LIARD MINING DIVISION NTS 104G/9W $57^{\circ} 41.3^{\prime}$ North; $130^{\circ} 29.5^{\prime}$ West

Owner of Claims: Placer Development Ltd.

Operator: Consolidated Silver Ridge Mines Ltd.

Consultant:
G.A. Noel \& Associates, Inc.

G.A. NOEL, P.Eng.

February 10, 1981

Page

INTRODUCTION 2
PROPERTY AND OWNERSHIP 2
HISTORY 4
1980 FIELDWORK 4
DISCUSSION OF DRILLING RESULTS 5
STATEMENT OF COSTS 14
STATEMENT OF QUALIFICATIONS 15
LIST OF MAPS
FIGURE 1 - Location Map 1
FIGURE 2 - Claim Map 3
FIGURE 3 - Location of 1980 Drilling 6
APPENDIX
Drill Logs

From June 11 to October 18, 1980, 18 N.Q. diamond drill holes totalling 2336 metres were drilled on the Red Dog property. This drilling was supervised by Roy D. Hogarth of Northair Mines Ltd. and G.A. Noel of G.A. Noel \& Associates, Inc. for Consolidated Silver Ridge Mines Ltd. The Red Dog property is located on an eastern spur of Mt. Edziza about four kilometres southwest of Nuttlude Lake and 35 km west-southwest of Iskut Village which is on the Stewart-Cassiar road. The property can be reached from Iskut or Dease Lake by float aircraft to the camp on the west side of Nuttlude Lake. A six kilometre 4-wheel drive road extends southwesterly from the camp to the drilling area.

PROPERTY AND OWNERSHIP

The property consists of two claims which are located in the Liard Mining Division, B.C. and are shown in Figure 2. The claims are more particularly described as follows:

Claim Name	Claim Map	Units	Record No.	Expiry Date
Red Dog	104G/9W	2	53	Sept.30, 1990
Red Dog	104G/9W	15	116	April 9, 1990

The Red Dog claims are held by Placer Development Ltd. for the Racicot Syndicate which consisted of Placer Development Ltd., El Paso Mining \& Milling Company and Arnold Racicot. The property was optioned in May 1978 to Consolidated Silver Ridge Mines Ltd., 1450 - 625 Howe Street, Vancouver, B.C. The adjoining Pink and Red claims and the Camp claim (see Figure 2) are also held by Consolidated Silver Ridge Mines Ltd.

HISTORY

The Spectrum claims were staked in 1969 by Sparton Explorations Ltd., to cover a prophyry-type copper discovery about four kilometres southwest of Nuttlude Lake. Geological mapping and geophysical and geochemical surveys were done in 1970 by Mitsui Mining and Smelting Company Ltd. The property was optioned by Imperial Oil Limited in 1971 and additional geological, geochemical and geophysical surveys were done in 1971-2. In 1973, Imperial Oil completed 450 metres of B.Q. drilling in four holes. The Red Dog claim was staked for the Racicot Syndicate in September 1975. In 1977, Consolidated Silver Ridge Mines Ltd. negotiated an option on the property and conducted geological mapping and a geochemical soil survey in 1978. In 1979, Silver Ridge undertook road building, bulldozer trenching and diamond drilling on the property. A total of 432 metres of B.Q. and 400 metres of N.Q. drilling in 10 holes were completed between July 8 and October 14, 1979.

1980 FIELDWORK

The 1980 fieldwork consisted essentially of diamond drilling and building drilling access roads although some backhoe trenching was done to assess the precious metal content of the talus area which had shown highly anomalous gold values in 1979. The fieldwork was supervised by R.D. Hogarth and G.A. Noel for Consolidated Silver Ridge Mines Ltd. Drilling mud was used continuously and core recovery and drilling progress were both considerably improved over the 1979 drilling. Holes were generally drilled to the east, though five holes, DDH-12, $13,14,15 \& 23$, were drilled to the west. The first
five holes DDH-11 through DDH-15 were drilled on the west side of the main dike, to follow up on several high grade intersections obtained in the 1979 drilling. Drill holes 16 through 28, except for $\mathrm{DDH}-22$ and 23 , were drilled on east-west sections which are spaced at about 30 metres, and all of these holes were drilled to the east. The following table summarizes the pertinent data for each of the 1980 drill holes.

Col lar

Hole No.	Coordinates		Length(m)	Bearing	Dip	$\begin{array}{r} \text { Elev. (m) } \\ \text { (approx.) } \\ \hline \end{array}$	\% Recovery
	North	East					
11	9776.3	9648.2	132.9	N $88{ }^{\circ} \mathrm{E}$	-50°	1600	-
12	9780	9712	129.5	W	-50°	1585	-
13	9750	9708	160.0	$582{ }^{\circ} \mathrm{E}$	-50	1610	-
14	9744.2	9768.4	175.9	W	-55	1595	-
15	9821.5	9708	66.4	W	-50	1590	34.6
16	9556	9761	161.8	$585{ }^{\circ} \mathrm{E}$	$-69^{\circ} 30^{\prime}$	1675	80.9
17	9554	9795.7	135.9	E	-60	1665	89.2
18	9526.5	9769.7	206.3	E	$-77^{\circ} 30^{\prime}$	1672	86.1
19	9581.6	9766.3	171.2	E	-85 ${ }^{\circ}$	1668	86.1
20	9706.5	9834.2	151.5	E	-65 ${ }^{\circ}$	1585	98.3
21	9734.8	9829.6	203.3	E	-60 ${ }^{\circ}$	1590	98.6
22	9984	9957	145.0	N65 ${ }^{\circ} \mathrm{E}$	-55 ${ }^{\circ}$	1475	90.4
23	9631	9765	115.8	$565^{\circ} \mathrm{W}$	-55	1645	84.5
24	9500	9786	106.4	E	-63 ${ }^{\circ}$	1645	88.3
25	9500	9786	106.1	E	-80 ${ }^{\circ}$	1645	95.0
26	9613	9808	106.7	E	-63 ${ }^{\circ}$	1640	98.4
27	9613	9808	106.4	E	-80 ${ }^{\circ}$	1640	96.6
28	9645	9840	81.1	E	-58°	1610	93.0

DISCUSSIÕN OF RESULTS

DDH-11

This hole was drilled to intersect the vein-type mineralization intersected in 1979 holes 4, 8 and 10. The hole intersected Edziza volcanic talus to 28.6 metres and deeply weathered volcanic (Upper Triassic) overburden to 39.6 metres where it had to be abandoned. Unfortunately the projected vein intersection was at $35-40$ metres. The hole was largely in dacitic volcanics but cut a few dike-like bands of quartz monzonite,

with the widest section at 101.5-110.6 metres. The hole showed negligible gold values.

DDH-12

This hole was collared 64 metres east of hole 11 and drilled to the west to intersect the vein which was missed in hole 11. Talus and overburden were encountered to 37.1 metres with dacite and rhyodacite tuff and breccia cut by several narrow quartz monzonite dikes thereafter. A strong vein of brecciated dacite with 30% quartz-carbonate matrix and well mineralized with sphalerite, galena, arsenopyrite and pyrite as stringers and disseminations was intersected from 94.4 to 96.75 metres. This section assayed $0.07 \mathrm{oz} /$ ton gold. The best intersection in this hole occurred from 64.3-65.2 metres in a small quartz monzonite dike. This section assayed $.242 \mathrm{oz} /$ ton gold and 0.617 oz/ton silver over the 0.9 metre length.

DDH-13

This hole was located about 65 metres $565^{\circ} \mathrm{E}$ of hole 11 and drilled easterly ($582^{\circ} \mathrm{E}$) to cut across the main quartz monzonite dike and to intersect several high grade veins seen in a surface trench in the quartz monzonite east of the drill site. The hole encountered talus boulders and overburden to 34.7 metres, dacite to 47.2 metres, quartz monzonite to 136.6 metres and dacite to the end of the holes at 160 metres. No significant veins were encountered in either volcanics or intrusive. However, the hole showed persistent low grade gold values in the intrusive from 59-108.7 metres (49.7 metres) which averaged $0.024 \mathrm{oz} /$ ton gold.

DDH-14

This hole was collared 62 metres east of hole 13 and drilled to the west to intersect the vein cut by holes 8 and 12. The hole was in overburden to 24.3 metres and dacite to 175.9 metres,
the end of the hole. It intersected a number of fault zones and narrow dikes of quartz monzonite. There were no vein intersections and only very low gold values were encountered.

DDH-15
This hole was collared at 42 metres $N 05^{\circ} \mathrm{W}$ of hole 12 and drilled to the west to intersect the vein cut in hole 12 . The hole was in talus overburden to 48.5 metres and had to be abandoned at 66.4 metres due to jammed rods. The hole cut heavily weathered dacite and andesite as well as a quartz monzonite dike. This hole showed neglibible gold values,

DDH-16

Hole 16 was collared 43 metres west of 1973 drill hole S-4 and was drilled $585^{\circ} \mathrm{E}$ at $-69^{\circ} 30^{\prime}$ to develop an east-west section. This hole encountered overburden to 9.1 metres, quartz monzonite to 60.5 metres and rhyodacite tuff and tuff-breccia to the end of the hole at 107 metres. The section from 45.5 to 87.5 metres averaged $.035 \mathrm{oz} /$ ton gold over 42 metres. The best assay in this section was $0.254 \mathrm{oz} /$ ton gold over 1.0 metre from 82.2 to 83.2 metres.

DDH-17

Hole 17 was collared 10 metres west of hole S-4 and drilled to the east at -60° to develop the section. The hole encountered overburden to 9.1 metres, andesite and dacite tuff and tuffbreccia with thin dikes of quartz monzonite to 56.4 metres and rhyodacite tuff and tuff-breccia to the end of the hole at 135.9 metres. The section from 9.1 to 50.5 metres averaged $.037 \mathrm{oz} /$ ton gold over 41.4 metres. The best assays were as follows: 47.5-
49.0 metres 0.468 oz/ton gold and $64.0-65.5$ metres $0.344 \mathrm{oz} /$ ton gold.

DDH-18

Hole 18 was collared 35 metres west of hole 79-2 and drilled east at $-77^{\circ} 30^{\prime}$ to develop this east-west section. The hole encountered overburden to 6.1 metres, andesite and dacite flows and tuffs to 23.5 metres, quartz monzonite to 63.0 metres and rhyodacite tuff and tuff-breccia to end of the hole at 206.3 metres. The section of the hole from 27 to 102 metres averaged $.053 \mathrm{oz} /$ ton gold over 75 metres. The best assays were as follows: 29.0-31.0 metres $0.177 \mathrm{oz} /$ ton gold and $54.7-57.0$ metres 0.658 oz/ton gold.

DDH-19

Hole 19 was collared 37 metres west of hole 79.1 and drilled to the east at -85° to develop the third east-west section. The hole encountered overburden to 11.9 metres, quartz monzonite to 99.7 metres and rhyodacite and dacite tuff and tuff-breccia to the end of the hole at 171.2 metres. The section from 33.5 to 117.0 metres averaged $0.037 \mathrm{oz} /$ ton gold over 83.5 metres. The best assays from this hole were as follows: 33.5-35.0 metres $0.164 \mathrm{oz} /$ ton gold, $54.0-55.5$ metres $0.229 \mathrm{oz} /$ ton gold, $101.4-$ 102.4 metres $0.344 \mathrm{oz} /$ ton gold and $102.4-103.4$ metres 0.197 oz/ton gold.

DDH-20
Hole 20 was collared 67 metres $N 25^{\circ} \mathrm{W}$ of hole 6 and was drilled due east at -65° to develop a fourth east-west section. This hole encountered overburden to 6.1 metres, quartz monzonite to 32.3 metres, andesite and dacite to 51.8 metres and dacite
and rhyodacite tuff and tuff-breccia to the end of the hole at 151.5 metres. The section from 6.1 to 25.0 metres averaged $.039 \mathrm{oz} / \mathrm{ton}$ gold for 18.9 metres. The best assays in this hole were as follows: 10 to 12 metres $0.112 \mathrm{oz} / \mathrm{ton}$ gold, $14.0-15.5$ metres $0.104 \mathrm{oz} /$ ton gold and 146.8 to 147.2 metres $0.149 \mathrm{oz} /$ ton gold.

DDH-21
This hole was collared 28 metres $N 08^{\circ} \mathrm{W}$ of hole 20 and was drilled due east at -60° to develop a fifth east-west section. The hole encountered overburden to 3.3 metres, quartz monzonite to 53.5 metres, dacite and rhyodacite to 90.9 metres and rhyodacite tuff and tuff-breccia to 203.3 metres, the end of the hole. The section from 7.5 to 50.0 averaged $0.034 \mathrm{oz} /$ ton gold over 42.5 metres. The best assays in this hole were as follows: 42 to 43.5 metres $0.202 \mathrm{oz} /$ ton gold and 97.5 to 98.0 metres $1.582 \mathrm{oz} /$ ton gold.

DDH-22

This hole was collared 281 metres $N 28^{\circ} E$ of hole 21 and drilled $N 65^{\circ} \mathrm{E}$ at -55° to intersect at least three gold-bearing veins exposed along the drill access road below the old drill camp. The hole was in rhyodacite tuff-breccia throughout and intersected five vein zones, three of which showed gold assays. The vein intersections and their assays are shown in the following table:

G. A. NOEL \& ASSOCIATES INC.
 consulting geologists

| $\frac{\text { Core Intercept }}{(\mathrm{m})}$ | $\frac{\text { Length }}{(\mathrm{m})}$ | Au oz/ton |
| :---: | :---: | :---: | | Description |
| :--- |
| $41.3-43.3$ |

Outside of the veins the core showed negligible gold values.

DDH-23
Hole 23 was collared 37 metres $552^{\circ} E$ of hole $79-7$ and was drilled $565^{\circ} \mathrm{W}$ at -55° dip to check the section of volcanics west of the main dike and capped by Edziza volcanics. This area is topographically above the main gold soil anomaly. The hole encountered overburden to 7 metres and andesite, dacite and rhyodacite tuffs and breccias to the end of the hole at 115.8 metres. Several narrow quartz monzonite dikes and a number of fault zones were also intersected. The hole showed very low gold values throughout with the highest individual assay being $0.047 \mathrm{oz} /$ ton gold from $63.4-65$ metres.

DDH-24

This hole was collared 32 metres $532^{\circ} \mathrm{E}$ of hole 18 and was drilled due east at -63° dip to develop another east-west section south of the section through holes 18 and 79-2. The hole encountered overburden to 6.1 metres, dacite tuff-breccia to 16.8 metres, quartz monzonite to 43.6 metres and rhyodacite
tuff-breccia to 106.4 metres, the end of the hole. The entire hole showed only very low gold values throughout with the section from 45 to 72.5 metres averaging 0.022 oz/ton gold over 27.5. metres.

DDH-25

Hole 25 was drilled from the same collar as hole 24 but at -80° to the east to complete this east-west section. It encountered overburden to 6.1 metres, quartz monzonite to 78.3 metres and rhyodacite tuff-breccia to 106.1 metres, the end of the hole. This hole also showed very low gold values with the section from 62 to 88 metres averaging $.017 \mathrm{oz} /$ ton gold over 26 metres.

DDH-26
Hole 26 was collared 34 metres $N 08^{\circ} E$ of hole $79-1$ and was drilled due east at -63° dip to develop an east-west section between holes $79-1$ and $79-6$. This hole encountered overburden to 6.1 metres, quartz monzonite to 39.7 metres and dacite tuffbreccia to 106.7 metres, the end of the hole. The section from 6.1 to 38 metres averaged $0.049 \mathrm{oz} /$ ton gold over 31.9 metres. The best assays in this hole were as follows: 8 to 10 metres 0.206 oz/ton gold and 104 to 106.7 metres $0.177 \mathrm{oz} /$ ton gold.

DDH-27
Hole 27 was drilled from the same collar as hole 26 at -80° to the east to complete this section. It encountered overburden to 4.6 metres, quartz monzonite to 39.9 metres and dacite and rhyodacite tuff-breccia to 106.4 metres, the end of the hole. The section from 4.6 to 50 metres averaged $0.023 \mathrm{oz} /$ ton gold over 45.4 metres. The best assays in the hole were as follows: 24 to 26 metres $0.106 \mathrm{oz} /$ ton gold and 90 to 92.5 metres 0.134 oz/ton gold.

DDH-28

Hole 28 was collared 25 metres west of hole $79-6$ and was drilled due east at -58° dip to complete the east-west section through hole 79-6. The hole encountered overburden to 6.4 metres and dacite tuff-breccia to 81.1 metres, the end of the hole. Several narrow quartz monzonite dikes were intersected in the upper part of the hole. The section from 6.4 to 49 metres averaged $0.042 \mathrm{oz} / \mathrm{ton}$ gold over 42.6 metres. The best assays in the hole was as follows: 9-11.1 metres $0.118 \mathrm{oz} /$ ton gold, 32 to 33 metres $0.463 \mathrm{oz} /$ ton gold, 41 to 43.7 metres $0.129 \mathrm{oz} /$ ton gold and 45.2 to 46.9 metres $0.118 \mathrm{oz} /$ ton gold.

STATEMENT OF COSTS

Period: June 11 - Oct. 18, 1980 (129 days)
Personnel: Geologist: 60 days Rate: \$120/day
Consultant: $\quad 20$ days Rate: $\$ 250 /$ day
Assistant: 80 days Rate: \$50/day
Drillers: 4 men - 113 days
Wages and salaries:
Geologist $60 \times \$ 120 \quad \$ 7,200.00$
Consultant $20 \times \$ 250 \quad 5,000.00$
Assistant $80 \times \$ 50$
4,000.00
\$ 16,200.00
Food and accomodation @ $\$ 30 /$ day $/$ man
Drillers: $4 \times 113 \times \$ 30 \quad \$ 13,560.00$
Geological: $160 \times \$ 30 \quad 4,800.00 \quad 18,300.00$
Travel \& expenses 2,000.00
Assays:

Freight:
Food, fuel \& equipment
(Truck from Terrace; aircraft \& helicopter from Iskut)
$13,720.00$
Bulldozer:
Access roads, site preparation
\& drill moves: 320 hrs . @ \$50/hr. 16,000.00
Drilling:
2336 metres @ \$105/metre $\quad \underline{245,280.00}$
TOTAL $\$ 320,000.00$

Respectfully submitted,

Vancouver, B.C.
February 19, 1981
g. A. noel a associates inc.
consulting geologists

STATEMENT OF QUALIFICATIONS

Roy D. Hogarth - project geologist, Northair Mines Ltd.

- graduate of Haileybury School of Mines, 1967
- geologist - United Keno Hill Mines Ltd., 1967-1972
- geological technician - Similkameen Mines, 1972-1974
- mine geologist, Northair Mines Ltd., 1974
- project " " " " 1975-present

Gerald A. Noel - consulting geologist

- graduate of University of B.C. (B.A.Sc.) - 1950
- graduate of University of Toronto (M.A.Sc.) - 1951
- member of Prof. Engineers of B.C. - Reg.\#4283
- worked in mining exploration continuously since 1951
- consulting geologist with G.A. Noel \& Associates Inc., 1976 to present

A P P E N D I X

Drill Logs

 KEO Nos TRepecty Hole No. /I page no. 2.1

\qquad

Dusk guens congrauge whatp. "intact at so to AJg C . rom gange jone at $939 n 180^{\circ} \mathrm{l}$ Afe.
gauge elipat $100.0 \mathrm{~m} 70^{\circ}$ to Arfe.
Contains 12% adiangers of $Q \cdot e$ and $3 \pi y$ ponion
dues $F S_{2}$ chos $\mathrm{FC} \mathrm{S}_{2}$
101.5-110.6 Cuanty Milougorne

Shayp contact at 45° to DJVe. Contains 2.3% funely dess FeS Sturciure es cut by ture of-e etangers

$\because 1$

7.6r-94.4 Daute.
 and $3 \%_{0}$ diss and etirigers $\mathrm{Fe} \mathrm{S}_{2}$. Menordies sul- -iounded black cuistab
881. \quad sing ganne (tault) ys-b lle

944-96.75 Neesu Jonc.
Reveated Raute werth 30% Q2e. Cery uxel
 FCASS $₹ \%$) FoS. (7%)
96.71-109.0 Wacute

Thel-guen with vasdouniéy everved pil Sthengus Whice
3% ochss fo S_{2} 3% chess Fofe

126.0-175.9 Daute Sark green, highly fractured, nunordess Epidote 137.7 locm gauge (faylt)
$140 . F 10 \mathrm{~cm}$ gange \&ractured Waute (fault) 169.0170 .0 fault.

$$
175.9 \text { EO H }
$$

Mthes Apparentdep truedip

$$
\begin{array}{ll}
141^{-} & 620 \\
175.9 & 590^{\circ}
\end{array}
$$

Proil Tami Clara LoGe
Hole No. Page No. 1 , of

Crmeseator -
Date Started
Coordinates: \qquad
9744.2 $9768.4=$

Collar elev. \qquad Bearing \qquad
Date Finished \qquad
Ref. to Claim Corner
Inclination - -55° Total Depth \qquad Logged by \qquad

\qquad

Loggod by Comer G. Nuel

Hole No. \qquad Page No. -I... of _L_

Coordinates: \qquad 9821.5 $\mathrm{N} \quad 9708$

Collar elev. \qquad 1590 m . Bearing \qquad
66.4 metres.

Total Depth \qquad metres. \qquad Logged by \qquad G. Noe!

Inclination - 50°
contractor \qquad Songucar chowder tue

Date Started \qquad July 22,980
Date Finished \qquad July 22, 1980

Ref. to Claim Corner \qquad
\qquad
Inclination
CORE
SLUDGE

Coniractor \qquad
Dore Started Tuly 2e 1780
Dore Finishod Avgust 3, 1980
Ref. to Claim Corner
Logged by
\qquad

COMMENTS:

9.1-25.8: Quartz MAOnzunite: fine grained, pinkish grey; varible hardness; strongly learhed and altered in ploces; disscminated pyrita - estinate 2% s.l'picles; feer Thin quartiz anch calcite seams $\Theta 20^{\circ}$! 40° to core. 10.7-11.6: 3-5mm gurte 5mes 20.
11.6-14.0: thin calcite - quartm seams $440^{\circ}, 60^{\circ} 880^{\circ}$; trale end chlorite along frectures. \& $45^{\circ} \leqslant 50^{\circ}$.
14.u-17.1: light fraeturing $\& 30^{\circ}, 22^{\circ}, 70^{\circ}$; gt2 veinlets (2-10mon)也 45°, 80°; parallel to cure.i sparge dissem.py. 15.3-15.4: Fav1t e 30°.
16.7-11.8: Fault parallel tw cure
18.1: Fav/t 25°
19.8-20.1: Faw $1+$ @ 30°
 Dissem. Py. - estimate $1-2 \%$ sulphite
20.1-22.2: Struagh lenched; fractures $@ 30^{\circ}, 40^{\circ}, 60^{\circ} \pm 70^{\circ}$

Fnulting: $\circlearrowleft 21.4 \mathrm{~m} .-3 \mathrm{~cm}$. $940^{\circ} ; 21.6 \mathrm{~m} @ 60^{\circ}(1 \mathrm{~cm}$.

$$
\text { Gouge); 21.8-22.0 @ } 20^{\circ} \text { Est. } 2 \% \text { g.elptides } 25
$$

dijsem. PY.
22.2-25.8: Strong4 leached; fractures © su" parallal to core; nismerues q tz 3 ms, to 10 mm . $\mathbb{a} 30^{\circ}, 60^{\circ}$ and pavallel to core: Est. 1-2\% su/philes-clissam.juy; 22.7: Fault $(1 \mathrm{~cm})$ © 50° little maynetite.

37.1 \& $37.3: 1-3 \mathrm{~mm}$. guvge © 60° aud parallel ticore.
38.1: 2 cm . guoge $\odot 30^{\circ}$

$$
38.4: 3 \mathrm{~cm} .<10^{\circ}
$$

38.7: $1-3 \mathrm{~mm}, 400^{\circ}$ and paratlel to core.
39.2: 3 mm " 20°
42.6-42.8: 3 mm guuge $a 20^{\circ}, 40^{\circ} \leqslant 60^{\circ}$.
38.6: $1.5 \mathrm{~cm} . \mathrm{CaCO}_{3}$ w. pyrite ${ }^{\text {at }}$.

 47.6: 1 mm . Jhearing <a 30°
48.5-48.6: 34earad 世 50.
54.6-53.4:\{ hearih leached z' a ltered; light foreterring se 40, 50" 60°; Est. 1-2\% sulphiles as disserr. pyoite wilh a little <py. 50.9: 1 mm guuge $\leftrightarrow 30^{\circ} \leqslant 60^{\circ}$
51.6: $5 \mathrm{~mm} . \quad$ " 40°.
52.1: shearing $<50^{\circ}$.
53.6-56.1: light fracturing $20,30^{\circ}, 40^{\circ} \leqslant 60^{\circ}$; cstrante 1% sulptides with pyrite clisseminated f in few seams; few sperks cpy.
53.6: 5 mm - gunge 450°.
54.8-55.6: 54 arired $<10^{\circ}, 30^{\circ}: 40^{\circ}$
56.0: 54earing 30°
56.1-60.5: henivily fremetured of sheired (a) $40^{\prime \prime}$ proullel th cure; iron uxide; /wr conturet $<40^{\circ}$. w.th 1.5 m . of gtz manzonite strungly leachext \& sheared io 40°.
\qquad
\qquad
 hard; wpier contact sherred for 10 cm cai 30°;
61.7-65.2: lightly fractured $30^{\circ}, 40^{\circ}, 60^{\circ} \div 80^{\circ} ; 2-10 \mathrm{~mm} 5 \mathrm{~ms}$. at 2 , calcite and calcite bx $G 30^{\circ}, 50^{\circ}$? parallel to cure. Est. 2-3\% sulphides as finely dissem. py. with sparse cpy; sume colue boralmg in tofts eo sci-60." 65.2-68.3: Toclerataly fractured e $40^{\circ}, 70^{\circ}$: 10° theore; estiminte 2-3\% sw/ph. with dissem. pyrite ma.ily.
66.5: $13 \mathrm{~cm} . \mathrm{CaCO}_{3}$ with PY. © 80°. to cure.
$66.7: 10 \mathrm{~cm} . \quad$. ${ }^{\circ}$, 70°
67.7: 10 cm . Shenring parallel to care.
68.3-74.41 lightly fractured e $30^{\circ}, 40^{\circ}, 50^{\circ}$ \& 70° 年umerous thin calcite and quartr sms (13) $30^{\circ}-50^{\circ}$; pyoite dissam. and in thin sms; sume arsenopyrite and faw sperks apy; estimate 3% s."1, h.
68.6: $2 \mathrm{~cm} . \mathrm{CaCO}_{3}$ w. Py. \& 50°
69.3: $3 \mathrm{~cm} n+$ py a 10°
74.1: $2 \mathrm{~cm} n \quad n$ \& 60°
13.7: thin binds Py . farsenopy: 40° to core.
74.4.-78. lightly fractured. © $30^{\circ}, 50^{\circ} \dot{i} 80^{\circ}$; numenss thín culcite
iftr sms < $30^{\circ}-50^{\circ}$; pyrite dissom z in Kin seoms;
litfle arsemapy. -estionate 3% su/phides.

$$
\begin{aligned}
& \text { AVE. CORE } \\
& \text { REC'Y/HOLE, }
\end{aligned}
$$

16.1: 2 cm . shearinge 50°.

78-81.7: moderately fractured @ 30. 40° \& 80°; thin calcite b gtz smse $30^{\circ} 50^{\circ} \geqslant 70^{\circ}$; pyrite disseminated it in thin scams w. little orsenopyrite; Estimate 2-3\% sulphides.
79.0: sherring for 20 cm . @ $30^{\circ} \neq 60^{\circ}$.
81.7-99.1: Rhyolite tyfi with minurtyff-brecesingarey trun creime
 $1-5 \mathrm{~mm} . g t_{2}$ inkite 5 ms (心) $30^{\circ}, 40^{\circ} 50^{\circ}$ porallel to cure; pyrite in thin bands \ddagger disseminativins (80% of s.ophides) Little arsemopyrite F chakopurite; Estimate 3% swhphines. sp. Hy epidote olteration.
82.5-82.9: Visible guld (under hand lens) with sirsempyrite.
83.8: siliceions banding $Q 30^{\circ}$.
86.9-99.7: well fruetured $10^{\circ}, 30^{\circ}, 60^{\circ} \geqslant 70^{\circ}-$ Fe O_{x} alony fract.; épidute in small patehes a bands ilong "healed' fructures. Pyrite in thin soms i dissem. iwith arsemopy.; Est 2-3\%swiph. 89.3-89.8: colur Sandriry $30^{\circ}-40^{\circ}$ 90.5-90.8: 4 ($30^{\circ}-50^{\circ}$
95.5: culvr bandarig \& 30°
89.8: 2 cm . calcite with py.@ $5 u^{*}$
90.6: 2 cm a 25°
99.7-107.0: Phyodocite and dacite tuff: tuff-breceial:
grey, green black; breccier clasts to lcm. sputly epielete; fractured $\circlearrowright 20^{\circ}, 30^{\circ}, 4 i^{\circ} \leqslant 60^{\circ}$; thin cakite seibns (a) $20^{\circ}, 30^{\circ}, 60^{\circ}$ of parallal to cure
100.9: 1 cm CaCO 3 with py. arsemolly. © \&ac

104: 1 cm . with pyit co 30°

$$
\begin{aligned}
& 11
\end{aligned}
$$

$$
\begin{aligned}
& \text { sea page } s \text { for description. } \\
& \text { 102.4: color bunding in ribyolite tuft } \propto 25^{\circ} \text {. } \\
& \text { 102.1-103.4: thyolite twft. } \\
& \text { 102.1-103.6: Strungly fractured. } \\
& \text { 102.4-102.6: shenred et } 40^{\circ} \\
& \text { 103.4-103.6: calcite rein@ 30 with p\%, magnatite, orsemoproite } \\
& \text { ? little epyi estimate } 30 \% \text { swlphicles. } \\
& \text { 103.6-104.8: estimate 15\% sulphides - manily py-ite with } \\
& \rightarrow \text { little arsenopy } ; \text { epy. } \\
& \text { 104.8- 107.0: sw/phide Vein a } 50^{\circ} \text {-pyrite } 4 \text { maynetite with } \\
& \text { minor orsenopy. ond ajy - sume calcite fiqtw. } \\
& \text { Est } 50 \% \text { sulphides } \text { a magurtite. } \\
& \text { 107.0 Hole stupped due to squeezing ground. Wo water } \\
& \text { return }
\end{aligned}
$$

\qquad

178: $5 \mathrm{~mm} . \operatorname{CaCO}$, w. arsenopy. ed 30°.
18: $10 \mathrm{~cm} . \mathrm{g}^{t 2}$ munzurite es 40^{2}
25.8-26.6: Quart2 Mlonzonite grey pink, med. grained to purphyritic w. th felelspar phenueryats.; upper curotact a 50°; luwere 40°; 2-5 mm. $g^{t_{2}}$ veinlets a $50^{\circ} \leqslant 70^{\circ}$; lightly fracturad © $54^{\circ} \xi^{\circ} 60^{\circ}$; dissem. pyrite - also pyrite w. IIHle orsamepy in q ta Van'latr; Est 2% suln $26.2 \mathrm{~m}: 5 \mathrm{~mm} .9^{t 2}$ veinlat co 40° shuws visible gold (houndlens.
26.6-46.6: Andesite and Andesite Tuffa Breceia: gray, green and brown; moderately hard; lightly froctured (a $20^{\circ}, 30^{\circ}, 50^{\circ} \leqslant 70^{\circ}$;
 pyrite, w.th arsenopy in plices, as patehes, seams. edissemoin. Fstimate 3% solphides.
34.7: $2 \mathrm{~cm} \mathrm{CaCO}_{3}$ (a) as w.ti P 4 , hem. twfl-bx.
35.4: 3 cm " Ge 20° w.th $P Y$, hematite and turf fragments.
36.9: $1.5 \mathrm{~cm} . \mathrm{CHCO}_{3}$ co 40° - hand. fragments; syrite
31.8: 7 mm calcite $e 60^{\circ}$; pyrite.
39.39.8: 5 mm . caleite parillal to cure; pyrite.
43.1: $7 \mathrm{~cm} . \mathrm{CaCO}_{3}$ w. py. © 50°.
43.4: $1 \mathrm{~cm} \mathrm{CaCO}_{3}$ w. and frags. 5 Py $\leftrightarrow 70^{\circ}$
44.1: 4 cm . "bx e $70^{\circ}-P y^{(-1}$

450: $/ \mathrm{cm}$ calcite $b x$. © 40°.
46.6-56.4: Andesite tacite tuff and tuff breccia: brewn, greenish grey and tan, hard, moderately fractured \mathbb{C} $30^{\circ}, 40^{\circ}, 50^{\circ} 60^{\circ}+70^{\circ}$ - Fe Ox $+1 / \mathrm{g}$ fractures. Ryrite in suss. dissem.iminor arsenufy. minhly in sonstaqui; Est o\% suleh

1
1
 \qquad

56.4-101.3: Rhyudacite and dacite tuff and tuff-breccia: tain, gray and creame, himdi; thin calaite and ata sms © $20^{\circ}, 30^{\circ}, 40^{\circ}$ and parallal to core. with little pyrite and arsenupyrite; sputty epidote; flow and twft banding textures in places; ligith frationd (a) $20^{\circ}, 30^{\circ}$, 60° ? 70°; sume $F=O_{2}$ als fracts.; fist. 3% sulph-PY, arsenciotr.
54.9: 2 cm . corleite + gtz w. bl. sphal, py little arsenupy eipy e 60.
58.4: twft bandinis $Q 30^{\circ}$
62.0: 15 cm . talerse gouge © 50°
62.2: 7 cm . cnlcite w. py. © 60°
60.4-60.8: twff banding $Q 30^{\circ}$.
62.3: 6 cm . taleose gouge 54°

629-63.4: 1 cm . calcite w. py ${ }^{(+)}$e $10^{\circ} \mathrm{t}$ - cure.
67.5: 2 cm gtz-cxlcite w. finc py. tarsemopy co 60.
68.9: 1 cm calcite $w . p \%$ co 70°.
69.4: 3 cm . calcite w. PY 引 arsemopy \& 20°
69.-69.2: thff banding G $50^{\circ}-60^{\circ}$
70.9: 0.2 m . calcite-rhyolite bx w. py a 70°
73.8: 3 cm . calaite w. Py. $\mathrm{O}^{\prime} 50^{\circ}$

13: 10 cm calcite + Py-ribbony a 30°
75.5: culor bindis © 60.
75.8: $2 \mathrm{~cm} 9 \mathrm{ct}^{2}$-colcite w. py black sphaleo Sc
16.1-76.4: colcitc saims (2 mm tu 3 cm) 50°
19.3-19.4: sheared a $30^{\circ}-\mathrm{FCO}$ Q gouge.

1
 \qquad
 87.8: 3 mm gta-arsenspyrite son < 10°.
89.7: 1 cm. gtz $^{\text {th }} \mathrm{py}$, litle arsenopy 20°
92.6-93.3: heavily fract.@ $90^{\circ} \neq$ parallel to. core; Fe O_{x}
94.5: 2 cm . FeOk guuge a 55°
93.9-94.1: toff bandiong@ 50°.
94.6-94.9: lapilli toft bundaing cos 30°
90.9: 2 cm . calcote © 70°; py.

90-44.8: fairly good arsemopyrite : pyrite; estimate $3-5 \%$ su/ph.
91-3-91.7: 5 mm. qtz w. arsenopy. \& py. parallel tu cure.
$94.4: 1 \mathrm{~cm} . \mathrm{qtz}_{2}$ with caleite, pyrite of orsenopyrite 60°.
94.7 : 2 cm . calcite w. p\% $<30^{\circ}$.
95.0: shearing @ $70^{\circ} ; 2 \mathrm{~cm}$. gouge

95-96: tuff banding ca 30°
96.6-97.5: tuff breccial binding@ 35°

98-98.3: twff $b \times$ banding $@ 20^{\circ}$.
99.3: tuff banding $a 30^{\circ}$.
96.5: 1 cm . colcite w. Py. ca 30°.
$96.81 / \mathrm{cm}$. calcite w. py. © 20°.
97.91 5 mm. arsenopy. Fpy. with gtz \& 20°
98.5-99.0: colaite - rhyodacite $b x$ \& 30° w. py.

99-99.4:2 2 cm calcite © $10^{\circ} \mathrm{w}$ py. forsenopy.

94.8-100.4: Fairly good py. fair arsenopyrite; Esti 3-4\% sislphides.

105: Thyodacite tuff-myudicite bx contiset a cti-fluwbanding $0^{\circ} \geqslant 5^{\circ}$.

Coordinates: 9554 N_ \quad _195
Collar elev. 1665 m
Bearing
due E.
colo.ener -
Longurar linage lune.
Date Started \qquad August 4. 1480

Date Finished \qquad 10,1980
Ref. 10 Claim Corner
Inclination - 60°
Total Depth 135.9
Logged by
G. Ne/

1
I Probact densel Silver Niuge drineclocation Laed wog bcipeer.g \qquad Pa.. ... 2

\qquad
Coordinates:- 9526 N- 9769 .
Collor elov._ 1672 m . \qquad
Inclination $-77^{\circ} 30^{\circ} \quad$ Total Depth_206.3m,

\square
Ref, to Claim Corner \qquad
Logged by E. A. M/acl
Logge
0.-6.1: Overburden.
6.1-23.5: Arilesite and Dacite fluws í tufts: grey to blick; purphyritic (feldspar phemuerysts); farlt hard: silicitied in ploces; henvily fractured o $10^{\circ}, 20^{\circ}, 40^{\circ}, 50^{\circ}$! parallal to cure FeOx along fractures; spotly epidete; estimate 3% sulphides : pyrite disseminated alg froctures; lowercontent $\mathrm{P} C 0^{\circ}$ 10.0: shearing with 1 cm . tileose gurgece 70°.
10.4: 3 cm talcose gouge a 70°.
1.0: calcite sms. 40° \& $70^{\circ} \mathrm{w}$ py N°
7.3: 3 mm - pyrite stringers (20 20, $40^{\circ} 3^{\prime} 60^{\circ}$.
1.5-7.9: silicified elacitic tuft w. pyrite; est. 5% sulph;contactse 40.
8.g: 1 cm . quartz-carbuante w. py. 30°
10.9-11.1: silicified in bands co 75 .
10.1-10.3: strungly /eached @ 30°
11.3-11.8: 3-11 mm. calcite sins. co 10° to cure; py ${ }^{(+)}$,
12.1-12.6: 1 cm.erkite w.p. ${ }^{+1} @ 10^{\circ}$; few speeks arsenujy.
17.2-17.4: narrou shews @ 40°.
17.8-18.4: talcuse chluritic guoge (a) 70°
18.4-18.7: caleite-dncite breccis@ 60; calcite with sume gt2 sms ($0.5-1 \mathrm{~cm}$) Lo a p.r.illat to cure, py ${ }^{(+)}$ 22.9: $1 \mathrm{~cm} . \mathrm{CaCO}_{3}$ w. py $<50^{\circ}$.
$23.5: 0.5 \mathrm{~m}$. guvge ac contact (0.1 m . in valc. $\Rightarrow 0.4 \mathrm{~m}$. in intervide)
23.5- 50.0: Quartz Monzonite: grey-green and poi,k; medivin to course
23.5- 50.0: Quartz Monzonite: grey-green and poi,k; medivin to course
grained; generally lightly fonctured @ 20, 500%60的 rore;
grained; generally lightly fonctured @ 20, 500%60的 rore;
strougly leached along fiults with red hematite alt=
strougly leached along fiults with red hematite alt=
Pyrite dissem., in thin senons @ 30⿱丷口心
Pyrite dissem., in thin senons @ 30⿱丷口心
Upper contect@ 60.
Upper contect@ 60.
25.1: 3 mm . Secm arsenopy co 20° \& 30°.
28.4: 6 cm shearing \& 40°; clayey gouge
30.6-30.8: gtz vein a $30^{\circ} \mathrm{w}$ pyrite.
30.8-30.9: foult gouge 30°
31.4-31.6: 4 4 e 60
33.6: 3 mm . $9 \mathrm{~g}_{2}$ with arsenopyrite @ 30°
36-41.4: strongly froctuned e 30°, 50° p pan-allet to cure.
37.0: shenring pirallel to cure; clayey gouge
36-40: 2-3 mm, tz veinlets @ 70° with py, arsenapy. \& little epy.
-42.4-42.6: Foult gouge a 50°.
44.1: shearing @ 40° with 1 cm . gouge.
45.1: sheiringe 50°; 5 mm . chlor. gouge.
45.5-45.7: " e 50., clay gouge sand.
41.e: 1 cm . calcite so 50°.
46-41.e: strong frocturing © 10° ! 50°.
47.8-50.0: $\left\{\begin{array}{l}\text { Fault with heary elny gruge frim gto monzomite. } \\ \text { upper contict }\end{array}\right.$

50．0－50．9：Ba3nlt：finely vesicular；hard，FeOx ollong fractures
 Feox glong fractures；heirily shenred lawer contact＠10 dor 0．1 m．

1
$1: 1$ f soli -irad "i/ga

81.1-8.5.1: Dncite; dacite toft tuff-breccin: grey-green to block;
fairly hirel.; chbirite if sputly epidote a Heration: light fracturaing $30,60^{\circ}: 80$ Pyrite with a little arsemapyrite epy in sms $\frac{1}{5}$ dissem.; estimate 3% sulph 81.9-82.5: 5 mm py arsempy. w. $\mathrm{gt}_{2} \mathrm{z}$ calicte $\alpha 10^{\circ}$ to cure 84.8: 5 mm . calcite 4 gtr $w . p \%$ arsenopy, alitle cpy a 30°.
25.1-119.6: Phyodncite tuff: grey to cresim tan; hard; lightly fractured Q $20^{\circ}, 30^{\circ}, 50^{\circ}+60^{\circ} ; F_{c} O_{x}^{(-)}$along froctures; cunsiderable py with a little arsenopy al epy.; estimate $3-5 \%$ suphides. both dissaminated $\&$ as thin veinlets.
85.1-85.8: wavy bonding pardllel to the eare.
86.7: $2 \mathrm{~cm} . \mathrm{CaCO}_{3}$ with py. $\& 80^{\circ}$.
87.0: 1 cm . colcite $<30^{\circ}$.
88.1: 1 cm . arsenopy. with cakite@ 60°.
89.8: 2 cm cinkite with py. © 70°
90.1: 1 cm : calcite with Py.@ 20.
91.0: 0.1 m . siliceous boind 80° to cure
92.3-92.4: tuff binding a 50°.
92.4: tak-chbrite sheare 50°
92.8-93.0: talcose shearing © 40.
93.4: $2 \mathrm{~cm} \cdot \mathrm{qt}_{2} \mathrm{sm}$. co 70° with py ${ }^{(-1)}$
94.5-94.1: rhyodncite tuff-bx band @ 60
95.2: 2 cm . colcite-rhyolite breccia band @ 50°.
96.7-97.0: colur banding @ 40°.
95.6-101.2 : considurable pyrite; estimate $>5 \%$ sulptides.


```
1
```


Hole No. 18
concoror -
Lunavear Panada
Date Started \qquad 11,1980
Coordinates: \qquad $\mathrm{N} \quad 9769.7 \mathrm{E}$
Collar elev. _ 1672 m . $-71^{\circ} 30^{\prime}$ Bearing East

Date Finished \qquad August
Ref. to Claim Corner
Inclination \qquad Total Depth_ 206.3 m , Logged by \qquad G A. Noel

Proloct Censal I...verfiage Alinctocation Rea Dug, íaj=eriy

1
Projoct Cunsul. Lierer liuge Locotion Tien D-y Prajecty
Hole No. $/ \varepsilon$ \qquad

$\xrightarrow[\substack{\text { oopen } \\ \text { antival }}]{ }$		CORE								indern		SLUDGE								
from	To	Sampot		R\%.	${ }^{\text {al }}$		$\left.\right\|^{\text {assAr }}$			From	${ }_{\text {To }}$	Somple	Libat:	\%\%.		1				
187.0	189.0	454	1.12	B6	013															
189.0	191.0	455	1.28	64	007															
1910	193.0	456	2.03	102	re															
193.0	1954	4.57	2.01	101	-p															
195	191	458	1.94	97	TP															
142	199	459	1.36	68	∞															
199	201	460	1.30	65	Te															
201	203	461	1.30	65	TR															
203	206	462	130	65																

Ref. to Claim Corner
Logod by G. A.M.Mel
AVE, CORE REC'Y/HOLE:
86.1%

0-11.9: Casing (partly overburden).
11.9-99.7: Quartz monzonite: med. grained grey, to light green. pink anditan; purphyritic (feldopar phenos.): heavily sheared aucl leached alg contacts; dissem. py $!$ few py. sms., little cpy; fow specks molybclenite; few thin colcite of quartz stringers; estimate 2% sulphides.
 13.1-13.5: sherring $@ 10^{\circ} \neq 30^{\circ}$; $\mathrm{Fe} \mathrm{O}_{x}$ gouge.
13.5-14: rhyodacite tuff $\omega 30^{\circ}$; calcite veintets to 2 cm . Q 10°. 14.4: 5 mm . gouge $\infty 70^{\circ}$.
14.8-19.1: oltered dacite; dk. brown to black; fairly suft; conticts
 dissemimated in stringers; little cpy ocnl speck MoS_{2} Estimate 3% sulphides.
18.1-23.4: lightly fractured @ $40^{\circ}, 50^{\circ}$ a' 60° : $\mathrm{Fe} 0_{x}^{(-1)}$ alg fractures.
18.8-19.0: shearing co 70° \& pavallel to core; 5 mm . gouge seams.
20.5: $3 \mathrm{~cm} \mathrm{c} / \mathrm{ny}$ gouge 70° along gtz monz. - Volc. cantict 23.1-23.3: thin shears@ 10. $\mathrm{FeO}_{x}^{(-1}$
20.5-22.2: dK br. tu bl. alteved dncite; cintacts $Q 70^{\circ}$; uppercontret sheared, lower cuntuct sharp; ' cm. gtz i calite sermse 30°; fair pyrite w. litt le ivsenopyrite. Est. 3-4\% sulphides 23.4-28.9: lightly fractured e $20^{\circ} 30^{\circ}, 50^{\circ}, 60^{\circ}$;80; little FeOx 25.7: 3 cm . clay guge ci 30° * 70°

Project Consol. Silver Ridge
Location Red Dog Property

\qquad

78.5: $1 \mathrm{cm-q} \mathrm{~cm}_{2}$ w. py. c cpy \& 20°.
81.1-e1.4: Thyulite $b x$ @ 40° w. dissem. Iy.
82.2: 1 cm gtz. w. py, $l i t t \mathrm{c}$ drsenopy -30°
82.5: 1 cm . qt2 w. py. cpy. \& 20°
82.8: $1 \mathrm{~cm} . \mathrm{ct}_{2} \mathrm{w}$. py. a epy. parallel to cure. 83-88: muderate frocturing $430^{\circ} 40^{\circ}, 60^{\circ}, 70^{\circ}$ \& 80°. 84.3-84.4: chy guvge ca 30°
84.4-85.1: shearing © $30^{\circ}, 70^{\circ}$? parallel to cure. 85.6-86.2: shenred $<30^{\circ}$ - clay gunge.
87.3: 6 cm. clay gouge $\underset{4}{ }$.
83.9: 5 mm. gtz w. py, cpyco 10°
87.1: 5 mm . gt2 w. py.@ 10° to core.
88.6-89.6: Jhearing @ 30 ? 60°; cliyy guuge.
91.8-93.0: heavily sheared 60° \& parallel to cure.

88-93.8: <ore very broken $<30^{\circ}$, 60° of parallel to core.
93.8-98.7: muderate 7 fractured $020^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ} \xi^{\circ} 70^{\circ}$
94.6: 2 cm . guvge $<40^{\circ}$
$96.6: 5 \mathrm{~mm}$ py 1 cpr in g_{2} \& 20°.
97.1: $1 \mathrm{~cm} . \quad$ gtz w. cnli.te f py, cpy fidrsenopy @ 20.
99.7-100.8: Rhyodncite-caleite brecci; grey; firitly hardi; citlite
 mainly througi thyolite matrix; estimate 3% sulphides.

1 ... proluct Cows Suuretinas: Locomion Recindoc

11

Date Started Augurt $27,14: 50$
Date Finished...ATigust 31. 1880
Ref. to Claim Corner
Inclination -65° Total Dapth 151.5 metres.
Logged by C... G. Noel

6.1-32.3: Porphyritic Quortz Munzonite: grey to greeuish g-ayi feldspar phenocrysts; fairly hord; pyrite dissem. folyfort?: arsenopyrite in reinkts \Rightarrow disseminated; lithle cpy.

6.5-6.6: arsenopyrite in seams disseminations.
8.1: 3 mm . seam arsenopgrite with sphalerite, epy. 17% < 70°.
8.3: 1 cm gtz-calcite with sphalerite, py? cpy.co 50°
8.4: 5 mm seam cakite with arsenopy, p\% $Q 40^{\circ}$.
9.0: $1 \mathrm{~cm} . \mathrm{ct}_{2}$ with py, cpy. it arsenopy.ca to
9.2: $2 \mathrm{~mm} g^{t_{2}}$ w. py., cpy, tarsenapy. ${ }^{[-1}$ (a 50°.
9.3 : 3 mm g gtz w. py. apy arsenopy parallel tu core.
4.7: 3 mm gt2 w. py, cpyco 40°
10.0: 3 mm sphilecite, py, epy, arsenglyco 30°

12.2-17.4: lightly fractured $@ 30^{\circ}, 40^{\circ}, 50^{\circ} \div 60^{\circ} ; \mathrm{FeO}_{k} \rightarrow 1 \mathrm{~g}$ froketures.
17.2: rusty cling gouge. © 55°.
12.6: 2 mm py., orsenopy, cpy. © 20°
13.0: 2 mm py. \leqslant epy. © 40°
13.4: 2 mm . seams py. w. arsemopy. © 60°.
13.4: 3 mm Py., arsenopy, cpy@ 40°
14.8: 3 mm . 9t2 w. Py, arscucpy <py < 70°.
15.2: 2 mm sms gt2 w. arsmopy, py 1 cpy o 40°.
15.3: 5 mm. gtr 15 w. arsenopyrite ${ }^{(t)}$ @ 50°.
15.4. 1 cm . itz w. py, arsenopiry as 50°
\qquad Pago no. 2018

15.8: $1 \mathrm{~cm} . \mathrm{py}$ < Py \& ist2 @ 40°.
16.5: 1 cm. gtz. w. arsenojgy. (t) 40°.
17.3: 1 cm . 9t2-calcite w. py. arsenupy \& 30°

17.7: $1 \mathrm{~cm} . \mathrm{clay}$ jouge@ 40°

18.0: cm. calcite $\mathrm{s}^{\mathrm{c}} \mathrm{gtz}$. w. py. epy 30°.
18.7: $1 \mathrm{~cm} .9 t_{2}$-calcite with py. < 50°.
20.4: little alissem arsenopyrite

21.0: 1 cm . 2 lcite a 40°
21.1-21.3: litlle disseminated arsemapy.
21.4: 2 mm . py. w. cpy. G $40^{\circ} \leqslant 80^{\circ}$
22.0: 2 mm . p @ 80°.

2211: 2 mm. py. $\$ 50^{\circ}$.
22.3: 2 mm py t arsenopy © 60°.
22.5: 1 cmi cnlcite with orsenopy ${ }^{++1}$ 30°.
23.0: $5 \mathrm{~mm} . \mathrm{gt}_{2}$ w. py f orsenopy. © 50°
23.2-28.4: lightly fractured © $30^{\circ}, 50^{\circ}, 60^{\circ}, 70^{\circ} \div 00^{\circ} ; \mathrm{Fe} O_{x}^{(-)}$
23.3-24.1: dissem. py cpy fi drsenopy.
24.7: $1.5 \mathrm{~cm} . \mathrm{g}_{2}$-calcite w. py, cpy, arseno py with few specks visible gold. 25.9-26.1: 2 mm . qtz 5 ms . W. py co $50^{\circ}-70^{\circ}$.
27.7: 1 cm gtz-colcite with arsenopyrite ${ }^{+1}$ spy@ 50°.
28.4-32.3: muderatel fractured. @ 20, $30^{\circ}, 64^{\circ} \frac{1}{4}$ parallel tu cure; $\mathrm{Fa}_{2} \mathrm{O}_{x}^{(-)}$ 29.4: 2 mm. gtz. w. Arsenory. 60°
30.7: $3 \mathrm{~mm} .9^{t 2}$. with py. a epy. 70°
30.9: $2 \dot{x} 3 \mathrm{~mm}$. 3 ms . Py, Cpyt Arsinest - ए $\mathrm{S}^{\circ} \angle 0^{\circ}$.

32.3-51.8: Anclesite \& Dacite: dark brown to black; altered: fuirls hard; numerwos thin gt $_{2}$ and akkite stringers; spotly epidote: chlorite alteration in places; py.w. apy. in places; est $z-3 \%$ supp. 32.3-32.4: 9tz monzunite veinlets w. py., arsenopy.
33.2 : 1 cm : 9t2 w. py. \ddagger epy@ Gc.
33.4: 3 mm. onkite w. py, cpy. © 20°
32.3-38.8: moderatel's fractured @ $20^{\circ}, 30^{\circ}, 50^{\circ}, 60^{\circ} ; 80^{\circ}$
36.1-36.3; takuse shenring (a 20°, 50°
36.5-36.8: " " a 50° \& parallel to cure.
37.7-37.9: * ${ }^{\circ}$ (a) $20^{\circ}!50^{\circ}$
34.4: 5 mm . gt with py opy. © 30°.
34.7: 1 cm . at with py, epy o sii
35.2: 1 cm . gta t calcite w. py., cpy. @ 60:
35.9: $3 \mathrm{~mm} . \mathrm{gtz}_{2}$ w. Py., apy \& cpilote e $5 \mathrm{C}^{\circ}$
36.6: 3 mm . Py, cpy, © 70°
36.9: $1-3 \mathrm{~mm}$. sms py ; cpy (a) 30°
37.1: $3 \mathrm{~mm} . \mathrm{g}^{\text {th }} \mathrm{w} . \mathrm{py}$, apy, a 60°

38.6: 4 mm . atz w. py: cpy.ca 4i.
$38.7 \mathrm{r} 5 \mathrm{~min} .9 \mathrm{t}_{2}$. w. py. \& cpy. © 33°
38.7-44.5: light froaturing © $20^{\circ}, 30^{\circ} 50^{\circ}, 60^{\circ}$ marallel to core.
39.3-40.4: parphyritic gt2 monzonite; gray; with shirp conturtse 30°.
41.2-41.5: " , "upper conthet $@ 20^{\circ}$ lowere 60°
41.7: $1 \mathrm{~cm} .9 \mathrm{t}_{2}$ w. py. ppy \& 60° :

 46.2: 5 mm . arjemopy w. $7^{t 2}$ i apy @ $30^{\circ} ; 2 \mathrm{~mm}$. Arsenopy. w. $\mathrm{gt}_{2} @ 40^{\circ}$. 46.4: 2 cm . gtz-coleite breccia w. py. © 60°.

47.6: 3 mm. Py.with $9 \mathrm{gtr}_{2} @ 60^{\circ}$
47.8: 5 mm . 9tz with py., cpy. © 60, \% with py. \# arsenopy. \& 40° 48.6: $3-5 \mathrm{~mm} . g^{t 2} \mathrm{w}$. py., spy, arsenspy. © 30°.
49.1: $2 \times 5 \mathrm{~mm}$. qta 2 - colcite with py. $\underset{1}{ }$ cpy. @ $40^{\circ} \not$ parallel to core 44.3-50.5: calcite - ondesite breccid with p\%, cpy f arsenopy. ${ }^{(-)}$; upper contact 60°; lur contact \& 20°.
49.9-54.9: lightly fractured © $100^{\circ}, 20^{\circ}, 50^{\circ}, 60^{\circ}$; Fc Ox a/g fract., 53.6-543. 54.2-54.3: $\mathrm{FeO}_{\mathrm{K}}$ clay gouge@ $@ 0^{\circ}$.
50.6-50.9: 1 cm . calcite w. py. parallel to core.
51.1-51.3: colcite-andesite bx. w. py.
51.4: 3 mm gtz w. py. \& epy. © 30°
51.8: z cm . calcite w. PY. 50.
51.8-116.7: Dacite Rhyodncite Tuff f Toff-brecsia : gray, brownt tan; hord; nuncerous colcite quuntr scams; pyrite in seams \& disseminations; some cpy. F^{\prime} arsenopy. in plices; estimiote 3% sulphides; spotty epidate alteration in daeite.
52.5: 5 mm . gtz. sm with py t cpy. © 50°
52.7: 2 cm conleite. sm. with py. 60°
53.1: 4 cm . onlcite with py. © 40°
53.4-53.7: 2 cm . calcite with py.ca 40°.
54.1-54.2: calcite vein nith py. arsenopprite a ${ }^{(+1)} 30^{\circ}$.

\qquad

proiot Cons Suver Riorr tooution RED Dos \qquad Hol. no. - 20 Poop no 2 ot -4

proion Cuks SILLERRIDGE Locotion KED DOG

Collar alovi_ 1540 m ._ N -

Date Stortod $\frac{\text { August } 31,1986}{\text { Sepet 3, 1980 }}$

Ref. to Claim Corner
Loggod by R.Hegarth t K Nel.
Inctiarion $-60^{\circ} \quad$ Tonel Dopm 203.3 metres.

COMMENTS:
0-3.3: Overburden
3.3-44.9: Quartz Munzunite: grey-green; porphyritic with well-formed plagioclasie felelspir phenocrysts; brown bictite altin. 3.3-4.3: well minaralized with epy, arsenapy., py \& minor pyrrhatite. 10.1-10.4: zune of corbunate stringers (15%) © $50^{\circ}-70^{\circ}$ with parall.l stringers of py. ξ ersemopy.
20-20.1: 1 cm seam of arsenopy, py cpy
25-44.9: less biatite atteration; in places 2-3\% pyorbutite.
4.3-44.9: varying amounts of arsenopy, epy \& 12y; in genaral quite well minerolizedl.
44.9-48.8: Dacite: med. green with brown biotite; minor stringers carbonate; disseminations t fine stringers of arsenopy, py, pyrrhotite $\%$ epy.
48.8-53.5: Quartz Munzunite: as aluve, witi fine grained dissem. Py, cpy f pyrrhutite; sharp contiacts a 30°; quart2 - corbenate stringers cut though contict.
53.5-76.2: Dacite: fine grainad, brown to grean; fine grained biotite atter'n. numerows thin $g^{t z}$-corbonate stringers; finely dissem. py, (7%), pyrrhatite $!$ miner arsenopy. Arsenopy. decereases Pyrite inereases with depth. Beluw 62 metres, varylittle sulphides. 16.2-90.9: Rhyodincite: grey, siliceous with stringers of arsenopyrite in places from $76.2-84 \mathrm{~m}$.
 \qquad

90.9-117.9: Rhyodneite Tuff-breccia: greenis/1 to brown warying with alteration; web-like $g^{t} 2$-cirbonate (80%) stringees; minor arsenopyrite, pyrite, cpy é pyrrhutite; gta-edrb. stringers cut through breccia clasts; siliceous blitile. 95.8-96.1: Fa. $1 t$; gouge 20°.
98.4-98.8:

$$
\Leftrightarrow 20^{\circ} \geqslant 50^{\circ}
$$

95.8: breccin; carbonate clasts; in zunes of finerbreccin (1 cm) 96.9-97: 5heared @ 54. matrix is $g t_{2}$ carbonate
99.3: shearing co 30°
99.5: tiff-breccia banding@ 50°
97.6-97.7: visible gold in very fine groined gtz seiron, 1 cm. Wide (a 20° to core; little py, arsemopy.
98.8-99.0: thyodacite-carbonate brecicia w-py. @ 20° to care.
95.2-100.2: mainly diss Py; estimate $3 \% ~ s w / p h i d e s$.

102-102.2: shearing © 10° to core.
100.2-105.4: includes marrow bands siliceous thyudic. fufti numerous calcite stringers 2 mon - 2 cm wide 30° a pirallel to core; estimate 3% suphides minity py-diseme in senmes 108.1-109.3: shearing $<20^{\circ}$
101.6: rhyodac. tuff-bx laced w. cakite sms. 030°, 40" parallelty 106.9-101.3: siliceuus with fine arsenopy \& py ${ }^{(+1}$ 107.5-108: tuff-bx binding e $30^{\circ}-4 c^{\circ}$.
105.4-110.4: Estimate 3% sulphide's mainly py-disseminated si in seams. 114.4-114.6i sherred (20 parallel to cope.
$111.7:$ taff-breccin bancling $\lll 0^{\circ}-30^{\circ}$.
$112.3: 30^{\circ}$

\qquad
\qquad

comments.
\qquad но1. no. 21 Pooc no $\not \subset$ ot 6

prolot Cokr Sunce Ridose loation PSD Dor но1. no. 21 \qquad pace к. 20.6

 Hole no. 2 Poos no $\not f_{01} \dot{z}$

1 \qquad Proloc: Cours Sl\&FR Pince location XEDDoG Hole No \qquad poon no 60.6

0.0-9.1 Covebuden.
9.1-25.1 Dilierons Ahingolaute Breceia

Medum guen to penky brown env cobon. The brewa peess have a
 wel- lehe φ ts-bab eturgus that . cit though the biceia pieces.
9.1115 Medurn guen with 1.4 cm brecia puees .2\% FoS Inson Punk brown wethe brecian pues to 10 cm
15.5 Nmen Pyubotice
18.0 Monordess dack exyetals (Htomblende, Chloute??
20.0 Pore matux changes to a leght grey-green.
21.47 cm brecerated curbonate otionger, Menor FeS meseralization Core es very brochen fumm-here..
25.0 cm Whlete breuin with contact at 70° to AOC .

540 Juff bandeng is quite ductiret at 75° to Aige
56.03 cm Dtt-Coul stinger with 5% Fels at berdding iontact 50° te A B, b ?
56.0-59.5 Daute.

Meduers grey gieen i\% dies FeS: Oess dark (Honnblundic Chloute) digstals. May itill be a part of the Suff bands as it gets quete selerions sear the esed.
57.5-71.2 Rhyodaict Suff Buecia

Dretinet banding at $45-60^{\circ}$ to A $Z E$. Actiod 110 mm
 dias FeS.
59.5.60.0 10-12\% 中t-Couhl 80%) ittinges $5-8 \mathrm{~cm}$ en thuckneas at 60° to Aिp.
63.2 Menor diss hight brown heldopan ciyitals, iellformed.
64.0 Shere are lagger fougn fragments mede spread though the tuff beds.

74.2.74.7 Rhyodacle Suff Buecia

Same as alove but with a 3 cms ditg-larb shenqu muneraluzed with $\mathrm{Fe} A S S, Z_{u} S, \mathrm{Fe}_{2} \rightarrow$ and monor $Z u S$ diss in ME. Caib etingus
74.7-75.2 Uun Jone.

Rhyodacite with it.Care etrengus (15%) and etcurgens of $\mathrm{znS}, \mathrm{Fe} S_{C}$, Fe ARS. Stiong wiin
75.2-81.2 Rhyodacitc Luff Brecua.

Light brown-guen adecous with distinct buccei fragmints. Same as a bove wein. Manor wela-like QtsCaib itiongus
812.81.6 Viin Jone.

Breceitid with tuff becuar matrix 75% und stingers of ϕ to Cail 5%, and stringes of Fe PrS, Zu S, Fc $/ 20 \%$ combened. Shayp iontact at 60° to A $B E$. Nood lvoking vin
$1 \quad 1$

90.5-99.5 Rhyodaute Luff Brecua.

Cue is light guen and a litte maxi selecrous. Thue is fend dies FES: throughout (1\%) Miseor At-lard brondeng at 20 to Arfe. In places there are diss lught-bown Heldopar enyetab.
99.5-99.95 Ciin fone.

Precciatid S.tg.larb (60%) with Rhyodacete (30%) and FeMrS FeS. : Pyuhotite (20% iomboned) maneralyation. Shayp contact at 30° to A $56 C$. and gougy. contact at 45° to $A 8 \mathrm{C}$. Overall mineraligation is quete weak.

118.0 Matux changes to a light brown
128.6 2 cm $\cdot d$ - - stinger contaeneng FeS $Z n S$ Fe As Smeneraligetin 128.6-130.3 Manor diss light brown phenorysts of fieldepar.
130.3-130.5 Seen Jone.

Breciatid Dt Cabl, contact at 350 to Ag, e. Contains 7\% wombened FeASS FeS. ZnS menuralozation
130.5-137.5 Rhyodacite Iuff Brecica

Lugt guen - hown. Munor dess homblende riyetals Thnon fene diss $\mathrm{Fe} \mathrm{S}_{2}$. Bandeng at 45° to Adf e ?

$$
137.5 \mathrm{KOH}
$$

Prolect Canir Shugetioget Loortion XaN DoG \qquad 22 poot No Lot 4

probect Cars Suusetinace woation K6D Do6
но1. no. $z z$ Poor no 2 ot 4

\qquad

22.0-23.5 Andesite Breccia
98% Andisite (black) wrth Rhydante Luff buma piem Thes eut by thire $\rho-e$ stunges at $60-90^{\circ}$ Te A8S E .
235-241 Rhydaute Iuff Brecia
Contact at 60° to Agle. Aight guy eeluceus. Fene diss $F e S_{2}(3 \%)$ and possible minion fine dess Fe ASS.
241-30.3 Andesite Brecera
Daik-guen black matrix 90% weth brecca peces upto 30 cm It Rhyodacite Juff brecia . Sut by $0 \cdot e$ ehuigers at angles $45,55^{\prime} 70^{\circ}$ te $A 7 V^{\prime} \mathrm{C}$.

38.6-42.7 Daite Breuia dontéguen recth 3% dess Fele. Munors C-Cathenguat $50-70^{\circ}$ Yo.6.40.4 frault zone

 sthingis mit-though brevia.
44.0-45.4 Dacte Juff Breuera Bentact at 70° with 3 cmo ob witernating Dacite. © - basiding. 3% chis FeS.
45.4-494 Khyodante Juff Breviar. Conctet at 70° to ABS .
45.6-48.0 frault zone -ervy bockern.
 veny iltte reovery (25%) Shen is is 4% chas Fef. Manou Pyishotite y FeAss.
50.8-5\% Fhault Jone. So \% gange with 3.5 cm fragmento of shecous Rimpodacie even mateual.
53.5-53.8 Light guey-gieen seluceoss Rhyodricile weth fine dies fele

54.2-55.2 Ven fone. Very selueous brewated φ - - with sin dies Fel_{2} and mener Pyinhotite, FelAs S, and $Z \operatorname{ZaS}$ Nousible U.6. Contact at 50° to Ifye. Both contarlo gange.
55.2.56.0 Dreete Bremated dark guen Contans tweerated puees of $9 \cdot l$.
56.0-56.3 Quarts Monzointe Fault jone 50% gauge 50% bewalid φ NI. Monon F-e S_{2} sumbuabyation. Pexk-genu ni edows. Both cantaelo faultid.
56.3-60.3 Rhyodauk- Maute Luff Preceia. Leghtgrey-quan te dark gren Bedking a 650 to AD C. Conlanw 10\% iandonsly oruestial Qt-Carb stingers í 3% diss Fess. Jhere is munvt fince diss Fettss. 59.7 haultgange.
60.3-61.5 hault Jone: Sauge and feagnints of Dacete
\qquad

\qquad

61.5-6\%.3 Dacele

$641-64.3$
643-61:0 Quaitg Mongonite. Pence-grean, contect at 200 bolofe. 2\% dess $\mathrm{Fe} Y_{2}$, mesor dies P Fofe. Pritact 10°
к5.0.65.3 Rhyodante Luff Breecua Loght broun-guerv wielecons fine gracined woth 5% diss F Fer and muner lum Felz
 at 70.6450 to Alpe Pontans $1-2 \%$ dias Fer. and musoi Cu FeSz
654.65 7 fiault jone.
65.8-67.4 Daite Dack green fence graised, cut by rendonly oiented $\varphi \cdot e$ stiunfus Sine diss $\mathrm{Fe} \mathrm{S}_{2}(2 \%)$ and $\mathrm{Cu} \mathrm{Fe} \mathrm{S}_{2}(0.2 \%)$ 674-678 Quait Mongonite. Contact 10\% to Age. Pent-grem colour. Contanes

 2% chas HeS munoz en reSz
\qquad
\qquad Page No. 8. ot 9
 Bre eo getterig seleceons.
82.8-83.8 Truelt zone yauge lou is quite leached upto 5c1.3 $8 \% .3$ Horis funcely breciated $\% \%$ FeSz and S-V etrengens uit theough fragweinto Daik guen forie grained.
86.0-86.4 Foult jone lore is very brochen. Dacete fragmineto
86.4-89.7 Daute teached to a seght guey between the two failt
89.7-90.5 Fiailt-gange, Daite fraymunts. Contact 350 to ilfe.
90.5-91.2 Dacite clarh green brecurated fisse gzened.
91.2-93.3 foult jone. gauge Daute fragments
93.3-96.3 Dacete Brecia with Oe. ithingers pivelosiusiatelyat 4 "lo AJJe. 4% deso FeS.
46.3-96.6 Hault Jone
96.6-47.6 Daict

916-98.0 fault zone
98.0-99.1 20icute
99.1-99:3 Srault zone
99.3-99.1 Dquit
$99.5 \cdot 100.4$ frault zone.

11

 bececutic Diasts; pink Calute with 5% diss Se S_{z} meneratejation.
 17%) with some aligned 30° to $A / 8$ e. sheght encerase un the ansomentep FeS. Pore es quete veluewo in whicet sections (20 cm) 104.7.105.0 es a evereors gione.
108.3.110.5 fault jone gavge 50% Daate fragnents 50% Enitacit 150 to A.OCe.
IRO.5-11.2 Waiete
III2-1/3.1 Figult fone 70% Waute fragronents 30% gange 1/3.1-1/5.8 Daute Sivesea

Project Consounatea Seuzelinge location Pedidor
contractor Lamayade
Hole No. 23
Pogo No. - 1... of 4
Date Started \qquad
Date Finished \qquad
Coordinates: \qquad $N-9765$
\qquad
Bearing 650
Ref. to Claim Copier
Collar elev. 1465
Total Depth 115.8

${ }_{\text {Project }}^{1}$ \qquad n.... $2 . n+$

Prolact LESt, 1 Location RLU DVG
'noto no. \qquad Pooc no \& or 多

0-6.1 Pasing
6.1-7.9 Doute Juff Eneccia

Duk quer wieth 3% randomly ouented \mathscr{C} - P stringens Cortains 1% dess Pyrite
79-10.7 Duaity Wongonite
RCeldsh ruen weth 5%, iavedoinly ouentua Ob-Caeb. stinnaes. Costact 20° to idg. C. Contans susior devo Pigete. ε^{\prime} Pyunotite
10.7-12.7 Daute Suff Buccia

Duek swin weth $3: / 4$ randomely oviented Olt. Laslo ituriens
 contact. 1\% deas Tijute ased niunos Pyeshatile. Oornoit 90°
12.7-13.7 Cunuty Mloryonte-Daule Buecian

38.1-40.2 Daute Juiff Brecia

Modum quen-bwon motthed. Put by randonily ouexteed Qb- lab thinges Minor dess Pgich. Astact 75°
39.7-4.2 Hault zone gauge
40.2-41.4 Uuart Minyonate

Pink-guen eolous. Pou is wery brocherv and demointe stained 40.8-414 taultzone 50\% gauge.

1/14-42.3 Basalt Dlyhe
 123.436 Quarts Hlongonte (frault Jone)
solo ©III so\% sauge. Hzacturesuesfrio are desi:onite ctaurua'
\qquad

sso Vivivor thenopignett 5550-106.4 Bhupdaile Suf/ Bueva

Lught gusis-biown motted. Contans 1% dass Pyiute arich suown diss Aisenopyik. Checte-deluceow in places. toritains 3% raidomly ouented CPt-lash iterigers
SkT-4b.2 Burciatid chloithed landeng so te A.jot.
470- This bed lophs identical to one cut in $79-2 / 67 \mathrm{~m}$) and in S.4 Thgh grade). There es an encerease eve, the amourt of dens Anseropyite
48.6.48.7 Breewated bandeng 80'to Af C (beddency?)

128-730 froult zorve
714.74.7 thault jove

7\%8-7\%.9 Sood Ansesopginete mosicialyatiorc 7%
82.6-83.0 Hood Ansesopijate smisenalugation

816 Bedding 80 to AIfe.
85.0-85.3 Bandeng at 300 te kife.
s9.5-915 Incease en the amount gi dess Assenopyint.
Mrenor Pyentiotet

wode mennoi tyuhotite. E'Cuanopyyite
97.2-98.2 Leugfore graned (altitore. Y) loght geen.
98.2-99.4 hault zone
100.8-101. Stault ronce
106.0-106.4 hault gone.

6.1-136 Pecantz Nilonjoriute

Pexk-gueis colows Nltsion weidonigy ouided Ofs. Cact - sterighs $\sigma \%$ des biothe 1% deves tojecte

136-142 Waute Suff Buierw
Medecire te chase guex Contact 10° Contawo munan. 5%) dess Pyiet
14.2-78.3 Cluarty IVI

15.8. 7 cm gauge 70° to Neg: $_{0}$
27.5-29.0 1tesow deve Ciakojegrete

 Tontarsumunn destyg. E7.3-38.2 frault gose fanqe.

COMMENTS
38.5-39.1 fault zone gauge
40.5-40.7 Hault jone geanisy

457-46.0 fouctign yon yant
4647.0 Cowis Reghtiy, hachent

640-66.1 frault fine gounce

76.8-783 Coie es ving fractured avel theelicid.

75:3-94.2 Khyodawle Luff Buшai
sught io meduon green- bown mottled Coritaur
5% nurelomíy oluarisé D-l ativigurs. Centact 80°

\qquad
Date Finished \qquad
Ref. to Claim Cont)

Collar elev. \qquad Bearing \qquad Ref. to Claim Cont
logged by

1 Proojoct LeSdre 1 Location Kouvuo

Daute Sulf Buecua
Medurm te dach quear 2% dias Pigule 2.3% randomly owented Gty Caid itungers
47.6490 Thene is a follation or bringling at 650 bo No C ...d musco bies Chateopynte. Pyuluhte
542 Bueddengat 45° to Mise
 Coce ins slegh ley nove astuctues.
59.8-600 Puart Thongonite

Penk-green edour 7 II incor deas Paute
60.0-106.7 Dacele Juif Buecia

As above.
60.8-62.5 Brewntere bed 450 th it: 40% Coulongte: 20% Guatet the mmander Dacite welh Pyik, Ipulidete Challopynte? Chemppyinte mulualijation

67868.0 frault jose gauge
69.2 con atunger encth 30% Feifs

 Qif-cub stringers (5%)
78.4-99.8 A se-brecerated echecous ber with $\%$ fisely diss Pyute
79.8-86.0 Pore is elegtitly mace webecons.
86.0 Preves move basic ariof isurtans andyanemar Pyuite
104.010\%1 fault zone gang's

$$
\text { EOH } 106.7
$$

0.0-4.6 Pasing
4.6-39.9 Puarty Monjonite

Aney-guen colous. Contains, munor Pyite, Chaleipyite and Dyshotete muneralyation 2% fine Randosrly ourvith Ats-Carb stungers
17.42 cm stringes of Chsenopysite muwn Chalcopyete 50° to tifl. 20.0 Inciease in the monent of disseminated Chaleopyete

22:- 2 uncturry's of Chseropyiete and munor Chalicpyeite 30° te AdS P .
23:- Mesior Arencrpyute
24.6-39.9 M1 mor Asenopagate desumenated therughout like coul.
39.9-47.0 Dacite Juff Dreecia

Meduris to dork greerv. Shar puontact 80° Fo. All. 0.5% nandonily
 theleogyiete menesciegation
41.8 Miren diss Auenopyjite

Mo-473 Cuaity Mongoniter
Contait so ta Ase. Well mencualyed woth Igrati (5%))

473-95.2 Dacit Juff Brecia
As above.
5162 cm Cliz-lach stinges werth 10% Ansengpyte : 2% Shiropyite minucceingation
53.4 1 cm At-Cal sthinge with 25% Aisenopyute, ': 2% Chaloopyite monscaleyation

63.1 Musordiss Chalupigute
70.1 2emo Ab-lacte stiesiger 45° to Afle with 10% Avingrigule and 30% Pgute.
 Sunot 30% Pgute.

Proiect Conesuner Riose
Locention $\overrightarrow{2}=0.0$.
Hole No． 27
Coordineov： 9613 Page No．I．

Collo otow． $1640($（APPROX）
Inclination－ 800 Total 0 opoth 106.4
contractor ——ax CyEORX

Date Finished पद⿸⿻一丿工二灬力10
Rof．to Claim Corner
Logged by A．Horeacth
SLUDGE

… \qquad Location Reviod 20°

