1980 Diamond Drilling Assessment Report

TITLE

ERIE CREEK PROPERTY

CLAIMS

June, Rosa, Belle, Florence, Bully Boy, Rockford, Ontario, Maude S, Ben Hassen, Arnold, St. Louis, Westminster Fr., Eddie, Louise, Monte Carlo, Homestake, Dora, Copper King, Good Enough, Drum Lummon, Gordon and Nelson

COMMODITY

Mo, Cu, W

LOCATED

11 km northwest of Salmo, B.C. Latitude 49 \$5'N Longitude 117 20'W Nelson Mining Division 82 F/6

BY

S.E. Parry

FOR

AMAX of Canada Limited

WORK PERIOD

May 7 to May 19, 1980

AMAX Vancouver Office

MINERAL RESOURCES BRANCH
PORT

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION General Statement	2 2
1980 DRILL PROGRAM	4
APPENDICES	
<pre>I - Statement of Costs II - Statement of Qualifications III - EC-80-2 Diamond Drill Log</pre>	
ILLUSTRATIONS	
Figure 1 - Location Map1:250,000after page 2 - Claim Map1: 50,000after page 3 - Drill Hole Location Map1: 2,000in pocket 4 - EC-80-2 Drill Section1: 1,000after page	
Table I - Claims Data	3

SUMMARY

This assessment report presents results of drill hole EC-80-2, drilled on the Erie Creek property by Amax of Canada Limited between May 7 and May 19, 1980.

This wholly Amax owned property is located 11 km northwest of Salmo in southeastern British Columbia, and consists of June 1-7 claims and 21 reverted crown granted claims, acquired over the period 1976 to 1979.

Diamond drill hole EC-80-2, drilled to a depth of 331 meters at azimuth 295 ° and -45 dip encountered Eocene dykes of the Erie Creek dyke swarm. Molybdenite, scheelite and chalcopyrite occur as thin films or fractures and as vein fillings within the dykes. The best mineralized section was 32 metres of 0.032% MoS₂.

A total cost of \$33,903.87 was applied as assessment on the following claims:

5 years: Rosa, Belle, Florence, Bully Boy, Eddie, Louise, Homestake, Dora, Drum Lummon

4 years: June 6, June 7

l year: Ben Hassen, June 4, June 5

INTRODUCTION

General Statement

This report presents results of a 331 metre diamond drill program conducted during May, 1980 on this wholly AMAX owned property near Salmo, southeastern British Columbia.

Location and Access

The property is located 11 km northwest of Salmo, British Columbia at 49°25'N latitude, 117°20'W longitude, in the Nelson Mining Division (NTS 82 F/6). The property is reached by a well maintained logging road which meets provincial highway 3A, 3 km west of Salmo, adjacent to the Selkirk Motel.

Claims Data

The property consists of June 1-7 claims staked on behalf of AMAX of Canada Limited, and 21 reverted crown granted claims. Data is summarized in Table I.

Physiography

The claims cover the slopes and valley of Erie Creek between 915 metres and 1400 metres. Topography is steep but not rugged. Outcrop is abundant above alluvium and till that cover the lower slopes and valley of Erie Creek.

Mixed conifer and deciduous forest covers the property. Locally, thick patches of slide alder cover the slopes.

AMAX OF CANADA LIMITED

ERIE CREEK PROPERTY

LOCATION MAP

FIG. 1 N. T.S. Ref. 82 F3&6 SP. NOV-26/80

AMAX OF CANADA LIMITED

ERIE CREEK PROPERTY

CLAIM MAP

FIG. 2 N. T. S. Ref. 82 F 3 8 6 S.P. Var 20/90

TABLE I

Claims	Record or Lot No.	No. of Units	Expiry Date
June 1	223	4	June 21/85
June 2	224	8	June 21/85
Rosa	859	1	Nov. $23/80$
Belle	860	1	Nov. 23/80
Florence	861	1	Nov. 23/80
Bully Boy	862	1	Nov. 23/80
Rockford	863	1	Nov. 23/85
Ontario	864	1	Nov. 23/85
Maude S	865	1	Nov. 23/85
Ben Hassen	866	1	Nov. 23/84
Arnold	867	1	Nov. 23/85
St. Louis	868	1	Nov. 23/85
Westminster	FR. 869	1	Nov. 23/85
Eddie	870	1	Nov. $23/80$
Louise	871	1	Nov. $23/80$
Monte Carlo	907	1	Dec. $15/85$
Homestake	908	1	Dec. 15/80
Dora	9 09	1	Dec. $15/80$
Copper King	910	1	Dec. 15/85
Good Enough	911	1	Dec. $15/85$
Drum Lummon	912	1	Dec. 15/80
Gordon	913	1	Dec. 15/85
Nelson	914	1	Dec. $15/85$
June 3	1017	16	April 18/85
June 4	1018	16	April 18/84
June 5	1019	12	April 18/84
June 6	1020	6	April 18/81
June 7	1021	18	April 18/81
			
		101	

Prior to application of diamond drilling covered by this report

1980 DRILL PROGRAM

General Statement

A 331 metre NQ-BQ hole was drilled between May 7 and May 19, 1980. Location of the hole is shown on Figure 3. Contractor for this program was Phil's Diamond Drilling of Lac La Hache, B.C., using a Longyear Super 38 diamond drill.

Drill core was split in 4 metre intervals, and submitted to Rossbacher Laboratories Ltd., for assay preparation and geochemical analysis. Results are presented in Appendix III.

EC-80-2

This hole was drilled for 331 m at 295° azimuth, -45° dip (Figure 4) to test for Mo mineralization under the alluvium-covered Erie Creek valley. The hole intersected numerous felsic and mafic dykes of the Eocene Erie Creek dyke swarm. Stockwork molybdenite mineralization was encountered in early biotite quartz monzonite dykes, cut by younger feldspar porphyry (FP) and quartz feldspar biotite porphyry (QFBP) dykes. Chalcopyrite, scheelite, pyrite and pyrrhotite were present as thin films and fractures in all three rock types. Short sections of hydrothermal crackle breccia, up to 15 metres in length were also encountered, characterized by a chlorite, actinolite and/or biotite matrix encompassing bleached, sericitized fragments, and fragment margins.

Best assay results indicate 32 metres of 0.032% MoS_2 in the interval 250 to 282 metres.

S.E. Parry

S.P. NOV. 20/80 FIG. 4

APPENDIX I

STATEMENT OF COSTS

STATEMENT OF COSTS

APPENDIX I

Summary of Work

Diamond Drilling - Erie Creek

Period of Work

May 7 - May 19, 1980

Drilling

Phil's Diamond Drilling, Lac La Hache, B.C. Invoice #1, for hole EC-80-2

\$33,903.87

Total \$33,903.87

This work is to be applied to the following claims, to keep them in good standing until 1985:

Rosa 2 years @ \$100/year, 3 years @ \$200/year Belle 2 years @ \$100/year, 3 years @ \$200/year Florence 2 years @ \$100/year, 3 years @ \$200/year Bully Boy 2 years @ \$100/year, 3 years @ \$200/year Eddie 2 years @ \$100/year, 3 years @ \$200/year Louise 2 years @ \$100/year, 3 years @ \$200/year Homestake 2 years @ \$100/year, 3 years @ \$200/year Dora 2 years @ \$100/year, 3 years @ \$200/year Drum Lummon 2 years @ \$100/year, 3 years @ \$200/year June 6 (6 units) 1 year @ \$100/yr., 3 yrs. @ \$200/yr. June 7 (18 units) 1 year @ \$100/yr., 3 yrs. @ \$200/yr. Ben Hassen 1 year @ \$200/year June 4 (16 units) 1 year @ \$200/year	800.00 800.00 800.00 800.00 800.00 800.00 800.00 4,200.00 12,600.00 200.00
June 5 (12 units) 1 year @ \$200/year	2,400.00
	29,800.00

APPENDIX II

STATEMENT OF QUALIFICATIONS

APPENDIX II

STATEMENT OF QUALIFICATIONS

NAME

S.E. PARRY

EDUCATION

4 year BSc. (Hons. Geological Sciences) Queen's University, Kingston, Ontario

MSc. (Geology)

University of Western Ontario, London, Ontario

EXPERIENCE

Geological Assistant - Cominco Ltd. - 1975 Geological Assistant - Shell Canada Resources - 1976 Geologist - Falconbridge Copper Ltd. - 1977, 1978 Geologist - AMAX of Canada Limited - 1979-

APPENDIX III

DIAMOND DRILL LOG EC-80-2

DIAMOND DRILL RECORD

PROPERTY	ERIE CREEK	Project Num	mber <u>794</u>	•	
Hole No.	EC-80-2	Co-ordinates _	L 1 + 94N	Bearing at Collar	295
			1 + 93W	Dip at Collar	-45
		Collar Elevation	939m	Commenced Drilling	<u>May 7, 1980</u>
		Total Depth	331m	Completed Drilling	May 19, 1980
				Logged By:	S.E. Parry
Core Size	NQ-BQ	Coring Method	i	Drilling Contractor Phi	1's Drilling Co. Ltd
					í

	Sur	vey Summa	тy	Pertinent	Assay Data	<u>Pertinent</u>	Geology
Depth	Dip	Bearing	Method	Interval	% MoS ₂	Interval	Rock Type
330	~38 ⁰		Acid Test	250-282	0.032%	0-29.3m 29.3-226.2 226.2-244.8 244.8-331	Overburden BQM, QFBP, FP dykes Intrusive breccia BQM, QFBP, FP dykes

Foo	tage	Core	%	Мт	NERA	† T 7 /		N		^	SSAYS		Remarks
	ters)	Rec	Rec						Mo		W	Samp1e	a
0	1			MO	TVIO	CD	Joca	Yeins	110	Cu	- "		0-29.3 Coarse overburden with lenses of calcrete
28		†			 		\vdash	1					
20								0		ļ			
30-	bx	broker					Ì	3	132	104		65101	
	QFBP	core	90		.1%	.12	1	1		-			29.3-32.2 Quartz Feldspar Biotite Porphyry (QFBP) Breccia
32 -	FP	 			Ру			3					- locally megaporphyrite with 20% .1-2cm feldspar pheno
	QFBP							30					often broken. 10% "pop-out" quartz eyes (they can be
34			1		.5%	5	4	30	54	174		65102	
	FP		100		4. 1%	۷.1	*	3					light grey, siliceous, aphanitic to fine graind. Most
36		1					<u> </u>	2					phenos.broken, giving rock a breccia appearance.
		block;	80				Sch	2					-poorly veined, no appreciable mineral.
38				-		T		2					32.2-32.9 Sparse Feldspar Porphyry (FP)
40			100					4	15	244		65103	-dark grey black with 5% corroded 1cm feldspar phenos.
40						tr		4					-cuts across QFBP but also present in QFBP as inclusion
42	QFBP				.5%	Сру	Sch	1					N.B FP & QFBP are dark and light phases of composite
42					Py			1					dykes from report '79.
,,								13	SI	196		65104	32.9-34.7 QFBP - Similar to 29.3-32.2 but feldspar smaller, usual
44-			85					3					unbroken Matrix aphanitic. Well developed quartz vein
1.6								3					stockwork QVs .1-2mm wide, randomly oriente
46	FP				.1%			1					No alteration around veins, which are barren.
40		Groun	i					1					34.7-26.2 FP - contains QFBP inclusions.
48								15	54	314		65105	36.2-46.6 QFBP - Similar to 29.3-32.2 but feldspars smaller, less
50							Sch	7					broken, altered yellowish - white (clay or sericite?)
<i>5</i> 0								11					to 2% Py + Po as disseminated and fracture coatings.
52	QFBP							9	13	128		65106	Trace Cpy. Matrix of rock very hard, core massive, only
J.L					.5%			10					weakly fractured, veined. QVS up to .2mm wide.
E /	_		100					10					46.6-47.2 FP - brecciated contact with QFBP.
54		block	У			tr-		2					47.2-63.1 QFBP - more fractured, finer grained than above QFBP d
56						05%		4	11	102		65107	
- 30						Сру		3					48.1-48.3 - intensely bleached, (silicified)
								5					porphyritic, texture gradually obliterated
58				Mo				11					1 fracture/cm with white lmm alteration selvage,
60								2	14	162		65108	with trace chalcopyrite Sphalerite, Pyrite
								7					- numerous black partially resorbed FP fragments.
61													- trace Mo in 0.75 mm QV at 62.3 with Pyrrhotite, Cpy
													- suggests this is an early QFBP dyke.
													ouggests this is an early QFBF dyke.
		: I			1	1 1					1	1	1

Foo	tage	Core	%	MI	NERA	LIZ	ATIO	N		ASS	AY DA'	TA	Remarks
		Rec	Rec	Мо	РуРо	Сру	Sch	trac	Мо	Cu	W	SAMPLE	
-62	QFBP							5					63.1-64.6 FP Numerous QFBP inclusions
-02				trMo			tr	6					- trace scheelite in veins along dyke contacts.
-64	FP							1	296	224		65109	64.6-70.1 BQM - dark to medium qray with local subporphyritic
								4				į	sections. Numerous hornfels inclusions
-66		Blocky						2					- up to 10% .055mm biotite grains
					.1-5	.05	8	24					well fractured with strong quartz veins stock, veins up
-68	BQM			tr				>30	760	200		65110	to lcm, dark grey sugary quartz. Veins much wider than
				.85%				>30					those in quartz vein stock mapped in BQM on surface.
-70 -		Ground	1 83		Po>Py			>30					Nb- QFBP dwkelet trucates quartz-molybdenite vein in one
								5					place, but a second dykelet contains quartz-molybdenite
-72								13	32	176		65111	veins. Quartz-clinopyroxenite-pyrrhotite veins frequent
						.01	В	2					crosscut quartz-molybdenite veins.
-74	FP							3					- Clinopyroxenite most common in QFBP and BQM-up to .05
, ,		Block	7				<u> </u>	0					very fragmented.
-76 -								9	146	174		65112	70.1-103.5 FP-QFBP Composite dyke. As mapped on surface, the dark
,0			100					4					and light phases show both sharp and gradational contac
-78	ВX			tr				10					- dykes contain numerous PQM fragments up to 0.5m in
78	FP	CHL- ACT		th-		.01	8	15 >30					thickness, equigranular 10% biotite
-80	BX	BX						> 30	140	130		65113	QFBP usually contains 1-2cm megacrysts of feldspars sim-
	FD	Mod.						7					ilar to these in FP, but uncorroded.
- 82 -		Broke	1					11					 veining weak, occasional tracesscheelite
								4					93.4 white rhyolite fragment, trace molybdenite
-84	OFBP				.1-5			7	30	४७		65114	77.9-78.2 & 79.2-79.8 - breccia-pink, anphamtic fragments, matrix
	FP						tr	7					chlorite (up to 15% matrix) trace disseminated molybden.
-86								7					96.0-100.0 - trace scheelite in dry fractures and vein:
	QFBP							5					up to 1mm wide in QFBP and FP @ 450 to C.A.
-88	†		100			.01	96	5	7	232		65115	Nb This series of dykes shows local chlorite-actinolite
								9					fracture zones (breccia zones) - each contains weak
-90	FP	₩aşē						5					molybdenite mineral, along fractures and in grey quartz
-50								1					veins - associated with clinopyroxenite in a few
-92						•		1	92	36		65116	locations. Best zone 98.0-99.5.
72								9		-0			
-94							tr	9					She
								25					et2
-95													
													0
													m cs
] [1	ı	ļ	- 1	ı	İ	l	ļ	l	ì			· ·

Foo	tage		%		NERA					ASS	AY DA	TA	Remarks
		Rec	Rec	Мо	Py+Ro	Cpy	Sch	rrac vein	Мо	Cu	W	SAMPLE	
				tr				16					103.5-107.6 BQM-subporphyritic to equigranular, 10% biotite
96	FP			tr		. 059	tr		292	274		65117	
								28					-103.5-105.8 -poor core recovery, possible fault
 -	CHL-ACT	sive				tr	tr	29					-drillers hit high pressure water seam
100	QFBP	to	100				tr	>30	100	640		65118	- buff - yellow alteration of feldspars, chlorite-actinolite
		Block	<u>/</u>				1	29					along fractures at lower contact.
-102	FP				.5%	.05	tr	10					- intense quartz vein Stwk up to 15% of rock composed of g
								>30					quartz veins up to lcm in width, molybdenite as
104							tr	>30	66	274		65119	wall coatings in veins.
	3	Groun	3					>30					107.6-109.5 FP-massive, poorly fractured, pyrrhotite mainly on fr
-106 -	BQM	Core	63%	tr	.1%	tr		20					tures.
				Мо				17					109.5-111.9 BOM-weak quartz vein stock, mainly single ton veinlet
- 108								17	59	1220		65120	
100	FP				.59	.05	š .	11					actinolite along fractures, biotites purple-brown.
110								13					111.9-112.9 FP, moderately fractured, strong purplish hornfelsing
	BQM	Mas- sive		tr	5 018	tr	tr	3					of matrix
112				M.				30	180	560		65121	-trace scheelite along fractures at 60^{0} - 45^{0} to C.A.,
	FP				.5%		tr	7					to 1mm wide slight yellowish fluorescence.
-114			100					9					112.9-115.6 BQM-subporphyritic-identified as BQM on basis of fract
114	BQM				.1%			13					and biotite content
-116					—	05%		25	122	660		65122	115.6-128.6 FP-QFBP composite dyke - alternates between two rock
110	QFBP							19					types frequently.
ميد	FP				.5%			6					-weak yellow (argillic?) alternates of feldspar pheno
118	QFBP							10					in QFBP sections.
-120								9	フ	600		65123	-127.7-128.6 -QFBP(?) with moderate quartz vein stwk., trace
120								9					molybdenite with trace molybdenite in FP
-122	FP							8					immediately overlying it.
-122													Nb - this section could be porphyritic BQM
											······		
													To the state of th
													ne
													et
													W
						\neg					······		0
	,										***		
	ı	I	İ		1	1	ļ	i	ļ	1		1	

Foo	tage	Core	%	мі	NERA	LIZ	ATIO	N		AS	SAY D	ATA	Remarks
		Rec	Rec						MO		W	SAMPLE	
-122	OFBP				7.20			13	1.0	54			128.6-130.1 BQM-a few aptitic dykelets crosscut the BQM,
	FΡ	 		 		 	ļ <u>.</u>	10	30	248		65124	
-124		Mas- sive					-	18	1	~TO	<u> </u>	65124	is greyish white with up to 1% biotite with 1 grey scheelite quartz vein/cmBQM looks very similar to
			100		5 9	.05	tr	2	-	-			QFBP, have doubts as to how accurately the two rocks
126	 	to weakl			.5%	1.05	tr	2					
		broke				-	LL	10	_			65125	be differentiated.
-120		!	•	 -	ļ		 		85	292			130.1-135.5 FP-Chlorite-actinolite breccia at 130.3-130.5. No rot
		<u> </u>		ļ. <u>. </u>	1.0	01		19	<u> </u>				tion of fragments - FP separated by chlorite-actinoli
-130	BQM			tr	• T &	.01	5	25	<u> </u>				selvages along fractures.
	r P							3					-dyke generally massive, strong purplish hornfels col
-132								5	37	180		65126	-contacts with BQM sharp but brecciated at $\approx 90^{\circ}$ to C.
							tr	13					-fragments of BOM in FP matrix
								2					*-trace scheelite at 127.3 in lmm quartz-scheelite vei
134								6					@ 45 ⁰ to C.A.
126								6	18	390		65127	135.5-138.6 QFBP Gradational contact with overlying FP - feldspa
-136	OFBP							6	· <u>U</u>	2,0		03127	
	VIDI							11					partially resorbed, up to 2cm, yellow weak argillic
138			100		1%			20					alternates - less than 2% biotite, weak fracturing wi
						25.			11	001		65300	138.6-142.2 FP Numerous clasts of OFBP 142.2-144.9 QFBP-1 chlorite-actinolite fracture/5cm, 5% biotite,
140	FP				.5%	-05%		2 2	11	236	-	65128	~
	FP											 	moderate fracturing, scheelite on dry faces @ 60 to
142								23					C.A. cut by chlorite actinolite fractures
		·										ļ	144.9-145.9 FP Massive, weak chlorite alternates
-144	OFBP						tr	25	5	266		65129	145.9-147.1 QFBP Gradational with FP, numerous FP fragments
								14					147.1-162.7 Chlorite-actinolite breccia
	FP					İ		2					Dark galena chlorite with medium galena actinolite
146	QFBP							7					needles along fractures and as matrix to QFBP BQM
Ī	CHL ACI				-			30	22	252	7.2.7	65130	and aplite fragments and host rock. Clearly postdate
	вх	very	-	tr.0	;	. 2%		30					
		broken						30				 	OFRP
-150					_		<u> </u>						chalcopyrite, pyrite, pyrrhotite in matrix and ale fractures altering matrix and fragments.
				==-		-	tr	30	100	000		65131	-Bleached white alternation selvage along some fractu:
-152								1	48	070		02121	
					0.5%			_20					especially where breccia appears to die out. Molybder
154			100			.05		7					in veinlets mainly in thin aplitic fragments of
								25					breccia 6
-15 6									27	1160		65132	-Numerous pyrrhotite and pyrite gobs within chlorite
							「						matrix - possible trace sericitic alteration along
													margins of some QFBP and BQM fragments. Feldspar
													phenos weakly altered -matrix constitutes 30% of rock, veins up to 0.5cm wide
!	i	1	. 1	1	1	ı	- 1	İ	l	i		1 !	rock, verns up to 0.5cm wrde

otage	l .	%	1	INEF						SAY D	ATA	Remarks	
-	Rec	Rec	Мо	Py+R	Сру	Sch	rac vei	Мо	Cu	W	SAMPLE		
- 						tr	12					orite-actinolite breccia (cont'd)	
2				0.5%	s	sch	26					-breccia in gradational	contact with FP at 162.7
3	Mas- sive	100					24					-1 chlorite/actinolite e	every 0.5m throughout follow
KEH C					0.05	\$	>30	9	458	ļ	65133	dyke section, but rock	not a true breccia
BX							>30				1	*-Chlorite-actinolite bre	eccia clearly later than FP
			0,05%	1%			>30					159.8-162.7 -fragments	mainly a bleached grey/whi
2						sch	>30					could be altered BOM or	C QFBP - 0.05% Mo trace sch
4							23	53	1180		65134		this section in dry fractu
*							13			ĺ		and occasional veins wit	hin the fragments
5	Mas- sive			0.59			18			i			- at least 4 chlorite-acti
FP							7						ocm wide, comprising up to
		100			05%		1	36	426		65135	rock, and carrying up to	10% pyrrhotite locally,
3							15				1	chalcopyrite . FP frag	ments contain carbonized
)						,	2					hornfels fragments.	9,000
QFBP						tr	5					2.7-169.8 FP - Numerous QFBP inclu	sions, one chlorite/actino
							15	5	96		65136	zone every 0.5m - have i	rregular to subparallel wa
2							16					with pyrite, pyrrhotite.	-up to 1% carbonized clast
4					.01%		5					hornfels(?)-irregular sh	
						tr	4					-most fractures are biot	tite-pyrrhotite fractures,
5				0.29	5		7	4	494		65137	with trace chlorite	
							23					9.8-187.3 QFBP-generally massive,	strongly porphyritic 3-5%
3				Py+Po			12			-		tite as 1mm to 0.5mm phe	enos.
]					5					-local patches of yellow	wish alteration of feldspar
									200		65138	185.1-185.5 -Biotite bre	eccia-up to 20% black biot
							14						lar QFBP fragments up to
		100			.01%		8					long-contacts at 550 to	C.A.
QFBP							3				-	183.9 -trace molybdenite	e in zone of bleached QFBP
1 ~			tr				7	29	242	25	65139	ly altered, yellowish fe	eldspar phenos - yellow=se
						tr	12]			molybdenite clearly rela	ated to sericitic alteration
5]	_11					QFBP, but only present i	in singleton veinlets in t
						tr	19					areas	
BX]			> 30	24	288	30	65140	-scheelite also proximal	l to same altered zones, a
BX													te bearing fractures at 17
]											-Pyrite content equals p	pyrrhotite content in this
												dyke up to contact with	breccia
											T	-several hornfelsed frag	oments present.

188 -		Core	1 %	LIT	MULK	71777	OITA	Ñ		AS	SSAY D	ATA	Remarks
200		Rec	Rec	Мо	Py+R	Сру	Sch	rac veir	Мо	Cu	W	SAMPLE	
					0.29	k		13					187.3-194.2 Chlorite-actinolite breccia Weakly developed over a QFF
100	ACT ACT					-	tr	28	1				dyke. Chlorite-actinolite matrix comprises 5% of rock
190	Bx		100		<u> </u>			30					Molybdenite, scheelite with sericiti ation of feldspar
	Mas- sive			03%	1%	.3%	<u>† </u>	30	18	820	15	65141	phenos in "fragments," scheelite and shakepyrite I
192	weakly	,		. 03	1	1	tr	30	10	020	1	03141	sent in matrix with up to 25% pyrrhotite locally
	frac-				 	+		25	 			-	no foreign fragments in matrix, minor hornfels fragmen
194	carca			 	0.29	8.05	8	4	 -			- 	in QFBP fragments.
				-	 	+	 	 _	 	000	 	653.40	
196	QFBP				<u> </u>	 	ļ	9	4	558	15	65142	Strong series of parallel fractures @200-450 to C.A., to lcm thick, surrounded by sericitized QFBP (sericite
-	Ør Br					 	ļ	<u> </u>	1		ļ	-	
198							ļ	10 15			<u> </u>		mainly in phenos).
					 	1	tr	15			ļ	ļ	189.4-193.1 Intense sericitic and chlorite-actinolite
200	BQM		100			-		15	22	500	70	65143	terations. Up to 0.3% chalcopyrite, .03% molybdeni
							tr	18					trace scheelite-molybdenite mainly along dry faces but
202	QFBP							17					occasional disseminated grains in sericitized rock, se
202								15					elite & chalcopyrite disseminated in pyrrhotite-ch.
204	Fault?	round			0.5			?	10	200	35	65144	ite-actinolite sections
204	QFBP					.05%		?					Nb This is most intense yellow-buff alteration encounter
	OFBP							2					in any drill hole logged, including MacIntyre core
206		ВX			Py>Po		tr	3					194.2-199.6 QFBP-Feldspars up to 2cm, sericitic alteration along
					7 0			30	303	154	20	65145	fractures 1/m, chlorite-actinolite along fractures 1/m
208	вом		100					30	دىپ	157	30	100210	Numerous FP inclusion
				0.08				30					199.6-200.0 BQM-Medium grained, subporphyritic 10-20% biotite, wea
210						 	tr	30				-	
——F													chloritized trace sericite in phenos.
212	FP			0	1%	. 05%		12	22)	134	30	65146	200.0-207.1 QFBP-highly variable section, numerous FP inclusion
	DOM			\ OF		-		13 30				 	201.0-205-Highly sheared with 1-2cm stringers of biots and chlorite @ 800 to C.Aup to 20% of rock.
214	BQM			0.05	0.2	6		30					and chiefice & 80° to C.Aup to 20% of fock.
		M30-						30					Matrix bleached feldspar phenos locally obliterated
216		Mas- sive				.02		30	470	164	160	65147	Fault zone 204-206 Abundant chlorite, sericite, biot
				tr				25					(actinolite ?)
210								23					207.1-210.6 BQM-2 phases, with local assimilated contacts
218	QFBP		100					8					207.1-208.0-Medium grained subporphyritic BOM-20% bio
	~							23	25	1881	30	65148	Intensely fractured, predominately quartz veins
220									<u>~ي</u>	100	<u>αU</u>	1	with biotite-chlorite fractures.
												+	208.0-210.6-Feldspar porphytic QM-aphanitic to
												 	aplitic matrix, 10% euhedral feldspar phenos, less
												1	than 2% biotite. Up to 0.1% molybdenite in quartz
-	}	}		ļ	ļ		İ			1			

Foc	tage	Core	%	М	INEF	RALI	ZATI	ON		AS	SAY D	ATA	Remarks
		Rec	Rec						Мо	Cu	W	SAMPLE	
220					-			7					veins and along biotitic fractures. Very similar in appearance to
								5					some QFBP dykes, but lacks quartz eyes and has the strong quartz
222	QFBP	Mas- sive			 	.02	1	13				 	vein stockwork
004		weakly	-				1	11	14	136	45	65149	
224		frac.	90%		 	†	tr	2		100		1	210.6-212.1 FP Strong hornfels locally, strong chloritic-actinoli
	FP	†			 	1	 	10				<u> </u>	alteration of matrix
226								>30					
	Intru- sive			. 05	.2%	 		>30	170	216	70	65150	212.1-217.9 BQM-medium grained, 10% biotite Moderate quartz vein
228	BX						\vdash	26				†	stock-most veins 0.5-2mm wide, of grey sugary quartz.
	 				 	 	tr	19				 	- trace-0.05% molybdenite in lmm quartz veins.
230				tr>02		.02		>30				 	-several small FP dykelets brecciate and crosscut BQ
				.02				12	156	160	55	65151	
232				ļ	 	 		18	136	160	55	62121	215.9-217.9-BQM highly brecciated, section composed of 50% FP dykelets
							 	26				 	-trace molybdenite in equigranular BQM only
234	 				. 2	 	-	>30					
	I		100			 	 	>30	140	152	70	65152	217.9-224.5 QFBP Very complex section-includes sharp fragments of
236			100			 			140	152		03132	BQM, dissipated fragments of darker QFBP, FP
		Mas- sive				 	_	<u>3</u> >30					
238		SIVE				_		16					219.3-219.7 bleached white/grey aphanitic fragments, sibly white rhyolite
				tr:02			 		- 00		25	65152	-chlorite-actinolite fracture 1/m, very weak alterati
240		short				.02		22 14	90	80	35	65153	of feldspars.
	1	roken					 	>30					
242		sectio	nc			 		19		-			224.5-226.2 FP Weakly fractured, matrix strongly chloritized at
		00000							135	90	65	65154	lower contact. Trace scheelite in veins @ 900 to C.A.
244			100		<.19	6		6	133			03131	
	0777		_					-					226.2-244.8 Intrusive Breccia Much more heterogenous than chlori
246	horn						tr	13					actinolite breccia, mixed fragments from 1cm to 50cm
	Porph							>30	32	76	35	65155	of QFBP, FP, BQM, Aplite, QFBP predominates-50-60%
248	TOLPII							>30	- 52			03133	-up to .02% molybdenite mainly in aplitic BQM fragmer
250	BOM (apli- tic			005	.2%	tr		> 30					but also as vein in weakly hornfelsed dark black mate
	tic							> 30					at 227.8
252			100					>30	192	136	65	65156	-matrix appears to contain appreciable biotite-too fine grained to estimate-similar to FP matrix
254											····.		fragments angular, usually equ
													contacts, comprise 60-75% of rock
											-		-matrix contains 5% feldsparphenos up to 2cm, may be
					İ		ļ		1	- [•	FP intrusive material.

Footage					INER						SAY D	ATA	Remarks
		Rec		Мо	Py+px	Cpv	Sch	veir	Мо	Cu	W	SAMPLE	
254	вом				7 FG			_		220	85	SAME DE	Intrusive Breccia (cont'd) Up to 10% chlorite locally in matrix as
-256	Apli- tic)			0.05	.2%	tr	tr	>30				65157	crosscutting veinlets. Scheelite in veinlets up to 1mm wide.
-250			100					>30					DECODORCELING VCINICOUS BONCOLLEC IN VCINICOS OF CO INC. WICC.
								>30					244.8-248.8 QFBP Numerous FP fragments, 10% of fragments moderate:
-258	GFBP						<u> </u>	755					chloritic (up to 10% judging by colour)
	вом	Short			 		 		178	212	45	65158	248.2-248.4 dyke hornblende porphyritic-Up to 1% euhec
-260	 / 2 - 2	broke	h	0.05		tr	-		-	 		 	.5-1.5mm hornblende laths, randomly oriented
		sec- tions			-	<u> </u>	 	-		-		-	chlorite fragments indicate this is a very late dyke,
-262		tions				<u>to</u> Q02		9			ļ	 	
						<u> </u>	-	ļ					post-breccia. NB lack of pyrite and Pyrrhotite,
-264	0777							5	69	228	65	65159	, hornblende laths, large (2cm zoned feldspars.
	QFBP				. 25			18				ļ	Possible new dyke type)
- 266			100					> 30					248.8-261.8 BOM-less than 3% biotite in an aphanitic, aplitic mata
	500		100					73 0					-subporphyritic, up to 1% 0.5cm qhosty, yellow buff
-060	BQM								200	278	85	65160	alteration feldspar phenos.
268	(2 513)			0.05			"Mo"						-rock intensely fractured - 1/cm -pyrrhotite-pyrite-bi
270				to		tr	Sch						tite-chlorite slips. veins-1/3cm of grey sugary quart:
270				0.1%		to							up to 3 mm wide
					. 2-5	.02			218	220	200	65161	-Molybdenite mainly in quartz veins but occasionally
272													along dry fractures.
			95%				.02						-1 singleton pyrrhotite vein/m with abundant Cpu
274			778				"Mo"	\top					-Scheelite in veinlets up to 1mm wide at 450 to C.A.
							Sch	\dashv	152	172	75	65162	258.1-258.3 QFBP dykelet
276					-	f						-	
	FP											 	261.8-266.6 QFBP Well developed FP margins, gradational with QFBP,
278													with chloritic patches Numerous FP fragments also, rockweakly fractured
	CHLACT												Numerous FF Hagments also, fock weakly Hactured
280	BIOT BX		100	Q05	.25		tr	\dashv	156	296	55	65163	-contains 1 large molybdenite bearing BQM fragment. 266.6-276.8 BQM-aplitic matrix, locally subporphyritic less than
						Et		\top					-1 chlorite fracture up to lcm wide every 20cm - larges
282						02%		2 5					fractures have white to yellow alterations selvage Molybdenite in quartz veins and on dry fractures 1/10cm
					 							6536	Molybdenite in quartz velns and on dry fractures 1/10c
284	OFBP		t	rMo					63	352	140	65164	estimate 0.05 to 0.1% molybdenite, best mineral section
							Sch	24					seen so far
286								18					-Pyrrhotite and biotite bearing fractures with minor $arphi$
				rMo				22	4.	1.2.			chakopyrite scheelite crosscut molybdenite vein-
288			100			tr			14	100	15	65165	lets, fractures
						to		8					271- Yellow fluorescing molyscheelite
290						02		15					to 2mm in length-best section so far
290			T										-same veins contain molybdenite, brown biotite,
	1	•	'	ı	ı	•	'	,	'	,		'	000000000000000000000000000000000000000

Foo	tage	Core	% Rec		INE					ASS	AY DA	TA	Remarks		
		Rec		Мо	Py+Pc	Сру	Sch	hveir	Мо	Cu	W	SAMPL			
290								5	1.0	- 00			BQM (cont'd) -Scheelite varies between blue and yellow fluorescen		
					.28	tr		7	9	124	15	65166	yellow accounts for 60-70% of the grains present. Both colours		
292	QFBP		100		.5%	to		13				T	times visible in same vein		
204					Py≈P	0.02	tr	8							
294		Mas- sive					Sci	21					276.8-277.3 FP lower contact gradational with breccia		
206	CHLAC	7						29	16	212	35	65167			
:96	BIOT			tr		.05		>30					277.3-282.1 Chlorite-actinolite-(biotite) breccia Similar to al		
298	вх			t829	8		Sch	30					sections with black patches of matrix indicating bid		
:שני:					1	trt	4	29					-weakly developed breccia, little or no rotation of		
00					.2%	.02		10	6	148	55	65168	ments		
00					.5%		 	15					-QFBP and FP bleached white, porphyritic texture ob		
	QFBP		100					22					ated up to 1m from end of actual breccia		
302								5					-bleaching appears mottled at margins, gives ro		
		Mas- sive						6	14	152	60	65169	appearance of aplite		
304				tr				12					-Molybdenite present in lmm grey quartz veins, 1/20		
06						tr		>30					estimate 0.05% molybdenite		
306					0,2 to	to		13					282.1-295.0 QFBP		
200							δÍue	27	31	168	110	65170	-upper and lower contact gradationally altered into		
308							sch	> 30					chloritic-actinolite-(biotite) breccia with patchy		
	вом		100	.029			.02	>30					ched white areas		
310							Yel-						-rock weakly veined predominately near contacts		
							Mo Sch						-numerous FP inclusions, dykelets also present near		
											•		tacts. Trace blue fluorescing Scheelite in 1mm quar		
													284.0-287.0 Weak bleaching, trace molybdenite in 0.		
											,		295.0-298.5 -Chlorite-actinolite-(biotite) breccia -biotite comprises up to 5% of matrix		
													-fragments vary from pure white, silicified to QFBP		
													only weakly bleached (silicified) patches		
													-trace to 0.02% molybdenite in quartz veins 2/m		
										$\neg \uparrow$			-FP fragment or dyke 296.5-297.5		
													-clinopyoxenite up to .05% in breccia		
													-trace blue fluorescing scheelite in FP fragment/inc		
_													at 297.5		
		<u> </u>									. <u> </u>		Nb -probably similar in origin, but more intense than		
													section 187.3-194.2-molybdenite grade similar in		
									_				295.0-298.5 also		
													273.0-270.3 dts0		
\rightarrow						-						 			
1	i	j	1			1	ĺ	ı	İ	- 1					

ootage		Core Rec	% Rec	М	INER	ALI	ZATI	ON		AS	SAY D	ATA	Remarks
				Mo	Py+R	Cpv	Sch	veir	Мо	Cu	W	SAMPLE	
0	BQM			.02%				30					298.5-308.8 QFBP-highly variable texture, subporphyritic to mega
2	QFBP		100		.2%			>30	92	208	300	65171	phyritic, up to 25 ragged-edged FP inclusions
-							tro	>30					-local minor bleached patches, bleached white selvag
4	BQM	Mas- sive		tr		tr	02%						along fractures, some with chlorite-actinolite
4						to		20					305.1-305.8 chlorite-actinolite-(biotite) breccia-on
6	QFBP					.02	Sch	>30	145	232	85	65172	chloritic fractures, rest of zone is bleached white
•	BQM							>30					trace molybdenite -upper and lower contacts of dyke have lm of FP
0	OFBP			tto				>30					-1% BOM fragments in dyke also, up to 20cm wide
8	BQM			.02			1	>30					-Pyrrhotite-Chalcopyrite veins, fractures 1/50cm
<u>~</u>	HL-ACT- BX					tr	1	>30	168	232	150	65173	308.8-321.4 MixedBQM and QFBP-Numerous dyklets of FP bearing ,
.0	FP		100		1 &Pe	to		>30					megaporphyritic QFBP crosscut breccia
_	BOM CHL-ACT-6x			.02		.05		>30					Nb-up to .02Some BQM may be fragments within larger QFBP units
2	GX OF BP				.2%			6					molysche- sections contain less than 5% biotite, have aphantic
4								26	59	:00	75	65174	elite in equigranular or subporphyritic texture, and are interpretable of the self of the
7	CHL-ACT-BIO	7					tr	>30					vage_bear fractured-l biotite-chlorite-pyrrhotite(clinopyroxed)
	BX						l	>30					tures, Pyr-fracture/2cm and ore quart-(molybdenite) vein (grey hotite sugary quartz) up to 2mm wide/10cm. Biotites weakly
6	OFBP			.02tc)	t Eo	sch	4					bearing sugary quartz) up to 2mm wide/10cm. Biotites weakly
8				.05%		.02		16	36	312	20	65175	fractures & quartz de to zhun wide/10cm. Brotites weakly guartz-molyb quartz-molyb denite veinthloritized, feldspars in QFBP section yellow-buff n
اِ	CHL-ACT-SIC	T						>30					100 07; erately sericitized.
٥	В×		100					>30					fluorescing 519.3-321.4 Chlorite-actinolite-biotite breccia with
	BQM							>30					molybdenite in quartz veins section alterations of
	END												spars-10% of rock locally
Z	END OF HOLE												321.4-330.2 Chlorite-actinolite-(biotite) breccia with QFBP sec
													-unit mainly marked by bleached white moderately fr
													tured rock with up to 10% chlorite-actinolite along
													breccia-like fracture zones. Alterations symmetrical
													extends away from these zones, apparently altering
													-sections marked QFBP on log appear later than breco
										**********			with only weak fracturing, no alterations and sharp
													tacts with breccia-dykes weakly flow aligned (?) as
													denoted by feldspar phenos
7												1	330.2-331.0 (END OF HOLE) BQM Weakly chloritized along fractus
1	 												bleached adjacent to fractures. Subporphyritic, up
													5% biotite
												1	
ŀ	ļ		İ						l		l	1	

