S. Tax @ 4% of $\$ 748.77$
29.93
15% on Supplies Used

116.73
$\$ 895.00$

B. BULLDOZER: (Pinetree Logging Company Ltd)
Komatzue 65E: CAT Work - 42 hours @ \$53.50/hr. \$ 2,247.00Mobilizing Bulldozer - 8 hours @ $\$ 35.00 / \mathrm{hr}$.280.00
\$ 2,527.00 \$ 2,527.00
2. LABCOR (BP Personne1)
M. Bradley - Project Geologist (April 8-12 and April 21-May 15) (Oct. 20-24)
35 days @ \$126/day. $\$ 4,410.00$
J. Gravel - Property Geochemist (May 1-May 13)
13 days @ \$83/day. 1,079.00
E. Meszaros- Property Geologist (May 10-May 15)
6 days @ \$83/day. 498.00
B. Wotton - Technician (April 21-May 15) (July 3,4) 20 days @ \$50/day. $1,000.00$
B. McCarthy- Technician (May 2-May 15) (July 3,4)
16 days @ \$53/day. 848.00
A. Fyfe - Slasher (July 3,4) 2 days @ \$60/day. 120.00
3. TRUCK RENTAL (Redhawk Rentals)
4×4 Truck - (Apri1 21 - May 15) 25 days ($5 / 6 \mathrm{mo}$.) @ $\$ 762 / \mathrm{mo}$. \$ $635.00 \$ 635.00$4. TRAVEL AND SUBSISTENCE:
10 days Accommodation in Motels \$ 288.30
Meals 338.22
Groceries 1,975.41
Airfares 430.85
Tilden Rent-A-Car 112.79
5. MATERIALS AND SUPPLIES: (Consumables)

Gas for BP rental truck	$\$ 489.10$
Phone Calls	48.73
Postage	14.85
Radio Licence	52.00
Freight Haulage	216.79
Camp Supplies	$2,096.00$
Reproduction (maps)	851.08
Diesel Fuel for drill and pumps	
1,058 litres @ $\$ 0.20 / 1 i t r e$	214.00
	$\$ 3,932.55$

$$
\$ 3,932.55
$$

6. DRILL CORE SAMPLE ANALYSIS: (95 Samples)

5 elements (Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$) \$2.50/sample
$\mathrm{Sn} \quad 2.00$
W
F
2.00
3.25

Preparation for geochemical assay
2.25
$\$ 12.00 /$ sample $\times 95=$
\$ 1,140.00
7. REPORT PREPARATION:

TOTAL ASSESSMENT CREDIT CLATMED:
$\$ 58,775.00$
\mathcal{F}_{0} \qquad $S_{\text {tatement }}$ Projzet 517 . mous if 1980 OAl BP MiNERALS $\frac{\text { MASTINES }}{1007-1111 \text { WEST }}$ O_{n} (नtcc't ()) $)_{i t h}$ pinetree logging company luto Oerms, Box 27, SALmo, BC.

INVOUCE
WRIGAT DRILLIMG LTD．

$$
\text { Box } 3046 \text { M.PP }
$$

KAMLOOPS．B．C．
甘2う＂感
mivalcen in．
256 Vac 637

$$
02 C 610 \%
$$

SOLD TO

$$
\begin{gathered}
\text { D.P. MINERALS HIMITED } \\
\text { III-WEST HASTINCS } \\
\text { UGHCOUVER. B.C. } \\
\text { VEE } 3 N 5
\end{gathered}
$$

SOLD TO

$$
\overbrace{i}^{*}
$$

$$
2
$$

$$
\text { CORING } 2-147^{\prime} 145^{\prime \prime} \text { ² 3.50 }
$$

32.00

$$
\begin{aligned}
& 198.00 \\
& 34.00 \\
& 18.00
\end{aligned}
$$

डUPPLES USED> DNAREED
fifouing on How $m D H$ 80-2

$-34 \% .50$
54.00
18.00

HOSE : mDH 80-2
Casneg $\quad-4-t^{\prime}$ ai 71600
\therefore VINC $\because-400^{\prime}-376$ (1) 15.50 400 - 767' 367 (2) 1635

$$
\begin{aligned}
& 664.00 \\
& 6138.00 \\
& 6,000.15
\end{aligned}
$$

Hous Stnewtation

LABOR	ISHES Q 16.50	247.50	
EQUIP	7.5 HRSS © 18.00	135.00	
TRUCK	7.5 HRS	e b.00	45.00

movine Supply Pump

| LABOR | 20 HRS @ 16.50 | 330.00 |
| :--- | :---: | :---: | :---: |
| EQUR | 10 HRS Q 18.00 | 180.05 |
| TRUCK | 10 HRS Q 6.00 | 60.00 |

moviuc To $\mathrm{H}_{\mathrm{C}}{ }^{ \pm} \mathrm{EIDH}-80-3$

SM....inc llows \#mDH no is

MDDUVG DEW FROM LAS: HOLE TO
AUADING AREA

| LABCR | 47 HRS 1650 | $715: 50$ |
| :--- | :--- | :--- | :--- |
| EQUP | 12 HRS 18.00 | 21600 |
| TRUCK | 12 HRS 6.00 | 72.00 |

$$
\begin{aligned}
& \text { I-B.Q } 100 \text { SERIES DIAMONS B.T } \\
& \text { I B.Q } 200 \text { SEREES LIAMOND B.T }
\end{aligned}
$$

pacie II
prenobleization teuck hondive To Krimloops

$$
\begin{aligned}
& 6 \% \text { 1RES Q } \$ 6.50 \\
& \text { GA5 }
\end{aligned}
$$

MEALS Y ROOMS

$$
\begin{aligned}
& 1138.50 \\
& 139.60 \\
& 156.65
\end{aligned}
$$

SUMPVES CSEDY CONSUMED
$1 \bar{B} \omega \mathrm{CASing}$ SHOE
1 2'B.W CAsing
1 10'B.C. CAsinc
283 ん, TRES KuTuJEL © 8, 3^{2}
THIESSEN EAUIP INU (MUD) 7352
$\$ 140.00$

$$
26.25
$$

$$
86.55
$$

$491.76=$

$$
197.2^{6}
$$

$$
\begin{array}{r}
1232.96 \\
19.46
\end{array}
$$

187.86 14.30

MOBILIRATONO

LabuVR
109 man las a 11.50
Truck 4 Ton
1 mowth April 21-may 21 ounalond pramit 4×4 '5 Trunt $201 / 25$ ce 6.50
Ga5
meals
$-1 / 798.50$

$$
1,043.00
$$

$$
33.15
$$

$381.76-30.00$
-81.10

$$
3,487 \cdot 51
$$

CAMP a DRid SETE UP

LBBEUE
Cl man Hes. ※ 16.50
4×4 's Truats 40 hes ar 4.50
G月5
Fooms
meals

$$
\begin{array}{r}
2,656.50 \\
65.00 \\
277.15 \\
4233.10 \\
4217.2=
\end{array}
$$

$$
\overrightarrow{2,} \geq 49.00
$$

WRIGHT DRILLING LTD.
Box 2096 首iPP.
KAMLOOPS. B.C. PZCFBED
$12 c-6 B 7$ PBEFAED

SOLD TO
Jut 5 -90

Hemsimis, 3.5.
B.P. MIAERALS LIMITED
invoice no. 261
SHIPPED TO
Γ
SALMO TROIEEN

Vricouver, B.C.

UNVOLCE
WRIGHT bRILLING LTD.
KMGE BCX 3046 M, PP.

KAMLOOPS. B.C.
V25-3A6
VOC 6B7

INVOICE NO.
266
SHIIPPED TO

SALMO- MALAKuAA.

HII WEST HASTING: $\leqslant T$.

RENTAL OF 1979 GMC 4 WHEEL DRIVE $3 / 4$ TON PICKUP WITH WINCH UNDER CONTRACT FROM APRIL 15, 1980:

NOTE: ALL CONTRACTS ARE INVOTCEDGFO THE END OF THE FIRST MONTH DEPOSIT WILL APPLY ON FINAL INVOICE OF CONTAAKOVED FOR PAYMENT CHARGE 80065-425 40
 "Nobody Knows 4 Wheel Drive Better Than REDHAWK"

Mail remittance to Office:
1303 Hamilton Street
Now Westminster, B. C. V3M 2N3
prone 521-7881
Γ

ROOM BETHELS

BP MINERALS
405. 1199 H. PENDER ST.

VANCOUVER, BE.
LVGE RI I
TERMS: NET CASH
CONTRACT NO. 620 VEHICLE NO. 304 YOUR P.O.GULAJEC \quad DATE MAY $31 / 80$

RENTAL OF 1979 GMC 4 WHEEL DRIVE $3 / 4$ TON PICKUP WITH WINCH UNDER CONTRACT FROM APRIL 15, 1980:

```
RENTAL FEE MAY 1 - 31 PER CONTRACT
SALES TAX 4%
$675.00
    27.00
    INSURANCE FEE MAY 1 - 31 PER CONTRACT
                                    60.00
TOTAL
$762.00
```

NOTE: DEPOSIT WILL APPLY ON FINAL INVOICE OF CONTRACT.
APPROVED FOR PAYMENT
CHARGE $80065-4257381.00$ DATE JUN 111980 INTLSAIT/5 $80060-425-\frac{301.000}{8762.00}$
"Nobody Knows 4 Wheel Drive Better Than REDHAWK"

$$
h-80-41
$$

Rossbacher Laboratory Ltd. GEOCHEMICAL ANALYSTS \& ASSAYERS
B. P. MINERALS LTD.

1007-1111 \%. Hastings St.
Vancouver, E.C.
Project 517. \because Bradley

2225 S. SPRINGER AVE., BURNABY, BC.
CANADA
TELEPHONE: 299.6910
AREA CODE: 604

DATE June 3,1980
invoice no. 0163
CERTIFICATE NO. 80106,80110

TERMS - NET 30 DAYS

Rossbacher Laboratory Ltd.
GEOCHEMICAL ANALYSTS \& ASSAYERS
BAP. MInERALS LTD.
1007-1111 \%. Hastings St.
Jencouvミー, B.C.
Project 577

2225 S. SPRINGER AVE., BURNABY. BC.
CANADA
TELEPHONE: 299-6910
AREA CODE: 604
DATE
\qquad June 16,1980
invoice no. 0172
CERTIFICATE NO. $80127 / 113$

APPENDIX 3

GEOCHEMICAL ASSAY RESULTS OF DRILL CORE FROM HOLES M.D.H.

$$
80-1,2,3,
$$

GEOCHEMICAL LABORATORY REPORT

MINERAL RESOURCES BRANCH
Laboratory：．－pess．bacher Labs
date：May 911980
BP MINERALS LIMITED TORONTO ONT．

ASSESSMENT REPORT

REPORT No．．．．．．．．．．．．．．．．．
PAGE ．－1．OF ．．．2．

 CORRECT TS ：HE BEST ：：NOWLEOE OF THE ANALYET EASED ON THE METHOD AND IP，STRU：AENTS USES．

REPORT No.

PAGE ... OF 2

GEDCHEMICAL LABDRATDAY PEPGPT

laboratory: .Rossbacher Labs

PAGE ..2. OF . .

DATE:
BP MINERALS LIMITED TORONTO ONT.

[^0]GEOCHEMICAL LABORATORY REPORT
MINERAL RESOURCES RANCH

DATE: Ma. 14,1980

BP MINERALS LIMITED TORONTO ONT.

REPORT No. \qquad
PAGE 2 OF 2

GEDCHEMICAL LABDAATOAY PEPDRT
MINRAREORETERANOH
laboratory: Rossbacherluabs

assesmant report

8564

REPORT No

BP MINERALS LIMITED TORONTO ONT.
LABORATORY
 \square
01

DRILL LOG
\mid SHEET NO.

DRILL LOG
雨

DRILL LOG
| SHEET NO

DRILL
LOG
|SHEET NO

SHEET NO. There in a oft wim with moly. vein is 80 tac.a. and

 fon. Sm and yrade into A wore horfebic material again. 11 the folicition. At. 108.9 a gennetiferni gto veim exists. 020.0 C.a. At. 109.9 a 2 cm thich massive finiginaived sulptite (po tpy-) zove spists. It is well silicificel and wan angle of 85° to C.a.
 70° iscreval exanptes of garnetfanous quat revisuith culceroons mivislogy, and moly. Ho 'ouat 2 is gaverold impure, with contacts with the hownfel beang diffuse of kn showing allenatic halfis sly sericili.t sitica altuation. - ove exmale 2, angipronvein 2 111.6. GAerefiferows skand like zove at 111.0! Note-mystey umpthitiok aiso present have.

SHEET NO

DRILL LOG
\mid SHEET NO.

DRILL
LOG
\mid SHEET NO.

DRILL
$L O G$
SHEET NO.

LOCATION	CO-ORDI	
DATE STARTED	DATE COMPLETED	

 Vertical Projection:

	ELEVATION	
	HOLE SIZE	

LUG

DRILL LOG

[^0]:

