
ECHO BAY MINES LTD.

MIN1, MIN2, SMIN1, RED LEDGE 1 AND RED LEDGE 2 MINERAL CLAIMS

EXPLORATION - 1980

GOLDEN MINING DIVISION, BRITISH COLUMBIA

Trigg, Woollett Consulting Ltd.

ECHO BAY MINES LTD.

MIN1, MIN2, SMIN1, RED LEDGE 1 AND RED LEDGE 2 MINERAL CLAIMS

EXPLORATION - 1980

GOLDEN MINING DIVISION, BRITISH COLUMBIA

		CONTENTS	PAGE
SUMMARY			1
INTRODUCTION			1
LINE CUTTING	, ROADBUILDING		4
GEOLOGY			4
MINERAL OCCU	RRENCES		6
GEOCHEMICAL S	SUR VEYS		8
GEOPHYSICAL S	SURVEYS		9
CONCLUSIONS			9
RECOMMENDATIO	ons		10
REFERENCES			11
CERTIFICATION	1		12
		APPENDICES	
APPENDIX			
I	LOCATION MIN1, MIN2, SMIN RED LEDGE 1, RED		AT END
II	PERSONNEL		AT END

ECHO BAY MINES LTD.

MIN1, MIN2, SMIN1, RED LEDGE 1 AND RED LEDGE 2 MINERAL CLAIMS

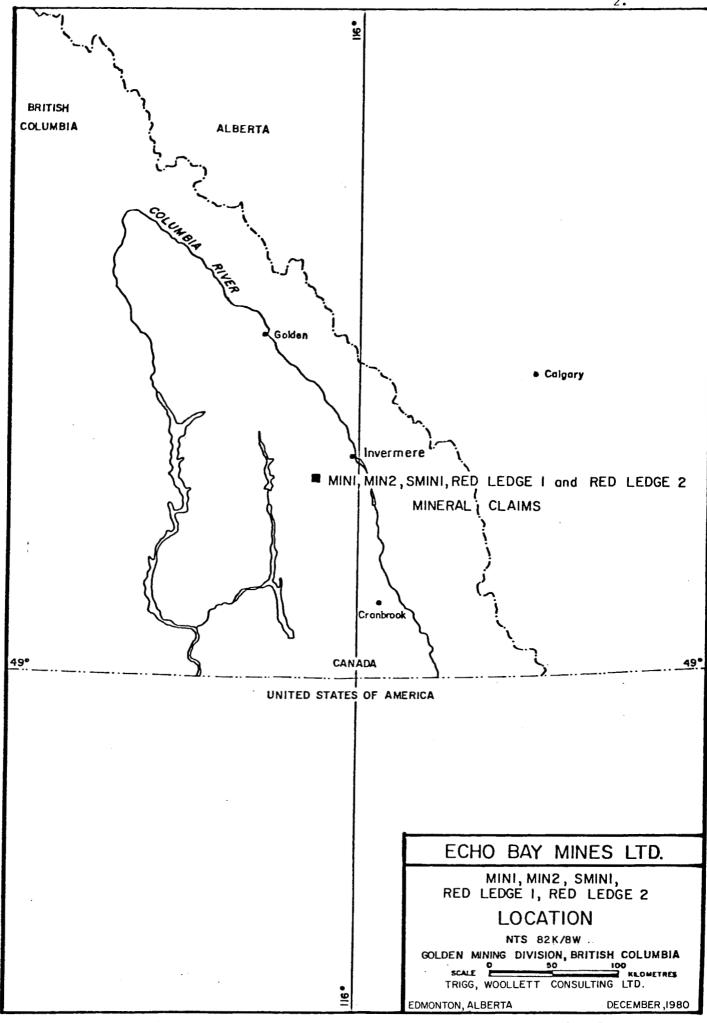
EXPLORATION - 1980

GOLDEN MINING DIVISION, BRITISH COLUMBIA

SUMMARY

Exploration, which included line cutting, topographic surveying, roadbuilding, trenching, geological mapping, geophysical surveys and geochemical sampling, were performed at MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims between May 15 and November 4, 1980.

Folded and faulted Dutch Creek Formation, Mount Nelson Formation and Horsethief Creek Group carbonate and clastic rocks exist within the mineral claims. At least thirteen sulphide mineral occurrence, comprising one or more of galena, tetrahedrite, sphalerite and chalcopyrite, and six iron-oxide gossans, exist in Dutch Creek Formation or in Mount Nelson Formation within or near the mineral claims. The most important sulphide mineral occurrence is 0SHM007; two chip samples collected at this occurrence give an average grade of 17.75 ounces silver per ton, 22.66 per cent lead, 2.41 per cent zinc and 0.23 per cent copper over 1.0 m. Zones in soil and stream sediment that are geochemically anomalous for lead, zinc, silver and/or cadmium exist, and locally are spatially associated with the sulphide mineral occurrences. Several induced polarization, resistivity and very low frequency electromagnetic anomalies exist; some of the geophysical anomalies are coincident with sulphide mineral occurrences and/or geochemically anomalous zones.


Further exploration, comprising line cutting, topographic surveying, geological mapping, geochemical soil sampling, geophysical surveys, overburden stripping, trenching, roadbuilding and diamond drilling, is required to evaluate selected sulphide mineral occurrences and geophysical and geochemical anomalies that exist within MIN1, MIN2, RED LEDGE 1 and RED LEDGE 2 mineral claims.

The preliminary estimated cost of the recommended exploration is \$275,000.

INTRODUCTION

Location

The MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims are in Golden Mining Division within National Topographic System (NTS) map-sheet 82K/8W, and are centered at 50°19'N latitude, 116°27'W longitude (Dwg. 0EBI-8; Appendix I). The mineral claims cover a total area of 810 hectares and are accessible by helicopter or four-wheel-drive vehicle.

History

The area has been geologically mapped at a scale of one inch equals 2 miles (Walker, 1926), at a scale of 1 cm equals 2.5 km (Reesor, 1957 and 1973) and at a scale of 1 inch equals 1,500 feet (Fyles, 1959).

In 1979, Trigg, Woollett Consulting Ltd., on behalf of Echo Bay Mines Ltd., performed reconnaissance and detailed geochemical stream sediment sampling in parts of the area now covered by MIN1 and MIN2 mineral claims. MIN1 and MIN2 mineral claims, bearing record numbers 510 and 511 respectively were staked on November 10 and 11, 1979 and were recorded on November 23, 1979; SMIN1 mineral claim, bearing record number 773, was staked on July 1 and 2, 1980 and was recorded on July 30, 1980. MIN1, MIN2 and SMIN1 mineral claims are held by Echo Bay Mines Ltd.

RED LEDGE 1 and RED LEDGE 2 mineral claims, bearing record numbers 192 and 193, were recorded on October 13, 1977 and October 31, 1977, respectively, and are held by Arthur Louie of Wilmer, British Columbia. RED LEDGE 1 and RED LEDGE 2 mineral claims were optioned by Echo Bay Mines Ltd. in August, 1980.

1980 Exploration

A total of 467 man-days of field work, which included line cutting, topographic surveying, geological mapping, geophysical surveys, geochemical sampling, trenching, roadbuilding and helipad construction, was performed at MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims between May 15 and November 4, 1980 (Appendix II); this total does not include 41 man-days of field work performed within RED LEDGE 1 and RED LEDGE 2 mineral claims between October 13 and November 2, 1980 and between October 31 and November 5, 1980, respectively.

Exploration on the mineral claims during 1980 included: establishing a total of 31.6 line-km of grid within and near MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims; topographic surveying of a 100 hectare area within MIN1 and MIN2 mineral claims; geological mapping of a 450 hectare area at a scale of 1 cm equals 50 m and/or at a scale of 1 cm equals 25 m; performing 18.2 line-km of very low frequency electromagnetic and 16.3 line-km of induced polarization/resistivity surveys, and collecting 850 geochemical soil samples and 93 geochemical stream sediment samples. In addition, a sulphide mineral occurrence within RED LEDGE 2 mineral claim was stripped of overburden, was trenched at two locales 5 m apart and two rock chip samples were collected.

The total cost of exploration performed within MIN1, MIN2 and SMIN1 mineral claims between May 15 and November 4, 1980, within RED LEDGE 1 mineral claim between June 27 and October 11, 1980 and within RED LEDGE 2 mineral claim between August 8 and October 29, 1980, is \$110,630; the amount spent within each mineral claim or mineral claim group is summarized in Appendix III.

LINE CUTTING, ROADBUILDING

A total of 31.6 km of baseline, crossline and tie line were established by chain and compass or chain and transit within MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims. About 8.5 km of an old road which provided access to the RED LEDGE mineral claim group were refurbished, and 2.0 km of new road which provides access to MIN1 and MIN2 mineral claims were built to four-wheel-drive standards (Dwg. OEBI-9; Appendix I); the roads are about 3 m in width. Two D-6 caterpillar bulldozers, contracted from and operated by Dominion Creek Gold, Invermere, British Columbia and by O.W. Braisher Contracting, Parson, British Columbia, were utilized for roadbuilding.

GEOLOGY

Regional Geology

The eastern Purcell Mountains are underlain by rocks of Helikian to Cretaceous age (Reesor, 1973). At and near the MIN and RED LEDGE mineral claim groups, however, only the two upper formations within Helikian Purcell System and the Hadrynian Horsethief Creek Group of Windermere System are present.

The two upper formations of Purcell System are Dutch Creek Formation, which comprises mainly argillite, siltstone and quartzite with lesser amounts of carbonate rocks, and Mount Nelson Formation, which comprises mainly dolomite with lesser amounts of quartzite, dolomitic limestone, slate, argillite and conglomerate. The Windermere System unconformably overlies the Purcell System and comprises Toby Formation, a basal polymictic conglomerate, followed by Horsethief Creek Group, a diverse sequence of slate, argillite, phyllite, quartzite, grit, quartz-pebble conglomerate, dolomite and limestone.

The eastern Purcell Mountains have undergone at least two orogenic events. Prior to the deposition of Windermere System, Purcell System rocks were faulted and were deformed into northerly trending folds. The effects of this early orogeny have been overprinted and masked by a Mesozoic orogenic event that resulted in Paleozoic and older rocks being faulted, folded and intruded. Mesozoic deformation is characterized by northwesterly trending folds, by normal faults that strike mainly northwesterly and northerly, and by local thrust faults that dip mainly southwesterly (Reesor, 1973; Jansen and Olson, 1979).

Lithologies Within the Mineral Claims

Dutch Creek Formation, Mount Nelson Formation and Horsethief Creek Group exist within MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims (Dwg. 0EBI-9). North of Toby Creek, near the north boundary of MIN1 mineral claim, Mount Nelson Formation dolomite is the host for the sulphide deposit which existed at the now closed Mineral King mine.

Dutch Creek Formation lithologies include argillite, siltstone, quartzite, calcareous argillite and dolomite. Three units of massive to finely laminated dolomite exist within and near MIN2 mineral claim. The western contact of the central dolomite is gradational through dolomite interbedded with fine grained quartzite and argillite, to argillite and siltstone; the contact relationships of the other dolomite units are uncertain.

Mount Nelson Formation quartzite, dolomite, argillaceous dolomite, argillite, grit and quartz pebble conglomerate conformably overlie Dutch Creek Formation rocks within MIN1, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims. The basal unit of Mount Nelson Formation is a fine- to medium-grained, thin- to thick-bedded orthoquartzite with lesser amounts of interbedded dolomite and argillite. The basal quartzite grades upward through interbedded quartzite, dolomite, and sandy dolomite into massive to finely laminated dolomite. This dolomitic unit commonly contains interbeds of argillite and argillaceous dolomite, and locally contains grit and matrix-supported pebble conglomerate comprised of quartz clasts in an argillaceous matrix. The dolomitic unit is in fault contact with Dutch Creek Formation rocks which exist to the east.

Horsethief Creek Group quartz pebble conglomerate and grit with lesser amounts of argillite and dolomitic limestone exist in the southern portion of RED LEDGE 2 and SMIN1 mineral claims. Grit and matrix-supported conglomerate are comprised mainly of quartz clasts up to 1 cm in diameter, and local argillite and dolomite clasts up to 2 m in diameter, in an argillaceous matrix. Grit and conglomerate commonly are interbedded with argillite; interbeds of dolomitic limestone exist but are rare. The contact between Horsethief Creek Group and underlying Dutch Creek Formation within the mineral claims probably is a thrust fault rather than an unconformity.

Dark green chloritic intrusive rocks exist locally in Dutch Creek Formation. The original composition of these intrusive rocks is uncertain; similar rocks which exist north of Toby Creek have been described as altered diorite by Fyles (1959). Contact metamorphic alteration, which comprises bleaching and sericitization, is present in Dutch Creek Formation argillite adjacent to the chloritic intrusive rocks. It is uncertain, because of subsequent deformation, whether the intrusive rocks were emplaced as dykes, sills and/or sheets; the large outcrop of intrusive rock which exists in the southern part of RED LEDGE 2 mineral claim may be an intrusive plug.

Quartz veins are ubiquitous within the mineral claims and exhibit a variety of attitudes. At least two ages of quartz veins exist.

Structure Within the Mineral Claims

Rocks within and near the mineral claims are folded and faulted. The structures present indicate that at least three phases of deformation exist; all three phases of deformation may, however, have occurred during the same Mesozoic orogenic event.

The earliest phase of deformation produced the thrust fault which separates Horsethief Creek Group from underlying Dutch Creek Formation. That the thrust formed early is indicated by the fact that the attitude of the tectonic fabric within Horsethief Creek Group rocks above the thrust is the same as that which exists within underlying Dutch Creek and Mount Nelson Formations; this tectonic fabric was formed during the second phase of deformation.

Within MIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims, the important structure produced by the second phase of deformation is a subsidiary fold that plunges about 20 degrees north-northwesterly (Dwg. OEBI-9). The axis of this subsidiary fold lies within the Mount Nelson Formation, and the fold is transected to the east by a subvertical, north-northwesterly fault or fault zone that has about 1,200 m downthrow on the west side (Fyles, 1959). This subsidiary fold is a dragfold that formed on the east limb of a large anticline, the axis of which exists west of the mineral claims. The east limb of this large anticline generally dips steeply east-northeasterly; locally, however, it may be overturned and dip steeply west-southwesterly. Minor structures related to the development of the north-northwesterly subsidiary fold include a pervasive north-northwesterly striking, generally vertical to steep, east-northeasterly dipping foliation; lineations and minor fold axes that commonly plunge 15 to 30 degrees north-northwesterly, and a prominent fracture and joint set which strikes east-northeasterly, perpendicular to the axis of the subsidiary fold. Locally, small lateral offset occurs along some of the northeasterly fractures.

Within MIN2 mineral claim there are no clearly definable medium— to large-scale folds; however, minor folds and the local variations in bedding and foliation attitudes indicate that such folds are present. These folds, if present, probably are tight to isoclinal due to the low competency of Dutch Creek Formation argillite. Faults have not been defined within MIN2 mineral claim. A reddish-weathering breccia comprising subangular clasts of dolomite, vein quartz and argillite in a dolomite matrix, exists near but south of MIN2 mineral claim; this breccia and the coincident topographic gully indicate a northwesterly fault may be present in the central portion of MIN2 mineral claim.

The third phase of deformation within the mineral claims occurred about a west-northwesterly axis and produced local crenulations and a west-northwesterly foliation in Dutch Creek Formation rocks, and local variations and reversals in the general northwesterly plunge of minor fold axes within Mount Nelson Formation rocks.

MINERAL OCCURRENCES

At least 13 sulphide mineral occurrences, comprising one or more of galena, tetrahedrite, sphalerite and chalcopyrite, exist within Dutch Creek

Formation dolomite and argillite and Mount Nelson Formation quartzite and dolomite within and near MIN1, MIN2, RED LEDGE 1 and RED LEDGE 2 mineral claims (Dwg. 0EBI-9). Small amounts of galena and/or tetrahedrite also are locally common in quartz veins in Mount Nelson Formation dolomite.

Within MIN2 mineral claim, sulphide mineral occurrences generally comprise small amounts of galena, sphalerite, chalcopyrite and/or tetrahedrite which exist in quartz, calcite and/or barite veins and locally along fractures. At occurrence 9SHM008, sulphide-bearing quartz veins are subvertical and strike east-southeasterly or, less commonly, are subhorizontal. At occurrence 0SHM003, coarse grained galena, sphalerite and minor tetrahedrite exist in calcite veins or in fractures.

Within MIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims the majority of the sulphide mineral occurrences comprise galena, tetrahedrite and/or sphalerite in fractures or quartz veins within Mount Nelson Formation dolomite; the mineralized fractures and veins generally are subvertical and strike northerly to northeasterly. Three sulphide occurrences are not in Mount Nelson Formation dolomite: at occurrence OSHMO04 fine grained galena exists on fractures in a float boulder of Mount Nelson Formation quartzite; at occurrence ONAMO01 sphalerite and galena exist in quartz veins in Dutch Creek Formation argillite, and near the northern boundary of RED LEDGE 2 mineral claim a 5 cm diameter cobble of massive galena was discovered in float along the RED LEDGE road. The source of the galena cobble is unknown.

The most important sulphide occurrence, OSHM007, exists in Mount Nelson Formation dolomite within RED LEDGE 2 mineral claim. Overburden stripping, trenching, rock chip sampling and geological mapping at a scale of 1 cm equals 0.5 m were performed at this occurrence (Dwg. OEBI-10). Massive galena, locally altered to anglesite and/or cerussite, and tetrahedrite exist within an irregular, steep northerly plunging, pipe-like body with an average diameter of about 0.5 m. Minor amounts of galena exist locally in fractures and, to a lesser extent, in quartz veins that strike northeasterly and dip steeply northwesterly; galena also exists as fine- to medium-grained disseminations in the host dolomite. Pyrite is disseminated in the galena-tetrahedrite zone and in the host dolomite; limonitic iron-oxide minerals are common along fracture surfaces.

Two rock chip samples, 82K80SHM026 and 82K80SHM027, which were collected across the sulphide zone at occurrence 0SHM007, assayed, respectively, 20.60 ounces silver per ton, 27.20 per cent lead, 1.89 per cent zinc and 0.22 per cent copper over 1.0 m, and 14.90 ounces silver per ton, 18.12 per cent lead, 2.92 per cent zinc and 0.24 per cent copper over 1.0 m. A grab sample of massive galena, 82K80SHM007A, assayed 50.40 ounces silver per ton, 77.53 per cent lead, 0.58 per cent zinc and 0.03 per cent copper. Tetrahedrite occurs as disseminations in massive galena and exists locally in small pods; tetrahedrite comprises less than 2 volume per cent of the total suphides present at occurrence OSHM007. A tetrahedrite-rich grab sample,

GEOPHYSICAL SURVEYS

Very low frequency electromagnetic (VLF-EM) and induced polarization/resistivity (IP) surveys were conducted within MIN1, MIN2, SMIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims. The VLF-EM survey was performed in part by Trigg, Woollett Consulting Ltd. and in part by Phoenix Geophysics Limited; the IP survey was performed by Phoenix Geophysics Limited. The VLF-EM and IP data were interpreted by Phoenix Geophysics Limited, Vancouver, British Columbia (Cartwright and DiSpirito, 1980; Appendix V).

At least eleven VLF-EM and/or IP geophysically anomalous zones exist within the mineral claims (Dwg. 0EBI-15). A few of the geophysical anomalies are spatially coincident with fault zones or with pyritiferous Dutch Creek Formation argillite. However, several of the geophysical anomalies are spatially coincident with geochemically anomalous zones and/or with dolomite units; this includes geophysical anomalies R_1 , R_2 , F, G and the southern part of anomaly H within MIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims, and anomalies A_1 , A_2 and B within MIN2 mineral claim.

CONCLUSIONS

Dutch Creek Formation, Mount Nelson Formation and Horsethief Creek Group carbonate and clastic rocks exist within the mineral claims. These rocks are folded and faulted; at least three phases of deformation exist. Within MIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims the important structures are a large north-northwesterly plunging subsidiary fold which exists in Mount Nelson Formation on the eastern limb of a major anticline, and a major north-northwesterly, subvertical fault which has the west side downthrown about 1,200 m. Establishing the attitudes of the east limb of the anticline and of the fault are important because the intersection of a southwesterly dipping anticlinal limb with a near-vertical or northeasterly dipping fault would allow the geologically favourable Mount Nelson Formation to extend southeasterly to depth within RED LEDGE 1 mineral claim and possibly within SMIN1 mineral claim.

At least thirteen sulphide mineral occurrences, comprising one or more of galena, tetrahedrite, sphalerite and chalcopyrite, exist within and near the mineral claims. Within and near MIN2 mineral claim, four sulphide mineral occurrences are in Dutch Creek Formation dolomite and two are in Dutch Creek Formation argillite. Within and near MIN1, RED LEDGE 1 and RED LEDGE 2 mineral claims, sulphide mineral occurrences comprise a float boulder of Mount Nelson Formation quartzite containing small amounts of galena, an occurrence of sphalerite and galena in quartz veins in Dutch Creek Formation argillite, a float cobble of massive galena, and four occurrences of galena and tetrahedrite in Mount Nelson Formation dolomite. The most important sulphide mineral occurrence is OSHM007. At this occurrence two chip samples collected across the sulphide zone give an average grade of 17.75 ounces silver per ton, 22.66 per cent lead, 2.41 per cent zinc and 0.23 per cent copper over 1.0 m. Further exploration will be required to evaluate this occurrence.

At least six iron-oxide gossans exist within RED LEDGE 1 and RED LEDGE 2 mineral claims. Samples collected from the gossans contain up to 2,100 ppm zinc. The source of the iron and zinc in the gossans is unknown. It is possible that a sulphide deposit exists at depth, and that meteoric waters have leached this deposit, migrated upward along fault and fracture zones, and precipitated the metals at surface.

Several geochemically anomalous zones exist within the mineral claims. Soil and stream sediments contain up to 3,200 ppm lead, 2,600 ppm zinc, 20 ppm silver and 19 ppm cadmium. The majority of the geochemically anomalous zones are spatially coincident with or are near either Dutch Creek Formation dolomite or Mount Nelson Formation quartzite and/or dolomite. A few geochemically anomalous zones are near or down slope from sulphide mineral occurrences or from iron-oxide gossans.

At least eleven VLF-EM and/or IP geophysically anomalous zones exist within the mineral claims. A few of the geophysical anomalies are spatially coincident with fault zones or with pyritiferous Dutch Creek Formation argillite. However, geophysical anomalies R1, R2, F, G, the southern part of H, A1, A2 and B are spatially coincident with geochemically anomalous zones and/or with dolomite or quartzite units; these geophysical anomalies require further exploration.

RECOMMENDATIONS

Further exploration, comprising line cutting, topographic surveying, geological mapping, geochemical soil sampling, geophysical surveys, overburden stripping, trenching, roadbuilding and diamond drilling, is required to evaluate selected sulphide mineral occurences and geochemical and geophysical anomalies that exist within MIN1, MIN2, RED LEDGE 1 and RED LEDGE 2 mineral claims (Dwg. 0EBI-16). A crew, comprising a supervising geologist, a drill geologist, a senior geological assistant, two junior geological assistants and a cook, will be required for a period of about two and one-half field-months. In addition, a geophysical contractor will be required to perform the necessary VLF-EM and IP surveys, and a diamond drill contractor will be required to perform about 1,000 metres of drilling; further drilling may be required depending upon exploration results.

The preliminary estimated cost of the recommended exploration is \$275,000; a further, more detailed, cost estimate is required.

THE ASSOCIATION OF

PROFESSIONAL ENGINEERS. GEOLOGISTS and GEOPHYSICISTS

OF ALBERTA

PERMIT NUMBER P 2374

> TRIGG, WOOLLETT CONSULTING LTD.

December, 1980 Edmonton, Alberta Trigg, Woollett Consulting Ltd.

J.G. Jansen, B.Sc.

P. Enq.

REFERENCES

Cartwright, P.A. and DiSpirito, F.	(1980)	Report on the induced polarization, resistivity and VLF-EM surveys on the MIN 1, MIN 2, S MIN 1, REDLEDGE 1 and REDLEDGE 2 claims (Project EBI) Golden Mining District; unpublished report prepared for Trigg, Woollett Consulting Ltd. by Phoenix Geophysics Limited.
Fyles, J.T.	(1959)	Mineral King, Red Ledge; in Minister of Mines, British Columbia, Ann. Rep't, p. 74-89.
Jansen, J.G. and Olson, R.A.	(1979)	Exploration - 1979, Invermere Project, Fort Steele and Golden Mining Divisions, British Columbia; unpublished report prepared for Echo Bay Mines Ltd. by Trigg, Woollett Consulting Ltd.
Reesor, J.E.	(1957)	Geology, Lardeau, British Columbia, Sheet 82K (east half); Geol. Surv., Canada, Map 12-1957.
1	(1973)	Geology of the Lardeau map-area, East-Half, British Columbia; Geol. Surv., Canada, Memoir 369.
Walker, J.F.	(1926)	Geology and mineral deposits of Windermere map-area, British Columbia; Geol. Surv., Canada, Memoir 148.

CERTIFICATION

I, R. A. OLSON OF 8727 - 181 STREET, EDMONTON, ALBERTA CERTIFY AND DECLARE THAT I AM A GRADUATE OF THE UNIVERSITY OF BRITISH COLUMBIA WITH A B.SC. DEGREE IN GEOLOGY (1968), A GRADUATE OF THE UNIVERSITY OF WESTERN ONTARIO WITH A M.SC. DEGREE IN GEOLOGY (1971) AND A GRADUATE OF THE UNIVERSITY OF BRITISH COLUMBIA WITH A PH.D. DEGREE IN GEOLOGY (1977). I AM REGISTERED AS A PROFESSIONAL ENGINEER WITH THE ASSOCIATION OF PROFESSIONAL ENGINEERS OF BRITISH COLUMBIA AND AS A PROFESSIONAL GEOLOGIST WITH THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS AND GEOPHYSICISTS OF ALBERTA.

MY EXPERIENCE INCLUDES SERVICE AS AN EXPLORATION GEOLOGIST WITH TEXASGULF INC., VANCOUVER, BRITISH COLUMBIA. SINCE 1969 I HAVE CONDUCTED AND DIRECTED PROPERTY EXAMINATIONS, PROPERTY EVALUATIONS AND EXPLORATION PROGRAMS ON BEHALF OF COMPANIES AS A GEOLOGIST IN THE EMPLOY OF TRIGG, WOOLLETT & ASSOCIATES LTD. AND TRIGG, WOOLLETT CONSULTING LTD., EDMONTON, ALBERTA.

TRIGG, WOOLLETT CONSULTING LTD. HAS A RETAINED INTEREST IN THE INVERMERE PROJECT OF ECHO BAY MINES LTD. I AM A PARTNER IN TRIGG, WOOLLETT CONSULTING LTD.

J. G. JANSEN'S REPORT ON MIN1, MIN2, SMIN1, RED LEDGE 1 AND RED LEDGE 2 MINERAL CLAIMS IS BASED UPON FIELD WORK AND UPON STUDY OF PUBLISHED AND UNPUBLISHED DATA.

P. ENG.

DECEMBER, 1980 EDMONTON, ALBERTA

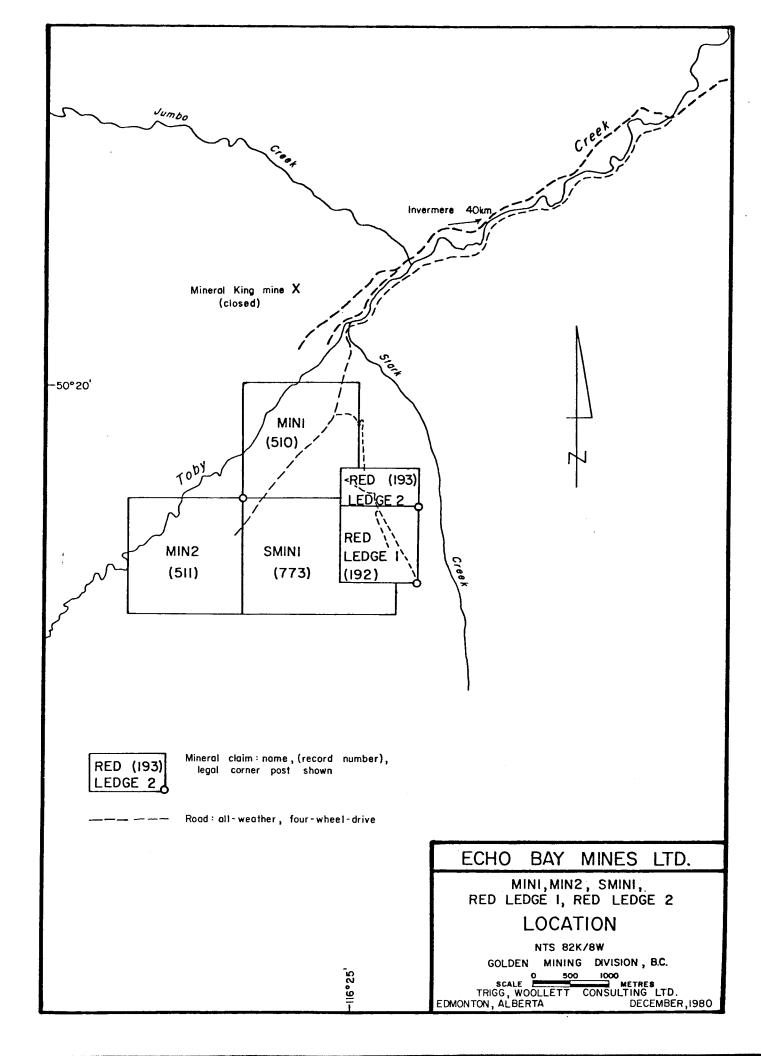
CERTIFICATION

I, R. A. OLSON OF 8727 - 181 STREET, EDMONTON, ALBERTA CERTIFY AND DECLARE THAT I AM A GRADUATE OF THE UNIVERSITY OF BRITISH COLUMBIA WITH A B.SC. DEGREE IN GEOLOGY (1968), A GRADUATE OF THE UNIVERSITY OF WESTERN ONTARIO WITH A M.SC. DEGREE IN GEOLOGY (1971) AND A GRADUATE OF THE UNIVERSITY OF BRITISH COLUMBIA WITH A PH.D. DEGREE IN GEOLOGY (1977). I AM REGISTERED AS A PROFESSIONAL ENGINEER WITH THE ASSOCIATION OF PROFESSIONAL ENGINEERS OF BRITISH COLUMBIA AND AS A PROFESSIONAL GEOLOGIST WITH THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS AND GEOPHYSICISTS OF ALBERTA.

MY EXPERIENCE INCLUDES SERVICE AS AN EXPLORATION GEOLOGIST WITH TEXASGULF INC., VANCOUVER, BRITISH COLUMBIA. SINCE 1969 I HAVE CONDUCTED AND DIRECTED PROPERTY EXAMINATIONS, PROPERTY EVALUATIONS AND EXPLORATION PROGRAMS ON BEHALF OF COMPANIES AS A GEOLOGIST IN THE EMPLOY OF TRIGG, WOOLLETT & ASSOCIATES LTD. AND TRIGG, WOOLLETT CONSULTING LTD., EDMONTON, ALBERTA.

TRIGG, WOOLLETT CONSULTING LTD. HAS A RETAINED INTEREST IN THE INVERMERE PROJECT OF ECHO BAY MINES LTD. I AM A PARTNER IN TRIGG, WOOLLETT CONSULTING LTD.

J. G. JANSEN'S REPORT ON MIN1, MIN2, SMIN1, RED LEDGE 1 AND RED LEDGE 2 MINERAL CLAIMS IS BASED UPON FIELD WORK AND UPON STUDY OF PUBLISHED AND UNPUBLISHED DATA.


R.A. OLSON, A. PHSON., &P. GEOL.

DECEMBER, 1980

EDMONTON, ALBERTA

APPENDIX I

LOCATION
MIN1, MIN2, SMIN1,
RED LEDGE 1, RED LEDGE 2

APPENDIX II

PERSONNEL

PERSONNEL

MIN1, MIN2 AND SMIN1 MINERAL CLAIMS

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.			
Angelopoulos, N. 81 Rogers Avenue LONDON, Ontario	Geological Assistant	September 16-19,24,25,27,29,30; October 10,14,16-18	14
Foley, P. 32 Wordsworth Way WINNIPEG, Manitoba	Geologist	July 23; August 2,6,22-25	7
Hawker, S. General Delivery, URANIUM CITY, Saskatchewan	Prospector	May 15-17,20-24,26-31; June 2,5,6, 8-12,14,16-18,24,25,27; July 1,3,4,24; August 2,4; September 30	36
Hayward, D. P.O. Box 303 CANAL FLATS, British Columbia	Geological Assistant	August 9,11-14; October 15,21-23; November 3,4	11
Hislop, M. P.O. Box 745 CRANBROOK, British Columbia	Labourer	July 24-26,28-31; August 1,2, 4,5	11
Jansen, J. 10504 - 103 Street EDMONTON, Alberta	Geologist	May 15,16,22-25,27; June 12-14,18-21,24; July 3,24; August 9,21; September 11,16-19, 24,25,27,30; October 14,30	30
Johnston, K. General Delivery KIMBERLY, British Columbia	Labourer	August 9-16	8
Kilgour, R. 330 Robertson Street VICTORIA, British Columbia	Geological Assistant	October 13-16,18,19,22	7

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.			
Lynch, R. 347 Marsden Street KIMBERLY, British Columbia	Labourer	August 9,11-13; September 30; October 1,2,11,13-17	13
Neufeld, J. 827 Okenwald Avenue WINNIPEG, Manitoba	Geological Assistant	May 16,17,20-24,26-31; June 2, 4-6,8,9,11,12	21
Olson, R.A. 8727 - 181 Street EDMONTON, Alberta	Consultant	May 27,30; August 12	3
Redwood, I. 9618 - 113 Avenue GRANDE PRAIRIE, Alberta	Geological Assistant	May 28-31; June 2,4-6,8-10,27; July 3,4,7,18,28-31; August 1,2, 4,5,7-15	33
Root, A. P.O. Box 653 INVERMERE, British Columbia	Labourer	June 5	1
Root, K. P.O. Box 653 INVERMERE, British Columbia	Geologist	May 15-17,20-24,26-31; June 2,4,5, 9,12-14,16,17,20,24,28; July 1-5,16; August 2	33
Russell, C. 250 Westridge Road EDMONTON, Alberta	Geological Assistant	July 3,4,16,24-26,30; August 2,4, 5,7-16	20
Sperling, T. 5619 King's Road VANCOUVER, British Columbia	Geological Assistant	May 15-17,20-24,26-31; June 2,4, 5,9-12,27; July 1-4,7,17,18,23; August 2,8,9,11	34
Thomas, M. R.R. #2 REGINA, Saskatchewan	Geologist	July 31; August 2,4-7,21-25	11

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.			
Van Amerongen, A. P.O. Box 44 INVERMERE, British Columbia	Labourer	October 1,2,11,13-18; November 3,4	11
Yoder, C. P.O. Box 390 CANAL FLATS, British Columbia	Geological Assistant	September 27,29,30; October 1,13, 15,16,18,19,22,27	11
PHOENIX GEOPHYSICS LIMITED			
Cartwright, P. 4238 N. 11th Avenue VANCOUVER, British Columbia	Geophysicist	August 6-17	12
DiSpirito, F. 2748 Oxford Street VANCOUVER, British Columbia	Geophysicist	October 14,15,20-27	10
Oullette, G. 502 Tashereau Est. ROUYN, Quebec	Technician	October 14,15,20-27	10
Johnston, K. General Delivery KIMBERLY, British Columbia	Labourer	October 14,15,20-27	10

PERSONNEL

RED LEDGE 1 MINERAL CLAIM

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.			
Angelopoulos, N. 81 Rogers Avenue LONDON, Ontario	Geological Assistant	October 6-9	4
Foley, P. 32 Wordsworth Way WINNIPEG, Manitoba	Geologist	August 12-14	3
Hawker, S. General Delivery, URANIUM CITY, Saskatchewan	Prospector	August 11-13	3
Jansen, J. 10504 - 103 Street EDMONTON, Alberta	Geologist	June 27; July 21; August 1,27; October 6,9,11	7
Kilgour, R. 330 Robertson Street VICTORIA, British Columbia	Geological Assistant	October 7,8,11	3
Lynch, R. 347 Marsden Street KIMBERLY, British Columbia	Labourer	October 4,7,8	3
Olson, R.A. 8727 - 181 Street EDMONTON, Alberta	Consultant	June 27; July 21, 24; August 27	4
Pretty, L. 128 - 13 Avenue S. CRANBROOK, British Columbia	Labourer	October 6	1

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.			
Root, K. P.O. Box 653 INVERMERE, British Columbia	Geologist	July 24; August 12-14	4
Russell, C. 250 Westridge Road EDMONTON, Alberta	Geological Assistant	August 19	1
Sperling, T. 5619 King's Road VANCOUVER, British Columbia	Geological Assistant	August 16-19	4
Thomas, M. R.R. #2 REGINA, Saskatchewan	Geologist	August 1,11,14-20,27	10
Trigg, C.M. 10426 - 27A Avenue EDMONTON, Alberta	Consultant	July 21	1
Van Amerongen, A. P.O. Box 44 INVERMERE, British Columbia	Labourer	October 4,6-8	4
Yoder, C. P.O. Box 390 CANAL FLATS, British Columbia	Geological Assistant	October 6-8,11	4

PERSONNEL

RED LEDGE 2 MINERAL CLAIM

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.			
Angelopoulos, N. 81 Rogers Avenue LONDON, Ontario	Geological Assistant	October 1-4,15	5
Hawker, S. General Delivery URANIUM CITY, Saskatchewan	Prospector	August 14,15; October 1-4, 6	7
Hayward, D. P.O. Box 303 CANAL FLATS, British Columbia	Geological Assistant	October 18,27-29	4
Jansen, J. 10504 - 103 Street EDMONTON, Alberta	Geologist	October 3,4,7,15,22,24	6
Kilgour, R. 330 Robertson Street VICTORIA, British Columbia	Geological Assistant	October 9,23,24,28	4
Lynch, R. 347 Marsden Street KIMBERLY, British Columbia	Labourer	October 3,9	2
Olson, R.A. 8727 - 181 Street EDMONTON, Alberta	Consultant	October 22	1
Pretty, L. 128 - 13 Avenue S. CRANBROOK, British Columbia	Labourer	October 7	1

Name and Address	Position	Dates in Field (1980)	Days
TRIGG, WOOLLETT CONSULTING LTD.		,	
Sperling, T. 5619 King's Road VANCOUVER, British Columbia	Geological Assistant	August 14,15	2
Thomas, M. R.R. #2 REGINA, Saskatchewan	Geologist	August 8,12,13	3
Van Amerongen, A. P.O. Box 44 INVERMERE, British Columbia	Labourer	October 3,9,28	3
Yoder, C. P.O. Box 390 CANAL FLATS, British Columbia	Geological Assistant	October 2-4,9,23,24,28	7
PHOENIX GEOPHYSICS LIMITED			
DiSpirito, F. 2748 Oxford Street VANCOUVER, British Columbia	Geophysicist	October 18,28,29	3
Oullette, G. 502 Tashereau Est. ROUYN, Quebec	Technician	October 18,28,29	3
Johnston, K. General Delivery KIMBERLY, British Columbia	Labourer	October 18,28,29	3

.

APPENDIX III

COST STATEMENTS

COST STATEMENT

MIN1, MIN2 AND SMIN1 MINERAL CLAIMS

(1) SALARY (Includes salary, fringe benefits and related charges):

N.	Angelopoulos	14	days	@	\$ 71/day	\$	994
\mathbf{p}_{ullet}	Foley	7	days	@	92/day		644
s.	Hawker	36	days	@	104/day	3,	744
D.	Hayward	5	days	@	70/day		350
		6	days	@	66/day		396
M.	Hislop	11	days	@	80/day		880
J.	Jansen	30	days	@	164/day	4,	920
K.	Johnston	3	days	@	70/day		210
		5	days	@	50/day		250
R.	Kilgour	7	days	@	60/day		420
R.	Lynch	13	days	@	70/day		910
J.	Neufeld	21	days	@	61/day	1,	281
R.	Olson	3	days	@	350/day	1,	050
I.	Redwood	33	days	@	57/day	1,	881
A.	Root	1	day	@	70/day		70
K.	Root	33	days	@	79/day	2,	607
C.	Russell	20	days	@	53/day	1,	060
T.	Sperling	34	days	0	64/day	2,	176
Μ.	Thomas	11	days	@	126/day	1,	386
A.	Van Amerongen	11	days	@	70/day		770
C.	Yoder	11	days	@	60/day		660

\$26,659

(2) MEALS AND ACCOMMODATION (Includes accommodation, food and food preparation):

315 man-days @ \$30/man-day

9,450

(3) TRANSPORTATION:

(a) Helicopter: 18.8 hrs. @ \$410/hr 7,708

(b) Truck (Includes rental, kilometreage, fuel, oil, repairs):

315 man-days @ \$18/man-day 5,670

13,378

(4) EQUIPMENT (Includes rental of technical and camp equipment and cost of maps, air photos, etc.):

315 man-days @ \$5/man-day

1,575

(5) GEOPHYSICAL (Phoenix Geophysics Limited charges only):

August 6-17, 1980 12 days @ \$361.25/day \$4,335

October 15, 23, 24 and 27, 1980
4 days @ \$715/day 2,860

October 14, 20-22, 25 and 26, 1980
6 days @ \$290/day 1,740

Meals and accommodation
30 man-days @ \$30/man-day 900

Travel expenses, telephone 645

10,480

(6) GEOCHEMICAL (Includes analysis for lead, zinc, silver and cadmium, sample preparation*, shipping charges, sample bags, sample description cards and field drafting of sample location maps and geochemical results):

659 samples @ \$6.60/sample

4,349

(7) ROADBUILDING:

D-6 Cat	31	hrs.	@	\$45/hr.	1,395
Mobilization	4	hrs.	9	\$40/hr.	160
D-6 Cat	40	hrs.	@	\$51.50/hr.	2,060
Mobilization	5	hrs.	@	\$40/hr.	200

3,815

(8) REPORTING (Includes secretarial, drafting, reproduction, editing):

8,215

TOTAL COST

\$77,921

^{*} Samples were oven-dried and sieved in camp in order to promote consistency in sample preparation, to avoid possible contamination or switching of samples in the lab and to hasten turn-around time between collection of samples and receipt of results.

COST STATEMENT

RED LEDGE 1 MINERAL CLAIM

(1)	SALARY	(Includes	s salary,	fringe	benefits
	and rel	lated char	rges):		

M	3m11		a	a	¢ 71/3	¢ 204
TA •	Angelopoulos	4	days	æ	\$ 71/day	\$ 284
P.	Foley	3	days	@	92/day	276
s.	Hawker	3	days	@	104/day	312
J.	Jansen	7	days	@	164/day	1,148
R.	Kilgour	3	days	@	60/day	180
R.	Lynch	3	days	@	70/day	210
R.	Olson	4	days	@	350/day	1,400
\mathbf{L}_{ullet}	Pretty	1	day	@	50/day	50
K.	Root	4	days	@	79/day	316
C.	Russell	1	day	@	53/day	53
T.	Sperling	4	days	@	64/day	256
М.	Thomas	10	days	@	126/day	1,260
C.	M. Trigg	1	day	@	500/day	500
A.	Van Amerongen	4	days	@	70/day	280
C.	Yoder	4	days	@	60/day	240

\$ 6,765

(2) MEALS AND ACCOMMODATION (Includes accommodation, food and food preparation):

56 man-days @ \$30/man-day

1,680

(3) TRANSPORTATION:

(a) Helicopter: 8.9 hrs. @ \$410/hr.

3,649

1,008

(b) Truck(Includes rental, kilometreage, fuel, oil, repairs):

56 man-days @ \$18/man-day

4,657

(4) EQUIPMENT (Includes rental of technical and camp equipment and cost of maps, air photos, etc):

56 man-days @ \$5/man-day

280

(5) GEOCHEMICAL (Includes analysis for lead, zinc, silver and cadmium, sample preparation*, shipping charges, sample bags, field drafting of sample location maps and geochemical results):

160 samples @ \$6.60/sample

1,056

(6) REPORTING (Includes secretarial, drafting, reproduction, editing):

1,200

TOTAL COST

\$15,638

* Samples were oven-dried and sieved in camp in order to promote consistency in sample preparation, to avoid possible contamination or switching of samples in the lab and to hasten turn-around time between collection of samples and receipt of results.

COST STATEMENT

RED LEDGE 2 MINERAL CLAIM

(1)	SALARY	' (Incl	ludes	salary,	fringe	benefits
	and re	elated	char	ges):		

	and rela	ted charges):				_							
	N.	Angelopoulos	5	days	e e	\$ 71/day	\$	355					
		Hawker		days			·	728					
	D.	Hayward		_		66/day		264					
	J.	Jansen		_		164/day		984					
	R.	Kilgour	4	days	@	60/day		240					
	R.	Lynch	2	days	@	70/day		140					
	R.	Olson	1	day	@	350/day		350					
	L.	Pretty	1	day	@	50/day		50					
	· T.	Sperling	2	days	0	64/day		128					
	М.	Thomas	3	days	@	126 day		378					
	A.	Van Amerongen	3	days	@	70/day		210					
	С.	Yoder	7	days	@	60/day		420					
									\$ 4,247				
/ 2\	WELL CONT	D. ACCOMODATION (To all				.							
(2)		D ACCOMMODATION (Inclu	ae	s acc	nmc	nodation,			•				
•	1000 and	food preparation):											
	45 man-days @\$30/man-day 1,35												
(3)	TRANSPOR	TATION:											
	(a)	Helicopter: 14.0 hrs	. (9 \$410)/ŀ	nr.	5	,740					
	(b)	Truck (Includes rent fuel, oil, repairs):	al	, kil	ome	etreage,							
		45 man-d	ay	s @ \$	18/	/man/day		810	6,550				
(4)	₽∩!!T DM₽N!	T (Includes rental of	+ ~	ahn i c	. 1	and cam							
(4)		t and cost of maps, ai											
	edarbmen	c and cost of maps, al	-)	211010	· /	ecc. /:							

45 man-days @ \$5/man-day

Rental of Pionjar rock drill 290

171

686

Explosives

(5) GEOPHYSICS (Phoenix Geophysics Limited charges only):

October 18, 28 and 29, 1980

3 days @ \$715/day

2,145

Meals and accommodation

9 man-days @ \$30/man-day

270 2,415

(6) GEOCHEMICAL (Includes analysis for lead, zinc, silver and cadmium, sample preparation*, shipping charges, sample bags, sample description cards and field drafting of sample location maps and results):

49 samples @ \$6.60/sample

323

(7) REPORTING (Includes secretarial, drafting, reproduction and editing):

1,500

TOTAL COST

\$17,071

^{*} Samples were oven-dried and sieved in camp in order to promote consistency in sample preparation, to avoid possible contamination or switching of samples in the lab and to hasten turn-around time between collection of samples and receipt of results.

APPENDIX IV

ASSAY CERTIFICATE, GEOCHEMICAL LAB REPORTS

To: Trigg.	Woollett Consult	ing Ltd.
PAGE No	11	

BONDAR-CLEGG & COMPANY LTD.

REPORT NO. A20 - 1797

DATE: November 24, 1980

10504 - 103 rd Street Edmonton, Alberta T5H 2V4

CERTIFICATE OF ASSAY

Samples submitted: November 10, 1980 Results completed: November 24, 1980

PROJECT: E. B. I.

I hereby certify that the following are the results of assays made by us upon the herein described ore samples.

MARKED	GC	DLD	SILV	/ER	Cu	Pb	Zn	Ba			T	
	Ounces per Ton	Grams per Metric Ton	Ounces per Ton	Grams per Metric Ton	Percent							
82K - 80 SHM 007A			50.40		0.03	77.53	0.58	<0.01				
007В			1346.50		19.90	11.10	2.09	0.05				ľ
								1				
026		1	20.60		0.22	27.20	1.89	0.02		1		
027			14.90		0.24	18.12	2.92	0.02				1
								1	İ		ļ	
							· ·					
											-	
			1						1			

NOTE:

Rejects retained three weeks Pulps retained three months unless otherwise arranged,

Regulared & mayer Proving of British Columbia

130 PEMBERTON AVE., NORTH VANCOUVER, B.C.

PHONE: 985-0681

TELEX: 04-352667

Geochemical Lab Report

Extraction	Report No. 20 - 842 PROJECT: EBI
Method	FromTrigg = Woollett Consulting Ltd.
Fraction Used	Date June 18, 19 80

raction Used	·				Date		Ju	ne 18, 1	9 _ 80
SAMPLE NO.	Pb ppm	Žn ppm	Ag	Cd ppm	SAMPLE NO.	Pb ppm	Zn ppm	Ag	Cd ppm
82K 80 IRC	ppm	ppm	A g ppm	ppm	82K 80 IRS	ppm	DÖM	A B m	ĎĎЩ
001	550	830	2.8	11.	027	18	16_	0.2	0,2
002	75	400	0.7	4.0	028	22	21	0.2	0.2
003	34	56	0.3	0.2	029	16	26	0.2	0.2
004	1	37	0.2	0.2	.030	105	690	0.5	0.5
82K 80 IRS 001	260	_1750	_1.7_	16	82K 80 JJC 001	17	24	0.2	0.2
002	340	720	0.9	5.2	002	38	60	0,2	0.2
003	84	106	0.3	0.6	003	36	80	0.7	0.5
004	85	132	0.3	0.4	004	22	23	0.3	0.2
005	800	112	20.	0.2	005	30	39	0.7	0.2
006	172	470	1.2	1.0	006	110	550	0.9	5.6
007	54	112	0.3	0.2	007	108	380	0.9	2.2
008	72	96	0.6	0.8	008	35	60	0.2	0.2
009	113	91	0.8	0.2	009	18	260	0.2	0.6
010	230	55	0.8	0.2	82K 80 JJS 001	43	41	0.4	0.2
011	20	26	0.2	0.2	002	30	48	0.3	0.2
012	36	29	0.3	0.2	003	136	80	1.2	1.2
013	66	34	0.2	0,2	004	10	15	0.2	0.2
014	27	36	0.4	0.2	005	20	18_	0.3	0.2
015	8	16	0.2	0.2	006	21	24	0.2	0.2
016	14	27	0.2	0.2	007	38	66	0.2	0.2
017	17	28	0.2	0.2	008	48	47	0.3	0.2
018	35	. 55	0.2	0.2	009	24	28	_0,2	0.2
019	136	55	0.8	0.2	010	25	58	0.3	0.2
020	53	78	0.4	0.2	011	14	20	2.8	0.2
021	18	20	0.2	0.2	012	16	23	2.9	0.2
022	14	17	0.2	0.2	013	42	44	1.1	0.2
023	11	18	0.2	0.2	014	24	24	0.2	0.2
024	26	28	0.3	0.2	015	26	28	0.3	0.2
025	19	14	0.3	0.2	016	15	11	0.6	0.2
026	14	17	0.2	0.2	017	31	35	0.5	0,2

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

SAMPLE NO.	Pb ppm	Zn ppm	A g m	Çd ppm	SAMPLE NO.	Pb ppm	Zn PPm	A g ppm	Cd ppm
82K 80 JJS 018	26	44	0.3	0.2	82K 80 JNS 008	23	26	0.3	0.2
019	14	22	0.2	0.2	009	15	16	0.4	0.2
020	20	24	0.5	0.2	010	35	40	0.3	0.2
021	19	22	0.2	0.2	011	34	37	0.2	0.2
022	32	78	1,1	2,0	012	27	34	0.2	0.2
023	4	- 70	0.2	0.2	013	35	43	0.2	0.2
024	19	32	0.2	0.2	014	34	53	0.3	0.2
025	12	28	0,2	0,2	015	21	29	0.5	0.2
026	18_	36	0.2	0.2	016	28	33	0.3	0.2
027	17	20	0.4	0.2	017	26	26	0.4	0.2
028	420	1630	2.1	11.	018	9	16	0,3	0.2
029	130	700	0.7	8.0	019	38	63	1.3	0.4
030	28	840	0.2	0.3	020	24	44	0.2	0.2
82K 80 JNC 001	24	46	0.3	0.2	021	19	39	0.4	0.2
002	34	56	0.2	0.2	022	26	32	0.9	. 0.2
003	18	32	0.4	0.3	023	24	22	0.2	0.2
004	69	81	0.3	1.7	024	28	27	0.2	0.2
005	260	200	0.8	1.8	025	38	27	0.2	0.2
006	36	240	0.2	1.0	026	60	36	0.3	0.2
007	24	23	0.2	0.2	027	35	50	0.4	0.4
008	18	24	0.2	0,2	028	37	47	0.8	0.7
009	14	28	0.2	0.2	029	12	290	0.2	9.0
010	42	50	0.3	0.4	030	39	31	0.2	0.2
011	20	37	0.2	0.2	031	37	32	0.2	0.2
012	18	34	0.3	0.2	032	24	35	0.2	0,2
013	16	31	0.3	0.4	033	29	42	0.2	0.2
014	25	146	0.3	1.9	034	17	24	0.3	0.2
015	18	27	0.2	0.2	035	20	36	0.2	0.2
82K 80 JNS 001	15	15_	0.7	0.2	036	174	_23_	0.2	0.2
002	25	26	0.5	0.2	037	22	39	0.2	0.2
003	23	14	0.2	0.2	038	26	22	0.2	0.2
004	22	20	0.3	0.2	039	33	32	0.4	0.2
005	18	22	0.3	0.2	040	14	22	0.4	0.2
006	21	22	0.2	0.2	041	15	29	0.3	0.2
007	25	11	0.3	0.2	042	48	44	0.5	0.2

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

SAMPLE NO.	Pb ppm	Zn ppm	A g m	Cđ ppm	SAMPLE NO.	Pb ppm	Zn ppma	A g p pm	Cd ppm
82K 80 JNS 043	28	86	0.2	0.2	82K 80 TSC 001	9	18	0.5	0.5
044	22	58	0.2	0.4	002	17	26	0.2	0.2
045	30	400	0.2	3.5	003	290	900	1.3	1.7
046	14	24	0.2	0.2	004	7	15	0.3	0.2
047	34	14	0.2	0.2	82K 80 TSS 001	14	46	0.2	0.2
048	103	24	0.4	0.2	002	43_	23	0.4	_0.2
049	16	20	0.2	0.2	003	53	18	0.6	0.2
050	15	20	0.2	0.2	004	21	18	0.2	0.2
051	22	18	0.2	0.2	005	35	25	0.2	0.2
052	24	23	0.2	0.2	006		21_	0.2	0.2
053	25	21	0.2	0.2	007	61	14	0.3	0,2
054	42	24	0.3	0.2	008	11	26	0.2	0.2
055	52	35	0.2	0.2	009	30	- 44	0.4	0.2
056	31	29	0.2	0.2	010	34	31	0.2	0.2
057	20	20	0.2	0.2	011	9	10	0.2	0.2
058	21	24	0.2	0.2	012		8_	0.4	0.2
059	47	47	0.2	0.2	013	34	29	0.2	0.2
060	24	164	0.2	0.5	014	35	. 30	0.3	0.2
061	34	52	0.2	0,4	015	68	58	0.2	0.2
062	29	46	0.4	0.4	016	24	30	0.2	0.2
063	16	25	0.2	0.2	017	22	18	0,2	0.2
064	330	340	0,8	0.9	018		20	0.2	0.2
065	22	29	0.2	0.2	019	149_	34_	1.7	0.2
066	19	17	0.2	0.2	020	19	17	0,2	0.2
067	26	13	0.2	0.2	021	23	23	0,2	0.2
068	87	107	0.6	0.5	022	23	18	0.5	0.2
	27	22	0.2	0.2	023	72	26	0,3	0,2
070	32	26	0,4	0.2	024	27	30	0.5	0.2
071	19	21	0.2	0.2	025	32	26	0.2	0.2
072	,	19	0,2	0.2	026		- 44	0.3	0.2
073	27	22	0.2	0.2	027	29	28	0.2	0.2
074	24	34	0.2	0.2	028	35	24	0.2	0.2
075	30	32	0.2	0.6	029	24	33	0.2	0.2
076	26	30	0.3	0.2	030	10	68	0.2	0.2
077	36	48	0.5	0.2	031	27	23	0.2	0.2
	1		l		_				

SAMPLE NO.	Pb ppm	Zn ppm	Ag ppm	Cd ppm	SAMPLE NO.	Pb ppm	Zn ppm	Ag ppm	Cd ppm
82K 80 TSS 032	41	41	0.7	0,4	82K 80 TSS 067	18	23	0.6	0.2
033	25	21	0.2	0.2	068	23	27_	0.7	0.2
034	26	23	0.2	0.2	069	16	30	1.3	0.2
035	16	20	0.2	0.2	070	32	38	0.3	0.2
036	17	22	0,2	0,2	071	32	30	0.3	0,2
037	20	34_	0.2	0.2	.072	_56	52	0.2	0.2
038	35	27	0.3	0.2	073	40	39	0.2	0.2
039	15	24	0,2	0,2	074	49	460	0,2	1,2
040	19	14	0.5	0.2					
041	18	14	0.5	0.2					
042	20	32	0.2	0.2					
043	69	200	0.5	1.7					
044	34	103	0,2	0.6					
045	28	18	0.3	0.2					
046	108	62	1,3	0,2					
047	19	22_	0.2	0.2					
048	33	40	0.5	0.2					
049	36	40	0.4	0.2					
050	37	28_	0.2	0.2					
051	26	34	0.2	0,2		1			
052	30	17	0.2	0,2					
053	20	18	0.2	0.2					<u></u>
054	23	34	0.2	0.2					
055	25	11	0.5	0.2					
056	15_	25	0.2	0.2					
057	29	26	0.3	0.2	cc Mr. J. Jan	sen			
058	13	9	0.2	0.2					
059	12	28	0.2	0.2					
060	22	18	0.5	0.2	•				
061	24	18	0.3	0.2					
062	25	50	0.3	0.2					
. 063	9	7	0.2	0.2					
064	29	28	0.3	0.2					
065	50	79	0.3	0.2					
066	17	19	0,6	0,2					
						1	i		I

130 PEMBERTON AVE., NORTH VANCOUVER, B.C.

PHONE: 985-0681

TELEX: 04-352667

Extraction	Report No. 20 - 885 PROJECT; EBI REDWOOD
Method	FromTrigg, Woollett Consulting Ltd.
Fraction Used	Date

tion Used										
SAMPLE NO.	AMPLE NO. Pb Zn Ag Cd ppm ppm ppm			SAMPLE NO.	Pb ppm	Zn ppm	Ag ppm	C. PP		
TSS - 075	22	59	0.3	0.2	TSS - 105	42	133	0.5	0.	
076	32	28	0.4	0.2	106	32	168	0.2	0.	
077	8	9	0.2	0.2	107	26	80	0,2	0.	
078	21	28	0.4	0,2	108	34	82	1.2	0.	
079	14	18	0.6	0.2	109	24	40	1.3	0.	
080			0.3	0.2	110	75	23	0.9	0.	
081			1.0	0.2	111	20	. 32	0.6	0.	
082	18	67	0.6	0.2	112	8	16	0.3	0.	
083	20	47	0.4	0.2	113	33	75	0.2	0.	
084	24	23	0.8	0.2	114	27	79	0.4	0.	
085	17	24	0.2	0.2	115	22	48	0.4	0.	
086	20	26	0.2	0.2	116	35	145	0.7	0.	
087	14	27	0.2	0.2	117	28	90	0.3	0.	
088	18	33	0.2	0.2	118	26	72	0.8	0.	
089	26	28	0.3	0.2	119	26	22	0.4	0.	
090	32	46	0.7	0.2	120	35	35	0.4	0.	
091	26	54	0.4	0.2	121	12	25	0.5	0.	
092	16	26	0.3	0.2	122	14	24	0.5	0,	
093	26	46	0.4	0.2	123	67	620	0.6	3.	
094	30	62	0.8	0.2	124	120	640	0.8	3,	
095	32	60	0.2	0.2	125	29	60	1.1	0.	
096	28	36	0.2	0.2	. 126	74	186	0.8	1.	
097	26	113	0.2	0.2	127	58	215	0,7	2.	
098	35	97	0.2	0,2	128	180	368	1.6	1.	
099	18	56	0.2	0.2	129	16	29	1.5	0.	
100	22	55	0.5	0.2	130	32	60	0.5	0.	
101	32	45	0.7	0.2	131	80	114	0.2	0.	
102	30	52	0.8	0.2	132	58	75	0.2	0.	
103	30	24	0.7	0.2	133	48	36	0.7	0.	
104	18	40	0.6	0.2	134	31	34	1.1	0.:	

SAMPLE NO.	Pb ppm	Zn ppm	ppm ppm	Ppm Ppm	SAMPLE NO.	Pb ppm	Zn ppm	ppe	PPm PPm
TSS - 135	32	29	0.8	0.2	TSS - 170	25	39	0.2	0.2
136	36	48	0,5	0,2	171	28	22	0.2	0.2
137	24	24	0.4	0.2	172	15	22	0.2	0.2
138	16	40	0.6	0.2	173	32	30	0.2	0.2
139	32	102	0.8	0.2	174	24	39	0.2	0.2
140	38	73	0.6	0.2	175	52	174	0.3	0.2
141	42	70	0.7	0.2	176	162	750	3.4	1.3
142	38	57	0.2	0.4	177	22	46	0.4	0.2
143	31	22	0.8	0.2	178	22	26	0.2	0.2
144	17	30	0.4	0.2	179	34	54	0,3	0.2
145	21	24	0.6	0.2	180	30	42	0.4	0.2
146	17	37	0.4	0.2	181	30	44	0.5	0.2
147	100	33	2.1	0.2	182	90	347	0.5	0.4
148	46	36	1.9	0.3	183	∵40	100	0.7	0.3
149	36	47	0.4	0.2	184	610	1730	2.6	10.
150	45	130	0,2	1,4	185	1700	1570	7.8	12.
151	27	46	0.8	0.2	186	13	290	0.6	8.4
152	20	16	0.7	0.2	187	68	92	0.2	0.2
153	19	64	0.2	0.2	188	23	46	0.4	0.2
154	62	72	1.0	0.3	189	43	31	0,7	0.2
155	32	69	0.2	0.2	190	31	45	0.2	0.2
156	12	66	0.2	0.4	191	215	295	5.4	1.4
157	20	68	0,2	0,3	192	53	72	0.2	0.2
158	55	64	0.2	0.2	193	23	20	0.2	0.2
159	164	355	0.7	1.0	194	26	18	0.2	0.2
160	210	335	0.8	0.6	195	26	24	0.2	0.2
161	162	285	0.4	0.5	196	38	59	0,2	0.2
162	58	229	0.6	0.4	197	22	18	0.2	0.2
163	12	18	0.2	0.2					
164	12	18	0.2	0.2					
165	20	21	0.2	0.2					
166	16	22	0.2	0.2	cc Mr.	J. Jan	sen		
167	16	18	0,2	0,2					
168	60	40	0.2	0.2					
169	28	32	0.2	0.2					

130 PEMBERTON AVE., NORTH VANCOUVER, B.C.

PHONE: 985-0681

TELEX: 04-352667

Extraction					Report No. 20 -	1122	PROJECT:	EBI	
Method					From Trigg	lting L	.td.		
Fraction Used					Date		July 1	1 10	80
SAMPLE NO.	Pb ppm	Žn ppm	A g	Cd ppm	SAMPLE NO.	Pb	Zn ppm	A g	Cd ppm
82 K80					82 K80 KRC 002	42	46	1.6	0.4
					003	26	50	0.2	0.4
					004	26	56	0.3	0.2

JJC 010	26	32	0.2	0.3
011	31	32	0.2	0.2
012	43	69	0.2	0.2
013	28	50	0.2	0.3
014	38	83	1.1	0.5
015	30	33	0.2	0.2
016	44	50	0.2	0.4
017	61	60	0.2	0.2
018	30	54	0.2	0.2
019	134	430	0.2	3.9
JJS 031	280	270	0.8	0.8
032	630	625	10.	2.0
033	26	12	0,3	0,2
034	7	1950	0.2	0.2
035	51	1200	0.2	0.2
036	17	25	0.2	0.2
KRC 001	22	42	0.2	0.5

Report No. 20 - 1123 Geochemical Lab Report Page No. 3

SAMPLE NO.	Pb ppm	Zn ppm	Ag ppm	Cd ppm	Hg ppb	Ba ppm	Z Ba*	REMARKS
------------	-----------	-----------	-----------	-----------	-----------	-----------	-------	---------

82 K80 JJC

021	83	41	1.0	0.4	80	190	_	
022	95	84	0.5	0.4	25	380		

Report No. 20 - 1333 Geochemical Lab Report Page No. 3

SAMPLE NO. Pb Zn Ag Cd Ppm Ppm Ppm REMARKS		m REMARKS	ь	НB	Cd ppm	A g p pm		Pb ppm	SAMPLE NO.
--	--	-----------	---	----	-----------	-------------	--	-----------	------------

82-K-80-IRS	1							
048	50	75	0.2	0.3	-			
049	20	49	0,2	0.4	-			
050	300	150	0.2	0.4				
051	300	157	0.2	0.4	-	_		,
052	33	63	0.2	0.2	-	-		
053	22	39	0.2	0.2	-			
054	54	187	0.2	0.8	-			
055	47	81	0.2	0.4		_		
	1		0.2	0.2				
056	18	37						
057	16	20	0.2	0.3	-			
058	10	15	0.2	0.5		-		
059	23	18	0.2	0.3	-	-		
060	12	23	0.2	0.3	-			
061	44	61	0.2	0.2	-	-		
062	66	43	0.2	0,2		-		
063	580	785	1.5	1.8	,-			
064	22_	61_	0.2	_0.2_		<u>.</u>		
065	41	106	0.6	0.5	-	-		
066	42	92	0.2	0.2	-	-		
067	16	63	0.2	0.6	-			
068	48	80	0.2	0.5	-			
069	46	80	0.2	0.5	-	-		
				0.6	_	-		
070	33	112 78	0.2	0.3	-	-		
								
072	345	274	1,7	1.3	-	•	· ·	
073	50	76_	0.2	0.3	-	-		
l .	i	i	1		1	l	L	

SAMPLE NO.	P P P P P P P P P P P P P P P P P P P	Zn ppm	A g p pm	Ppm Cd	Н _В ь	Ba ppm	REMARKS
82-K-80-IRS 074	20	41	0.2	0.4			
075	39	44	0.2	0.4	-		
076	22	25	0.2	0.3		-	
077	29	17	0.2	0.2			
078	44	38	0.2	0.4		-	
079	54	42	0.2	0.4	-	-	

I	SAMPLE NO.	Pb ppm	Zn ppm	A g ppm	ppm Cq	Hg ppb	Ba ppm	<u> </u>	REMARKS

82-K-80-TSS	1 1		١			1]
230	33	78_	0.2	0.5				
231	30	103	0.2	0.6	- ,			
232	26	56	0,2	0,6				
233	32	64	0.2	0.4				
234	24	35	0.2	0.3		<u> </u>		
235	31	43	0.2	0.2		-		
236	63	145	0.5	1.0		<u> </u>		
237	33	38	0.2	0.4				
238	16	28	0.2	0.6				
239	29	229	0.3	1.3		<u> </u>		
240	1600	1370	13.	8.7	<u>.</u>			·
241	23	306	0.6	3.4	-	-		
242	72	184	0.3	1.2				
243	126	119	1.4	1.6	<u> </u>			
244	145	53	1.2	0.6			ļ	
245	46	57	0.6	0.3	<u> </u>			
246	23	22	0.2	0.4				
247	22	24	0.2	0.4		-		
248	23	23	0.3	0,5				
2/0	58	45	0.5	0.3	_			

130 PEMBERTON AVE., NORTH VANCOUVER, B.C.

PHONE: 985-0681

TELEX: 04-352667

Extraction	Report No	20 - 1	1463	PROJECT:	E.B.I.	JANSE
Method	From	Trigg	Wool	lett Consu	lting Lt	d.
Fraction Used	Date			July	3119	80

SAMPLE NO. 82K-80 CRS		Pb ppm							
82K-80 CRS		bbu	Zn ppm	pp &	Çd ppm	Hg ppB	Ba ppm		REMARKS
	001	65	65	0.2	0.2	-	•		
	002	750	1510	2.1	3.0	_	-		
	003	820	1305	4.6	7.0	-	-		
	004	16	69	0.2	0.6	-	-		
	005	11	· 15	0.2	0.2	-	-		
	006	8	23	0.2	0.2	_	-		
	007	43	57	0.2	0.2	•	-		·
	008	160	227	0.4	0.6		_		
	009	90	257	0.2	0.4	-	_		
	010	38	126	0.3	0.2		-		
	011	41	115	0.4	0.2	-	-		
	012	27	55	0.2	0.2	_			
	013	85	113	0.4	0.4	-	•		
	014	57	86	0.3	0.2	-			
	015	22	36	0.2	0.2		-		
	016	36	61	0.2	0.2	-	•		
	017	70	106	1.4	0.8		•		
	018	66	111	0.3	0.2	-	_		
	019	1480	1395	3.6	4.6	_	-		
	020	420	420	2.6	4.0	_	_		
	021	118	306	1.0	0.4	_	-		
	022	280	1365	2.1	2.0	_	-		
	023	84	190	0.2	0.4	-	_		
	024	76	174	0.4	0.8		_	,	·
	037	10	1135	0.2	0.2	-	-		
-	267	15	85	0.2	0.2	,	-		
	268	9	18	0.2	0.2	-	_		
	269	97	68	0.3	0.7	-	-		
	270	20	28	0.2	0.2		_		
	271	18	28	0.2	0.2	_	-		
	-				i				

Geochemical Lab Report
Page No. 20 - 1463

SAMP	LE NO.	Pb ppm	Zn ppm	Ag ppm	Cd ppm	Hg ppb	Ba ppm		REMARKS
82K-80	TSS 272	66	207	0.6	0.5	-	-		
	273	16	183	0.4	1.2	-	-		
	274	26	36	0.2	0.2	-			
	275	20	74	0.2	0.2	-			
	276	22	67	0.2	0.2				
	277	26	42	0.2	0.3		-		
	278	35	49	0.3	0.2				
	279	35	29	0.2	0.2	: -			
	280	29	56	0.2	0.2				
	281	28	396	0.2	0.8	-			
	282	62	128	1.2	1.1				
	283	24	38	0.2	0.2				
	284	16	31	0.2	0.2		-		
	285	25	43	0.2	0.2	-	-		
	286	30	42	0.2	0.2	<u> </u>			
	287	26	52	0.2	0.2	-	-		
	288	20	59	1.1	0.2	<u> </u>	-		
	289	86	362	0.2	2.3	<u> </u>	-		
	290	82	187	0,2	1.6	<u> </u>	<u> </u>		
	291	84	180	0.2	1.9		-		
	292	26	55	0.2	0.2	<u> </u>	-		
	29:	340	972	1.7	8.0	<u> </u>	-		
	294	76	166	0.2	0.3	-	-		
	29	20	45	0.2	0.5	-	-		
	29	500	2600	0.3	3.3	<u> </u>	<u> </u>		
	29	23	140	0.2	0.4	<u> </u>	ļ <u>-</u>		
	29	3 49	191	0.2	0.4	<u> </u>	-	<u> </u>	
	29	45	104	0.2	0.8	ļ <u>.</u>	-	<u> </u>	
	30	12	40	0.2	0.2	<u> </u>	-		
	30	1 16	45	0.2	0.2	ļ <u>-</u>	<u> </u>	ļ	
	30	2 128	725	0.5	5.2	<u> </u>	<u> </u>		
	30	3 15	74	0.2	0.2	<u> </u>	<u> </u>	ļ	
	30	4 22	50	0.2	0.2	<u> </u>	<u> </u>		
	30	5 22	30	0.2	0.2	<u> </u>	 -		
	30	6 24	32	0,2	0,2	 •	-		
		1		1	l	l	1	<u>L</u>	

Report No. 20 - 1463 Geochemical Lab Report Page No. 3

SAM	PLE NO.	Pb ppm	ppm 2n	A g ppm	Cd ppm	Hg ppB	Ba ppm		REMARKS
82K-80	TSS 307	15	32	0,2	0.2	<u> </u>			
	308	68	266	0.4	1.4				
	309	25	43	0.2	0.2		-		
	310	20	258	0.2	0.4	•			
	311	18_	38	0.2	0.2		-		
	312	6	96	0.2	1.9	-	•		
	313	14	25	0.2	0.2	-	-		
	314	250	114	0,2	2.0		-		
	315	52	54	1.0	0.8	•	-		
	316	50	83	0.6	0.2		-		
	317	33	32	0.2	0.2	•	-		
	318	24	41	0.2	0.2		-		
	319	40	53	1.0	0.2	-	-		
	320	30	68	0.3	0.2		-		
						-			
	322 323	35 44	35 36	0.2	0.2		-		
	324	36	39	0.5	0.2				
	325	36	38	0,5	0,5	-	-		
	326	65	77	1.2	0.4			· · · · · · · ·	
	327	260	87	0.5	0.7	-	-		
	328	26	185	0.2	1.4	<u> </u>	-		· · · · · · · · · · · · · · · · · · ·
	329	30	38	0.2	0.2		-		
	330	20	27	0.2	0.2		-		
	331	400	134	1.4	0.8	-			1
	332	< 2	16	0,2	0.2				
	333	12	68	0.3	0.4	-	-		
	334	20	67	0.3	0.2	-	-		
	335	24	33	0.3	0.2				
	336	23	29	0.2	0.2			•	
	337	30	38	0.2	0.2	•	-		
	338	25	54,	0.3	0.2		-		
	339	21	85	0.4	0.2		-		
	340	34	63	0.7	0.4		-		
	341	44	55	0.3	0.2		•		
						-			
	342	60	76	0.4	0.8				

SAMP	LE NO.		Pb ppm	Žn ppm	PP €	Cd ppm	PPB PPB	Ba ppm		REMARKS
82K-80	TSS	343	24	27	0.2	0.2				
		344	36	68	0.4	0.2				
		345	35	59_	_0.4	0.2		- _		
		346	106	219	0.6	0.2				
		347	66	69	0.2	0.2				
		348	28	196	0.2	1.2	-			
		349	16	36	0.2	0.2				
		350	17	33	0.2	0.2				
		351	24	41	0.3	0.2				
		352	22	43	0.3	0.2	-			
		353	22	25	0.2	0.2	-	-		
		354	23	43	0.5	0.2				
		355	36	21	0.5	0.2				
		356	18	26	0.4	0.2		-		
		357	26	35	0.3	0.2	_	-		

130 PEMBERTON AVE., NORTH VANCOUVER, B.C.

PHONE: 985-0681

TELEX: 04-352667

Extraction					Report No. 20 - 1561 PROJECT: E.B.I. JANSE						
Method					From	Tris	gg, Woollett, Consulting Ltd.				
Fraction Used					Date		August 7 19 80				
SAMPLE NO.	Pb ppm	Zn ppm	A g ppm	Çd ppm	Hg pp8	Ba ppm	REMARKS				
82K-80-PFC											

00	7	55	257	0.2	0.6	-	-		İ	_	
	- ,						ı	ı	ı		_
. 01	.0	27	110	0.2	0.2		-				
01	1	25	149	0.2	0.2	-	-			 	
01	2	17	48	0.2	0.2	-	-				
01	3	42	90	0.2	0.2	_	-				
01	4	16	48	0.2	0.2	-	-				
01	5	17	48	0.2	0.2	-	-				
01	6	20	60	0.2	0.2	-	_				
01	7	21	55	0.2	0.2	-	-				
01		33	80	0.2	0.2	_	-				
01		17	47	0.2	0.2		_				
02		21	66	0.2	0.2	-	_				
02		19	50	0,2	0.2	_	-				
<u> </u>	-					1				 	

1	029	29	58	0.2	0.2	-	-	
Γ	030	32	53	0.2	0.2	-	-	
	031	68	90	0.4	0.3	-	-	

SAMPLE N	Ю.	Pb ppm	Zn ppa	PPE	Cd ppm	PPB	Ba ppo	 REMARKS
2K-80-PFC	032	29	55	0.2	0.2	-	-	
	033	29	56	0.2	0.2	-	-	
	034	27	39	0.4	0.2			
	035	27	53	0,2	0.2			
	036	27	50_	0.2	0.2	-	-	
	037	22	45	0.2	0.2	<u> </u>	-	
	038	28	53	0.2	0,2			
	039	15	62	0.2	0,2	<u>.</u>		
	040	30	73	0.2	0.2	-		
	041	29	58	0.2	0.2	-		
	042	25	53	0.2	0.2			
	043	26	64	0.2	0.2			
	044	25	55	0.2	0.2	-	_	
	045	20	44	0.2	0.2	-		
	046	25	56	0.2	0.2	<u> </u>		
	047	24	57	0.2	0.2		-	
	048	39	102	0.2	0.2		•	
	049	24	50	0.2	0.2	<u> </u>		
	050	24	38	0.2	0.2	<u> </u>	-	
	051	25	52	0.2	0.2	<u> </u>	-	
	052	26	52	0.2	0.2	<u> </u>	-	
	053	27	50	0.2	0.2	-		

Report No. 20 - 1561 Geochemical Lab Report Page No. 3

SAMPLE NO.	Pb ppm	Zn ppm	PP M	Cd ppm	T	PPB PPB	Ba ppm		REMARKS	
82K-80-										

		• — — — — —	•					
KRC	040	40	85	1.3	0.5		-	
	041	54	178	1,5	1.1	<u> </u>	.	
	042	29	186	0.2	0.2			
	043	39	149	0.2	0.2	-	-	
	044	15	295	0,7	1.9	-	-	
	045	3	397	0,2	0.4	_		
	046	8	252	0.3	1.5		-	
KRS	039	43	84	0.4	0.2	-	-	
	040	25	28	1.0	0.2	-	-	
	041	23	67	0,2	0.2	_	-	
	042	22	234	0.2	1.5	_	-	
	043	28	32	0.2	0.2	-	-	
	044	9	29	0.2	0.2	-		
	045	32	2100	0.2	0.8		-	
	046	25	695	0.2	0,2	-	•	
	047	30	42	0.2	0.2	-		
	048	21	84	0.2	0.2	-		
	049	15	63	0.2	0.2	-	-	
	050	50	78	0.2	0.2	-	-	
	051	29	90	0.2	0.2	-		
	052	28	640	0.2	0.2	-	-	
	053	26	665	0.2	0.2	_		
	054	26	59	0,2	0,2	l		
	055	19	<u>59</u> 47	0.2	0.2	-		
	056	22	47	0.2	0.2			
	057	32	50	0.2	0.2	-		
	03/	34	20_	U . Z	U.2	<u> </u>		
1						ı		1

SAMPLE NO.		Pb ppm	Žn ppm	pp M	Çd ppm	p Hg	Ba ppm	REMARKS
82K-80-KRS	058	24	39	0.2	0.2	-	-	
	059	21	105	0.2	0.2	-		

130 PEMBERTON AVE., NORTH VANCOUVER, B.C.

PHONE: 985-0681

TELEX: 04-352667

Geochemical Lab Report

Extraction	· · - · · · · · · · · · · · · · · ·				Report No	20 -1896	PROJECT: E.B.I. OLS	ON
Method					From	Trigg, Wo	ollett Consulting Ltd.	
Fraction Used					Date		August 29 19 80	
SAMPLE NO.	Pb ppm	Zn	A g ppm	Cd ppm	Ba ppm		REMARKS	
82K-80		•		•	•	·	•	

KRC

 						 1	1
092	24	94	0.2	0.2	-		
093	9	83	0.2	0.3	-		
094	28	1000	0.2	3.4	-		
095	26	1010	0.4	3.7	-		

KRS

Q67	17	25	0,2	0.2			
068	42	110	0.2	0.2	-		
069	12	32	0,2	0.2	•		
070	14	42	0.2	0.4	•	 	
071	20	35	0.2	0.2	<u>-</u>	 	
	<u> </u>		<u> </u>				

SAM	IPLE NO).	Pb ppm	Zn ppm	A g PPM	Çd ppm	Ba ppm		REMARKS
82K-80	KRS	072	10	28	0.2	0.2			
		073	18	27	0.2	0.2	-		
		074	21	18	0.2	0.3			
		075	22	51	0.2	0.2			
		076	22	35	0.3	0.2			
		077	24	19	0.3	0.2			
		078	18	23	0.2	0.2			
		079	18	25	0.3	0.2			
		080	26	30	0.2	0.2		 	
		081	38	50	0.3	0.2			
		082	32	33	0.7	0.2	-		
		083	28	45	0.2	0.2			
		084	26	18	2.0	0.2	-		
		085	40	47	0.2	0.2			
		086	32	20	0.2	0.3	_		
		087	32	30	0.2	0.2			

PFS 044	36	39	0.2	0.2	-		
045	36	96	0.2	0.2			
046	62	42	0.2	0.2	_		
047	34	33	0.2	0.2			
Q48	44	41	0.5	0.2	-		
049	45	31	0.2	0.2	_		
050	46	48	0.2	0.2			
051	50	59	0.2	0.2	-		
052	240	154	0.6	0.2			
053	1180	1850	2.8	6.0			
054	315	530	0.3	1.4			
055	23	42	0.2	0.4	•		
056	1250	377	0.8	0.2	_		

SAMI	PLE N	0.	Pb ppm	Zn ppm	Ag ppm	Cd ppm	Ba ppm	REMARKS
82K-80	PFS	057	103	101	0.2	0.2		
		058	110	183	0.2	0.2		
		059	180	197	0.9	0.3		
		060	28	51	0,2	0.2		
		061	26	54	0.2	0.2	-	
		062	45	47	0.2	0.2	-	
		063	98	325	0.3	0.2	-	
		064	56	85	0.2	0.6	-	
		065	70	146	0.4	0.4		
		066	150	146	0.2	0.3		
		067	260	530	0.4	2.4	•	
		068	71	98	0.2	0.2	-	
		069	74	243	0.2	0.2	-	

07	9 14	37	0.2	0.2				
08	13	29	0,2	0.2				
08		_30	0.2	0.2				
08		18	0,2	0.2	-			
08	3 10	30	0.2	0.2	_			
08		29	0.2	0,2	-			
08		32	0.8	0.2	-			
08	6 460	67	2.2	0.2				
		115	0,2	0.2	_			
08								
08	B	23	0.2	0.2	_ -	 	 	
08	9 17	54	0.3	0.2	<u> </u>			
09	0 47	17	0.2	0,2				
09	1 11	15	0.2	0.2	-			
								

SAM	PLE NO.	Pb ppm	Zn ppm	Ag ppm	Cd ppm	Ba ppm		REMARKS
82K-80	PFS 0	92 10	15	0.2	0.2	_		
	0	93 26	36	0.8	0.2	_		
	0:	94 39	129	0.3	0.2			
	0	95 14	15	0.4	0.2	-		
	0	96 36	22	0.2	0.2	-		
	0	97 30	20	0.2	0.2	-		
	0	98 44	36	0,6	0,2	_		
	0	99 27	14	0.2	0.4	-		
	10	00 26	34	0.4	0.2	_		
	10	36	39	0,4	0.2	-		
	10	02 24	33	0.2	0.2	-		
	10	03 14	45	0.2	0.2	-		
	10	04 26	39	0.2	0.2	_		
	10	05 30	34	0.2	0.2	-		
	10	06 36	32	0.2	0.2	-		
	10	07 30	44	0.3	0.2	-		
	10	08 34	28	0.4	0.2	_		
	10	09 12	19	0.4	0.2			
		10 12	29	0.2	0.2			
	11	11 17	12	0.2	0.2			
		12 21	16	0.4	0.2			
		13 6	740	0.2	0.9	-		
	11	14 11	22	0,2	0.2			
	11	15 16		1.0	0.2			

Report No. 20 - 1896 Geochemical Lab Report Page No. 5

SAMPLE NO.	Pb ppm	2n ppm	Ag ppm	Cd ppm	Ba ppm		REMARKS

82K-80 TSS

					1	1	ı	1	1	. • .
3	98	25	45	0.2	0.2			ļ		
3	99	22	41	0,2	0,2		ļ			
4	00_	20	80_	0.2	0.2					
4	01	22	79	0.2	0.2	-				
4	02	70	98	0,3	0,2					

SAMPLE NO.	Pb ppm	Zn ppm	A g PPM	Cd ppm	Ba ppm			REMARKS
82K-80 TSS 403	52	35	0.2	0.2				
404	17	88	0.2	0.2	-			
405	130	153	0.2	0.8	-			
406	26	89	0.2	0.2	-			
407	21	12	0.2	0.2	-			
408	14	28	0.2	0.2	-			
409	9	18	0.2	0.2	-			
410	28	44	0.2	0.2	-			
411	27	34	0.2	0.2	_			
412	23	72	0.4	0,2	•			
413	28	42	0,2	0,2				110
414	48	56	0.2	0.2	-			
415	28	21	0.2	0.2	-			
416	16	28	0.2	0.2				
417	29	80	0.2	0.2				
418	36	86	0.2	0.2	-			
419	18	29	0.2	0.2	_			
420	28	57	0.2	0.2			l	
421	38	29	0.3	0.2	-			
422	48	146	0.2	0.2				
423	19	40	0.2	0.2	_			
424	19	39	0.2	0.2	-			
425	24	46	0.2	0.2				
426	30	38	0.2			- 141.1		
427	38	64	0.2	0,2	-			
428	58	68	0.3	0.2				
429	110	59	0.2	0.2	_			
	l							
430 431	3200	27 2600	0.2 8.8	0,2 5.6				
432	22	28	0.2	0.2	_			
433	31		0.2			<u>-</u> -		,
434	23	15 17	0.2	0.2	-			
435	17	20	0.2	0.2				
436								
437	30	65 57	0.3	0.2			-	
			- • •					
	1	l l	1	1			I	l

Geochemical Lab Report
Page No. 20 - 1896
Page No. 7

SAMPLE NO.	P P P P P P P P P P P P P P P P P P P	Zn ppm	A g ppm	Cd ppm	Ba ppm	 	REMARKS
82K-80 TSS 438	27	240	0,2	0.2		 	
439	27	37	0.2	0.2	•	 	
440	54	63	2.0	0.2		 	
441	42	47	0.4	0,2		 	
442	8_	21	0.2	0.2		 	
443	40	47	0.2	0.2			
444	11	19	0.2	0.2	-		
445	40	71	0.2	0.2	•		
446	132	175	1.5	0.6	-		
447	32	18	0.2	0,2			
448	23	17	0.4	0.2	-		
449	27	21	0.4	0.2	-	 	
450	34	95	0.5	0.2	-	 	
451	29	27	0,2	0.2	-	 	
452	22	12	0.2	0.2	-	 	
453	18	27	0.2	0.2	-	 	
454	10	14	0.2	0.2	-	 	
455	97	203	0.2	0.2	_		
456	14	15	0.2	0.2	-		
457	220	42	9.0	0.2	-		
458	23	92	0.2	0,2	_	 	
459	63	49	0.2	0.2	-		
460	31	29	0.4	0.2	-	 -	
461	24	41	0.2	0.2		 	
462	40	45	0.2	0.2	-	 	
463	7	124	0.2	0.2	_		
464	11	33	0.2	0.2	-	 	
465 466	17 26	22 42	0,2	0.2	-	 	
	 					 	
467 468	18	23	0.2	0.2	-	 	
469	22	13	0.2		-	 	
				0.2		 	
470	19	28	0.2	0.2		 	
471	21	28	0.2	0.2	-	 	
472	69	227	0.4	0.2	<u> </u>	 	

SAM	PLE NO).	Pb ppm	Zn ppm	pp &	Çd PP m	Ba ppm	 	REMARKS
82K-80	TSS	473	20	47	0.2	0.2			
		474	36	43	0.2	0.2	-		
		475	16	30	0.2	0.2	-		
		476	65	190	0.2	0.4	-		
		477	14	24	0.2	0.2	-		
		478	17	31	0.2	0.2	-		
		479	24	32	0.2	0.2			
		480	60	40	0,2	0,2	-		
		481	43	33	0.2	0.2	-		
		482	17	39	0.2	0.2			
		483	12	21	0.2	0.2	-	 	
		484	6	19	0.2	0.2	-		
		485	15	50	0.2	0.2	•		
		486	38	48	0.2	0.2	-		
		487	16	18	0.2	0.2	-		
		488 489	23	39 20	0.2	0.2		 	
					0.2	0.2		 	
		490	12	20					
		491 492	14 33	19 42	0.2	0.2		 	
		493	11	25	0.2	0.2	-		
		494 495	5 8	17 48	0.2	0.2		 	
						0.2			
		496	10	44	0.2		-	 	
		497	23 16	33 29	0.3	0.2	-	 	
		499	13	52	0.2	0.2	-	 	
		500	10	17	0.2	0.2		 	
		501	7	19	0.2	0.2		 	
		502	10	19		0.2	-		
		503	19	63	0.2	0.2	-	 	
		504	13	44	0.2	0,2	-	 	
		505	12	40	0.2	0.2	-	 ļ	
		506	41	34	0.9	0.2	-	 	
		507	13	51	0.2	0.2		 ·	

SAMPLE NO.	Pb ppm	Zn ppm	pp M	PPm PPm	p Ba p pm			REMARKS
82K-80 TSS 508	6	17	0.3	0,2	•			
509	8	20	0.2	0.2	•			
510	10	28	0.2	0.2	-			
511	15	14	0.7	0.2	-			
512	8	28	0.2	0.2	-			
513	15	18	0.6	0,2	-			
514	9	12	0.6	0.2	•			
515	27	85	0.5	0.2				
516	21	172	0.9	0.2	-			
517	12	9	0.2	0.2	-			
518	22	38	0.2	0.2	-			
519	19	41	0.2	0.2	-			
520	10	13	0.8	0.2				
521	20	44	0.2	0.2			-	
522	16	25	0.2	0,2	<u>-</u>			
523	16	30	0.2	0,2				
524	15	28	1.0	0.2	-	ļ		
525	39	90	0.2	0.2	-			
526 527	63 46	35 30	1.5 0.4	0.2	-			
528	26	59	0.2	0.2	-			
529	63	59	0.3	0.2	.			
530	23	27	0.2	0.2				
531	36	340	0.2	0.2	•			
532	16	52	0.2	0.2	-			
533	18	46	0.2	0.2	-		ļ	
534	15	9	0.8	0.2	-			
535	29	70	0.2	0.2	-			
536	26	25	0.2	0,2			ļ	
537	40	140	0.2	0.2	-			
538	31	34	0.4	0.2	•			
539	33	57	0.2	0.2	-			
540	15	35	0.2	0.2	•			
541	60	115	0.2	0.2	-			
542	12	53	0.2	0.2	•			

SAMPLE NO.	Pb ppm	Zn ppm	A g ppm	Cd ppm	Ba ppm	Ī		REMARKS
	12	22	0.3					
82K-80 TSS 543 544	20	40	0.2	0.2	-			
545	63	29	0.3	0.2	-			***
546	29	28	0.4	0.2				
547	9	13	0.3	0.2			ļ	
548	30	29	0.4	0.2	-	ļ		
549	33	41	0.2	0.2	-			
550	20	88	0.2	0.2				
551	12	46	0.2	0.2	•			
552	27	81	0.2	0.2	-			
								•
cc Mr. J. Jansen								
								,
				·			* ~	
								-
		-			L			

82K80-JJC 033	270	550	2.4	2.3	- _	_		<u> </u>
034	34	65	0.2	0.2			_	
035	84	241	0.8	1.1	-	-	-	
82K80-JJS 040	10	1000	0.2	0.4	-	-	_	

Report No. 20 - 2067 Geochemical Lab Report Page No. 3

SAMPLE NO.	Pb ppm	Zn Ppm	A g ppm	Cd ppm	Не ррь	Ba ppm	REMARKS
		1					

1110	221	0.7	0.4	_	_			
					_			
					_			
				_	_			
49	27	0.2	0.2	-	•			
43	33	0.2	0.2					
				_	-			
46	55	0.2	0.2	-	-			
	43	49 36 37 28 23 24 49 27 43 33 25 30	49 36 0.2 37 28 0.2 23 24 0.2 49 27 0.2 43 33 0.2 25 30 0.2	49 36 0.2 0.2 37 28 0.2 0.2 23 24 0.2 0.2 49 27 0.2 0.2 43 33 0.2 0.2 25 30 0.2 0.2	49 36 0.2 0.2 - 37 28 0.2 0.2 - 23 24 0.2 0.2 - 49 27 0.2 0.2 - 43 33 0.2 0.2 - 25 30 0.2 0.2 -	49 36 0.2 0.2 - - 37 28 0.2 0.2 - - 23 24 0.2 0.2 - - 49 27 0.2 0.2 - - 43 33 0.2 0.2 - - 25 30 0.2 0.2 - -	49 36 0.2 0.2 - - 37 28 0.2 0.2 - - 23 24 0.2 0.2 - - 49 27 0.2 0.2 - - 43 33 0.2 0.2 - - 25 30 0.2 0.2 - -	49 36 0.2 0.2 - - 37 28 0.2 0.2 - - 23 24 0.2 0.2 - - 49 27 0.2 0.2 - - 43 33 0.2 0.2 - - 25 30 0.2 0.2 - -

Report No. 20 - 2067 Geochemical Lab Report Page No. 4

SAMPLE NO.	₿₿m	Zn ppm	A Ba	Ço Pp⊞	НВР	Ba ppm		REMARKS
82K80-PFS			 					
124	14	30	0.2	0.2				
125	87	242	0.2	1.0				
126	30	28	0.2	0.2	-	-		
127	55	39	0,5	0.2				
128	27	52	0.2	0.2				
129	23	24	0.2	0.2	•	•		
130	35	22	0.2	0.2	-			
131	27	31	0.2	0.2	-	-		
132	38	26	0.2	0.2		·		
133	20	17	0.2	0.2	_			
134	78	34	0,2	0,2				
135	22	97	0.2	0.2				
136	23	28	0.2	0.2	-	_		
137	128	17	0.2	0.2	-	-		
138	165	46	0.2	0.2	-	-		
139	34	22	0.2	0.2	_	_		

Geochemical Lab Report

FROM: Trigg, Woollert Consulting Ltd. REPORT NUMBER: 20 2776

ROJECT: E.B.I. JANSEN DATE: November 18, 1980

SAMPLE I	NUMBER\$	Pb ppm	2n ppm	ppd	PPm Cd					
82K8OJJS	- 041	16	30	0.2	0.2				1	
	042	24	84	0.2	0.2				1	
	043	72	154	0.2	0.2				İ	ı
	044	22	70	0.2	0.2			1	1	1
	045	40	109	0.2	0.2			1	ł	
	046	15	48	0.2	0.2	1	Ì			
	047	68	124	0.2	0.2	1	1	1	ļ	
	048	26	40	0.2	0.2	ŀ	i		İ	1
	049	15	43	0.2	0.2	1	1	į	1	1
	050	23	30	0.8	0.2		ļ	1	1	1
	051	24	51	0.2	0.2	1		}	1	1
	052	48	26	0.4	0.2		l		l	1
	053	44	88	0.3	0.2	1	1	I		ł
	054	8	18	0.2	0.2		}		ĺ	
	055	9	17	0.2	0.2			İ	ļ	
	056	22	19	0.4	0.2		1	1		
	057	20	15	0.3	0.2	Ì	i			
	058	23	30	0.2	0.2	į		1		ŀ
	059	70	47	0.3	0.2	1	Ì	ŀ		ļ
	060	60	31	0.2	0.2			i		
	061	20	60	0.2	0.2					
	062	22	52	0.2	0.2	Ì		i		
	063	27	34	0.2	0.2					
	064	16	26	0.2	0.2					
	065	24	23	0.2	0.2					
	066	13	29	0.2	0.2	Ì		l :		
	067	34	40	0.2	0.2		l			
	068	16	38	0.2	0.2			1		
	069	18	24	0.2	0.2	1		1		
	070	38	42	0.8	0.2					
	071	68	131	0.2	0.2					
	072	40	95	0.2	0.2			.		
	073	92	298	1.0	0.2					
	074	110	65	0.2	0.2					
	075	114	253	0.2	0.2				ļ	
	076	500	620	0.8	1.3				ļ	
mahara	077	65	171	0.2	0.2					
ZKBUNAS -	001	18	21	0.2	0.2					
	002	52	1g	0.4	0.2				j	
	003	56	25	0.2	0.2				İ	

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

Geochemical Lab Report

PAGE 2

SAMPLE NUMBERS	Pb ppm	Zn ppm	ppm	Cd ppm			
82K80NAS - 004 005 006 007	33 24 20 30	27 30 17 31	0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2			
008 009 010 011 012	142 25 16 16 45	77 20 53 61 33	0.2 0.2 0.2 0.2 0.2	1.1 0.2 0.2 0.2 0.2			
013 014 015 016 017	68 17 18	46 33 58 50	0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2			
018 019 020 021	16 30 28 26 38	61 41 45 31 78	0.2 0.2 0.2 0.4	0.2 0.2 0.2 0.2			
022 023 024 025 026	270 39 34 24 92	840 105 50 49 112	2.0 0.3 0.2 0.2 0.8	2.3 0.6 0.2 0.2 0.2			
cc - Mr. J.	Jangen						
	0 = 0.00						

APPENDIX V

REPORT ON THE INDUCED POLARIZATION, RESISTIVITY AND VLF-EM SURVEYS ON THE MIN 1, MIN 2, S MIN 1, REDLEDGE 1 AND REDLEDGE 2 CLAIMS (PROJECT EBI), GOLDEN MINING DISTRICT

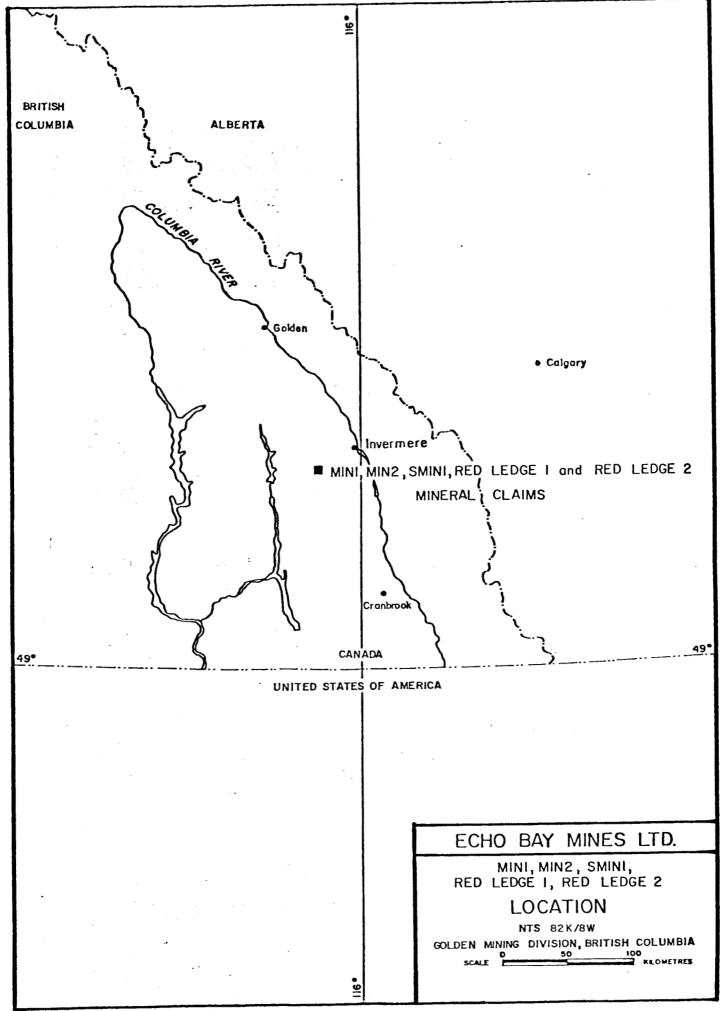
REPORT ON THE

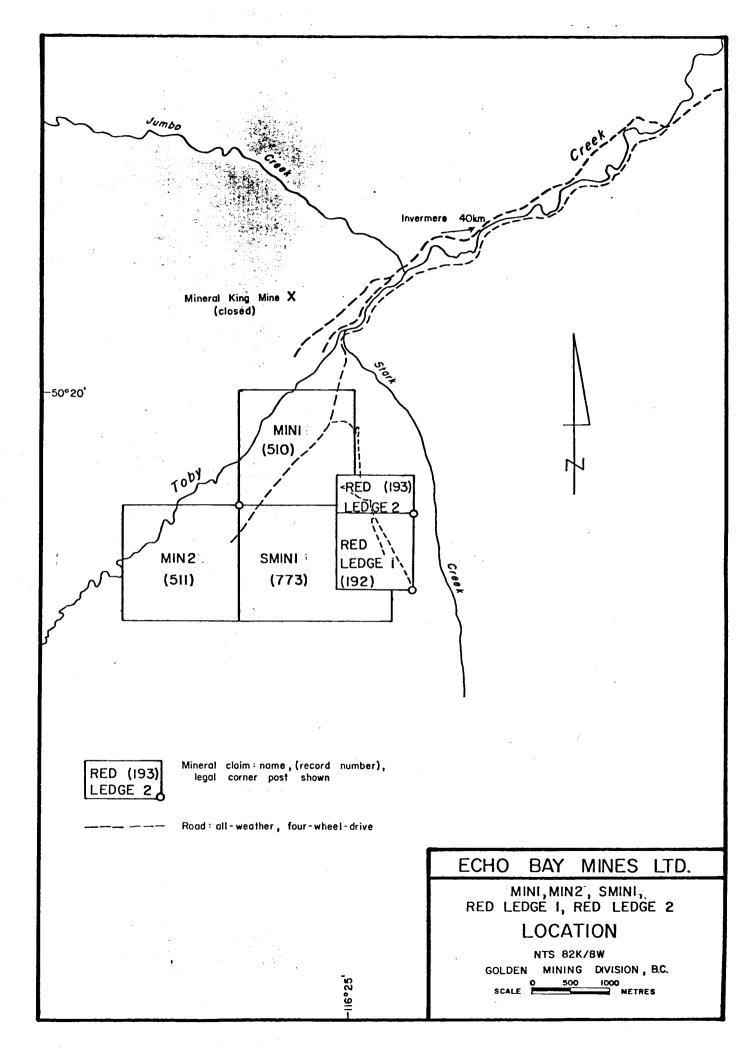
INDUCED POLARIZATION

RESISTIVITY AND VLF-EM SURVEYS

ON THE

MIN 1, MIN 2, S MIN 1, REDLEDGE 1
AND REDLEDGE 2 CLAIMS (PROJECT EBI)


GOLDEN MINING DISTRICT


FOR

TRIGG, WOOLLETT CONSULTING LTD.

TABLE OF CONTENTS

Part A:	Report	<u>Page</u>
	1. Introduction	1
	2. Presentation of Re	sults 3
	3. Discussion of Resu	lts 8
	4. Summary and Recomm	endations 14
	5. Assessment Details	17
	6. Statement of Cost	19
	7. Certificate - P.A.	Cartwright 20
	8. Certificate - F. D	eiSpirito 21
•		
Part B:	Illustrations	
	Plan Map (in pocket)	Dwg. No. I.P.P 4083
	IP Data Plots	Dwg. Nos. IP 5225-1 to 5225-7 IP 5226-1 to 5226-5 IP 5227-1 to 5227-7 IP 5228-1 to 5228-7
	VLF-EM Data Plots	Dwg. Nos. OEB1-EM 5231-1 to OEB1-EM 5231-4
		EM 5232-1 to EM 5232-4 OEB1-EM 5229-1 to OEB1-EM 5229-5 OEB1-EM 5230-1 to OEB1-EM 5230-2

1. INTRODUCTION

An Induced Polarization and Resistivity and a VLF-EM survey has been carried out on the Min 1, Min 2, S Min 1, Redledge 1 and Redledge 2 claims, Golden M.D., on behalf of Trigg, Woollett Consulting Ltd., property managers for Echo Bay Mines.

The property is located approximately 40 kilometers southwest of Invermere, B.C., at approximately 50°20' north latitude and 116°25' west longitude. Access is via road and/or helicopter from the town of Invermere, B.C.

IP and Resistivity Survey

Initial field work was done in August, 1980 by P.A. Cartwright. The remainder of the survey was done by F. DiSpirito in late October and early November. A dipole-dipole array with a basic inter-electrode separation of 50 meters was utilized on all the lines surveyed. In addition, a portion of one line (Line 31S, Min 2) was detailed using 25 meter dipole spacings.

Four dipole separations were recorded using a Phoenix Model IPT-1 IP and Resistivity transmitter equipped with a Phoenix TXD-2 transmitter driver, and Phoenix IPV-2 high sensitivity IP and Resistivity receiver. The IPV-2 receiver measures the amplitude in millivolts and phase angle in milliradians of the received signal relative to the transmitted signal, on two channels simultaneously. The measurements were taken at an operating frequency of 1.0 Hz.

However, on Line 32S and Line 34S of the Min 2 grid a Phoenix Model IPT-1 IP and Resistivity transmitter and a Phoenix IPV-1 receiver were used. The IPV-1 receiver, measures the voltage in volts and polarizability in percent frequency effect between two potential electrodes.

VLF-EM Survey

The initial VLF data were collected by Trigg, Woollett personnel. Several lines of VLF data were later collected by Phoenix Geophysics in late October and early November 1980.

The VLF measurements were taken at 25 meter stations using a Phoenix VLF-2 receiver. The VLF transmitting station utilized was Cutler, Maine on all lines. On some lines Seattle, Washington was also used.

The Min 1, S Min 1, and Min 2 claims were staked to cover stream geochemical anomalies. Redledge 1 and Redledge 2 claims are both associated with a gossan. The present geophysical surveys were planned in order to evaluate the presence and extent of metallic sulphide mineralization associated with the gossans and geochemical anomalies. In addition it was hoped that the VLF-EM would help to map geologic structure.

The rocks in the area include quartzite, dolomite and pyritiferous argillite. The ore at the nearby Mineral King Mine was found primarily within the dolomite section. Assuming the geology (or at least the lithology) in the surveyed areas is similar to the Mineral King deposit, anomalies associated with the dolomite would be primary targets.

2. PRESENTATION OF RESULTS

The Induced Polarization and Resistivity results are shown on the following data plots.

Min I Grid		
Line	Electrode Interval	Dwg. No.
26S	50 meters	IP 5225 - 1
27S	50 meters	IP 5225 - 2
28S	50 meters	IP 5225 - 3
29S	50 meters	IP 5225 - 4
30S	50 meters	IP 5225 - 5
318	50 meters	IP 5225 - 6
, 32S	50 meters	IP 5225 - 7
f		
Min 2 Grid		
31S	50 meters	IP 5226 - 1
31S	25 meters	IP 5226 - 2
32S	50 meters	IP 5226 - 3
338	50 meters	IP 5226 - 4
34S	50 meters	IP 5226 - 5

Redledge 1 Grid

Line	Electrode Interval	Dwg. No.
45S	50 meters	IP 5227 - 1
46S	50 meters	IP 5227 - 2
47S	50 meters	IP 5227 - 3
48S	50 meters	IP 5227 - 4
498	50 meters	IP 5227 - 5
50S	50 meters	IP 5227 - 6
518	50 meters	IP 5227 - 7
Redledge 2 Grid		
35S	50 meters	IP 5228 - 1
36S	50 meters	IP 5228 - 2
37S	50 meters	IP 5228 - 3
388	50 meters	IP 5228 - 4
398	50 meters	IP 5228 - 5
40S	50 meters	IP 5228 - 6
41S	50 meters	IP 5228 - 7

Also enclosed with this report is Dwg. I.P.P.-4083, a plan map of the Min 1 and 2 and Redledge 1 and 2 grids at a scale of 1:5000. The definite, probable and possible Induced Polarization anomalies are indicated by bars, in the manner shown on the legend, on this plan map as well as on the data plots. These bars represent the surface projection of the anomalous zones interpreted from the location of the transmitter

and receiver electrodes when the anomalous values were measured. The centres of anomalous resistivity zones not associated with anomalous polarizability have also been marked on Dwg. I.P.P. 4083 by triangles.

The grid information shown on Dwg. I.P.P.-4083 has bene supplied by the staff of Trigg, Woollett Consulting Ltd.

The VLF-EM results are shown on the following data plots. The VLF data from the Min 1 and Min 2 grids were not collected by employees of Phoenix Geophysics.

Redledge 1 Grid (transmitter at Cutler, Maine)

	Line	Dwg. No.
	45S	OEB1-EM 5231 - 1
	46S	OEB1-EM 5231 - 1
i	478	OEB1-EM 5231 - 2
	48S	OEB1-EM 5231 - 2
	498	OEB1-EM 5231 - 3
	508	OEB1-EM 5231 - 3
	51	OEB1-EM 5231 - 4

Redledge 2 Grid (transmitter at Cutler, Maine)

Line		Dwg	ŗ.	No.
35S	EM	5232	-	1
36S	EM	5232	_	2
378	EM	5232	-	2
388	EM	5232	-	3
39S	EM	5232	-	3
40S	EM	5232	-	4
41S	EM	5232	_	4

Min 1 Grid (transmitter at Cutler, Maine)

Line	Dwg. No.
248	OEB1-EM 5229 - 1
25S	OEB1-EM 5229 - 1
26S	OEB1-EM 5229 - 1
27S	OEB1-EM 5229 - 2
28S	OEB1-EM 5229 - 2
295	OEB1-EM 5229 - 2
30S	OEB1-EM 5229 - 3
31S	OEB1-EM 5229 - 3

Min 1 Grid (transmitter at Seattle, Washington)

<u>Line</u>	Dwg	g. No.	_	
26S	OEB1-EM	5229	-	4
27S	OEB1-EM	5229	-	4
28S	OEB1-EM	5229	_	4
30S	OEB1-EM	5229	-	5
31S	OEB1-EM	5229	_	5

Min 2 Grid (transmitter at Cutler, Maine)

<u>Line</u>	Dwg. No.
29S	OEB1-EM 5230 - 1
30S	OEB1-EM 5230 - 1
31S	OEB1-EM 5230 - 1
32S	OEB1-EM 5230 - 2
33S	OEB1-EM 5230 - 2

Min 2 Grid (transmitter at Seattle, Washington)

Line	Dwg	g. No.	
29S	OEB1-EM	5230 - 3	
30S	OEB1-EM	5230 - 3	
31S	OEB1-EM	5230 - 3	
33S	OEB1-EM	5230 - 4	

On the plan map Dwg. I.P.P. -4083 the definite, probable and possible VLF-EM anomalies are indicated by circles, in the manner shown on the legend, on this map as well as on the data plots.

3. DISCUSSION OF RESULTS

A number of anomalous zones are outlined by the IP and Resistivity data, and by the VLF EM data, from the four Project EBI grid areas. Three of the grids involved (Min 1, Redledge 1, Redledge 2) were surveyed from a common baseline, while the fourth grid (Min 2) is located roughly 2 kilometers further to the southwest.

The results from each grid area are discussed separately below.

Min 2 Grid

i) Zone Al

Very anomalous polarizability readings, and substantially lower than background apparent resistivity values mark the center of this IP trend. In addition, a weak VLF EM conductor is seen correlating with the highest magnitude IP response.

It is almost certain that the primary source of both the IP and the VLF anomalies is pyritiferous black argillites, which are most polarizable and most conductive along the western margin of the unit, where Dutch Creek Formation dolomite is noted. The northern end of Zone Al appears to cross over the assumed position of the contact between the argillites and more favourable Dutch Creek Formation dolomite.

However, the IP signature is quite uniform throughout the length of the zone, which suggests the interpreted location of the contact may not be correct. Additional geologic information would be required to fully assess the potential of Geophysical Zone Al.

Depth to the top of the source is indicated to be

less than 50 meters subsurface.

ii) Zone A2

This zone is outlined by the VLF EM results only, as IP coverage does not extend far enough west to effectively test the VLF conductor. Only very weakly anomalous readings are evident. No geological information is available in the area surrounding the zone.

iii) Zone B

As was the case of Zone Al, black argillites of the Dutch Creek Formation are the most probable cause of the very anomalous IP and Resistivity results interpreted to Form Zone B. Again, the western edge of the argillite unit is apparently the most polarizable and most conductive, with the northern end of the IP trend possibly extending across the contact into dolomite, although the contact position is mapped only approximately in the vicinity.

Detailed IP and resistivity measurements using 25 meter dipole lengths, were completed on Line 31S, in order to better evaluate the source of Zone B. These measurements indicate the presence of two separate, closely spaced zones of anomalous material, at a depth of less than 25 meters. The western limit of polarizable mineralization is approximately Station 41 + 00 W.

iv) Zone C

Line 31S was apparently the only IP and Resistivity line surveyed far enough to the east to encounter this zone. Argillites are probably the cause of this response.

Min 1 Grid

i) Zone D

This feature is encountered on the western ends of Line 26S through to Line 29S. Strongly anomalous IP and Resistivity signatures are noted coincident with the most anomalous VLF EM conductor recorded during the present survey program. Unfortunately, the zone is located within a region mapped as black argillite. Pyrite within the argillite is the most likely cause of the geophysical responses.

ii) Zone E

Dutch Creek Formation argillite is mapped as underlying this zone of anomalous IP, Resistivity and VLF EM responses. The region between Zone D and Zone E is apparently occupied by a much less polarizable, and more resistive rock type, such as dolomite, rather than black argillites.

iii) Zone R1, Zone R2

Both of these zones consist primarily of lower than background apparent resistivity values, without accompanying anomalous polarizability readings. In some instances, weak VLF EM anomalies appear to be associated with the zones.

The sources of Zone R1 and Zone R2 are indicated to be non-metallic, and could be water-filled shear zones, or

other area of weakness. Non-polarizable minerals such as sphalerite could also be present.

While this type of signature would normally receive very little, if any, priority for additional work, the presence of dolomite rock underlying the area of the zones does allow one to upgrade the priority of these zones somewhat.

iv) Zone H

This zone of anomalous IP effects and lower than normal apparent resistivity values is interpreted to strike across the eastern ends of all of the lines of the Min 1 grid, as well as being seen on all lines of the Redledge 2 grid, which is located immediately south of the former area.

Within the Min 1 grid area, the source of the zone appears to be Dutch Creek black argillites, with the most polarizable and the most conductive material being indicated close to the contact with argillaceous dolomite on the west.

Depth to the source does not exceed 50 meters subsurface, in the case of Line 30S, the only line extended far enough east to determine the depth to the source.

Redledge 2 Grid

i) Zone F

Quartzite is mapped as underlying this moderately anomalous IP and Resistivity trend, although the western margin of the zone is completly undefined at present, as is the position of the zone between Line 36S and Line 40S. The possibility exists that Zone F is the southern continuation of Zone E or

Zone R2, with the former being the more likely choice, because of its higher magnitude IP effects.

ii) Zone G

This short narrow zone is outlined on the Redledge 2 grid just to the east of Zone F. While its source is indicated to be of limited size, Zone G is located within the dolomite unit, which provides some encouragement. Detail IP and Resistivity surveying is required to further investigate the cause of this response.

iii) Zone H

As mentioned previously, Zone H is characterized by highly anomalous polarizability measurements and low apparent resistivity values. The center of the zone strikes across the contact from black argillite into an area mapped as dolomite, in the southern part of the Redledge 2 grid area. However, the anomaly signatures suggest that a less polarizable, more resistive rock such as dolomite may be overlying much more anomalous material, such as pyritiferous argillite. Detail surveying would confirm the signature.

Line 38S and Line 39S were extended to the east in order to test the area around a large gossan. In both cases, moderately anomalous effects are noted correlating with the gossan. In fact, this oxidized material is along strike from Zone I, which is considered below.

iv) Zone I

Very high magnitude polarizability measurements together with low apparent resistivity values, mark Zone I, on the southernmost line of Redledge 2 grid. The zone is

interpreted as striking southward to Redledge 1 grid. Black argillite appears to be the primary source of this geophysical trend in the vicinity of the Redledge 2 grid.

Redledge 1 Grid

i) Zone I

This is the only anomalous geophysical feature noted on this grid area, however, a very large, highly polarizable, and quite conductive source is apparently present. Moderately anomalous VLF EM responses correlate reasonably well with the IP zone on Line 47S and Line 48S.

Virtually all of the anomalous IP response is contained within a region marked as black argillite, which must be the main cause of the geophysical response.

A number of areas of gossan material occur within the extent of Zone I, with the largest being noted near the eastern ends of Line 50S and Line 51S. This area lies just east of the center of the most anomalous IP and resistivity readings. Weakly anomalous VLF EM indications are marked near the eastern ends of both lines as well.

4. SUMMARY AND RECOMMENDATIONS

A combined program of Induced Polarization and Resistivity, and VLF Electro-Magnetic surveying has been completed on four different grid areas on the EBl Project.

Generally, it can be said that the most anomalous geophysical responses are due to pyritiferous black argillite which underlies much of the Project area. Also, in the case of the VLF EM work, all of the available transmitting stations are located almost perpendicular to the geological strike of the region, which greatly reduces the effectiveness of the method.

However, on all of the grids, the possibility exists that some of the geophysical response arises from within the more favourable dolomite rock unit. In these cases, further work is definitely recommended as outlined below.

Min 2 Grid

The northern ends of both Zone Al and Zone B are noted striking into dolomite in the vicinity of Line 31S. Therefore, further work to investigate the sources of these geophysical zones should be initially concentrated on Line 31S, near the western edge of the marked IP response. No additional geophysical work is necessary at this time.

Zine C is only crossed by one survey line, in an area of argillite. Additional surveying is required before physical testing could be considered.

Min 1 Grid

Zone D and Zone E are most probably caused by pyrite contained in the argillite, and no further geophysical surveying work should be considered at this stage.

Zone Rl and Zone R2 are outlined in an area of favourable geology (dolomite); however, the lack of any polarization response downgrades the priority for further work. At this stage, it is felt that detailed IP surveying, using 25 meter dipoles, should be completed across both zones on Line 30S. This would allow the possible significance of the sources involved to be better assessed.

On the Min 1 grid area, Zone H appears to be confined to the black argillites, and no further geophysical work is recommended at this time.

Redledge 2 Grid

Zone F and Zone G are both of interest due to their location within quartzite and dolomite rocks respectively.

In the case of Zone F, additional IP surveying is required to define the western margin of the zone.

Detailed IP surveying is definitely recommended over the vicinity of Zone G, on Line 36S, in order to better locate the center and depth of the source of the anomaly.

The southern end of Zone H trends into an area mapped as dolomite. However, there is some suggestion in the IP and Resistivity results that the dolomite may be overlying more

polarizable, and more conductive argillite in this region.

Detailed 25 meter dipole IP surveying is suggested on Line 39S,

Line 40S, and Line 41S, as the best way to further investigate
this area.

Shorter dipole IP coverage would also be necessary on the eastern ends of Line 38S and Line 39S, in the area of a gossan, in order to more accurately define the possible area of interest.

Redledge 1 Grid

The most promising area on this grid area is in the region of the eastern ends of Line 50S and Line 51S, where moderately anomalous IP and Resistivity results are noted near a large gossan. Again, 25 meter detail IP surveying should be completed in the area of the gossan to better outline any mineralization associated with the oxide zone.

PHOENIX GEOPHYSICS LTD.

Paul A. Cartwright, B.Sc.

Sc., P.Eng.

Geophysicist

Geophysic Ps

Dated December 5, 1980

5. ASSESSMENT DETAILS

Property: Min 1, Min 2, S Min 1, Mining Division: Golden

Redledge 1 & Redledge

2 claims

Sponsor: Trigg, Woollett Con- Province: British Columbia

sulting Ltd.

Location: Toby Creek Area

Types of Surveys: Induced

Polarization and

Resistivity and VLF-EM

Operating Man Days: 40.0 Date Started: August 6, 1980

Equivalent 8 hr. man days: 60.0 Date Finished: November 3, 1980

Consulting Man Days: 7.0 Number of Stations:

VLF-EM - 254

Drafting Man Days: 10.0 IP and Resistivity - 340

Total Man Days: 77.0 Number of Readings:

VLF-EM - 508

IP and Resistivity - 1874

Km. of Line surveyed:

VLF-EM - 6.4 Km.

IP and Resistivity - 16.7 Km.

Consultants:

P.A. Cartwright, 4238 W. 11th Ave., Vancouver, B.C.

F. DiSpirito, 2748 Oxford St., Vancouver, B.C.

Field Technicians:

P.A. Cartwright, 4238 W. 11th Ave., Vancouver, B.C.

F. Dispirito, 2748 Oxford St., Vancouver, B.C.

G. Ouellette, 502 Taschereau Est., Rouyn, P.Q.

Plus Extra Labourer:

K. Johnston, General Delivery, Kimberly, B.C.

Draughtsman:

R.C. Norris, 1204 - 45 Sunrise Avenue, Toronto, Ontario

PHOENIX GEOPHYSICS LIMITED

Disprinish A.So., P.Eng.

Geophysicist

OLUMBIA

OCINEER,

6. STATEMENT OF COST

Trigg, Woollett Consulting Ltd.
Geophysical Survey, Min 1, S Min 1,
Min 2, Redledge 1 and Redledge 2 Claims
Golden M.D., British Columbia

Crew:

P.A. Cartwright - F. DiSpirito G. Ouellette - K. Johnston

Period:

August 6 - November 3, 1980

@	\$615.00/day	\$ 4,305.00
@	715.00/day	7,865.00
@	250.00/day	125.00
@	290.00/day	1,450.00
@	250.00/day	250.00
@	290.00/day	580.00
@	250.00/day	250.00
		99.35
	•	249.20
(incl	uding fuel	
and	mileage)	879.70
arges	;	158:33
nse c	harges	209.79
	Ü	
		\$16,421.37
	@ @ @ @ @ (incl and arges	 @ 715.00/day @ 250.00/day @ 290.00/day @ 250.00/day @ 290.00/day

PHOENIX GEOPHYSICS LIMITED

F Dispirito BA.Sc., P.Eng.

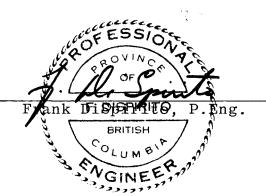
CERTIFICATE

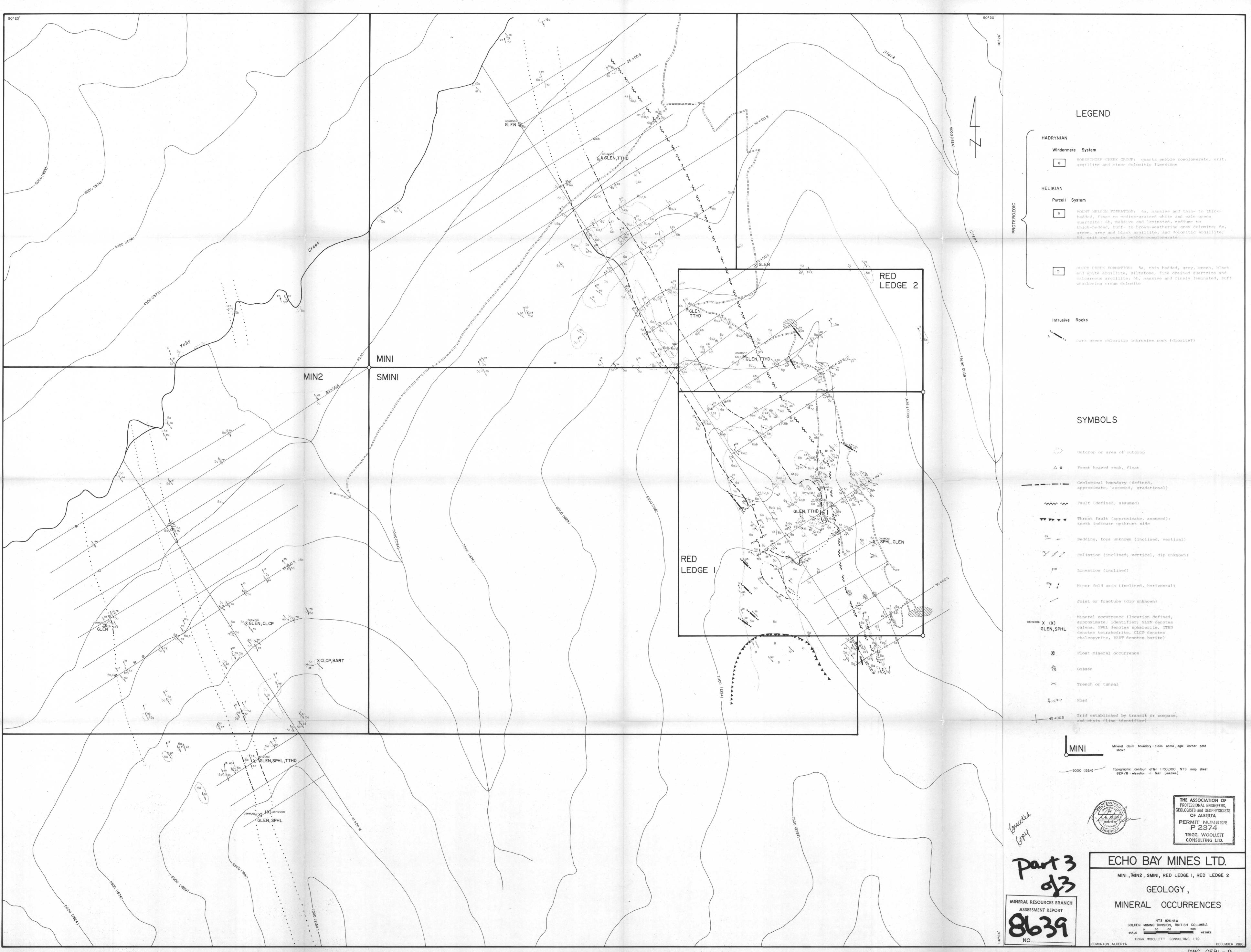
I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify that:

- 1. I am a geophysicist residing at 4238 West 11th Avenue, Vancouver. B.C.
- 2. I am a graduate of the University of British Columbia, B.C. with a B.Sc. Degree.
- 3. I am a member of the Society of Exploration Geophysicists.
- 4. I have been practising my profession about 10 years.
- I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly, in the property or securities of Trigg, Woollett Consulting Ltd. or any affiliate.
- 6. The statements made in this report are based on a study of published geological literature and unpublished private reports.
- 7. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

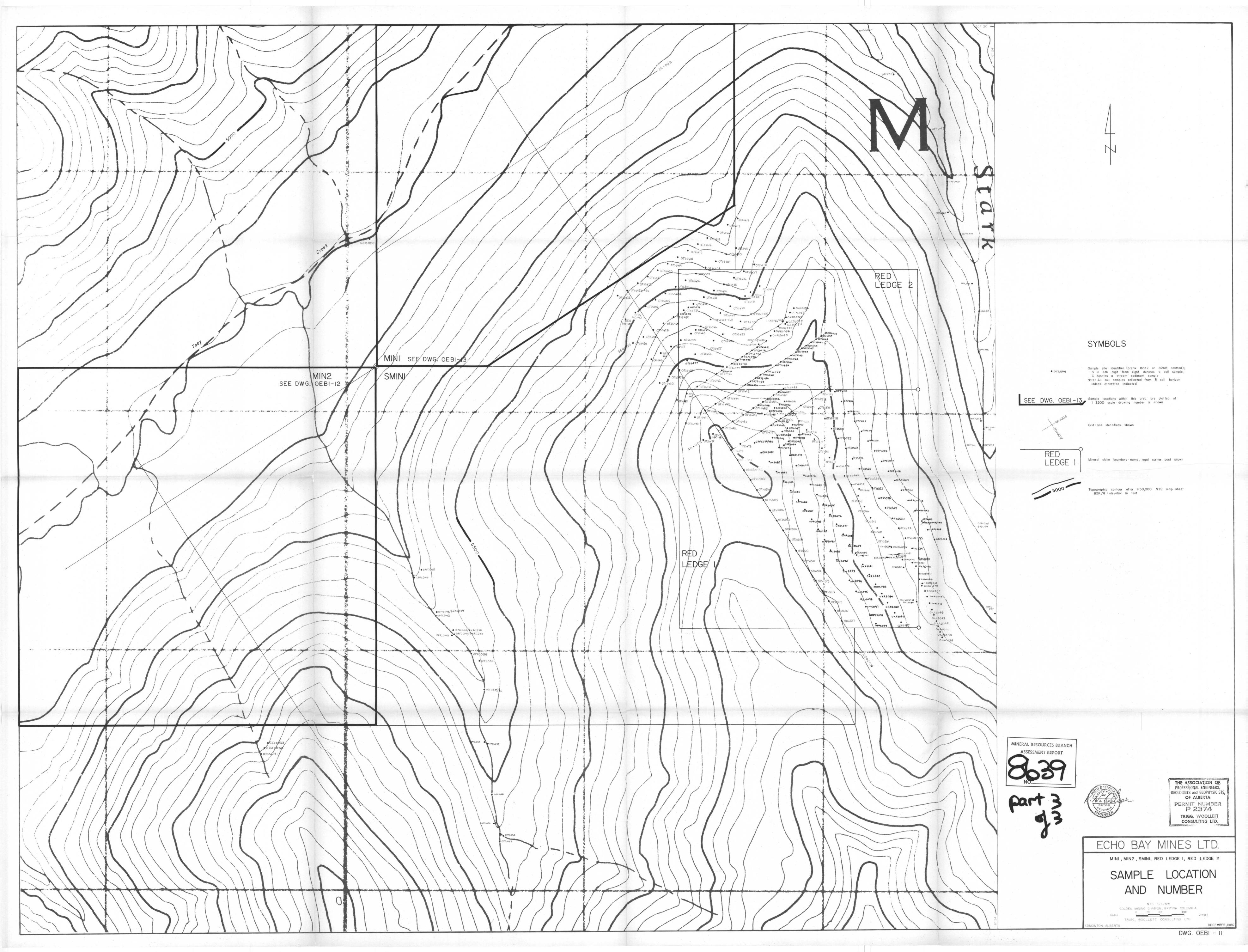
Dated at Vancouver

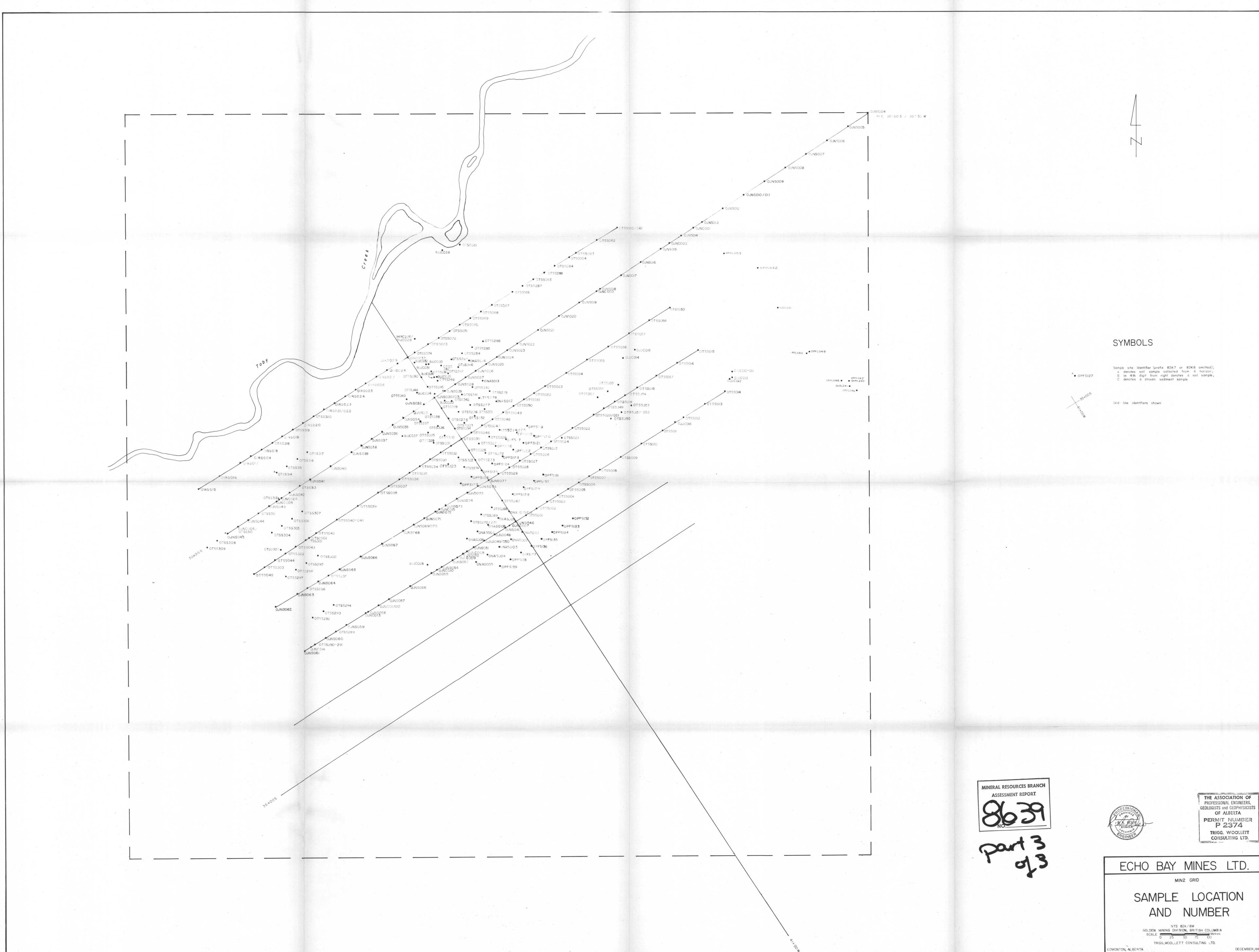
this 5th day of December 1980

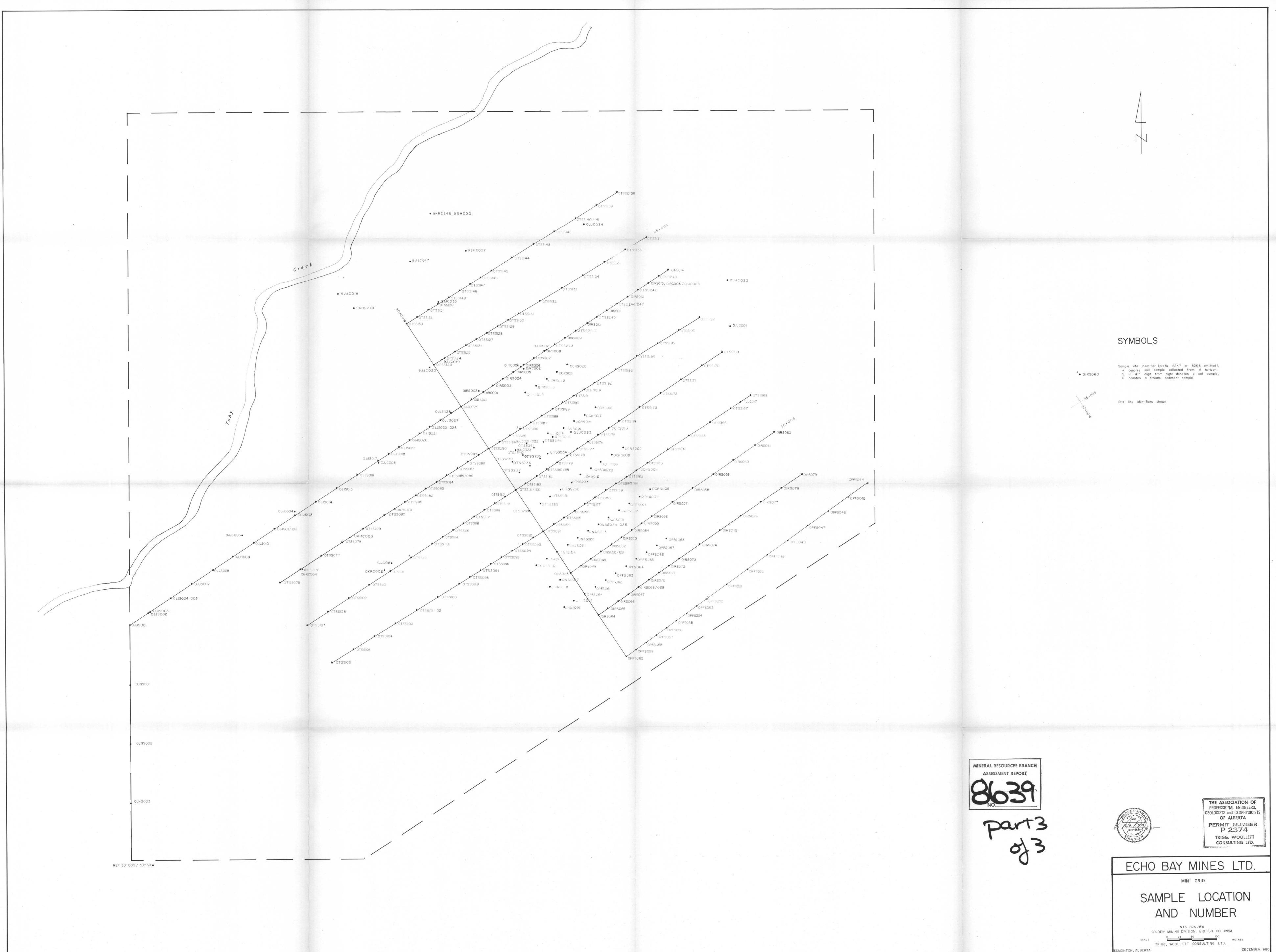

Paul A. Cartwright, B.Sc.


CERTIFICATE

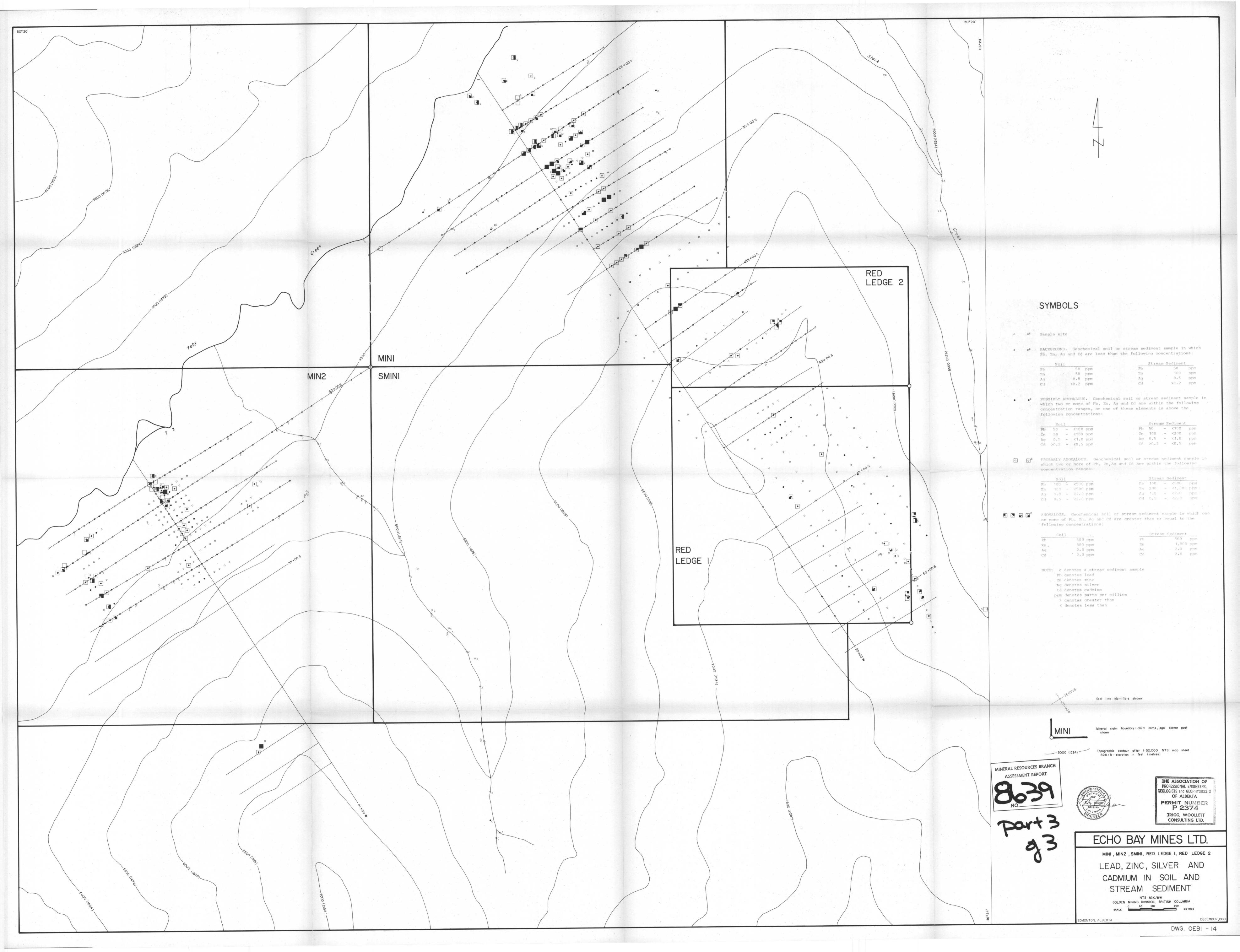
- I, Frank DiSpirito, of the City of Vancouver, Province of British Columbia, do hereby certify that:
- 1. I am a geophysicist residing at 2748 Oxford Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia, B.C. with a B.A.Sc. Degree in Geological Engineering.
- 3. I have been practising my profession about 6 years.
- I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly, in the property or securities of Trigg, Woollett Consulting Ltd. or any affiliate.
- 5. The statements made in this report are based on a study of published geological literature and unpublished private reports.
- 6. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

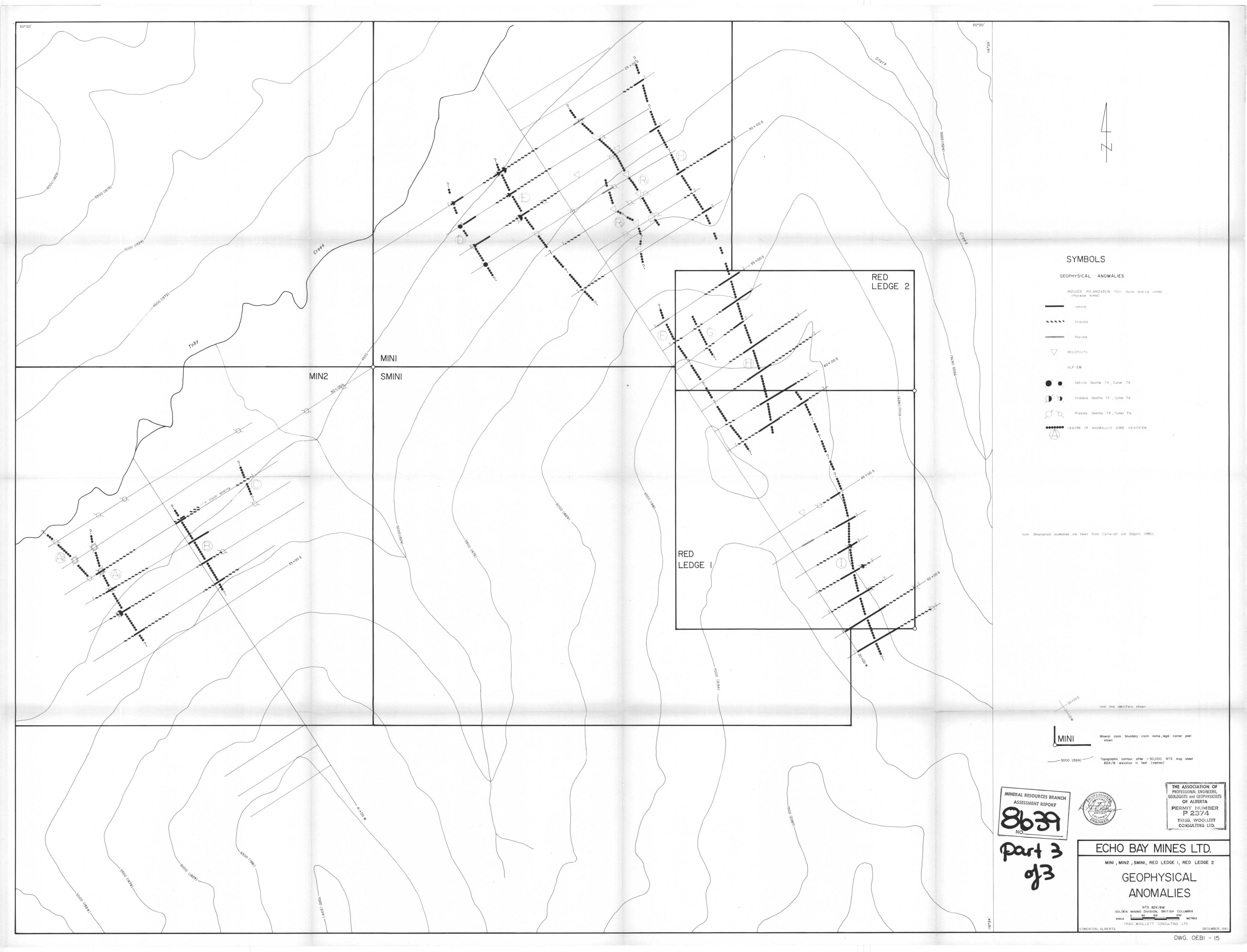

Dated at Vancouver

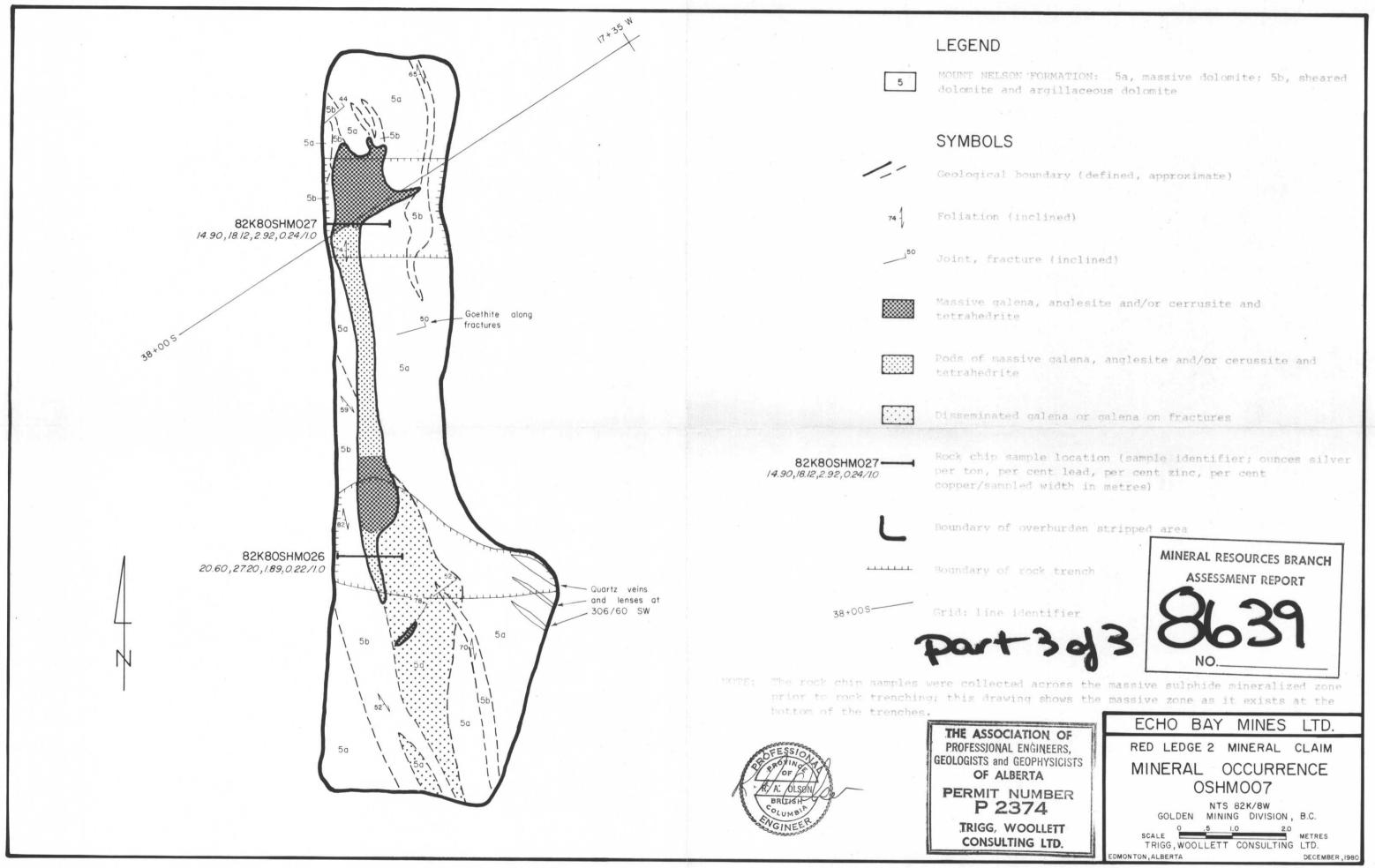

This 5th day of December 1980.

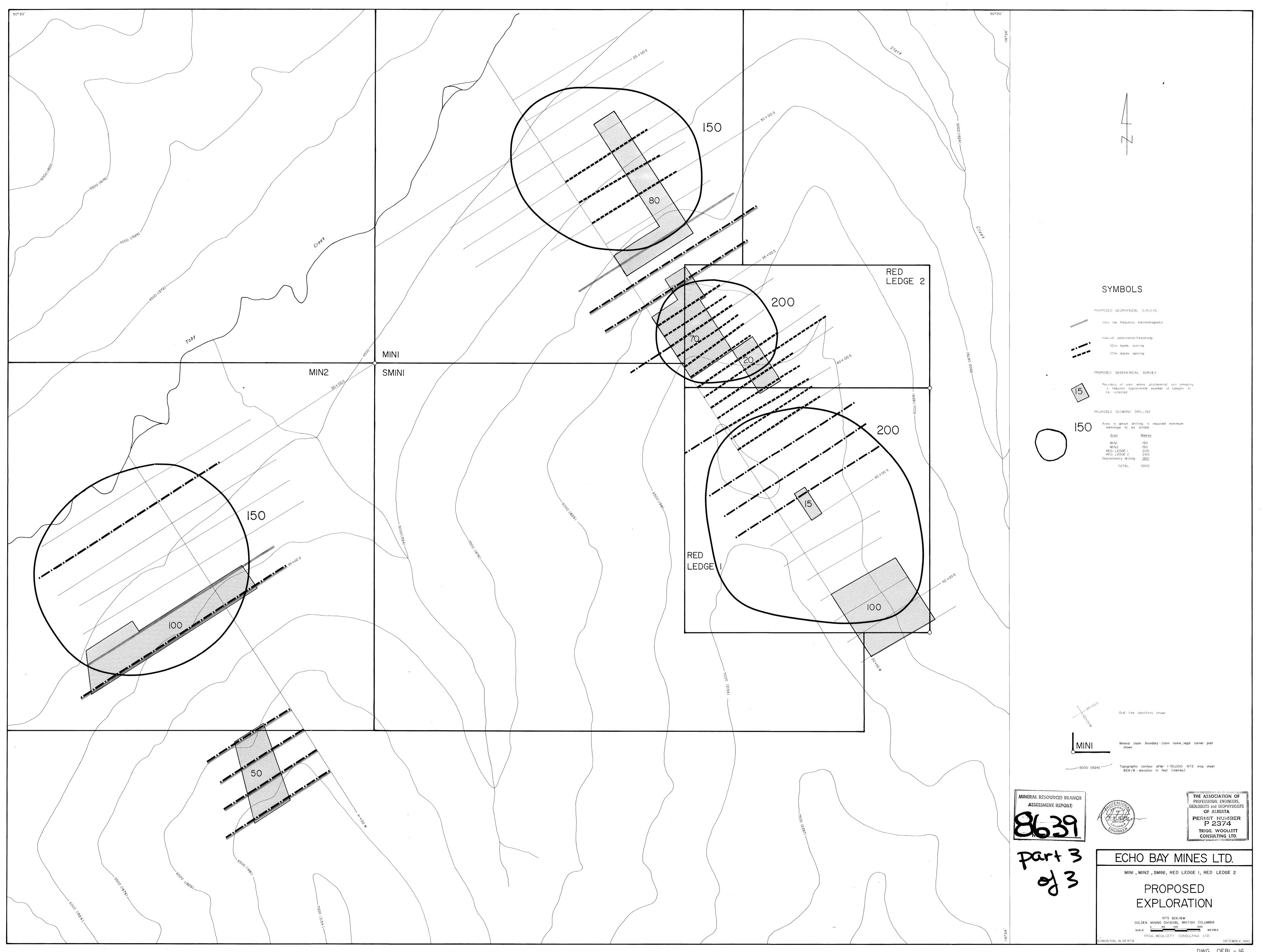


DWG. OEBI - 9






DWG. OEBI - 12



DWG, OEBI - 13

