

AYLWIN CREEK GEOLOGY AND DRILLING

Slocan M.D. N.T.S. 82-F-14

49°53'N 117°22'W

D. C. Durgin March 9, 1981

Owner: Rio Tinto Canadian Exploration Limited Operators: Riocanex BP Minerals Ltd.

P. Leontowicz & W. Wingert

Work performed on:	Record #	Expiry date
Ayl 1	1271	29 Jun 89
Ayl 2	1272	29 Jun 89
Rush	1263	26 Jun 89
Ent 1	1294	10 Jul 91
Ent 2	1313	ll Jul 91
Ent 3	1295	10 Jul 90
Ent 4	1296	10 Jul 90
Ent 5	1970	30 May 90
Ent 6	1971	30 May 90
Ayl 7	1312	ll Jul 91
Leona 7	1321	28 Jun 91
Leona 8	1322	28 Jun 91
Leona 9	1323	28 Jun 91
Leona 10	1324	28 Jun 91
Willa	18212	3 Jan 90
Rockland	18213	3 Jan 90
Rustler	18214	3 Jan 90
Trenton	1260	26 Jun 91
Last Chance II	1261	26 Jun 91
Silver Band	1262	• 26 Jun 90
Little Daisy	1327	4 Jan 91
Golden	1222	18 May 91
Idler	1223	18 May 91
Golden Fraction	1224	18 May 91

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
PREVIOUS WORK	1-2
1980 WORK	2
GEOLOGY	3
STATEMENT OF QUALIFICATIONS	Appendix I
COST STATEMENT	Appendix II
LOCATION MAP & CLAIM MAP	Appendix III
DRILL LOGS DDH 80-1 through 80-8	Appendix IV
DRILLING PLAN	Appendix V

INTRODUCTION

The Aylwin Creek Property, N.T.S. 82-F-14, is located 8 kilometres north of Silverton, and 3 kilometres northwest of Mt. Aylwin (Location Map, Appendix IV). It consists of 117 units made up of optioned crown grants and single unit claims, recent claims staked by Riocanex and recent claims staked by BP Minerals. These are being explored under a joint venture agreement. The claims were staked and the joint venture formed as a result of 1979 reconnaissance work described below.

PREVIOUS WORK

The original crown grants were staked in the 1980's by prospectors in search of gold and copper. The Willa, Little Daisy, and Rockland tunnels were driven during the next few decades. Little ore was discovered and there was no production. In 1965 Cominco drilled four short holes in the Willa Zone. In 1969-1970 the Rockland Mining Company conducted a program of soil geochemistry, geologic mapping and diamond drilling. The twelve holes drilled encountered interesting copper-gold mineralization near the Willa tunnels, but grades were too low for the metal prices at that time. Minor molybdenum values were also noted.

J. R. Woodcock Consultants Ltd., on behalf of Riocanex, conducted in 1979 a reconnaissance mapping and lithogeochemical sampling program in search of a deep porphyry molybdenum target. Coincident Cu, Mo, W and F geochemical anomalies, and a favourable geological environment compelled Riocanex to option the old crown grants and begin staking.

Concurrently, reconnaissance work by BP Minerals caused them to stake in the same area, in pursuit of a similar target.

1980 WORK

Based on the results of the 1979 reconnaissance work, a program of 1:5000 scale geologic mapping, rock geochemical sampling, and diamond drilling was planned for the 1980 season. Expenses incurred are detailed in the attached cost summary (Appendix II). Drill logs are attached as Appendix IV.

In late April and early May, some 1.5 kilometres of access road were rehabilitated, including the building of a bridge and preparation of a drill site.

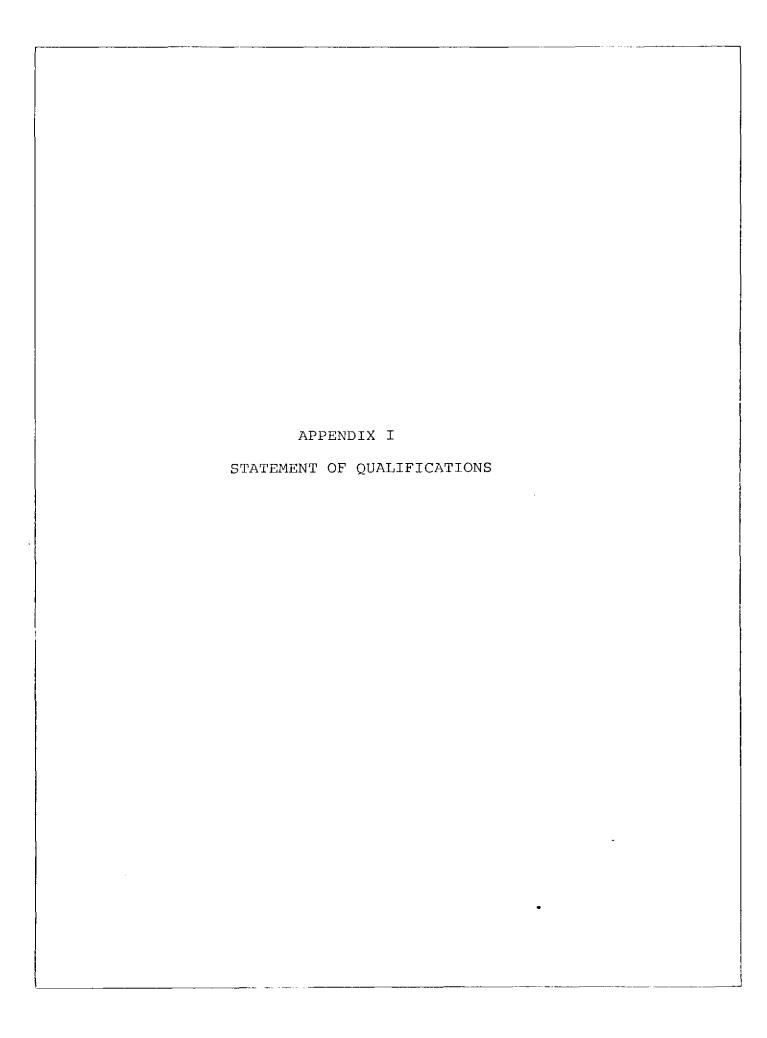
Under contract with Canadian Mine Services a drill was moved onto property on May 8th. A vertical hole was collared on the Rockland claim as indicated on the attached claim map on May 10th. Drilling proceeded to a depth of 812.5 metres where the hole was stopped June 10th. A second deep hole was collared June 13th and completed at 686.3 metres on July 6th. These holes encountered modest molybdenum mineralization in a quartz stockwork developed in intrusive rocks and metavolcanics. There were also several long intersections of intrusive breccia.

Assay results and geologic inferences developed from this program prompted a second more shallow drilling program. The first of six holes totalling 1127.3 metres was collared September 20th and the last was completed October 26th, 1980. Core for all eight drill holes totalling 2626 metres is stored in a garage rented from Mr. Paul Malkin, behind the Silverton Post Office.

In hole 80-1 every 5th two-metre interval was split and shipped to Vancouver for analysis for Cu, Mo, WO₃, and F. For the remaining seven holes the core was sampled every 4th two-metre interval. Later hole 80-1 was split completely in two-metre intervals to 210 metres and 80-2 to 272 metres. Holes 80-3 through 80-8 were split from top to bottom, with all samples sent to Vancouver and assayed for Ag, Au and Cu. Rocks encountered in these holes were similar to those in 80-1 and 80-2.

GEOLOGY

Geologic mapping at 1:5000 scale and rockchip geochemical sampling was carried out concurrent with the drilling, over an area of approximately $16~{\rm km}^2$. A baseline 550 metres long was surveyed and all drill collars and old workings were tied into it.


The Aylwin Creek project is centered on a large roof pendant of Rossland (?) volcanics in the Nelson Batholith. It is intruded by several porphyritic phases of latitic composition which are in part hydrothermally altered and pyritized. Some of these porphyry phases are distributed in a crudely concentric and radial pattern upon which are centered roughly coincident Cu, Mo, W and F geochemical anomalies. This season's sampling further delineated known anomalous areas and extended the area examined.

Drilling demonstrated the presence of weak molybdenum mineralization near the centre of the target area. Part of the mineralized zone has been cut out by a later body of intrusive breccia. Modest copper-gold-silver mineralization

was noted in association with later structures.

REFERENCE

Aylwin Creek Assessment Report dated January 9, 1980. Aylwin Creek Assessment Report dated December 1980.

STATEMENT OF QUALIFICATIONS

Dana C. Durgin

ACADEMIC

1970 B.A. Earth Sciences

Dartmouth College

1972 M.Sc.Geology

University of Washington

PRACTICAL

June 1979-present Rio Tinto Canadian Exploration Ltd.

Vancouver, B.C.

Geologist involved in various aspects of mineral exploration in Yukon and B.C.

1973-May 1979 Rioamex Inc. Denver, Colorado

Geologist with experience in all phases of base and precious metal exploration and property examination in the western U.S.A.

1972 (Summer) Texasgulf Inc.

Geologist, uranium exploration

Denver, Colorado, U.S.A.

1971 (Summer) Humble Minerals

Geologist, massive sulphide exploration

Bangor, Maine

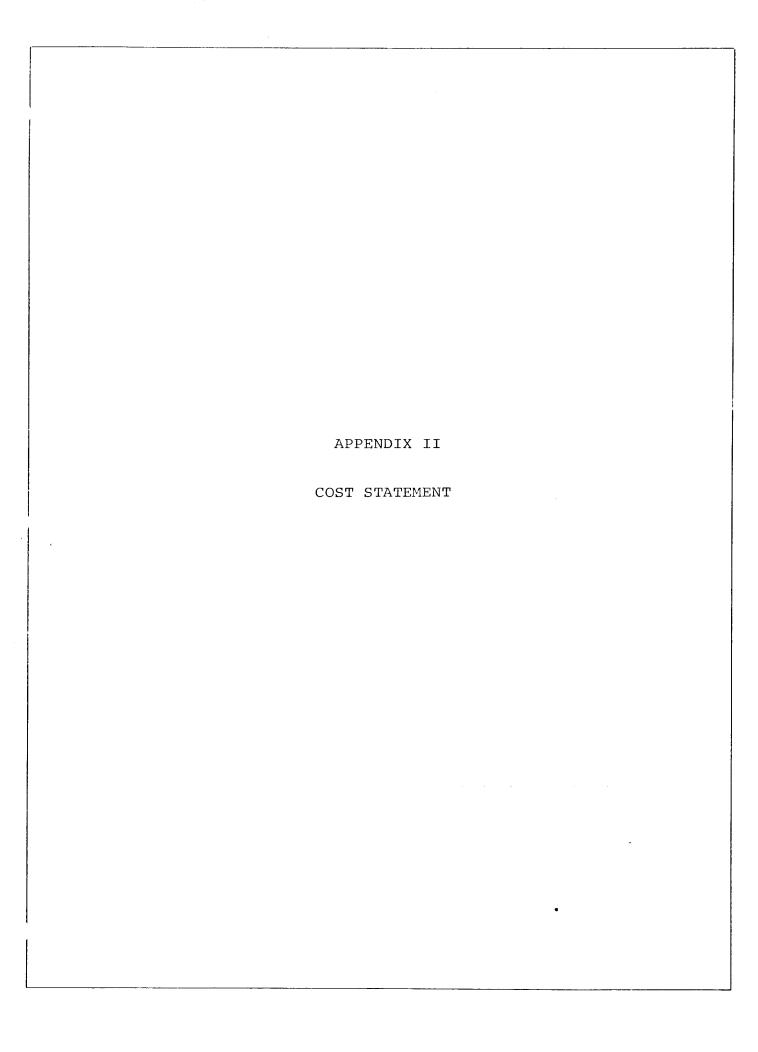
1970 (Summer) The Anaconda Co.

Geologist, uranium exploration

Grants, New Mexico

1970 (Jan-Mar) Institute Geographico Nacional de Guatemala

Geologist, mapping for all the Gautemalan


government

Guatemala City

1969 (Summer) Callahan Mining Co.

Geologist, massive sulphide exploration

Coastal Maine

COSTS STATEMENT

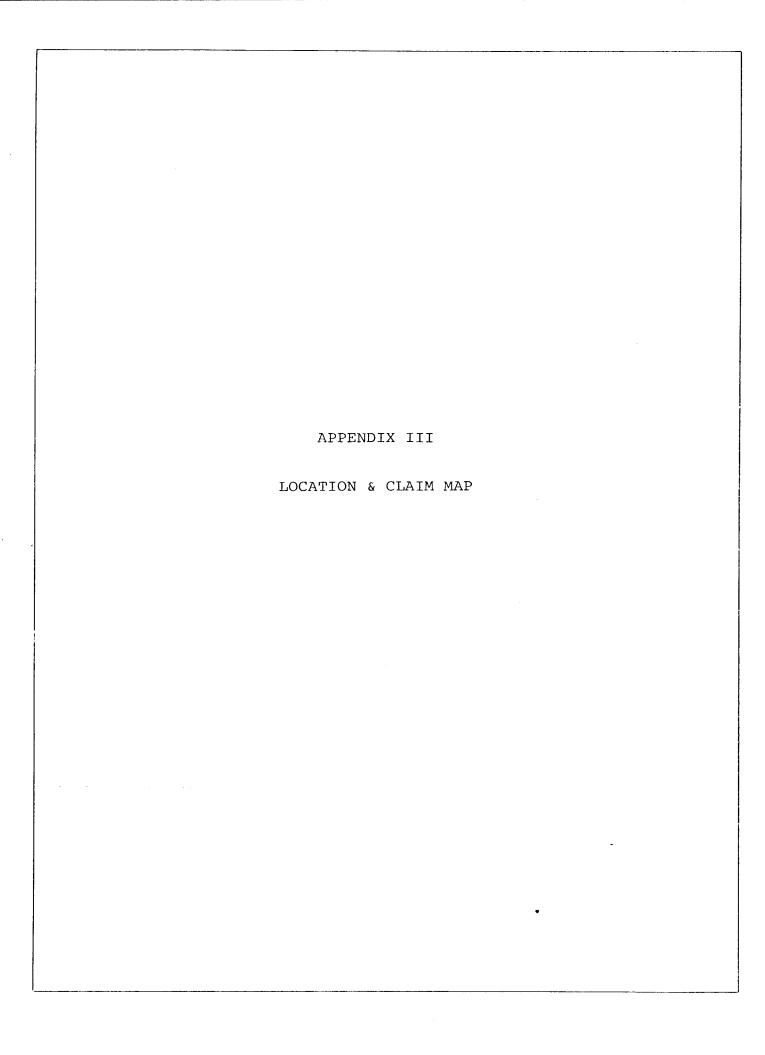
B.C. AYLWIN CREEK JOINT VENTURE GEOLOGY, DRILLING, PHYSICAL 19 MARCH THROUGH 31 OCTOBER 1980

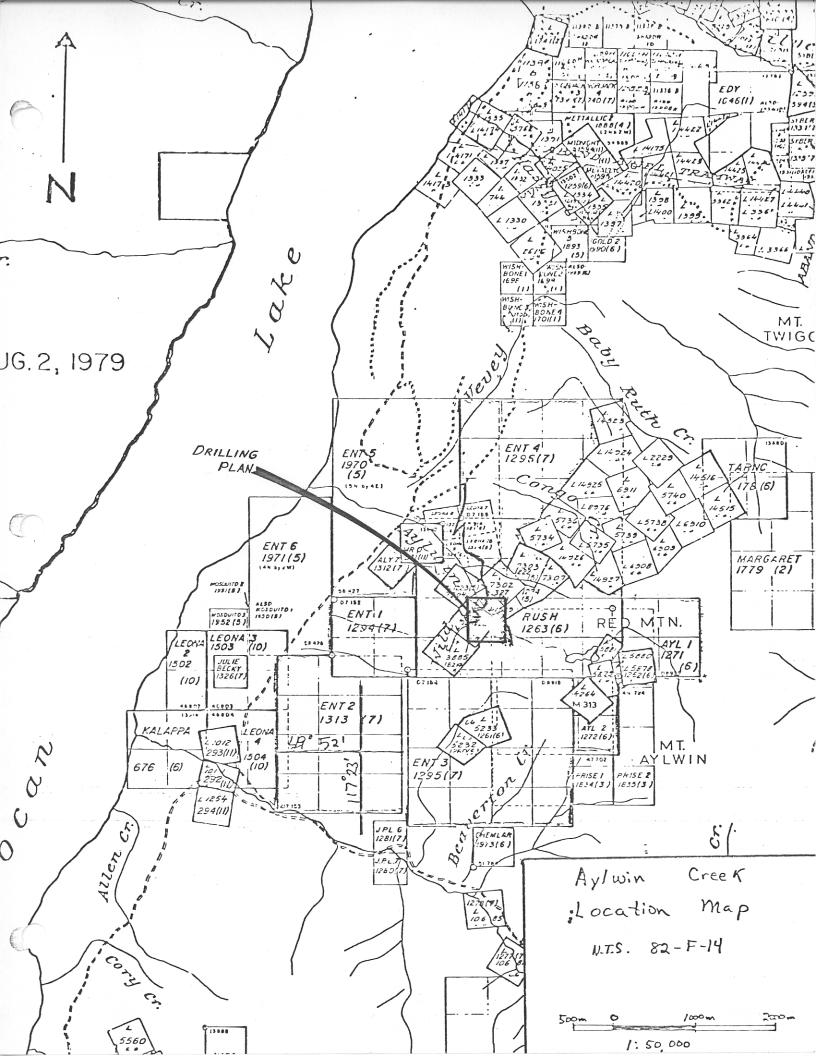
GENERAL COSTS

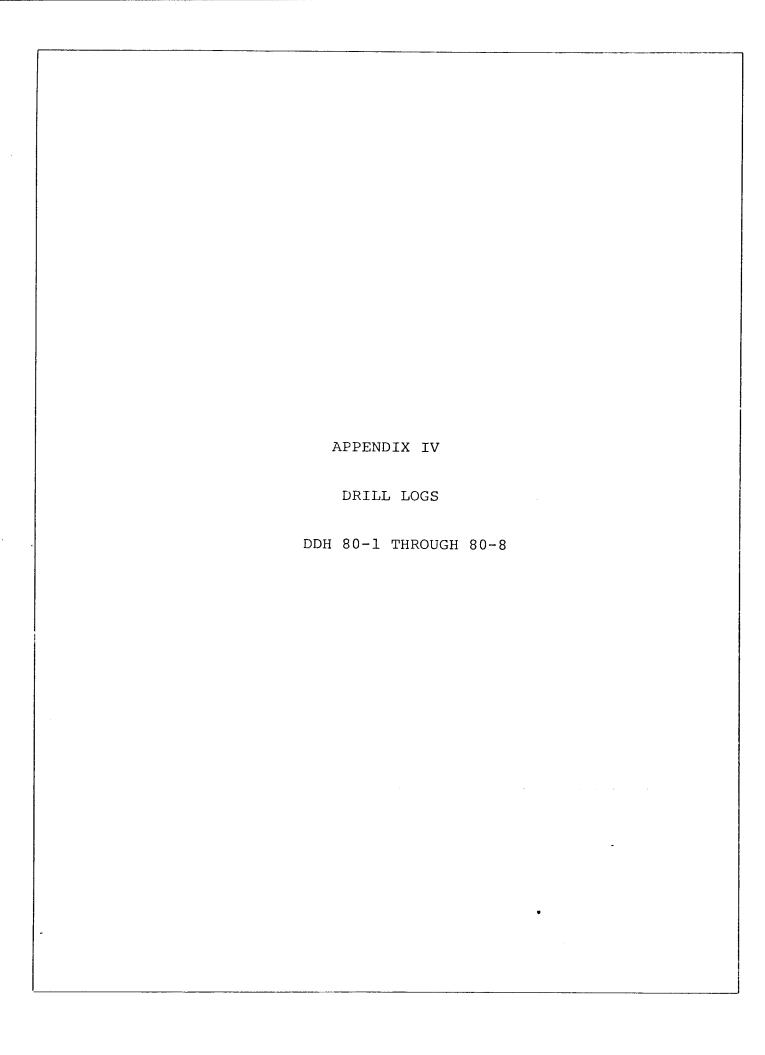
Food & Accommodation		
7 Men, 19 Mar-31 Oct, 343 Man D	Pays @ \$34.75	\$11,918
Supplies Supplies		2,612
<u>Fuel</u>		1,128
Fixed Wing		
Universal Travel (P.W.A.) 19 Mar-23 Oct, 43 Trips Van/Cas	· @ \$62 . 98	2,708
Riocanex Equipment 343 Man Days @	\$ \$3	1,029
Contract Rentals		
Redhawk '79 FJ-40, 2May-22 Aug 113 Days @ \$28.60	\$3,232	
'80 4x4 12 Sep-3 Nov 53 Days @ \$25.40	1,346	
Bowmac Pu 20-26 Oct. 7 Days @ \$133 (Includes Damages)	929	
GMC 4x4 27-29 Aug 2 Days @ \$84	167	
Tilden Firebird 20R 22023 May 2 Days @ \$20	40	
Phoenix 4Dr 23-24 Oct 2 Days @ \$30	60_	5,774
Base Line Survey		
Ray Johnson & Assoc, 29 Sep-3 O	Oct.	3,728
TOTAL GENERAL COSTS		\$28,897

GEOLOGY COSTS

Salaries & Wages	
7 Men, 5 May-31 Oct, 116 Man Days @ \$60	\$6,960
Benefits @ 20%	1,392
Helicopter	
Highland 206B, 20 Jun-15 Aug, 12.1 hrs @ \$382.70	4,631
Base Map Production	2,030
Rock Assays and Analyses - Chemex Labs	
Assays 134 S @ \$9 Analyses 26 Ag @ \$165 57 Au @ \$5 45 Au @ \$7 299 Cu, F, Mn, Mo, Sn, W @ \$15.80 63 Cu, F, Mo, Sn, W @ \$15.10 64 Cu, F, Mo, W @ \$11.85 137 Cu, Mo @ \$2.35 11 Cu, Mo, Pb, Zn @ \$3.75 31 F @ \$9 128 F, Mo, W @ \$9.15 1,171 198 F, W @ \$7.50 1,485 5 Pb, Zn @ \$2.35 12	10,905
Consultants Fees J.R. Woodcock B.P. Minerals \$6,642 2,500	9,142
Report Preparation	1,950
General Costs	
116/343 X \$28,897	9,773
TOTAL GEOLOGY COSTS	\$46,738
DIAMOND DRILLING COSTS	
Salaries & Wages	
7 Men, 1 May-31 Oct, 201 Man Days @ \$60	\$12,060
Benefits @ 20%	2,412
Diamond Drilling	·
Cameron McCutcheon, 1 May-31 Oct 2,626.1 m @ \$90.53	237,732


Hole Directions Surveys		
Sperry-Sun 9 Jun 730m @ \$2.68	\$1,959	
5-6 Jul 648m @ \$3.56	2,306	\$4,265
Core Assays - Chemex Labs		
33 Ag @ \$7 260 Ag, Au @ \$9.50 488 Ag, Au, Cu @ \$15 31 Au @ \$7 210 Cu @ \$5.50 64 Cu, Mn, Mo, S, Sn, Wo3 @ \$47 5 Cu, Mo, Pb, Wo3, Zn @ \$32 117 Cu, Mo, Wo3 @ \$20.50 156 F @ \$12 81 Wo3 @ \$9	\$ 231 2,470 7,320 217 1,155 .50 3,040 160 2,399 1,872 729	19,593
Core Assays Check - Bondar & Clegg 21 Ag, Au, Cu @ \$15	L <u>ab</u>	315
Core Analysis - Riocanex Lab		
81 Cu, Mo @ \$6		486
Core Shed Rental		
Paul Malkin, May-Dec, 8 Mos @ \$55		440
Drill Moves		
R & S Holdings, D6 Cat, 12 Jun, 8 18-26 Sep, 47 Hrs @ \$50 Cat Mob/Demob Lowbed 3 Trips @ 28 Wesley Construction & Transportat D8H Cat 17-22 Oct 26 Hrs @ \$85 Low Bed & Pilot Car & Over Size P Red Mountain Ranch John Deere 450B Cat 28 Oct 4.5	\$2,350 0 840 ion Ltd 2,210 ermit 895	6,441
Report Preparation	MIB (401.00 140	12,184
General Costs		12,104
201/343 x \$28,897		16,934
TOTAL DIAMOND DRILLING COSTS		312,862
PHYSICAL WORK C	OSTS	-
Salary & Wages		
7 Men, 19 Mar-31 Oct, 26 Man Days	@ \$60	\$1,560


Benefits @ 20%		312
Contracted Work		
V & H Contracting '79 D8K Cat, 1-8 May, 52 Hrs @ \$89.75 Power Saw & Labourer 39 Hrs @ \$14.50 Cat Mob/Demob Lowbed, Pilot, Oversize Permit	\$4,667 566 <u>469</u>	5,702
W. C. Wingert		
21 Apr-8 May, TD8 Cat, 45 Hrs @ \$35 Labourer 48 Hrs @ 16 Cat Mob/Demob Lowbed Pu Truck Rental	\$1,575 768 249 125	2,717
General Costs		
26/343 x 28,897		2,190
TOTAL PHYSICAL WORK COSTS		\$12,481


COSTS APPORTIONED

TO CLAIMS

CLAIM	UNITS	GEOLOGY	DRILLING	PHYSICAL	TOTAL
AYL 1	4	\$1,598	\$ -	\$ -	\$ 1,598
AYL 2	6	2,403	- -	_	2,403
RUSH	20	7,989	_	6,241	14,230
ENT 1	4	1,598	_	<u></u>	1,598
ENT 2	12	4,794	_	_	4,794
ENT 3	16	6,392	-	_	6,392
ENT 4	12	4,794	_	3,744	8,538
ENT 5	20	7,989	_	-	7,989
ENT 6	8	3,196	_	-	3,196
AYL 7	1	399	_	-	399
LEONA 7	1	399	_	312	711
LEONA 8	1	399	_	312	711
LEONA 9	1	399	_	312	711
. LEONA 10	1	399	_	312	711
WILLA	1	399	34,311	312	35,022
ROCKLAND	1	399	181,753	312	182,464
RUSTLER	1	399	-	_	399
TRENTON	1	399	_	<u>-</u>	399
LAST CHANCE II	1	399	_	_	399
SILVER BAND	1	399	-	-	399
LITTLE DAISY	1	399	_	312	711
GOLDEN	1	399	-	_	399
IDLER	1	399	96,798	312	97,509
GOLDEN FR	_1	399	NAME	-	399
TOTALS	117	\$46,738	\$312,862	\$12 , 481	\$372,081

Location: 10,000N,		Diamond Drill Record	Hole No. 80-1
Azimuth: -	Dips - collar vertical	Contractor: Canadian Mine Services	Property: Aylwin Creek
Elevation: 1250m	- 240 m -80 ° 55'	Logged By: D.C. Durgin	Claim No. Willa
Length: 812.5m	-510 m -75 ° 48'	Date: Relogged October 1, 1980	Section No. North-South
Core Size: NQ 0-593.6m BQ 593.6-812			Started: May 10, 1980
Purpose: To test rock	geochemical anomaly (Cu, M	10, W, F)	Completed: June 10, 1980

From m	To m	Description	Sample No.	From m	To m	Lengti
0	3.9	Overburden	0	0	4	4m
3.9	15.8	Feldspar Porphyry				
		Fine to medium grained, scattered white	D1780	3.9	6	2.lm
		feldspar phenocrysts average 2mm, grey green				
		to pinkish brown due to patchy secondary	D1781	6	8	2m
		biotite, esp. near bottom, locally frag-				
		mental texture. Moderate to intense sili-	D1501	8.	10	2m
		cification. Strongly fractured with quartz-		<u> </u>		
		chlorite-pyrite and amphibole-pyrite vein-	D1782	10	12	2m
		lets, also quartz veinlets only. Feldspar			1	
		bleached adjacent to quartz-chlorite	D1783	12	14	2m
		veinlets, irregular patchy replacement of				
		breccia matrix by pyrite-amphibole locally.	D1784	14	16	2m
	ļ	8.2-8.4- Breccia with angular siliceous				
		porphyry fragments in very chloritic				
		matrix, a parallel coarse quartz vein -				
		lower contact arbitrary, @ 40°, obscured				
		by alteration. Secondary biotite, fract-		1		
		ure controlled - see 15.7m.				
15.8	30.4	Heterogeneous Breccia	D1785	16	18	2m

0, 1980	
	Qtz-p vein
	4
	4
	<u> </u>
	3
	4
	6
	10

Diamond Divid Record

From m	To m	Description	Sample	From m 1	To an	Length
		Feldspar porphyry fragments most common,	D 1502	18	20	2m
		also cream to white felsites, dark brown		<u>-</u>	·	
		schistose volcanics. Several textural				
		varieties of feldspar porphyry, composit-	D1786	20	22	2m
		ion similar.	<u></u> !			•
		28.2- Coarse crowded feldspar porphyry				
		fragment with feldspars to 4mm and fresh	D1787	22	24	2m
		hornblende phenocrysts, some possibly dykes.				
		Matrix of breccia strongly chloritized,				
		composed of small fragments and rock flour,	D1788	24	26	2m
		some epidote. Rock is silicified, cut by	:			
		quartz-chlorite-pyrite veinlets epidote -				
		chlorite-pyrite veinlets and associated	D1789	26	28	2m
		patchy replacement of matrix and fragments.	- ·			
		Latest is black amphibole-pyrite in hairline				
		fracture network. A few very late fractures	D 1503	_ 28	30	2m
		with calcite and bleaching of adjacent	;			
		feldspar. Chalcopyrite + pyrite in seams,				
		replacements and blebs, generally with	D1790	30	32	2m
		chlorite.				
		28.2 - 20cm fragment much like early por-	i			
		phyry.	D1791	32	34	2m
		18.2-18.4- Strong coarse chalcopyrite-				
		pyrite-pyrrhotite.				
30.4	38.4	Feldspar Porphyry	D1792	34	36	2m
		Generally fine grained, grey to pinkish,				

Hole	No.	80-1	
Page	No.	2	

		Qtz-p vein
		8
		6
		.3
		-1-
		
		4
		<u> </u>
-		
		_9
-		
	 	3
		5
		7
		<u> </u>
		6
		L

From m 1	Fo m	Description	Sample No.	From m	To n	Length
		locally pink-brown to grey-green due to	D1793	36	38	2m
		alteration. 30% feldspar 1mm or less.		·		
		2-3% feldspar phenocrysts to 2.5mm, 1-2%				
		altered hornblende phenocrysts to 3mm.	D 1504	38	40	2m
		Often strongly altered with up to 15% dis-				•
		seminated pyrite with epidote in clots and				<u> </u>
		streaks. Secondary biotite common along	D1794	40	42	2m
		fractures, especially near base. Quartz-				<u> </u>
		chlorite-pyrite veinlets common, later			· 	
		black amphibole-pyrite veinlets locally	D1795	42	44	2m
		intense.				
_38.4	44.6	Heterogeneous Breccia				<u> </u>
		Few large fragments, matrix predomonates.	D1796	44	46	2m
		A few larger feldspar porphyry fragments.				
		Similar to 15.8-30.4; very strong black				
		amphibole-pyrite on fractures, up to 10%	D1797	46	48	2m
		pyrite in clots and disseminations,	i			
		silicified.				ļ
44.6	50.2	Feldspar Porphyry	D 1505	48	50	3m
		Very similar to 30.4-38.4, a bit more coarse				
		grained. 5-7% disseminated pyrite with		-		
<u> </u>		chlorite, and minor epidote. Patchy	D1798	50	. 52	2m
		pinkish secondary biotite overprinted with				
		green chlorite-pyrite and amphibole-pyrite				
		alteration. Mineralization as above.	D1799	52	54	2m
50.2	55.3	Hoterogeneous Breccia			<u></u>	1

Hole	No.	80-1	
Page	Νo.	3	

,	
	Otz-pv
	Qtz-py veins
 	ACTIVE
	3
	7
	10
	11
	10
	13
'	
	15
 	1.7
	I
	15
 _	
	13

From m	To m	Description	Sample No.	From m	To m	Length
		Breccia nature obvious only locally.	D1800	54	56	2m
		Several large dark brown-green volcanic			•	1
		fragments, a few feldspar porphyry frag-				
		ments. Pyrite-chalcopyrite in blebs and	D1801	56	58	2m
		veinlets very abundant locally (52.7),				•
		decreasing downward. Amphibole-pyrite				ļ
		veinlets very abundant @ low angles to	D 1506	58	60	2π
		core, lower contact sharp @ 550 to core				
		axis.				
55.3	60.8	Feldspar Porphyry	D1802	60	62	2m
		A bit more coarse than 44.6-50.2, crowded				_
		feldspar phenocrysts to 4mm, average 2mm,				
		5% hornblende pseudomorphs, a few quartz	D1803	62	64_	2m
		crystals, aphanitic matrix. Pink-brown due				
		to abundant secondary biotite, 1-2% diss-				
		eminated pyrite. Pyrite-black amphibole-	D1804	64	66	2m
		chlorite veinlets common, quartz-epidote				
		veinlets.				
		58-60.8- Gougy zone, many slips, strong				
		argillic alteration, a few quartz veins.	İ			
	T	Upper contact appears chilled against breccia.				
60.8	65.0	Heterogeneous Breccia				
00.0	7.7	Most fragments are feldspar porphyry similar				
		to 55.3-60.8, a few andesitic fragments,				
-		a few tan cherty fragments, silicified.				ļ
<u>, , , , , , , , , , , , , , , , , , , </u>		Weak to moderate typical chlorite-pyrite-	<u></u>			

Hole	No.	80-1	
Page	No.	4	

		Qtz-py veins
		12
		5
		3
		5
		_ 3
		
	 	
		9
	 	
-	 	
	 -	
	 	
-	1	
· 	 	
	<u> </u>	

Hole No. 80-1

Qtz-py

11

veins

To m Sample No. From Description Length mineralization, minor chalcopyrite-perhaps 0.1% Cu. Matrix grey, fine grained silicified. D1805 66 68 65.0 115.0 Feldspar Porphyry Same as 55.3-60.8. A crowded feldspar porphyry with feldspar phenocrysts to 4mm, D 1507 : 70 2m average 2mm. Biotite after hornblende. trace quartz eyes, aphanitic matrix. General pink-brown colour due to secondary biotite which is often replaced by disseminated D1806 72 pyrite and epidote. Biotite destroyed in silicified envelopes of pyrite-epidote-D1807 74 black amphibole (or dark chlorite?) vein-2m lets. -Weak vague fragmental textures perhaps a function of alteration. Same D1808 76 2m_ pyrite-epidote-amphibole mineralization. weak. 68.5- 72.3- Chalcopyrite-pyrite-pyrrhotite D1809 76 78 2m in clots and streaks as replacements along fractures with chlorite. Less abundant chalcopyrite-pyrite present throughout. D 1508 80 2m Also locally associated with patchy silicification. D1810 82. 93-101.3 - Gradually becomes brecciated, developing patchy silicification, matrix

Page No.

From m	To m	Description	Sample No.	From m /	To m	Length
	<u> </u>	very fine grained, siliceous. No foreign	D 1811	82	84	2m
		fragments - porphyry is crackled and silic-				
		ified- not a primary texture, but result				
		of alteration. Strongly fractured with	D 1812	84	86	2m
		chlorite and pyrite minor chalcopyrite and				•
		pyrite on, and as replacement from fractures				
		Becoming more biotitic. Last 2m, fewer	D 1813	86	88_	2m
		obvious fragments. Occasional gypsum				
		veinlet.				
			D 1509	88	90_	2m
		101.8-103.7- Very strong red-brown biotite.				
		5% sulfides, pyrite-chalcopyrite.				
			D 1814	90	92_	2m
		103.7-111.2- Biotite content decreases.				
		silicification, chlorite-epidote-pyrite				ļ
		increases. Still some feldspar porphyry.	D 1815	92	94	2m
	_	occasional disseminated chalcopyrite,				
		abundant pyrite.				
			D 1816	94	96	2m
		105.8- 20cm leucocratic aplitic textured				
		dyke @ 45°.				
	}		D 1817	96	98	2m
	!	111.2-115.0 - Silicification and fracturing				
		increasingly intense. No obvious fragments.				
		3% disseminated pyrite with epidote. No	D 1510	98	100	2m
		secondary biotite. Rock grey green in			<u> </u>	1,

Hole	No.	80-1
Page	No.	6

	qtz-py veins
	2
	-
	2
	3
	9
	2
	4
 	4
 	ļ
 ļ <u>-</u>	1
	<u> </u>
 <u> </u>	2
	L

From	To	Description	Sample No.	From m	To m	Length
		colour. Minor black amphibole-pyrite	D 1818	100	102	2m
		veining, increasing toward end.	ļ_ ļ			
			1			
115	147.3	Heterogeneous Breccia	D 1819	102	104	2m
<u> </u>		Most common fragments are feldspar porphyry				•
		in several textural varities, many look				<u> </u>
		much like feldspar porphyry. A few similar	D 1820	104	106	2m
		to early porphyry. 10-15% are brown to				ļ
		black schistose metavolcanics. Fragments		<u>-</u> -		<u> </u>
		commonly 5-10cm, occassionally larger,	D 1821	106	108	2m
-		with smaller interstitial fragments and			ļ	<u> </u>
		light apple green matrix (rock flour?).			1	-
		little or no brown biotite. Fragments gen-	D 1511	108	110	2m
		erally rounded with reaction rims, especi-	ļ			<u> </u>
		ally black fragments.				
	"	2-5% disseminated pyrite, trace chalcopyrite	D 1822	110	112	2m
		Pyrite-epidote-chlorite in stringers and				
		clots abundant but erratic. Black amphib-			 	
		ole (or chlorite) plus pyrite on fractures -	D 1823	112	114	2m
		weak to intense. Occasional late gypsum			ļ	<u> </u>
		veinlets.		<u> </u>		
\			D 1824	114	116	2m
		114.5-116.5- Intense pyrite-black amphibole				
	1	veining.	<u> </u>		<u> </u>	
			D 1825	116	118	2m
		133.6- 3cm pink-brown garnet-epidote vein	D 1512	118	120	2m

Но	e No.	80-1	
Pag	e No.	7	

		qtz-py veins
		2
		3
		
		2
		~
		4
		7
*	1	ţ
		4
	<u> </u>	4
	<u> </u>	*
		6
-		
		3
		4
		1 1
		· - · ·

From m	To m	Description	Sample No.	From m	To m	Length
			D 5022	146	148	2m
		173-177- Odd parallel banding, dark lines				<u> </u>
		spaced 3-5mm apart @ 30° to core- incipient	D 1515	148	150	2m
		foliation? Cuts across fragments and				ļ
		epidote-pyrite-quartz bands.	D 5023	150	152	2m
			D 5024	152	154	2m
			D 5025	154	156	· 12m
		•	D 5026	156	158	2m
			D 1516	158	160	2m
			D 5027	160	162	2m
			D 5028	162	164	2m
		187.7 - Small fragments in matrix high-				
		lighted by alteration along calcite	D 5029	164	166	2m
		veinlets.	D 5030	166	168	2m
		187.9-191- Several very large fragments	D 1517	168	170	2m
	1	to 30cm.				
			D 5031	170	172	2m

Hole	No.	80-1	
Page	No.	9	

		qtz-py veins
		7
		6
		6
		2
		
		9
	 	<u> </u>
		3.6
	 	16
		7.1
	 	11
	ļ. ———	
	f	7
-	 	11
	 	
	 -	4
	 	11
	ļ	
	ļ	3
	-	5
	1	L

From m 1	To m	Description	Sample No.	From m]	To m	Length
			D 5032	172	174	2m
		190- Below here veining decreases to only			·	
		occasional chlorite-epidote-pyrite vein-	D 5033	174	175,8	1.8m
		lets and late gypsum veinlets.	l			-
			D 5034	176,5	178	1.5m
		202.3-202.6- Feldspar porphyry fragment	D 1518	178	180	2m
		with hornblende - early porphyry?				
			D 5035	180	182	2m
		204.5- Epidote-chlorite-amphibole-pyrite			<u>-</u>	1
	· · · · · · · · · · · · · · · ·	band nearly parallel to core. 5cm dark	D 5036	182	184	2m
		chlorite along margins - these bands might				
		be tuffisite dykes?	D 5037	184	186	2m
		209.7- Fragment of feldspar porphyry looks	D 5038	186	188	2m
		just like feldspar porphyry from higher		_		
		in this hole.	D 1519	188	190	2m
		215.6- Very large fragments? of dark	D 5039	190	192	2m
		schistose metavolcanic.				
			D 5040	192	194	2m
		216.6- Early porphyry (?) fragment.				
			D 5041	194	196	2m
		221.8 - 20cm breccia fragment of early				
		porphyry with barren milky quartz veins.	D 5042	196	198	2m

Hole No. 80-1 Page No. 10

From m	To m	Description	Sample No.	From m	To m	Length
			D 1520	198	200	2m
		220-233- Breccia contains many early	ļ		•	
		porphyry fragments. Moderate chlorite-	D 5043	200	202	2m
		epidote-pyrite veining and disseminated				
		pyrite- 3-4% total sulfides.	D 5044	202	204	2m
		233-234- Breccia composed of early por-	D 5045	204	206	2m
		phyry fragments in a black matrix.				
			D 5046	206	208	2m
		235.7- 236- 40cm black schistose meta-				
		volcanic fragment.	D 1521	208	210	2m
		247.7-248 - Brecciated early porphyry with		210	212	
		black matrix.				
				212	214	
		248-260- Secondary biotite common in				
		several fragments. 3-5% disseminated		214	216	
		pyrite.				1
				216	218	
		251.1 - Two 1-2mm quartz-MoS ₂ veinlets				<u> </u>
		perpendicular to core axis - appear later	D 1522	218	220	2m
		than breccia. In a zone of secondary				-
		biotite 15cm long.		220	222	
		253.2 - Feldspar porphyry fragment with		222	224	
1		one large quartz eye and 5% disseminated				

			· · · · · · · · · · · · · · · · · · ·
Hole	No.	80-1	
Page	No.	11	
			qtz-py

	qtz-py veins
	8
	4
	6
	6
	7
	2
 	4
	4
	2
 	2
 	6
 	5
 	1
 	<u> </u>

From	To m	Description	Sample No.	From m	To m
		pyrite.		224	226
				226	228
		<u>262.7 - 263.3</u> - Lamprophyre dyke,			
		upper contact @ 40°, lower 60°.	D 1523	228	230
		263.3 - Breccia predominantly fragment		230	232
		supported, little matrix, which is largely			
		very well mixed small fragments - early		232	234
		porphyry, feldspar porphyry, augite			
		porphyry, dark schistose metavolcanics,		234	236
		fine grained siliceous volcanics. Poorly			
		fractured, very few veins, 1-2% dissemin-		236	238
		ated pyrite with epidote replacing mafic		,	
		minerals. Occasional sulfide blebs, largely	D 1524	238	240
		pyrite, minor pyrrhotite.			
	-			240	242
		277.9 - 5cm lamprophyre dyke @ 55°.			
	-	Early porphyry fragments and related		242	244
		ones with quartz eyes, quite common through-			
		out.		244	246
				246	248
	`		0.1505	240	
			D 1525	248	250

Hole	٦٥.	86
Page	No.	12

 	12	
		qtz-py veins 8
 		8
	,	8
		14
		6
		3
		3
		4
		1
		2
		.2
		1
		1

	Diamond Dri	-				Hole N	O. 8	10-1
						Page N	o. ₁₃	
From To	Description	Sample No.	From m	To m	Length			qtz-py veins
			250	252				1
	292.5 - Patchy, weak to moderate silic-		252	254				4
	ification and pale green alteration,							
	largely fracture-related.		254	256	•			3
			256	258				2
	296.2m- 2cm fragmental dyke (?) -	D 1526	258	260	2m			1
	feldspar fragments and silicified shards in chlorite-epidote matrix.		260	262				2
			262	264				2
	297.8 - 20cm interval, feldspar porphyry fragments in brown bioite matrix- biotite breccia.		264	266				3
	breccia.		266	268				3
	299- Increasing pale brown alteration and	D 1527	268	270	2m			. 4
	fracturing.		270	272				2
			272	274				5
		-	274	276				10

Diamond Drill Record

Hole 1 2 21-2

Sample No. From To m From m Description Length 9 D 1528 278 280 301.5 302.0 Lamprophyre Dyke Upper contact @ 10°, lower 45° (broken core) 230 282 232 284 302,0 302,2 Lamprophyre Dyke Upper contact @ 45°, lower @ 45°. 234 286 4 2 236 288 238 D 1529 290 361.8 Heterogeneous Breccia 304.3 Same fragment types as above. 290 292 304.3-307.0- Weak silicification, bleach-292 294 ing, pale brown colour, fading to normal **294** 296 brown - green - white colours. 296 298 309-311, 314-316,5 - Fragments generally less coarse than normal, most less than D 1530 **298** 300 2::: 300 302

Hole No. 80-1

Page No. 15

From m	To m	Description	Sample No.	From m	To m	Length	qtz-p veinle
			_	302	304	+	3
		320-330 - Moderate silicification,		304	306		5
		crackling, early fine grained veinlets,					
		2% disseminated pyrite.		306	308_	•	1
		332.8, 332.9 - 3 anhydrite veinlets with	D 1531	308	310	2m	_ 5
		minor chlorite and pyrite @ 40° to core.					
				310	312		4
		334.0- Begin blebs of pyrite and minor		312	314	-	4
		pyrrhotite with epidote and chlorite,		1			
		3-4% pyrite.		314	316		4
-				316	318		5
			D 1532	318	320	2m	5
		341.0 -Begin bleaching, increasing		-			
		chlorite-epidote-pyrite-pyrrhotite-mag-		320	322		5
		netite. 5-6% sulfides by 346.		ļ			
			1	322	324		5
				324	326		6
				326	328		6

Hole No. 80-1
Page No. 16

From m	To m	Description	Sample No.	From m	To m	Length	g/t Ag	g/t Au		qtz-py veins
			D 1533	328	330	2m				4
				330	332	 				3
		346.4- 10cm white pegmatite dyke @								
		40°.		332	334	<u> </u>			 	2
		346.1- 15cm white pegmatite dyke @ 60°.		334	_336					3
				336	338					3
		349.5 - 350.0-Coarse pyrite streaks	D 1534	338	340	2m				2
		with chalcopyrite.		340	342					9
		352 9-361 8 -very strong chlorite		342	344					2
	<u> </u>	epidote alteration with abundant blebs and streaks of pyrite-pyrrhotite		344	346				 	4
		-magnetite, trace chalcopyrite,					<u> </u>			
		replacing matrix and some mafic fragments, 10- 12% sulfides.		346	348	-				14
		+ Lagrantia To TE Distriction	D 1535	348	350	2m	1.8	0.089*		12
		360.8- 2 quartz veins as below -		350	352					10
		irreqular, glassy, cut by pyrite- pyrrhotite mineralization - fragment		3 5 2	354					18
		in breccia. Transition abrupt, contact								

From m	To m	Description	Sample No.	From m	To m
		not sharp.		354	356
				356	3 58
			D 1536	358	36
61.8	394.1	Meta Volcanic			
		Textures destroyed. Moderate tan		3 60	36
		argillic alteration and patchy green			
		color. Very abundant/quartz stringers		3 62	36
		and veinlets, several ages, varying			ļ
		dips. Barren to trace MoS. Parent		364	36
		rock unrecognizeable. Abundant feld-	11		ļ
		spars to 5mm, variable. Variable silic-		366	36
		ification, occasional quartz eyes.		·	
		late gypsum veinlets common.	D 1537	368	37
				370	37
		369, 372.6 - Crushed zone several		372	37
		quartz veins with minor MoS, scattered.			
		2,		374	37
		377.8, 378.8- lcm pegmatite veinlets		376	371
		@ 45 ⁰ .	D 1538	378	381

Hole	No.	80-1	
Page	No		

		gtz +/-	qtz-py s veins
-		mo vein	s veins
			24
			·
			19
			13
			8
		5	10
		18	5
		+20	7
		+20	4
		+20	2
		+20	4
		+20	1
		+20	4
		+20	5
	 	+20	2
			
	l	L	l

From m	To m	Description	Sample No.	From m	To m	Lengt
				380	382	
		381.5 - 382.5 - Patchy hematite alter-		382	384	
		ation of feldspars associated with late				
		calcite veinlets.		384	386	-
				386	388	
		383.8 - 0.7cm quartz vein with MoS, on				
		margins.	D 1538	388	390	2m
			-	390	392	
		384.0- 40cm quartz vein @ 30°.	1			
				392	394	
		386.8 - 10cm gouge zone @ 45°		-		
				394	3 9 6	
		387.0 - 0.6cm quartz vein with inclusions of volcanics.		396	398	
			D 1540	3 98	400	2m
		390- Massive pyrite patch 30cm long		400	402	
		with minor pyrrhotite, hematite.		402	404	
		394, 394.5 - 2 coarse aplite dykes @ 70°.		404	406	

Hole	No.	80-1	
Page	No.	18	

qt2-Mo	qtz-py
veins	veins
 +20	2_
i	
 +20	3
	i
 +20	3
 	· · · · · · · · · · · · · · · · · · ·
 +20	3
+20	10
+20	4
+20	9
 	·
+20	11
 , 'EU_	
+20	14
 7.4.0	
+20	11
 1.20	
+20	5
 1.20	
 1.00/10	l _
 +20	3
	1
 . 20	
 +20	8
	[

Hole	Ne	30-1
Page	No.	3.9

From m	To m	Description	Sample No.	From m	To m	Lengt
				406	408	-
394.1	423.0	Meta Volcanics	D 1541	408	410	2m
		A volcanic breccia, fragments visible,				
		but indistinct, chloritic, pale brown		410	412	•
		tinge- weak argillic alteration? Silici-				
		fied to 401.6 with other crenulated		412	414	
		quartz veins, cut by later more glassy	ļ			
		ones. A few late pyrite-chlorite veins.		414	416	
				416	418	
		401.6-415.0 - intense argillic alteration	D 1542	418	410	2m
		with crenulated quartz veins, fragmental				
		texture not evident, tuffaceous? Other		420	422_	
		quartz veins crackled (see 406.2) very				
		little sulfide other than 1% disseminated		422	424	
		pyrite.	<u> </u>		<u> </u>	
			_	424	426	
	<u> </u>	403.0-423.0 - Massive quartz veins up to		42.6	428	
		1.5 metres wide make up 50% of rock.				
		Many other stringers and veinlets. All	D 1543	428	430	
	<u> </u>	barren. Older veins contorted.				
	1			430	432	
		Lower contact abrupt but not sharp.			1	

ptz + -	
gtz +, - Mo vei-	z-py
+20	
_	
+20	3
+20	
+20	٥
+20	5
+20	5
+20	<u> </u>
<u>+20</u>	3
+20	-
	
1	2
1	1
ميشود .	
1	<u>6</u>
-	
11	8

From	To m	Description	Sample No.	From m	To m	Length
				4 32	4 34	
				<u>4</u> 3 <u>4</u>	436	
				4 36	4 38	•
423	472,0	Quartz vein.	D 1544	4 38	440	2m
		Upper contact 0 20° to core. Quartz vein, milky, cut by translucent quartz		440	442	
		stingers as @ 434.6. Scattered silici- fied and resorbed volcanic fragments.		442	444	
		Hairline quartz-pyrite-pyrrhotite veinlets about 6/metre. Hairline fractres		444	446	
		with gypsum more than 20/metre. A few small quartz-pyrite-magnetite veinlets.		446	448	
			D 1545	448	450	2m
		425.6 - Trace MoS ₂ on fracture		450	452	
		426.8 - same with pyrite. Trace MoS ₂ common below 425m, 0.00X Mo.		452	454	
		432.2, 434.6 - Quartz-MoS ₂ pyrite veinlets		454	456	
<u> </u>		@ 25° to core, 60°.		456	458_	

Hole	No.	80-1	
Page	No.	20	

 quartz vein	qtz-py veins
3	6
 2	14
1	5
1	9
1	13
1	9_
 1	4
1	5
 1 <u>1</u>	4
 1	4
	4
22.00	4
	<u> </u>
4	8

From Tom	Description	Sample No.	om	To I on	Length
	cut by quartz-pyrite veinlet, minor	D 1546	<u> 5 a</u>	46_	<u>-</u>
	disseminated pyrite.	-		•	<u> </u>
		-	53	462	
	444- 448 - granular textured quartz-		- 52	4 €≐	•
	silicified volcanic?			-	
			- 54	46-	
			=5	4 € Ξ	
	444.8, 448.2 - 1-2cm coarse granitic				
	dykelets with strong argillic alteration @ 450	D 1547	- £8	471	<u> </u>
	451.2 - 452.0 - Aplite dyke with		<u></u>	472	
	pegmatite patch, argillic alteration,				
	cut by quartz-pyrite veinlet @ 60° to		72	47-	
	core.				
		_	74	47f	
	454.2, 454.8 - Same, 10cm, @ 60°.		7-6	473	
		D 1548	<u>s</u>	48 I	
	452 - 473.2 - Abundant volcanic fragments.				
	pyrite-chlorite-specularite-pyrrhotite		-50	46.1	·
	patches; 2-5% pyrite, disseminated and				
	in fractures.		~ S 2	49 -	

Hole	80	
Page	21	
	\(\frac{1}{2}\)	atz-
	-	5
	·	
		2
		4
	-11	7
	1	
	<u> </u>	10
		16
n www.		

Rio Tinto Canadian Exploration L. Ted

From m	To m	Description	Sample No.	F	To m	Length
		457.5-458.6 - Aplite dyke @ 45°,				
		green, intense sericite-quartz alteration.	 	43 -	-136	
				4°	÷88	•
		464 - 469.5 - MoS ₂ common in hairline				-
		fractures and quartz-pyrite veinlets,	D 1549	<u>.</u>	<u> 490</u>	2
l		grade 0.02% Mo? Many gypsum veinlets.	<u> </u>			
		469.3, 469.5- Pegmatite dykes @ 70°.	-	<u>.</u>	<u> </u>	
472.0	478.7	Early Porphyry	1	<u>.</u>	<u> 494</u>	
		Fragments in quartz vein as above	<u> </u>			
		473.2-473.6- Diorite dyke, silicified,		4	-96	
		weak argillic alteration. Bleached				
		along gypsum veinlets.			498	
		477,4 - 20cm pink granitic dyke @	D 1550	41	Ξ00	. 2=
		os co core.		5	∃02	
478.7	481.8	Diorite				
·· · · · ·		Medium grained, relatively fresh		5 '	504	
		biotite; chloritic alteration along				
		quartz-chlorite vein; fresh, with		5 -	506	·
		pegmatite at both contacts.				
				5	508	
481.8	488.3	Quartz_vein				
	<u> </u>	Nearly all quartz with silicified early	D 1551	5	510	± 2

Hole No.	EC-1
Page No.	
	spec s

=2_	
gtz-py spec	12
spec	
3	
1	
	1
22	j <u>-</u> -
1	· =
	<u> </u>
•	
4	-
	i
3	-
5	-
	!
16	! ==
	
	1
	2:
8	1 :
7	-
	·
5_	-
	r
7	
	
4	<u> 1</u>
8	

Rio Tinto Canadian Exploration Limited

구 2'8 시 2 23 23

From m	To m	Description	Sample No.	Frant	To m	Length
		porphyry fragments. Several 1-2cm			:	
		pink pegmatite dykelets with weak		5	5 12	
		argillic alteration. Several 1-3cm				
		coarse diorite dykes with argillic			514	
		alteration. Minor MoS ₂ .				-
	*			<u> </u>	516	
488.3	492.8	Biotite Schist	<u> </u>			
		Weak to moderately chloritized, strong		5 <u></u> 5	518	<u> </u>
		chlorite along fractures and quartz				
		veinlets. Late quartz-calcite veinlets.	D 1552	<u> </u>	5 20	2m
		Schistosity @ 450				
		•		<u> </u>	5 2 2	
492.6	495_6	Biotite Quartz Monzonite (Nelson=related?)		•		<u> </u>
		Medium grained, locally pegmatitic.		511	524	<u> </u>
		Foliated near lower contact. Older				
		than quartz veining, moderate argillic		<u> </u>	5 2 6	
		alteration.				
				5 D F	5 28	<u> </u>
495.6	511.2	Ouartz Vein				
12313	1,	Glassy translucent quartz with occasion-	D 1553	E 2 :	5 30	2111
		al silicified early porphyry inclusion			<u>,</u>	
		with kaolinized feldspars. Thin quartz-		51:	5 32	
		pyrite-specularite veinlets 0 30° + 70°				
		to core. Quartz-pyrite-MoS ₂ on		F 7 2	5 34	
	<u></u>	fractures: grade less than 0.01% MoS,			i	
		veinlets, some MoS, on fractures ; grade		₹#-	5 36	

Hole . 80-1
Page . 24

qtz-py spec

11

16

22

From	To m	Description	Sample No.	<u></u>	To m	Le
		less than 0.01% MoS ₂				
		499.0 - 15cm pegmatite dyke 0 60°.		<u>=</u> = <u></u> -	<u> </u>	
		500.1 - Hornfels inclusion.				
		503.0 - Quartz-pyrite-MoS ₂ - hematite	D 1554	<u> </u>	540	2=
		veinlets.			·	<u> </u>
		503.7, 504.1 - Pegmatite dyke, weak		5 - 1	542	ļ
		kaolinization @ 50 ⁰ to core axis				
		503.8 - MoS, in gouge @ 50° to core.		<u> </u>	544	<u>:</u>
		504.5- 511.2 - Abundant argillically				!
		altered fragments.		<u> </u>	546	!
				· ·	· · · · · · · · · · · · · · · · · · ·	
511.2	517.7	Biotite Schist	<u> </u>	Ę-:	54.8	<u>i</u>
		Moderate to strong chlorite, especially		.		<u>;</u>
		along veinlets. Hairline calcite-pyrite	D 1555	<u> </u>	550	
		veinlets, quartz-pyrite veinlets. A few				:
		small slips. Foliation @ 70°.			55.2	<u>:</u>
		515.1 - 2cm pegmatite dyke, with		,		·
		6cm chlorite-epidote alteration envelope.		<u> </u>	55.4	!
517.7	567.3	Early Porphyry		≠ ≠ _	55.6	:
317.7	307.3	Contact @ 70° in quartz veining 35%	1			
		rounded indistinct feldspars, average		97.4	558	
		2mm, a few to 5mm, 10% black biotite.				
		Fine grained matrix, 3% disseminated	D 1556	<u> </u>	560	
		pyrite with epidote. Strongly silici-				
		fied, bleached. Quartz stockwork intense:		55	562	:

From	Description	Sample ————————————————————————————————————
	at least 5 vein sets: 1) barren quartz,	
	2) barren quartz, 3) quartz-pyrite-chlor-	
	ite +/- chalcopyrite (@_20-30°),	
	4) quartz-MoS ₂ +/- pyrite, 5) chlorite-	
	pyrite-calcite.	·
	520.4-521.3 - Granitic dyke, medium	
-	grained, equigranular, locally pegmatitic,	
-	white, 5% biotite, fresh. Cuts quartz	
	veins, a MoS ₂ -quartz vein; cut by quartz-	
-	pyrite-chlorite, chlorite-pyrite-calcite,	
}	MoS ₂ - pyrite veins	
	522.6-523.2- Strongly fractured.	·
	^**	
	524.5- 2 pegmatite dykes, 5 + 10cm.	
	Bleached feldspars near late fractures,	
	silicified adjacent to chlorite-pyrite	
	veinlet.	
		A-1187
	528.0 - 530.8 - Biotitic metavolcanics	
	532.0 - locally abundant pyrrhotite, occasion-	·
	al quartz-MoS2, quartz-pyrite-MoS2 vein-	
	lets.	
	536 - 537.3 - Chloritic metavolcanic	
	inclusion.	

From	To m	Description	Sample No.	From m	To I m	Leng
		537.5 - Late 4mm quartz-MoS, vein				1
		parallel to core.		562	564	
		546.2 - Siliceous white pegmatite dyke.				
		547.4 - 548.3 - White pegmatite dyke,		564	566	<u> </u>
	-	cut by translucent quartz veins and by				
		quartz-pyrite-chlorite veins; has clots	_		<u> </u>	ļ
		of pyrite. Contact 0 50°.		566	568_	<u> </u>
		550.0-552.5 - Late intense silicification	1			
		and pink-brown mottled alteration with			ļ	ļ
		up to 15% pyrrhotite and minor chalcopyrite	D1557	568	570	2 m
		in irregular patches - hornfels inclusions.		i		
		554.0 - 567.3 - Feldspar phenocrysts dis-	ļ	570	572	-
		tinct, white, unaltered(?), biotite		· ·		
		only weakly altered, intense quartz			<u> </u>	-
		stockwork.	<u> </u>	572	574_	
		556.0 - 557.8 - Lamprophyre dyke @ 45°.	<u> </u>		ļ. <u></u>	<u> </u>
		562.0 - 567.3 - Intensity of stockwork			<u> </u>	<u> </u>
		increasing, late translucent quartz		574	57.6	ļ
		veining.				
		563.4 - 50% vein quartz, relatively fresh			İ	
		quartz porphyry, veins nearly parallel		576	57.8	
		to core.			ļ	ļ
		563.1, 565.0, 565.4 - 10cm pegmatite dykes				
		@ 45 ⁰ ,	D1558	578	580	2m_

Hole	No.	80-1	
Page	No.	26	

 Qtz-Py	Qtz-Mo
 3	4
 3_	2
 2_	2
 5	3
 5	7
 	·
 3	2
 1	0
 -	- <u> </u>
1,	0
 ##*	
 1	_0
 J	

From m	To m	Description	Sample No.	From m	To m	Length
567.3	568.4	Nelson Quartz Monzonite				
		5-10% feldspar phenocrysts 4-6mm in		580	582	
		seriate groundmass, 15% biotite, some				
		hornblende - weakly chloritized.				
		A few K-spar phenocrysts 2-4cm.		582	584	•
		Quite fresh.				
568.4	572.7	Early Porphyry		584	586_	
		As 517.7 - 567.3 - Same intense stockwork				
		as above with veining and alteration				
		minor Mos ₂ .		586	588	
572.7	587.5	Nelson Quartz Monzonite				
		As 567.3 - 568.4, more leucocratic,	D1559	588	590	2m
		no veining, few large K-spars,			-	
		gradational lower contact			ļ	1
		575.4 - Tectonic breccia - 5 cm.		590	592	
		Below 567, late chlorite-pyrite-calcite vein-				-
		lets common, weak chlorite envelopes,				
		quite fresh otherwise.		592	594	
		584.8 - 10cm pegmatite dyke @ 45°.				
		585.8 - 40cm aplite-pegmatite dyke				
	-	@ 45°.		594	596	
587.5	590.5	Early Porphyry				
		As 517.7 - 567.3 incipient stockwork,		596	598	

Hole	No.	80-1			
Page	No.	27	٠.		

Qtz-Py	Qtz Mo
1	0
 0	0
 1	0
2	0
 	. 4
 1	4
 1	0
 0	0
	-
 1	0
 	_
 2	

From m	To m	Description	Sample No.	From m	To m	Length
		fractured, kaolinized, silicified.				
		590.1 - 4 quartz-MoS,-pyrite veins	D1560	598	600	2m
		e 60°				
			ļ	600	602	
						<u> </u>
590.5	602.1	Nelson Quartz Monzonite				
		As 567.3 - 568.4 guite fresh.	ļ	602	604	
		Reduce to BQ at 593.6 metres.		ļ		
				604	606	_
		595.2 - Several chlorite-calcite-pyrite		-		
		veinlets, bleached & silicified for 40cm.		606	608	_
		597.0 - 20cm pegmatite dyke @ 25°.	D1561	608	610	2m.
		596.5 - 597.6 - Hornfelsed heterogeneous			1	
		breccia as 604.8 - 644.1, contact @ 30°.		610_	612	_
		600.7 - 602.1 - strongly silicified,		 		
		pinkish-brown mottling, several quartz-	_	612	614	ļ
		MoS_2 veins @ $30-45^{\circ}$ - early porphyry(?).				
				614	616	-
602.1	602.9	Heterogeneous Breccia				
		As 604.8 - 644.1, silicified, upper contact		616	618	
·		50°, lower 40°.				
602.9	604.8	White Feldspar Porphyry (?)	D1562	618	620	2m
		5% partially altered biotite, 30-40%			ļ	
		white feldspars to 2mm in aphanitic white	1	620	622	

Hole	No.	80-1	
Page	No.	28	

	Qtz-Py	Qtz-Mo
	a	0
	2	6
	6	0
	_1	0
	1	-
	1	_0
	2	0
	_	
	3	
	2	00
	0	0
	1	1
	1	0
	0	_0

From m	To m	Description	Sample No.	From m	To I m	Length
		feldspars to 2mm in aphanitic matrix, trace				
		disseminated pyrite.			· · · · · ·	
604.8	644.1	Heterogeneous Breccia		622	624	
00110	0 1 2 2 2					•
		strongly metamorphosed. Heterogeneous volcanic		624	626	
	1	and porphyritic fragments in green fine-grained	ł			
		matrix, scattered interstitial clots of pyrite		626	628	
		pyrrhotite +/- chalcopyrite. Occasional irregu				
		lar veins of pyrite-pyrrhotite - hornfels	D1563	628	630	2m
		related? Late calcite veinlets ~ 20/m, several				
		large andesite blocks.		630	632	
		605 - 606.1 - Biotite schist with		<u>.</u>	<u> </u>	
Very similar to upper 400 metres except strongly metamorphosed. Heterogeneous and porphyritic fragments in green fit matrix, scattered interstitial clots of pyrrhotite +/- chalcopyrite. Occasional lar veins of pyrite-pyrrhotite - horning related? Late calcite veinlets ~ 20/m, large andesite blocks. 605 - 606.1 - Biotite schist with 10% pyrite-pyrrhotite-chalcopyrite in clots, lower contact @ 30°, mottled received and pale green. 611.3 - 613.0 - Biotite schist, lower contact @ 40°. 614.3 - 614.8 - Aplite-pegmatite dyke @ 50°. 617.2 - Quartz MoS2 veinlet, lmm @ 60°.	10% pyrite-pyrrhotite-chalcopyrite in		632	638		
		clots, lower contact @ 30°, mottled red-brown			ļ	
		and pale green.		634	636	
				1		
		contact @ 40°.		636	638	
		· ·				
		@ 50°.	D1564	638	640	2m
		617,2 - Quartz MoS, veinlet, lwm			ļ	
		@ 60°.		640	642	
		618.0, 622.5, 626.0 - Late calcite veinlets				
				642	644	
		they cut granitic fragment.		ļ		
				644	646	

Hole	No.	80-1	
Page	No.	29	

_2	29			
	Qtz-Py	Qtz-Mo		
				
_				
_	1	0		
	3	0		
	1.	0		
	1	0		
	2	0		
	1	1		
	1	0		
	0	1		
	Q	0		
	0	0_		
	0	0		
	0	0		

Hole No. 80-1 Page No. 31

From m	To m	Description	Sample No.	From m.	To m	Length
		pyrrhotite +/- chalcopyrite as blebs, 0.1% Cu.		670	672	
		646.8 - 647.4 - Lamprophyre dyke @ 55%.			,	
		648.7 - 653.8 - Fault zone cemented by		672	674	
		chlorite and calcite, minor gypsum.	•			
		Many slicks @ 40-50°, fractures with		674	676	•
		chlorite + calcite persist to 656m.				
657.9	660.1	Biotite Quartz Monzonite (Nelson?)		676	674 678 678 680 686	
		Feldspar phenocrysts 2-4mm, brown biotite				
		in 1-5cm bands @ 60°. Strong fracture	D1578	678	680	2m
		set @ 20° to core with argillic				
		alteration. Contact @ 60°.		682	674	
660.1	661.4	1.4 Lamprophyre Dyke	684	686		
		Contact 0 30°, a few late calcite-quartz			674 676 678 680 674 686 688	
		veinlets.	<u> </u>	686	688	
661.4	694 9	Heterogeneous Breccia				
00163		Coarse. 15% porphyry fragments, 25% biotitic	D1569	688	690	2m
		volcanics, 25% pink cherty siltstone,				
		10% others, 25% matrix. Strong		690	692	
		skarn-like alteration, diopside-actinolite,				
		secondary biotite, hornblende. Cut by		692	694	
		many (15-20/metre) actinolite-pyrrhotite-				1
		pyrite +/- chalcopyrite-quartz veinlets		694	696	
	1	or alteration along fractures.				

_, 		
	<u> </u>	
	L	_
	i -	
	 	
	 	
	<u> </u>	
	l	
	1	
	<u> </u>	
	 	 -
	ļ	<u> </u>
	-	
Life to the second of the seco		
-		
		1

Hole No. 50-1
Page No. 32

From m	To m	Description	Sample No.	From m	To m	Length
		Occasional black amphibole-pyrite-pyrrho-				
		tite veinlets.				
		669.3 - 670.0 - Porphyry dyke		6.96	698	
		White aplite-pegmatite dykes as follows:			<u> </u>	
		662.4 - 15cm @ 60°, 665.4 - 10 cm @ 50°,	D1570	698	700	2m
		666.0 - 40cm @ 50°, 673.7 - 8 cm @ 70°,				
		679.6 - 5cm @ 20°, 679.9 - 10 cm @ 70°,				
		684.0 - 684.5 - Nearly parallel to core.		700	702	
		Total sulfides less than 2% below 660m.			<u> </u>	
		683 - 678 - Many late calcite +/- chlorite		702	704	
		veinlets at low angles, only weakly		·	1	ļ
	_	magnetic. Alteration intensity increasing		704	706	
		downward, fragments becoming indistinct -			<u> </u>	
		see 685.5.	_	706	708	
			_		!	-
694.9	702.2	Biotite Schist	D1571	708	710	2m
		Brown hornfelsed andesite? A few visible	 		700	ļ
		fragments. 2-3% disseminated pyrite		710		
		and pyrrhotite. Weakly magnetic. Cut			<u> </u>	
		by a few quartz-actinolite veins as	_	712	714	-
		at 696.6.			: 	
:						+
702.2	707.8	Heterogeneous Breccia		714	716	-
		Fragments very indistinct, deformed,	_		<u> </u>	
		intense skarn alteration. Schistose		716	718	
		in part.		l	<u></u>	

From m]	To m	Description	Sample No.	From m	To m	Lengt
		703.5 - 703.9 - White porphyritic dyke	D1572	718	720	2m
		with pegmatitic margins, contact 0 65°.				ļ <u> </u>
707.8	721.3	Feldspar Porphyry				
		1% quartz phenocrysts, abundant white		720	l m	<u> </u>
		feldspar phenocrysts in grey to pink-				+
		brown aphanitic matrix. Strong biotitic		722	724	
	To a contact of the possibility		<u> </u>	<u> </u>		
		locally, very indistinct. Streaks and		72 718 720 720 722 720 722 722 724 724 726 726 728 73 728 730 730 732 732 734 734 736 736 738 74 738 740		
		disseminated pyrrhotite to 1%, trace			m m 18 720 20 722 22 724 24 726 26 728 28 730 30 732 32 734 34 736 36 738 38 740	
		chalcopyrite. Many hairline calcite		726		
		veinlets with 1-2mm white envelopes,				
		generally @ 25°, schistose locally,	D1573	728_	730	2m
		711.6 - 2cm White pegmatite dyke @ 70°.				
				730	732	
721.3	740.5	Heterogeneous Breccia				
		As 702.2 - 707.8, strong skarn alteration.		732	734	
		T • · · · ·			·	
		brown biotite, pale green actinolite and		734	736	
	1% quartz phenocrysts, abundant white feldspar phenocrysts in grey to pink— brown aphanitic matrix. Strong biotitic alteration (hornfels). A few fragments locally, very indistinct. Streaks and fisseminated pyrrhotite to 1%, trace chalcopyrite. Many hairline calcite veinlets with 1-2mm white envelopes, generally @ 25°, schistose locally. 711.6 - 2cm White pegmatite dyke @ 70°. 730 732 740.5 Heterogeneous Breccia As 702.2 - 707.8, strong skarn alteration. 732 734 Porphyry fragments to 15cm with pink— brown biotite, pale green actinolite and chlorite in others and in matrix. Minor disseminated pyrrhotite. A few fractures. D1574 738 740					
		Minor disseminated pyrrhotite. A few		736	722 724 726 728 730 732 734 736 738	
		calcite-pyrite veinlets; calcite on late			İ	_
			D1574	738	740	2m
				740	742	

	0	-1	L		
Page No. 33		33	3		

	i	
		,
	···	····- · m ·· - ·
		
	<u> </u>	
 	en en en	
		·

Harle No. 15

From I	To m	Description	Sample No.	From B	To	Length
		731.9 - 8cm pegmatite dyke, quartz-rich		742	744	
		with pyrrhotite clots.				
		732.7 - 733.2 - Rock strongly fractured,		7.5.5	746	ļ
		grey-green color - quartz + sericite?				
V		734.3 - 734.7 - Lamprophyre dyke @ 60°.		<u>7≟≅</u>	748	
740.5	748.7	Feldspar Porphyry	D1575	743	750	2m
		Indistinct plagioclase phenocrysts to				
		2mm in fine-grained matrix. 1% quartz		751	752	<u> </u>
		phenocrysts to 2mm. Strong biotite				ļ
		veinlets with 1 - 3mm bleached and		753	754	
		silicified envelopes.	_			
		748.3 - White coarse aplite to pegmatite	_		756	-
		dyke with 5% brown biotite, 10cm, @ 70°.				
748.7	749.9	Heterogeneous Breccia		754	758	
		As 721.3 - 740.5.		:		
749.9	757.3	Feldspar Porphyry	D1576	753	760	2m
		As 740.5 - 748.7, except strong pale green				-
		alteration (quartz-actinolite-epidote?)		751	762	
		at 755m. Very granular texture		<u></u>		
		to 757.3.		752	764	_
		756.7 - 757.3 - Silicified fracture zone	_	1		
		@ 30°		75-	766_	

From m	To m	Description	Sample No.	Fram- m	To m	Leng-
757.3	763.7	Heterogeneous Breccia		_76a	768_	<u> </u>
		As 721.3 - 740.5, pyrite, chalcopyrite			· -	1
		locally abundant between fragments and as	D1577	753	770	2m
		irregular veinlets, see 759.1.				ļ
		759.8 - White pegmatite dyke, 10%		777	772	•
		disseminated pyrrhotite, @ 20%.				
				7-2	774	
763.7	775.2	Feldspar Porphyry				<u> </u>
	ļ	As 740.5 - 763.7, strong brown biotite			776	<u> </u>
		(hornfels). Feldspar phenocrysts				·
		indistinct. May be locally fragmental		77 <u>5</u>	778	1
		rock. Many hairline fractures with				-
		chlorite-calcite-pyrite with bleached	D1578	<u> </u>	780	2m
		margins. A few actinolite-pyrrhotite-				
		biotite-quartz veinlets to 4mm with 1cm		780	782	
		silicified envelopes. A few low angle				
		calcite veinlets.		792	784	;
		767 - 777.3 - Intensely fractured with		<u> </u>		<u> </u>
		silification and dark green silicate		78 -	7.86	
		yeinlets.	ļ			+
		772.3 - 773.0 - Intense silicification.	<u> </u>	736	788	
		773.5, 774.4, 775.2 - White pegmatite				<u> </u>
		dykes with pyrrhotite.	D1579	783	79.0	
775.2	702 3	Heterogeneous Breccia		790	792	
113.4	102.3	Intense hornfels, fragments distorted,				

Hole

Page

From m I	To m	Description	Sample No.	From m	To m	Le
		indistinct		792	794	
		776.5 - Calcite veinlets with tan bleached				
		envelopes.			796	
		777.2 ~ 10cm Nelson porphyry dyke @ 25°.				<u> </u>
		778.4 - 1.5cm irregular pyrrhotite-quartz-		<u> </u>	798	•
		chalcopyrite veins.				
		781.0 - 20cm dyke - Nelson quartz monzon-	D1580	733	800	
		ite @ 45°.	_			
				801	802_	
782.3.8	112.5	Plagioclase-Quartz-Biotite-Hornfels	<u> </u>			
		Feldspar porphyry? Phenocrysts only		30 <u>1</u>	804	
		locally obvious. 2% to locally 5% dis-	<u> </u>			
		seminated pyrrhotite. Many small	-	3:	806	<u>'</u>
		pyrrhotite-chalcopyrite veinlets. Bleached				<u>:</u>
		adjacent to calcite and to quartz-calcite-	 	<u> 31f _</u>	808	
		chlorite veinlets. Low angle				:
		ones more strongly altered.				
		786.6 - 786.9 - White pegmatite dyke				
		@ 70°.	ļ			· · · · · · · · · · · · · · · · · · ·
		789.1 - 10cm gouge zone @ 30°.	D1581	31:	810_	<u></u>
		794.0 - 2cm oyrrhotite-chalcopyrite vein				<u> </u>
		parallel to core,	_ -			·
		794.8 - Stronger bleaching adjacent	 	31:	812.5	
<u> </u>		to veinlets.				
		796.1 - 796.6 - White pegmatite-aplite				:
		dyke with minor disseminated pyrrhotite	<u> </u>	·-·		1

Hole > 2. 20-1
Page > 2. 37

From To	Description	Sample No.	From (To m	Length g/t Ag	g/t Au			T
	+ chalcopyrite @ 70°.								
	799.3 - 3cm white granular quartz			•	<u> </u>			1	
	@ 65°							ļ	
	801.2 - 801.5 - White porphyry dyke				<u> </u>	<u> </u>			
	with 10% biotite, pegmatitic quartz				•	- !			
	margins @ 70°.					·		<u></u>	
	Below 802m fracturing becomes very								
	strong, silicification nearly pervasive		1						
	locally. Pyrrhotite content erratic.							70	
	about 2% disseminated. Occasional					· ·			
	pyrrhotite-pyrite-cyalcopyrite vein.	_	1			<u> </u>		1 :	<u> </u>
			<u> </u>			· · ·		-	<u> </u>
	812.5 - End of hole.					· · ·		<u> </u>	
								<u> </u>	ļ
			1						ļ
			1			······································			
			-						
-			i						
		_	 		 				
		-		,			···· ·	<u> </u>	
					 		A CONTRACTOR OF THE PARTY OF TH		 -
						··			-
			_		-				
			<u> </u>						

Rio Tinto Canadian Exploration Limited

Location		08 W, 09.7E		Kio		amond Dril	•	Jii Liiiii	cu			Hole	No. 80-	.2	
Azimuth			Dips - collar	-61 °	18' Co	ontractor:	Camero	n-McCut	cheon I	Orilling	Property:	Aylwin	n Creek		
Elevation	n: 1250	. 2m	- 213 m	63 °	05' Lo.	gged By:	D.C. D	urgin			Claim No	. Rockl	and		
Length:			- 396 m	65 °	22' Da	ite: June	e 16 - J	uly 6	reloc	ged 25-26	Section 1	No. 10,	000E		
Core Siz	ze: NQ		- 648 ^m	-68 °	32' Spe	erry-Sun	gyrosco	pic Surv		23 20	Started:	June :	13, 1980		
Purpose	: To te:	st MoS ₂ min	eralization to	o the so	-		931000	pro our	. <u></u>	•	Complete	d: July	6, 1980		
From	To m		Desc	ription			Sample No.	From	To	Length	 		=cpy	gran. act-ep	chl-er amph-py
0	4.1	Overburder	1												
4.1	12.0	Feldspar I	orphyry				D1705	4.1	6	1.9				0	14
		Indistinct	feldspar phe	nocryst	s to 2mm	, average									
		1.5mm, vei	y fine granul	ar matr	ix, stro	ng pale									
		brown biot	ite alteratio	n. Loca	ally bre	cciated		<u> </u>							ļ
		with matr	x of rock fra	gments a	and brow	n	D1582	6	8	2				0	13
		biotite.	Increasing si	licific	ation an	d green									
		silicate a	alteration fro	m 9 to.:	12m 3-5	8									•
		sulfides -	- largely pyri	te in c	hlorite-										<u> </u>
		amphibole-	pyrite veinle	ts, min	or chalc	opyrite.	D1706	8	10	2				0	12
12	32	Heterogene	eous Breccia												
		Fragments	to 10cm, aver	age 6cm	, of qua	rtz							,, - 		
		latite por	phyry, feldsp	ar porp	hyry, da	rk								<u> </u>	<u> </u>
		biotitic r	metavolcanics,	augite	porphyr	y, tan	D1707	10	12	2			1	0	15
		cherty sec	liments in a r	ock flo	ur matri	х.								<u>.</u>	
		Moderate	to strong sili	cificat	ion and								2	Town.	
		actinolite	e-epidote-chlo	rite al	teration										
		Veinlets a	and interstiti	al clot	s of dar	k	1708	12	14	2			5	0	20
		amphibole	-chlorite-epid	ote-pyr	ite +/-										
		chalcopyr:	ite common, +/	- magne	tite. 5	-7%								<u> </u>	

rom To	Description	Sample No.	From m	To m	Length m
	sulphides, largely pyrite.	D1583	14	16	2
	13.2 - 14.5 - abundant pyrite-chalcopyrite-			•	
	magnetite in blebs and disseminations.	D1709	16	18	2
	15.5 - 18.0 - several calcite veinlets nearly				
	parallel to core. Vuggy in part.	D1710	18	20	• 2
	below 20 - intensely veined with hairline				
	pyrite-amphibole-epidote-chlorite veinlets	D1711	20	22	2
	and chlorite-pyrite veinlets with narrow				
	quartz-chlorite envelopes generally 4 30° to	D1584	22	24	2
	core in 2 sets (see 27-30m). Erratically				
	distributed chalcopyrite in pyrite veinlets	D1712	24	26	2
	and blebs, some disseminated.				
32.0 32	6 Leucocratic Dyke	D1713	26	28	2
	Aplitic with pegmatite patches. White, 2%				
_	disseminated pyrrhotite, trace chalcopyrite.	D1714	28	30	2
	Upper contact @ 200, lower in broken core.	D1585	30	32	2
32.6 93	4 Heterogeneous Breccia	D1715	32	34_	2
	As 12 - 32.0. Breccia textures, matrix and				
	alteration particularly well displayed @ 38 -	D1716	34	36	21
	43m. Locally vuggy - due to leaching?				
	32.8 - quartz-MoS ₂ veinlet in small breccia	D1717	36	38	2
	fragment.				
	33.2 - hematite in quartz veinlet.	D1586	38	40	21
	36.7 39.5, 40.0, 44.0 - epidote-pyrrhotite-				
···	pyrite patches with coarse epidote. Locally	D1718	40	42	2
	vuggy •				

Hole No. 80-2

ру-сру мад	gran. act-ep chi-py	chl-ep amph-py
4	0	12
4	0	10
6	0	12
3	0	20
4	0	17
2	1	12
5	2	18
	1	17
6	0	13
2	0	10
3	0	13
5	1	16
7	4	18
6	4	18

Hole \(\cdot \). \(80-2 \)
Page \(\cdot \). \(3 \)

From	To m	Description	Sample No.	From m	To m	Length m
	100	46 - 66 - very strong green silicate alter-	D1719	42	44	2
		ation and silicification, 5-7% sulfides				
		including abundant blebs, minor chalcopyrite.	D1720	44	46	2
		52 - 55 - several black amphibole-pyrrhotite-				
		pyrite-chalcopyrite veinlets - 5% sulfides.	D1587	46	48	• 2
		53.5 - garnet-epidote-pyrrhotite clots, vuggy.				ļ
		54.8 - 55.6 - several quartz latite porphyry	D1721	48	50	2
		fragments.				
		63.5 - black amphibole-pyrite-pyrrhotite-	D1722	50	52	2
		chalcopyrite veining intense-irregular				<u> </u>
		veinlets and clots of sulfides, patchy	D1723	52	54	2
		replacements. Late calcite veinlets parallel				
		to core.	D1588	54	56	2
		68 - breccia cemented by silica, black				
		amphibole and pyrite.	D1724	56	58	2
		68.5 - 70.3 - intensely fractured core, many				<u> </u>
		schistose dark fragments.	D1725	58	60	2
		70.1 - 75.8 - numerous streaks and blebs of				
		pyrite-pyrrhotite, moderate chalcopyrite.	D1726	60	62	2
		73.0 - 83.6 - strongly fractured, very				
		abundant clots and irregular veins of	D1589	62	64	2
		pyrrhotite-pyrite-chalcopyrite with black				
		amphibole. Up to 10% sulfides, perhaps 0.5%	D1727	64	66	2
	†	Cu. Much of this interstitial to or				
	+	surrounding fragments.	D1728	66	68	2
	 	73.4 - fragment with quartz-MoS ₂ veinlet.				

	ру-сру	تريتي	9	chl-ep amph-py
	mag		24	
	4		2	13
•	4		,,	16
•				
•	2		-	14
	5	<u> </u>	<u>:</u> _	15
	y-cpy	_	_	8
	-po		<u></u>	chl-ep amph-py
	3		<u> </u>	-15
	3		<u></u>	10
	5		<u>-</u>	8
	5		<u>:</u>	10
				1
	3			6
				ļ
	5			18
				<u> </u>
	7		<u>:</u>	20
	9		0	17
	-			

Hole . 0. 80-2

Page so. 4

From m _	To m	Description	Sample No.	From m	To m	Lengtl m
		84 - 90 - pyrite-chlorite-black amphibole	D1729	68	70	2
		veinlets very abundant (20/metre), decreasing				
		downward. Scattered late calcite veinlets	D1590	70	72	2
		at low angles to core.				
		86 - 93.4 - breccia fragments indistinct,	D1730	72	74	• 2
		largely feldspar porphyry as below. Strong				
		silicification, brown biotite alteration.	D1731	74	76	2
		Lower contact gradational.				
93.4	112.0	White Feldspar Porphyry	D1732	76	78	2
		(same as on surface mapping)				
		Very rare quartz crystals. 40% white	D1591	78	80	2
		squarish to rounded feldspar phenocrysts to				
		2.5mm, average 2mm in grey aphanitic matrix.	D1733	80	82	2
		Mafics destroyed (were hornblende?), generally		-		
		very abundant pale brown secondary biotite.	D1734	82	84	2
		93.4 - 95.0 - green tinge due to weak green				
		silicate alteration, minor pyrite-chalcopyrite	D1735	84	86	2
		95.0 - 108.8 - biotitic alteration, locally				
		brecciated with only cogenetic fragments in	D1592	86	88	2
		biotitic matrix as at 96.0m. Biotite-pyrite				
		veinlets, patchy silicification and green	D1736	88	90	2
		silicate alteration and veining. Scattered				
		small blebs and streaks of pyrite-pyrrhotite-	D1737	90	92	2
		minor chalcopyrite.				
		108.8 - 112.0 - strong patchy silicification,	D1738	92	94	2
		green silicate alteration, chlorite-amphibole-				

-bo	ac i ep ci i py	chl-ep amph-py
4	00	8
13	0	12
8	1	11
4	0	16
6	0	14
16	0	16
20	0	19
10	0	16
2	0	> 25
2	0	> 25
bio-py einlet	cpy	chl-ep amph-py
0	2_	> 25
0	4	13
0	0	9
		<u></u>

From m	To m	Description	Sample No.	From m	To m	Length m
		epidote-pyrite veining, abundant small pyrite-	D1593	94	96	2
		pyrrhotite-chalcopyrite blebs. 7% sulfides.			•	
112.0	124.3	Feldspar Porphyry	_D1793	96	98	2
		30% lath-like to rounded feldspars average				<u> </u>
		1.5mm, seriate texture. No quartz, mafics	D1740	98	100	- 2
		destroyed (hornblende?). Strong green				<u> </u>
		silicate alteration and silicification. 7%	D1741	100	102	2
		sulfides as disseminations, blebs and vein-				
		lets. Pyrite/pyrrhotite/chalcopyrite =	D1594	102	104	2
		70/20/10. Textures often obscured by				
		alteration. To 121.4 abundant pyrite-	D1742	104	106	2
		pyrrhotite-chalcopyrite-magnetite blebs and			 	
		streaks. A few quartz-epidote-pyrrhotite-	D1743	106	108	2
		pyrite veinlets with epidote envelopes.				
		Garnet locally. Up to 15% sulfides, average	D1744	108	110	2
		8%. Disseminated pyrrhotite alone, pyrite				
		with epidote. Hairline chlorite-calcite-	D1595	110	112	2
		pyrite-magnetite veinlets. (0.5% lmm pinkish				
		brown disseminated rectangular mineral. Cross	D1667	112	114	2
		section often 💠 - leucoxene after sphene?				
124.3	129.3	Heterogeneous Breccia	D1668	114	116	2
12113	203,0	Fragments largely prophyries, some dark meta-			<u> </u>	
		volcanics. Fragments generally obscured by	D1669	116	118	2
		strong darker green silicate alteration. 3%				
		disseminated pyrrhotite + pyrite. Many	D1596	118	120	2
	***	fractures @ 30°, 20° with chlorite-pyrite-				

Hole	No.	80-2	
Page	No.	5	

bio-py <u>reinlets</u>	_botaba : ;	emph-py
5	4	13
9	3	2
6	3	9
7	2	6
12		2
20	2	0
1.7	6	0
15	2	5_
12	7_	7
2	6	6
0	13	-10
	ļ	
0	8	16
0	7	11

Hole No. 80-2
Page No. 6

From !	To m	Description	Sample No.	From m	To m	Length m
		magnetite.	D1670	120	122	2
		126.1 - 127.1 - 0.8m core missing.			•	<u> </u>
	,		D1745	122	124	2
			D1746	124	126	* 2m
			D1597	126	128	2
			D1747	128	130	2
129.3	142.0	Feldspar Porphyry	D1748	130	132	2_
		(same as 112.0 - 124.3m). A bit more fresh.				ļ <u> </u>
		129.3 - 137 - silicified, strong green silicate	D1749	132	134	2
		alteration. 3% disseminated pyrite with			. <u></u>	
		epidote. Minor Pyrrhotite + magnetite.	D1598	134	136	2
~ -	-	Strongly fractured with chlorite-pyrite-				
		magnetite veinlets, 1 set @ 30°, another @ 10°.	D1750	136	138	2
		A few late calcite veinlets nearly parallel to			<u> </u>	
		core.	D1751	138	140	2
		131.0 - begin seeing gypsum veinlets.		ļ <u> </u>		
142.0	161.9	Crowded Feldspar Porphyry	D1752	140	142	2
		- Possibly same as 112 - 124.3, very altered		ļ 	<u> </u>	ļ
		40% plagioclase phenocrysts, average 1.5mm in	D1599	142	144	2
		very fine grained matrix. 2% rounded				
		feldspars to 2.5mm, 15% dark brown biotite,	D1753	144	146	2
		after hornblende in part, and dusted through-]	<u> </u>	

bio-py py-2Py chl-ep yeinlets - po ampin-px o 3 15 0	·		
0 3 15 0 2 12 0 1 10 0 2 15 0 3 18 0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15	bio-py veinlet	py2py s20	chl-ep amph-py
0 1 10 0 2 15 0 3 18 0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15		i .	1
0 1 10 0 2 15 0 3 18 0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15		<u> </u>	
0 2 15 0 3 18 0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15	0		12
0 3 18 0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15		1	10
0 3 18 0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15	 		<u></u>
0 1 > 25 0 2 17 0 2 23 0 1 21 0 3 16 2 2 15	0	2_	15
0 2 17 0 2 23 0 1 21 0 3 16 2 2 15	0	3	18
0 2 17 0 2 23 0 1 21 0 3 16 2 2 15		<u> </u>	
0 2 23 0 1 21 0 3 16 2 2 15 2 1 2	0_	11_	> 25
0 1 21 0 3 16 2 2 15	0	2	17
0 1 21 0 3 16 2 2 15		2	23
0 3 16 2 2 15 2 1 2			
2 2 15	0	1_	21
2 1 2	0	3	16
2 1 2	2	2	15
2 0 1	2	1	2
	2	0	1
			_L

Hole No. 80-2 Page No. 7

From m ,	To m	Description	Sample No.	From m	To m	Length m	bio-py /einles	py-cpy	chl-ep
	•	out. Very granular texture. 2% disseminated	D1754	146	148	2	1	3	0
		pyrite-pyrrhotite-chalcopyrite. Little			·				L
		veining except gypsum @ 750 to core (15/m).	D1755	148	150	2	4	3	0
	· · · · · · · · · · · · · · · · · · ·	Occasional pyrite-pyrrhotite-chalcopyrite							
		blebs, locally good grades to 0.3% Cu.	D1600	150	152	2	2	5	0
		153.8 - 161.9 - increasing weak green							
		silicate alteration - patchy. Many biotite-	D1756	152	154	2	1_	4	6
		actinolite-pyrite veinlets with bleached							
		envelopes. Occasional pyrite-pyrrhotite-	D1757	154	156	2	8	6	7
		chalcopyrite-magnetite in irregular veinlets.							
		Chilled for 20cm adjacent to lower contact @	D1758	156	158	2	6_	2	5
	-	70° to core axis.							
161.9	180.0	White Feldspar Porphyry	D1601	158	160	2	6	5	7
		2% rounded green-altered feldspar phenocrysts							
		to 5mm, 20% rounded to lath-like feldspars	D1759	160	162	2	1	4	7
		averaging 1.5mm in grey aphanitic matrix.						<u> </u>	
		Mafics replaced by pyrite. Silicified.	D1760	162	164	2	0	. 2	25 ر
		Average 5% disseminated pyrite + pyrrhotite.		ļ]
		Intensely fractured with quartz-pyrrhotite-	D1761	164	166	2	0	6	> 25
		pyrite +/- chalcopyrite veinlets generally			ļ	<u> </u>			
	-	<pre>< 1mm with pyrrhotite-pyrite-epidote envelopes</pre>	D1602	166	168	2	0	2	> 25
		and minor garnet. A few veins to lcm (See				<u> </u>			
		174.6m) with pyrite-pyrrhotite-chalcopyrite-	D1762	168	170	2	0 ~	8	10
		magnetite +/- epidote + garnet with silicified				<u> </u>			
		dark envelopes. Gypsum veinlets 10/metre.	D1763	170	172	2	0	11	6
		Many of sulfide streaks appear to be]					

Hole No. 80-2

From m	To m	Description	Sample No.	From m	To m	Length m
		out. Very granular texture. 2% disseminated	D1754	146	148	2
		pyrite-pyrrhotite-chalcopyrite. Little				
		veining except gypsum @ 750 to core (15/m).	D1755	148	150	2
		Occasional pyrite-pyrrhotite-chalcopyrite				
		blebs, locally good grades to 0.3% Cu.	D1600	150	152	2
		153.8 - 161.9 - increasing weak green				
		silicate alteration - patchy. Many biotite-	D1756	152	154	2
		actinolite-pyrite veinlets with bleached			<u> </u>	
		envelopes. Occasional pyrite-pyrrhotite-	D1757	154	156	2
		chalcopyrite-magnetite in irregular veinlets.				
		Chilled for 20cm adjacent to lower contact @	D1758	156	158	2
	-	70° to core axis.				
161.9	180.0	White Feldspar Porphyry	D1601	158	160	2
<u> </u>		2% rounded green-altered feldspar phenocrysts				
		to 5mm, 20% rounded to lath-like feldspars	D1759	160	162_	2
		averaging 1.5mm in grey aphanitic matrix.		L		
		Mafics replaced by pyrite. Silicified.	D1760	162	164	2
		Average 5% disseminated pyrite + pyrrhotite.				
		Intensely fractured with quartz-pyrrhotite-	D1761	164	166	2
		pyrite +/- chalcopyrite veinlets generally			<u> </u>	
		<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <td>D1602</td><td>166</td><td>168</td><td>2</td></pre></pre></pre></pre></pre>	D1602	166	168	2
		and minor garnet. A few veins to lcm (See				
-		174.6m) with pyrite-pyrrhotite-chalcopyrite-	D1762	168	170	2
		magnetite +/- epidote + garnet with silicified				
		dark envelopes. Gypsum veinlets 10/metre.	D1763	170	172	2
	1	Many of sulfide streaks appear to be				

pro-5A	⊇γ-cbλ	chl-ep
/einlets		апрһ-ру
1	3	0
	<u>-</u> -	-
4	3	0
	5	0
		
1	4	6
8	б	7
		· · · · · ·
		
6	2	5
_		L
6	. 5	7
	<u> </u>	7
		
1	4	
0	2	25 ح
		1
0	6	> 25
		1 23
0	2	> 25
- 0	8	10
		
		<u> </u>
0	11	6

Hole No. 80~2
Page No. 8

From m	To m	Description	Sample No.	from m	To m	Length			РУ	·chl-ec
		alteration adjacent to narrow veinlets. Most	D1764	172	174	2			-rc·	vmoh=c_
		common vein angle 30°, Disseminated pyrite			· ·		1			5
		usually with epidote. 10-15% sulfides,	D1603	174	176	2	1		,	
 ,		perhaps 0.3% Cu.								5
		173 - 175.5 - Several irregular pyrite-	D1765	176	178	· 2				 .
		pyrrhotite-chalcopyrite veins at low angles								12
		to core with green silicate envelopes,	D1766	178	180	2			,	
		increasing silicification, good mineralization.								13_
		175.5 - 189.0 - still good mineralization,	D1767	180	182	2			,	 ,
		blebs and streaks smaller.	· ·		i >				— — — ·	10
180	263.5	Heterogeneous Breccia	D1604	182	184	2				 ,
		Most of fragments are white feldspar porphyry,								<u> </u>
		feldspar porphyry, and quartz latite porphyry	D1768	184	186	2			-	,
		with a few mafic volcanics and buff cherty	 		<u> </u>					12
		rocks. Mineralization, strong silicification	D1.769	186	188	2				 ,
		and patchy moderate green silicate alteration.		ļ 	 					12,
		Breccia texture largely obscured by alteration.	D1770	188	190_	2			11	
	1	180.5, 188 - 189 - good fragments.	ષ ! • ── -	<u> </u>	 					17.
		184 - 185 - fracture zone @ 100 to core, only	D1605	190	192	2 m		_		
		minor displacement, very abundant pyrite-	1	·	1				W	12
		pyrrhotite-chalcopyrite filling fractures.	_D1771	192	194_	2_			24 = X	 ,
		193.4 - quartz-epidote-actinolite vein 5cm		· ·	<u> </u>			. 2 / 4		
		wide @ 40°.	D1772	194	196	2n			1	
		below 193m, fracturing and veining decrease,	1		i 		•			 ,
		same amount of finely disseminated sulfides.	D1773	196	198	2				
		196.2 - 199.0 - green tinge due to moderate	}						917	·/,

	green silicate alteration. 20cm biotite schist at 198m with banding at 40°, 1% disseminated pyrite + pyrrhotite, a few pyrite- pyrrhotite-quartz-epidote veinlets. Gypsum on some fractures. 199.0 - 216 - breccia as 180.0 - 196.2m disseminated pyrite + pyrrhotite average 5%, to 10% locally. Clots and streaks of pyrite-	D1774 D1775 D1776	200	200	2
	disseminated pyrite + pyrrhotite, a few pyrite-pyrrhotite-quartz-epidote veinlets. Gypsum on some fractures. 199.0 - 216 - breccia as 180.0 - 196.2m disseminated pyrite + pyrrhotite average 5%,	D1775	202	202	
	pyrrhotite-quartz-epidote veinlets. Gypsum on some fractures. 199.0 - 216 - breccia as 180.0 - 196.2m disseminated pyrite + pyrrhotite average 5%,	D1775	202		
	some fractures. 199.0 - 216 - breccia as 180.0 - 196.2m disseminated pyrite + pyrrhotite average 5%,			204	• 2
	199.0 - 216 - breccia as 180.0 - 196.2m disseminated pyrite + pyrrhotite average 5%,			204	• 2
	disseminated pyrite + pyrrhotite average 5%,	D1776			
		D1776			
	to 10% locally. Clots and streaks of pyrite-		204	206	2
	pyrrhotite-chalcopyrite-magnetite generally	D1607	206	208	2
	with epidote. Many hairline veinlets < 10° to				
	core with chlorite-magnetite-pyrrhotite-pyrite		208	210	2
	(208.5 - 214.5). Gypsum common on late				
	fractures.	D1700	210	212	2
	216 - 217.4, 218.5 - 219.2 - massive		-		
	pyrrhotite-chalcopyrite +/- pyrite veins with	D1701	212	214	2
	irregular shapes and silicified margins, seems				
	an interstitial replacement among 5cm breccia	D1608	214	216	2
	fragments 1% Cu +				
	222.3 - 237 - very abundant coarse sulfides	D1671	216	218	2
	in irregular veins, appears interstitial to				
	fragments of feldspar porphyry in a crude	D1672	218	220	2
	stockwork - pyrrhotite-chalcopyrite-magnetite				
	+/- pyrite. Also pyrrhotite-chalcopyrite-	D1673	220	222	2
	magnetite as replacements along small veinlets				
 	Interval 1 - 1.5% Cu. Epidote and garnet	D1609	222	224	2
	associated with sulfides.				

Hole No. 80-2

	-bo bà-cbà	chl-ep amph-py 15
	3	15
	1	13
	1	12
	1	17
	1	12
	1	10
_		
	10	14
	13	17
	13	17
	14	12
	18	11
		ু শুকু
	7	12
	2	20
	20	6

Hole No. 80-2
Page No. 10

From m	To m	Description	Sample No.	From m	To m	Length m	qtz-M	by-cby	chl-ep amph-py
,		228 - 235 - abundant quartz latite porphyry	D1674	224	226	2		13	10
		fragments with quartz-MoS2 veinlets. Very							
		little breccia matrix.	D1675	226	228	2		15	8
		230.1 - quartz-MoS ₂ veinlets.							
		231.7 - tiny quartz-MoS2 veinlet, older than	D1676	228	230	• 2		12	7
		pyrrhotite-pyrite-chalcopyrite mineralization.							<u></u> i
		237.2 - epidote veinlet with faint pink	D1610	230	232	2		20	6
		alteration envelope, lcm wide, nearly parallel							
	1	core.	D1677	232	234	2		25	7
		238.2 - 242.3 - heterogeneous fragments in							
		very siliceous matrix. Pyrrhotite and minor	D1678	234	236	2		22	5
		chalcopyrite interstitial and in irregular							
		veinlets, 5% sulfides.	D1679	236	238	2		18	10
		242.3 - 246.2 - abundant feldspar porphyry					·		
		fragments. Kaolinized, silicified. Minor	D1611	238	240	2		22	2 8
		MoS ₂ veinlets (243.6m). Abundant pyrrhotite-				<u> </u>			
		pyrite-chalcopyrite-epidote as above to 246.2.	D1680	240	242	2	4	13	3 7
		246.2 - 252.4 - heterogeneous fragments in		·					
		very fine grained greenish matrix. 2%	D1681	242	244	2	3	1.3	L 6
		disseminated pyrrhotite + pyrite. Very							
		siliceous matrix. Bleaching adjacent to	D1682	244	246	2			10
	<u> </u>	gypsum veinlets. A few pyrrhotite-pyrite-						_	100
		chalcopyrite blebs.	D1612	246	248	2		Service (8
		252.4 - 259.0 - breccia filled with quartz		Ĺ					
	 	veins or cemented by granular quartz (See	D1702	248	250	2	<u> </u>		7 7
		255.6m) Early quartz-MoS ₂ veinlets cut by			<u> </u>	<u> </u>			

Rio Tinto Canadian Exploration Limited

Diamond Drill Record

Hole No. 80-2

From m	To m	Description	Sample No.	From m	To m	Length m	qtz-Mo	bo bà-cbà	chl-ep amph-py
		later barren quartz. All strongly overprinted	D1703	250	252	2	14	2	6
		by late pyrrhotite-pyrite-chalcopyrite-epidote			,				
		in irregular veins with silicified envelopes.	D1683	252	254	2	4	9	12
		Interval∼ 1% Cu. Abrupt rock type change at							ļ
		259.0m.	D1613	254	256	2	2 2007	21	
		259 - 263.5 - Fragments largely biotitic				1	anhyd yeins	-to	chl-ep amph-py
		metavolcanics, silicified and veined as above.	D1684	256	258	2		20	8
		Contact rather arbitrary.							ļ
263.5	319.4	Biotitic Metavolcanics	D1685	258	260	2		24	6
		Generally very dark green to black, locally			<u> </u>				<u> </u>
		pyroclastic textures. Often weakly schistose.	D1704	260	262	2	4	17	7
		A distinctly different rock type. Pyrite-			ļ <u>-</u>			· 	<u> </u>
		pyrrhotite-chalcopyrite mineralization ceases	D1614	262	264	2_	3_	8	11
		abruptly. Abundant late gypsum veinlets @							
		70 - 90°. Vein sets (oldest to youngest):	D1777	264	266	2	11	8	8
		1.) white anhydrite with 10% disseminated		ļ 	<u> </u>				1
		chlorite + pyrite with bleached envelopes	D1778	266	268	2	17	5	14
		1 - 2mm. A weak stockwork (See 268.5m)			ļ	<u> </u>	-		
		2.) quartz - generally with minor pyrite on	D1779	268	270	2	25	9	10
		margins and disseminated. No alteration.		ļ	ļ	ļ		ļ	
·-·		3.) quartz-pyrite-epidote +/- pyrrhotite	D1615	270	272	2	18	3	8
]	hairline veinlets with bleached envelopes			ļ	 	,	- Section :	 -
		with epidote +/- calcite		272	274	<u> </u>	24	0	4
		4.) late gypsum veinlets with no alteration.				 			↓
		275 - note vein control of quartz + sulfides		274	276		8	-	1 4
······································		2 generations of glassy quartz veinlets one			<u> </u>	<u> </u>		<u> </u>	

Hole No. 80-2

From	To m	Description	Sample No.	From m	To m	Length
		with minor MoS2 and another with clots and		276	278	
		cross fractures with pyrrhotite-pyrite-chalco-				
		pyrite - rather sparse.	D1616	278	278	2
		283 - 284.5 - strongly silicified with streaks				
		and disseminations of pyrrhotite + pyrite -		280	282	•
		15% sulfides.				
				282	284	
	<u>.</u>			284	286	-
			D1617	286	288	2
			DIGIT	250	200	2
				288	290	
				290	292	
				292	294	
			D1618	294	296	2
				296	298	
		Very few gypsum veinlets below 300m.		298	300	
						<u> </u>
	<u> </u>			300	302	

ากงส	Ру-сру	chl-ep
nyd veins	-\tilde{\omega_{\begin{subarray}{c} -\omega_{\omega	amph-p
7	0	3
<u> </u>		
7	0	2
	4	0
	8	0
	12	0
	15	. 1
	13	
	<u> </u>	
	5	3
	10	1
	14	0
	7	0
	-	
	7	0
- No. 1	g. 3kan	
	9	0
	1 -	
	10	0
	<u> </u>	

Hole No. 80-2

							1 -		
From	To m	Description	Sample No.	From m	To m	Length m		anhyd veins	qtz-N veins
		302.5 - 2cm pyrite vein @ 45°.	D1619	302	304	2		2	
		305.5 - 2cm pyrrhotite-pyrite vein @ 25°.		304	306			7	
				306	308	•		3	-
		309.8 - begin seeing 5% disseminated pyrite		308	310			6	
		with many hairline fractures with pyrite and quartz.	D1620	310	312	2		5	1
		begin to notice minor MoS ₂ in many of the "barren" quartz veinlets at about 310 metres.		312	314			4	
		Many of the larger ones, and those with chlorite + magnetite along margins and minor		314	316			4	
		pyrite- See 317.9. Some also contain anhydrite.		316	318			6	
319.4	321.2	Lamprophyre Dyke	D1621	318	320	2		1	
321.2	326.9	At 30° to core axis, fresh. Biotitic Metavolcanics		320	322			1	+-
		As 263.5 - 319.4 - Chloritized, more green in		322	324			3	
		colour. 324.5 - quartz vein with angular rock fragments		322	724			The state of the s	
		cut by clear to pale green fluorite (?) veinlets. Late gypsum veinlet on margin,		324	326	-		1	-
		chloritic alteration. @ 25°.	D1622	326	328	2		3	
326.9	328.2	Lamprophyre Dyke]	<u> </u>			

Hole No. 80-2

From	To m	Description	Sample No.	From m	To m	Length m			anhyd veins	qtz-Mo veins
*		Upper contact @ 30°, lower at 15°.		328	330			 	2	3
328.2	413.0	Biotitic Metavolcanics								
		Generally dark grey to black, abundant biotite,		330	332			 <u> </u>	13	2
		largely fragmental with fragments poorly								<u> </u>
		preserved, stretched. Generally 5%		332	334	<u> </u>		1 1	8	2
		disseminated pyrite with abundant hairline			!		·	 -		
	· ·	pyrite-calcite veinlets with epidote	D1623	334	336	2		 	16	2
		alteration. Translucent quartz veins ~ 3 -4								
		per metre with minor pyrite and usually minor		336	338				18	3
		MoS, along margins. Vein shapes irregular.		. 				 		
		Occasionally contain anhydrite. Abundant		338	340	ļ			21	4
		anhydrite veinlets with chloritized amphibole.								
		Anhydrite veinlets clear to lavendar,	ļ	340	342	ļ			13	1
		generally less than 3mm with irregular shapes.		-						
		A few quartz veinlets to 3cm with pyrite in	D1624_	342	344	2			23	4
		cross fractures, weak chlorite-magnetite on			ļ	<u>. </u>		 		
		margins (See 342). 6-8% total sulfides.		344	346			 	10	1_1_
"		Vein sequence: 1) quartz +/- MoS ₂		ļ	 			 <u> </u>		<u> </u>
		2) quartz + pyrite, 3) pyrite + calcite		346	348				12	2_
		4) anhydrite, 5) pyrite + amphibole +		ļ		ļ <u>-</u>		 		<u> </u>
		chlorite (See 340.8).		348	350	ļ			14_	5_
		347.1 - 2 quartz + MoS ₂ veins 2mm wide with			ļ				ner side d	<u> </u>
,		2mm tan alteration envelopes. Abundant MoS2.	D1625	350	352	2			12	2
	<u> </u>	(See also 349.4).						 		
		347.5 - Strong shearing parallel core,	ļ	352	354			 	5	2
		chlorite.	<u> </u>		<u> </u>					

Rio Tinto Canadian Exploration Limited

Hole No. 80-1

						Length	anhyo	qtz-Mo
From m	To m	Description	Sample No.	From m	To m	m	vein	
		Upper contact @ 30°, lower at 15°.		328	330		2	_ 3
328.2	413.0	Biotitic Metavolcanics			,			
		Generally dark grey to black, abundant biotite,		330	332		13	. 2
		largely fragmental with fragments poorly						
		preserved, stretched. Generally 5%		332	334	•		2
		disseminated pyrite with abundant hairline						
		pyrite-calcite veinlets with epidote	D1623	334	336_	2	I €	2
		alteration. Translucent quartz veins ~ 3 -4						
		per metre with minor pyrite and usually minor		336	338		1.3	3
		MoS, along margins. Vein shapes irregular.						
		Occasionally contain anhydrite. Abundant		338	340		2	4
		anhydrite veinlets with chloritized amphibole.						· ·
		Anhydrite veinlets clear to lavendar,		340	342		13	1.
		generally less than 3mm with irregular shapes.						
		A few quartz veinlets to 3cm with pyrite in	D1624	342	344	2	20	4
		cross fractures, weak chlorite-magnetite on						
		margins (See 342). 6-8% total sulfides.		344	346		1_	1
		Vein sequence: 1) quartz +/- MoS2			ļ 	ļ		
L		2) quartz + pyrite, 3) pyrite + calcite		346	348		12	." 2
		4) anhydrite, 5) pyrite + amphibole +	ļ 		<u> </u>			
		chlorite (See 340.8).	l	348	350	ļ	1_	5.
		347,1 - 2 quartz + MoS, veins 2mm wide with					The second second	
		2mm tan alteration envelopes. Abundant MoS2.	D1625	350	352	2	12	.3 2
		(See also 349.4).						
		347.5 - Strong shearing parallel core,	<u> </u>	352	354	<u> </u>	-	<u> </u>
		chlorite.	l		<u> </u>			

Hole No. 80-2

From	То	Description	Sample No.	From	To	Length		1	anhyd	qtz-\c
m]	m		No.	m	m	m	 	.		veins
		349.0 - irregular patch weakly kaolinized		354	356				8	3
		porphyry cut by quartz veins and by chlorite					 	ļ		
		veins - a dyke?		356	358		 		8	- 4
		394.4 - 5mm translucent quartz vein with								
		silicified envelope. Very abundant MoS2 @ 600	D1626	358	360	• 2	 		12	-:
		355.0 - increasingly abundant 1 to 2mm glassy								
		quartz veinlets.		360	362				7	6
		360.7 - 8cm white pegmatite-aplite dyke with								
		5% disseminated pyrite, @ 65°,		362	364				12	3
		360.9 - 1cm magnetite quartz vein, @ 45°.								
		362.8 - 365.9 - textures obscured by intense		364	366				4	4
		pale green quartz + actinolite + epidote								1
		alteration.	D1627	366	368	2			8	3
		363.4, 365.1 - very abundant pyrite +			ļ					
		pyrrhotite associated with very fine grained		368	370				8	5
		black minerals in an irregular band - not a								
-		normal vein.		370	372				3	1
		367.0 - begin seeing more abundant pyrite +								
		epidote veinlets.		372	374				4	3
		366.9 - garnet + amphibole + fluorite (?) in								
		10cm patch, another at 368.0.	D1628	374	376	2			8	5
		375 - 380 - Schistosity @ 10° to core with								
		very abundant pyrite in streaks and		376	378				10	3
-		disseminations, 10% pyrite.								
		378.9 - 380.3 - Several pale purple anhydrite		378	380				5	3
		(?) veins near parallel to core, most with								

Hole No. 80-2

Page No. 16

Length ar=nyd qtz-Mo Sample No From From Description ver ns chlorite, some with quartz and pyrite as well. 380 382 387.5 + 387.8 - 10cm, 20cm quartz veins @ 450 cut by hairline pyrite veinlets and an 384 D1629 382 anhydrite vein. 387.6 - 15cm Nelson dyke @ 45°, chilled 384 386 11 margins, fresh mafics. 389.4 - 389.8 - white granitic dyke, with 386 388 16 5 quartz, plagioclase, K-spar phenocrysts to 2mm little matrix, 5% biotite, slight argillic 10 390 alteration. lcm anhydrite vein with minor pyrite + MoS2 along lower contact. Upper D1630 390 392 3 contact @ 450. 390.0 - 20cm quartz vein, trace MoS, @ 40°. 11 392 394 396.4 - 396.7 - granitic dyke as 389.4, some feldspars pink near fractures - iron staining. 6 394 396 A few gypsum veinlets. 398 5 396 3 D1631 398 400 2 6 400 402 402 404 404 406

Hole No. 80-2

From m	To m	Description	Sample No.	From m	To m	Iength m		anhyd veins	qtz-Mo veins
		404.9 - 405.9 - granitic dyke, equigranular,	D1632	406	408			7	4
		with plagioclase, K-spar, quartz phenocrysts			·			_	
		to 2mm, 5% biotite, pegmatitic in part.		408	410			13	2
		Relatively fresh. Several fractures nearly				<u>. .</u>			
		parallel to core with Mn + Fe oxides.		410	412	•		10	4
		Feldspars stained pinkish orange adjacent to						<u> </u>	
		fractures with calcite. Contact @ 600.		412	414			5	3
			D1633	414	416	2		11	6
413.0	419.4	Tuffaceous Metavolcanics							
		Very fine grained, well laminated to finely	<u>.</u>	416	418			6	2
		fragmental, chloritic. Bedding @ 40-50°.			!				<u> </u>
	-	Many irregular 1 to 3mm quartz veins +/-		418	420		,	4	1
		pyrite, with 1 to 2mm silicified envelopes.			ļ <u></u> -			 	1
		Trace MoS2. Anhydrite veins common with		420	422			 3	2
		chlorite and minor epidote. 5% disseminated							
		pyrite and a few pyrite veinlets with	D1634	422	424	2		5	4
		silicified envelopes.			ļ				<u> </u>
				424	426			15	1 1
419.4	420.0	Felspar Porphyry Dyke						 	
		Contact irregular. Brecciated porphyry		426	428			 14	2
		cemented by calcite and coarse epidote.						 	
		Massive pyrite + hornblende at margins.		428	430		<u> </u>	12	2
420.0	457.0	-	1	ļ	ļ			 	
		Largely tuffs and breccias. Fragmental	D1635	430	432	2		10	0
		nature obvious only locally. Locally weakly	1					 	1

Hole No. 80-2

								10. 10		
From	To m	Description	Sample No.	From m	To m	Length m			anhyd veins	qtz-Mc veins
		schistose. 5 to 7% disseminated pyrite and		432	434				5.	1
		epidote along schistosity. Abundant pyrite-			· _		 			<u> </u>
		epidote-quartz streaks and veinlets @ 300, 600		434	436				10	1
		7-8% total sulfides. Glassy quartz veins 1 to								
		3cm with minor pyrite+chlorite, trace MoS2.		436	438	•			12	1
	-	Anhydrite veins generally 1 to 2mm, a few lcm					 			<u> </u>
		or more.	D1636	438	440	2			- 6	0
		426.6, 427.6 - 15cm translucent quartz vein				<u> </u>				
		with several partings with MoS2, @ 45°.		440	442				6	1
		431.8 - anhydrite + epidote + quartz vein.								
		432.4 - 434.2 - Abundant epidote and pyrite		442	444				5	0
-		in spots and veinlets, silicified.								
		435.1 - quartz + MoS2 vein, cutting anhydrite		444	446		-		4	0
		vein.								
		436.2 - 3cm band of chlorite + actinolite	D1637	446	448	2			9	2
-		adjacent to anhydrite vein.							L	
		440 - 441 - irregular 2cm quartz-pegmatite		448	450				3	0
		stringer parallel to core.								
		443.2 - 443.5 - massive quartz vein @ 50°.		450	452				4	1
		443.6 - crushed pegmatitic rock cut by two lcm						1		
		coarse gypsum veins. Rock bleached.		452	454		 		2	0
		444.1 - 444.7 - white granitic dyke, 5%			<u> </u>			<u> </u>		1
		biotite, relatively fresh, minor disseminated	D1638	454	456	2		. Property of the	1	1
		pyrite. @ 65°.								
		452.3 - granitic dyke, medium grained equi-		456	458				10	1
		granular, biotitic. Cut by pyrite + chlorite					1			

Hole No. 80-2

From	To m	· Description	Sample No.	From m	To m	Length m		Мо	anhyd veins	qtz-Mo veins
		veinlet. Contact @ 25°.		458	460		MADE .		5	1
		452.7 - 453.0 - gouge @ 30°, quartz veins,			•		_			
		chloritic.		460	462				5	1
		453.5 - 455.1 - Lamprophyre dyke								
		Upper contact @ 25°, lower @ 45°.	D1639	462	464	2	_	-	6	1
457.0	469.7	Augite Porphyry					_			
		7% augite phenocrysts to 8mm. More granular		464	466				4	0
		matrix than normal. Epidote abundant in					_			
		patches and streaks. Very biotitic,		466	468		_		6	1
		schistosity @ 30-40° to core. 5-7% pyrite.								
		461.2 - quartz-anhydrite vein with pyrite +		468	470		_		4	.0
		chlorite @ 55°. Trace MoS ₂ .					_			
469.7	471.4	Lamprophyre Dyke.	D1640	470	472	2		_	0	2
471.4	485.5	Early Porphyry					_	. <u> </u>		ļ
		Plagioclase, Kspar, quartz phenocrysts 2-3mm,		472	474		_		0	4
		occasional plagioclase to 7mm. 10% quartz.						_		<u> </u>
		Equigranular to seriate texture. 10% biotite.		474	476		·	- 4011	2	7
		Weakly gneissic near contact @ 200. Vein								
		sequence: 1) biotite + pyrite, about 15/metre		476	478		_	_	0	10
		 quartz-MoS₂ with silicified envelopes, 								
		near parallel to core, 3) quartz-MoS2, no	D1641	478	480	2		<u>. o (</u>	2 0	7
		envelopes, 2 to 15mm, 4) quartz+pyrite+						· Loss (Albert 1984)		<u> </u>
		pyrrhotite + chlorite, 5) hairline calcite,		480	482			_	0	11
		bleached envelopes to 1cm, about 25/metre.					_		1	
		Strong patchy secondary biotite, relict quartz		482	484		_		0	18
		eyes, cut by coarse MoS2 vein @ 483.6m. Lower	l						1	.]

Hole No. 80-2

From m	To m	Description	Sample No.	From m	To m	Length m
		contact @ 30°.		484	486	
485.5	487.8	Gouge Zone @ 30 to 40°. Veimlets and smears of MoS2 in	D1642	486	488	2
						
		upper 30cm in strongest shearing. In		488	490	
		volcanics.				
487.8	500.6	Biotitic Metavolcanics		490	492	
		Black biotite 50% of rock, weakly schistose,		1	 	
		locally up to 10% augite phenocrysts. Many	!	492	494	
		quartz veins less than 2mm, cut by hairline	-	102	17.	+ +
		pyrite-quartz veinlets, cut by 1 to 2mm	D1643	494	496	1-2
		anhydrite veinlets.	DIGAD	434	430	
	ļ	492.6 - 2cm pegmatite dyke @ 30°.		400	100	
		493.7 - same, chloritic envelope.		496	498	-
				498	500	
			D1686	500	502	2
500.6	534.9	Early Porphyry				
		Upper contact @ 20° in gouge. Locally	D1644	502	504	2
		gneissic, equigranular to seriate porphyritic.				
		50% feldspar phenocrysts to 4mm, average 2mm.	D1687	504	506	2
		10 to 15% quartz phenocrysts to 2mm, 15%			ļ	
		biotite. Freshest rock has 1% disseminated	D1688	506	508	2
		pyrite. Vein sequence 1) biotite + quartz,			ļ	
		weak silicification, 2) quartz stockwork,	D1689	508	510	2
		silicification, argillic alteration, -	<u> </u>		<u> </u>	

anhyd veins 1	qtz-Mo veins
Ĭ .	1.7
	13
	ļ
2	2
	2
-	
16	4
14	2
	
11	2
9	1
13	2
13	
3	15
-	
1	20
0	> 25
0	> 25
1	10
	14 11 9 13 1 1 0

Hole No. 80-2

From m	To m	Description	Sample No.	From m	To m	Length m		% Mo	anhyd veins	qt ve
		variable MoS2, minor pyrite. Veins not	D1645	510	512	2		0.003	3	
		uniformly distributed, 3) pyrite + magnetite								
		+ quartz + chlorite, with minor epidote and								
		secondary biotite on margins 4) quartz +	D1690	512	514	2	_	0.002	0	
		MoS ₂ with silicification; sparse, 5) quartz				•				
		+ calcite + pyrite + chlorite with strong								
		argillic alteration in envelopes to lcm,	D1691	514	516	2		0.002	1	
		slicks, an occassional fluorite veinlet, older								
		than 4 + 5.								
		500.6 - Strong stockwork and alteration.	D1692	516	518	2	_	0.003	0	
		508.5 - 519.2 - weak stockwork and alteration.								
		515.8 - 516.7 - feldspar porphyry dyke,					_			
		biotitic, later than 2nd vein set, earlier	D1646	518	520	2		0.005	0	
		than 4th. Upper contact @ 80°, lower @ 35°,								
		pegmatitic.								
		519.8 - 530.3 - moderate stockwork with MoS ₂ .	D1693	520	522	2		0.019	1	<:
		510.5 - 2cm anhydrite vein @ 80°.								
		512.6 - 15cm orange pegmatite dyke @ 30°.					_			
		520.4 - Late MoS ₂ vein, coarse MoS ₂ .	D1694	522	524	2		0.009	0	< :
		530.3 - 534.9 - weaker stockwork poor MoS ₂ .					_			1
		526.2 - 8mm pyrite vein with magnetite and								
		chlorite envelope @ 50°.	D1695	524	526	2		0.009	0	<
-		527.2 - 527.7 - Lamprophyre Dyke @ 45°.						A STATE OF THE STA	F. 7 (8)	Γ
		531.7 - late orange pegmatite dyke @ 30°, no								
		veins.	D1647	526	528	2		0.004	0	4
		531.9 - Coarse MoS ₂ .								

% Mo	anhyd v eins	qtz-Mo veins
0.003	3	6
0.002	0	14
0.002	1	21
0.003	0	15
0.005	0	12
		,
0.019	1	₹25
0.009	0	< 25
-		
0.009	0	< 25
-0.00		
0.004	0	人 25

From m	To m	Description	Sample No.	From m	To m	Length m
	V	535.8 - MoS ₂ in anhydrite vein @ 10 ⁰ , lower	D1696	528	530	2
		contact @ 40°.			•	
			D1697	530	532	2
			D1698	532	534	*2
534.9	546.7	Biotitic Metavolcanics	D1648	534	536	2
		Augite porphyry in part, fragmental appearance			<u> </u>	- -
		locally. Nearly black, 60% mafics. Vein		536	538	
		sequence 1) early glassy quartz, minor				
		pyrite, trace MoS2, 2) milky quartz + pyrite		538	540	_
		3) anhydrite with chlorite, trace MoS2, some				
		with epidote + actinolite alteration, 4)		540	542	
		quartz + pyrite + epidote with epidote +		-		
		pyrite in envelopes, 5) late calcite vein-	D1649	542	544	2
		lets.	- ".	ļ		
		541.2 - fluorite <u>+</u> garnet + epidote + pyrite		544	546	ļ
		+ magnetite @ 10°.				
		541.2 - 541.7 - fine grained early porphyry		546	548	
		dyke, 3% disseminated pyrite with epidote, a		-		
		few quartz-MoS ₂ veinlets @ 20°.		548	550	
		546.5 - MoS ₂ on slip surface @ 50°.				
546.7	549.0	Early Porphyry			<u> </u>	
		As 471.4 - 485.5 - silicified along milky			<u> </u>	
		quartz veinlets @ 40 to 50°, a few small				
		glassy quartz veinlets with trace MoS2.				

Мо	anhrd veirs	qtz-Mo veins
.008	-	25
.010	2	25
.010	-	24
.040	Ţ.	15
	5_	7
	3_	16
	12_	8
<u> </u>		
1.007	12_	8
-		ļ . <u> </u>
	3_	10
		1
	5	11
	3	9
	ļ	
· · · · · · · · · · · · · · · · · · ·		
L		
	<u> </u>	
	<u>L</u>	<u></u>

Hole No. 80-2

From	To m	Description	Sample No.	From m	To m	Length m				qtz-Mo veins
		Bleached along late fractures with epidote +					<u> </u>			
		chlorite. One late MoS2 veinlet, late hair-			•		<u> </u>			
		line biotite + pyrite veinlet. Contact @ 65°.								L
549.0	568.4	Augite Porphyry						_		
		Fragments in part, very biotitic. Same as	D1650	550	552	2			6	14
		534.9 - 546.7.								
		552.8 - 553.4 - early porphyry dyke, as 546.7		552	554				5	16
		- 549.0, contacts @ 70°.								
		Most quartz veins still carry MoS2, but only		554	556		<u></u>		12	7
		traces.					<u> </u>			
568.4	573.5	Augite Porphyry		556	558				9	5
		Abundant biotite, 10% chloritized augite					_			
		phenocrysts to 3mm. Very schistose @ 50°.	D1651	558	560	2			5	4
		Very little veining, no disseminated pyrite.								
		Very few pyrite veinlets. Chlorite and		560	562				7	3
		calcite on tight fractures.			j		_			
573.5	592.6	Augite Porphyry		562	564		_		10	.8
		Biotitic, weakly schistose, 10 to 15% chlor-					_			
		itized augite phenocrysts. Trace disseminated		564	566				6	6
		pyrite. Quartz veinlets less than 0.5mm with								
		minor pyrite + hematite, trace MoS2, chlorite	D1652	566	568	2	_		6	
		alteration @ 30 59 45°. MoS ₂ generally								
		disseminated in quartz, not along margins.		568	570		_	Section Control	1	1
		Many hairline calcite veinlets. Occasional								ĺ
_		anhydrite veinlet with chlorite.		570	572		_		0	0
		574.6 - 30cm quartz vein with MoS2 on late								

Hole No. 80-2

From	To m	Description	Sample No.	From m	To m	Length m			anhyd veins	qtz-M veins
		fractures.		572	574				1	3
		581, 583,8, 584 - purple and white anhydrite			,					
		spots in quartz veins.	D1653	574	576	2			1	8
		585.9 - 15cm irregular dyke (?) of a quartz					<u></u>			
		feldspar porphyry. Siliceous, biotitic.		576	578	•			0	7
		586.0 - irregular quartz + anhydrite + pyrite				ļ				
		veinlets with epidote + actinolite alteration.		578	580				2	12
				580	582				3	12
				1						
			D1654	582	584	2	 		3	8
				ļ		ļ. <u></u> .				ļ
				584	586	-	 		3	11-
							<u> </u>		ļ	
				586	588		1		2	9
					<u> </u>	·			-	
				588	590		_		2	10
			21555						 	-
			D1655	590	592	2			1	8
	·			500			 	 	 	-
592.6	593.9	Nelson Quartz Monzonite	<u> </u>	592	594		 		0	2
	ļ	5% feldspar phenocrysts to lcm, 15% hornblende			 	-	 		en unes	-
	<u> </u>	+ biotite, very weakly chloritized. Trace	ļ	594	596		<u> </u>		1	3
	<u> </u>	disseminated epidote. Upper contact sharp @	<u></u>	506			<u></u>	 	 	
	ļ	50°, pegmatitic. Lower in broken core with	_	596	598		,		1	8
		gypsum. No quartz veins,	<u> </u>	<u> </u>	.l				1	1

Rio Tinto Canadian Exploration Limited

Hole No. 80-2

Page No. 25

From To m Sample Description From To Length 593.9 596.3 Biotitic Metavolcanics Epidote-actinolite hornfels adjacent to contacts. 596 601.9 Early Porphyry 3 to 5% rounded quartz phenocrysts to 2mm, 25% D1656 600 white feldspar phenocrysts 1 to 3mm, a few to 8mm, 10 to 15% very fine grained black biotite weakly chloritized, aphanitic matrix. 600 602 Hematite + chlorite + pyrite on very late fractures, a few pyrite + epidote veinlets. Patchy silicification. Early biotite veinlets 602 604 with silicified envelopes. Abundant glassy quartz veins with trace MoS2. Upper contact @ 45°, lower @ 10°. 604 606 Nelson Quartz Monzonite 601 607.8 Fresh, occasional K-spar phenocrysts to 3cm. More abundant hornblende and biotite than D1657 606 608 usual. Rare 1 to 2mm barren quartz veinlets. Distinctly younger than early porphyry. 606.5 - 606.9 - early porphyry inclusion, very 608 610 silicified, several quartz veinlets with trace MoS2. 607.8 615.2 Augite Porphyry 610 612 As 573.5 - 592.6, very schistose weakly to moderately chloritized. 608.5 - 608.9 - irregular white pegmatite dyke 612 614

	anhyd veins	qtz-Mo veins
	2	14
	0	5
	0	0
	0	. 0
	0	6
	0	4
- and Sier Se Will	50KS (4	
	0	
ļ	0	_ 1_]

Hole No. 80-2

Length Sample No. From To m Description From veins 612.6 - 613.1 - Very fine grained biotitic D1658 614 616 andesite dyke @ 200, early. 613.6 - 614.2 - Early porphyry, irregular contact @ 30°. 616 618 615.2 619.7 Early Porphyry As 569.3 - 601.9. A few anhydrite veinlets. 617.8 - 2cm pyrite + epidote + magnetite 618 620 veinlet. Biotitic Metavolcanics 619.7 629.2 Very fine grained, weakly schistose @ 450, 620 622 1-3% disseminated pyrite. Abundant hairline to 2mm quartz veinlets, a few anhydrite veinlets. A few pyrite + hematite + epidote + D1659 622 624 chlorite veinlets. 620.7 - 621.1, 621.2 - 621.9, - early porphyry @ 50°. 624 626 622.0 - 622.9, 623.3 - 623.5 - Lamprophyre @ 30°. $627 - 0 - 628.1 - Lamprophyre @ 30^{\circ}$. 626 628 629.2 635.5 Augite Porphyry Very schistose. Minor metavolcanic as above, 628 630 same veining. 631.9 - 633.0 - Lamprophyre, contacts @ 40°. 633.6 - 633.8 - Medium grained granitic dyke, pink. Upper contact @ 70°, lower @ 40°. D1660 630 632 635.5 636.4 Early Porphyry

Hole No. 80-2

From m	To m	Description	Sample No.	From m	To m	Length m		,	1
		As 596 - 601 - irregular contacts, abundant		632	634				
		metavolcanic inclusions, quartz veins. Pre-							
		Nelson in age.							
636.4	638.2	Gneissic Granitic dyke (Nelson)		634	636		-		_
		Orange alteration envelopes on hairline				•			
		calcite + pyrite veinlets, iron stain or					_		
		Kspar? Latest is dark brown accicular		636	638				
		amphibole (or tourmaline) with minor pyrite							
		with silicified envelopes.							
638.2	641.7	Biotitic Metavolcanics	D1661	638	640	2	_		
		Very fine grained, weakly bleached along							
		hairline calcite veinlets with epidote. A					_		
		few quartz veins.		640	642		_		
		639.5 - 20cm early porphyry dyke @ 50°.					_		
		640.3 - 1.5cm vein with brown silicate							
		(amphibole) or tourmaline, @ 20°. Silicified		642	644		_		
		envelope.					_		
641.7	646.3	Gneissic Granitic Dyke (Nelson)					_		
		Hornblende and biotite in medium grained		644	646				
		granite. Trace disseminated pyrite. Two late					_		
		glassy quartz veinlets with pyrite and					_		
		chlorite on margins and cross fractures.	D1662	646	648	2	_		
		Several hairline calcite + chlorite + pyrite							\$ ****
		+ hematite veinlets with orange alteration							
		envelopes, often @ 45°. Late gypsum veinlet.		648	650				
		Contacts 65°, 45°.							

	ve.	veins 0
	-	0
		! .
		1
	:	1
		:
	:	0
		0
		<u>. </u>
		<u> </u>
		0
		<u></u>
-		
·	Section of the sectio	-
		ļ

From m	To m	Description	Sample No.	From m	To m	Length	ym bap				
646.3	647.2	Fine Grained Biotitic Metavolcanics		650	652						
647.2	650.1	Early Porphyry			·						
		As 596 - 601. Feldspar phenocrysts to 3mm,									
		biotitic. Fine grained siliceous matrix.		652	654						
		Silicified along a few quartz veinlets. A		<u> </u>		•					
, <u>,</u>		few magnetite veinlets. Lower contact @ 30°.									
		649.0 - 649.3 , 649.7 - 649.8, Fresh coarsely	D1663	654	656	2					
		porphyritic Nelson quartz monzonite.									
650.1	655.1	Biotitic Metavolcanics									
		Very fine grained, tuffaceous. Several barren		656	658						
	1-1-1	quartz grains, pyrite + magnetite veinlet.								· ·	
		653.1 - 653.3 - Brecciated zone, early									
		hydrothermal.		658	660						
655.1	665.5	Nelson Quartz Monzonite								1	
		5% Kspar phenocrysts to 3cm, zoned with			ļ						
		hornblende inclusion, 15% plagioclase +		660	662						
		Kspar phenocrysts 2 to 4mm in equigranular									
		ground mass. 15% hornblende. Locally]						
		gneissic. Trace disseminated pyrite. A few	D1664	662	664	2					
		grey hairline quartz-magnetite veinlets near			:						
		contact. Occasional late pyrite hornblende									
		veinlet. A few chlorite + calcite veinlets.	l	664	666						
665.5	667.8	Early Porphyry						2 2 · •//*	್ಕು ಕಾಬಾವ		
		Weak stockwork, barren quartz with trace	<u></u>		<u> </u>						
		pyrite. Moderate argillic alteration.	<u> </u>	666	668						
		Several calcite + chlorite + pyrite + hematite	1	<u> </u>	<u> </u>	1		L,		<u> </u>	

From	To m	Description	Sample No.	From m	To m	Length m		
		veinlets with orange alteration.		668	670			
\	1	666.7 - 667.2 pink Nelson, hematite stains.						
		Sharp chilled margins, cutting quartz veins						
	<u> </u>	in early porphyry. Contact @ 80°.	D1665	670	672	2		
667.8	686.3	Nelson Quartz Monzonite.				•		 <u> </u>
		As 655.1 - 655.5, relatively fresh.		L				
		671.4 - 672.7 - chlorite + calcite in gouge		672	674		·	
		nearly parallel to core. Entire rock pink-						 ļ
		orange color strongly fractured with calcite					<u> </u>	
		+ chlorite + hematite on fractures, no		674	676			
		sulfides.					<u></u>	
		670.0 - mafics weakly chloritized.						 L
		678.7 - 679.5 - moderate to intense argillic		676	678			 ٠
		alteration and chlorite related to slips @					_	 <u></u>
		35°, 2 vein sets: 1) calcite, 2) calcite					_	
		+ hematite + chlorite.	D1666	678_	680	2		
		683.5 - 686.3 - moderate to intense argillic					 -	
		and chloritic alteration related to several					_	
		gouge zones at 35°. Relatively fresh at end.		680	682			 -
		686.3 - End of Hole.					-	
				682	684			 Ī —
								 (1.37 <u>1.7</u> %
							<u> </u>	
			ļ	684	686.3		_	
	J		<u> </u>	<u> </u>		<u> </u>		

Rio Tinto Canadian Exploration Limited

Location	n: 9956.	9N,		Diamond Dr	ill Record					Hole	No. 80-3			
Azimut			Dips - collar -50°	Contractor	' Canadian	Mines	Servic	ces	Property:	Aylwi	n Creek			
Elevatio	n: 1262		- 60 ^m 55 °		: D.C. Du				Claim No.	Claim No. Willa				
Length:		. / EL.	-130 ^m 54		tember 22		L980		Section No. 50 South					
Core Si			-200 ^m 56 °						Started: s	eptembe	r 20, 198	10		
			continuity of mineralizat	ion in 80-2	(Au. Cu)			•	Completed	l: _{Septe}	mber 25,	1980		
From	To	St dip , c	Description		Sample No.	From	To !	Lengt		·		C:	hl-ep	
0	3.3	Overburd	len			0	3.7	3.7					0	
3.3	3.7	Badly br	oken and drilled over co	re-				 	} } T ~		1			
		boulders	s? 3.4m lamprophyre/quar	tz latite	D 1837	3.7_	6 .	2.3	 +				7	
		porphyry	<u>/ contact ^a 55⁰ to core a</u>	xis.			<u>:</u>		<u> </u>					
3.7	36.2	Feldspar	Porphyry		D 1838	6	8	2m	.		<u> </u>		8	
		Pink-bro	own, fine grained, indist	inct		<u> </u>		1/	!-					
		<u>feldspar</u>	<u>phenocrysts average 1.5</u>	mm.	D 1839	8	10	2m					6	
		<u>i Often ob</u>	oscured by intense second	ary			ļ	<u> </u>	1					
		biotite_	and later silicification		D 1840	10	12	2m	<u> </u>		1		5	
		Generall	ly 1-2% disseminated pyri	te.					* -					
	<u> </u>	Abundant	t chlorite-amphibole-pyri	te_+/	D 1841	12	14	2m	+		1		5	
		epidote-	-quartz veinlets with sil	icified			<u> </u>	-	<u> </u>					
		envelope	es and locally associated	l pyrite-	D 1842	14	16	2m	<u> </u>		1		2 .	
		chlorite	e replacements as blebs a	ınd				<u> </u>						
		streaks.	. A few later pale green	gran-	D 1843	16	18	2m.		٠.	1	<i>3.</i> ***	4	
			lorite-epidote amphibole				<u> </u>	·	<u> </u>					
			es) - pyrite +/- garnet v		D 1844	18	20	2m	: - 		1		5	
			licification.				ļ	1	1					
	Ţ	Inte avr	nsum veinlets common Ca	lcite	1845 ס	20	22	2m			1 1		4	

From m	To m	Description	Sample No.	From	To m	Length
		6.3 - Pale green chlorite-epidote-	D 1846	22	24	2m_
		amphibole-pyrite vein @ 50°.			٠.	
		7.4-9.9 - Strongly silicified, abundant	_			1 1
		pyrite blebs.	D 1847	24	26	2 m
		10.1 - 19.0 - Brecciated appearance,				•
		very abundant brown biotite between	D 1848	26	28	2m
		fragments, often replaced by patches	!			
		of pyrite-chlorite-amphibole, Best @	D 1849	28	30	2m
		11.2m. Perhaps 4% pyrite, trace chal-				!
		copyrite.	D 1850	30	32	2m
ĺ		19.0-26.8 - Strongly fractured, bleached				
		along late calcite-chlorite-pyrite	D 1851	32 '	34	2m
		veinlets.				
		22 - 7cm fracture zone with calcite	D 1852	34	36	2m
		+ gypsum @ 20°.	İ			
		26.0 - Biotite veinlets partially re-	D 1853	36	38	2m
		placed by pyrite.				
		26.8- 31.5- Brecciated appearance -	D 1854	38	40	2m -
		fragments all feldspar porphyry, unsorted,	İ			
		angular to subrounded, matrix has in-	D 1855	40	42	2m
		tense brown biotite alteration, frag-				1
		ments moderate to strong alteration.	D 1856	42	44	2m
		Blebs and streaks of pyrite with minor				
	 	amphibole and epidote in matrix.	D 1857	44	46	2m_
· · · · · · · · · · · · · · · · · · ·		2-3% disseminated pyrite. A few late				
	<u> </u>	calcite veinlets.	D 1858	46	48	2m

_		 	_
		Chl-er amph-r	2
		3	_
			_
]		7	
		6	
_			
_		 3	
_		5	
		 6	_
_		6	_
	<u>}</u>	5	_
_		5	
		 	_
_		3	_
_		 1,	
	<u> </u>	5	_
	and and the	 	
		5	
			_
		10	_

From	To m	Description	Sample No.	From m	To m	Length					
		31.5- 36.2 - Brecciated locally,									
		bleached adjacent to abundant late			· · ·						
		calcite veinlets. Intense silicifi-			ļ			-	<u> </u>		
		cation in intervals up to 5cm associated			ļ			<u> </u>			
		with chlorite-epidote-amphibole-pyrite									
		-quartz veins. 5% pyrite and pyrrhotite		<u> </u>							
	L	in blebs and disseminations.			1						
		33.5- Ouartz-MoS ₂ veinlet in silici-			1			4		-	
		fied zone with pyrite-pyrrhotite-epidote.		1							
36.2	50.0	Heterogeneous Breccia					_				
		Contacts rather arbitrary due to alter-		ļ					}		
		ation. Fragments to 20cm, averaging									
		10cm, including: Feldspar porphyry,									
		dark schistose metavolcanics, fine						ļ <u> </u>	<u> </u>		9.6
		grained feldspar porphyry with brown							-	:	
		biotite, a few tan cherty rocks. Matrix									
		rather nebulous, appears crystalline.			ļ			_	<u> </u>	ļ	
		Strong pale green silicate alteration		+							
		and silicification. Hairline chlorite-		-	! !				ļ		-
		-black amphibole-pyrite-quartz veins		-	ļ					 	ļ
		about 5/metre. A few later pale green							 		
		granular chlorite-epidote-amphibole									
		-pyrite-quartz-pyrrhotite veinlets with			-			4		Andrewsker .	
		silicified envelopes with epidote- see		ļ					<u></u>		ļ
		43,0, 43.5m. A few late hairline		-	ļ					ļ	ļ
		calcite-chlorite +/- pyrite veinlets.		1						l	

From m	To I m	Description	Sample No.	From m)	To m	Lengt
		Breccia appears to cut, alter, and	D 1859	48	5.0	2m
		include fragments of feldspar porphyry.			٠.	
		47.3- Well defined fragments.	1860	50	52	2m
50.0	139.9	Feldspar Porphyry				
		As 3.7 -36.2. Abundant subhedral	1861	52	54	2m
		feldspars averaging 2mm. Biotite +				ļ
		pyrite after hornblende, no quartz	1862	54	56	2m
		phenocrysts. Generally intense second-				ļ
		ary biotite.	1863	56	58	2m
		50.0- 54.7 - breccia texture, fragments			<u></u>	
		nearly all feldspar porphyry. 5-7%	1864	58	60	2m
		pyrite as blebs and disseminations, as	~ -			-
		26.8-31.5.	1865	60	62	2m
		54.7 - 56.4 - Fragments not apparent.		· · · · · · · · · · · · · · · · · · ·		
		Abundant veinlets and streaks of pyrite,	1866	62	64	2m
		to 10% pyrite. Cut by 3cm quartz			; T	_
		veins with pyrite and black amphibole	1867	64	66	2m
		at 55.6, 56.2 @ 60° with silicified envel-		: 		_
		opes. Several late calcite veinlets	1868	66	68	2m
		and jade green chlorite-serpentine on		i i	<u> </u>	<u> </u>
, <u> </u>		fractures. A few pyrite-black amphibole-	1869	68	70	2m
		biotite veinlets.	_	 		
		56.4 - 61.5 - vague to well defined	1870	70	72	2m
		breccia texture, no foreign fragments,	i			
		matrix intensely altered to brown	1871	72	74	2m
		biotite with up to 10% coarse dissemin-	_l	<u> </u>	<u> </u>	

Hole	No.		80-3	
Page	No.	4		

		Chi-ep amph-py
		12
		5
!		
		4
		4
		3
		3
		4
		4
		3
		5
		4
	1	
	THE STATE OF	3
-	<u> </u>	5
1		

Hole	No.	80-3
Page	No.	5

From m	To m	Description	Sample No.	From m	To m	Length			Chl-ep amph-p
		-ated pyrite with epidote. Chlor-					_		
		ite-epidote-pyrite quartz veinlets with	1872	74	76	2m	_		4
		silicified envelopes cut by biotite-					_		
		pyrite veinlets.					_	1	
		58.4 - Pale green granular chlorite-	1873	76	7.8	2m	_		6
		epidote-amphibole-quartz-pyrite vein					_		
		@ 50° with pyrrhotite in silicified		!		1	.		
	_	envelope, brown biotite on margins.	1874	78	80	2 m	 -		3
		Also 3 hairline pyrite-MoS, veinlets		i .					
		§ 40° to core axis.		! 			 -		
		61.4-66.9- Feldspar porphyry, breccia	1875	80	82	2m			3
		textures locally apparent as at 64.lm,					<u> </u>	-	
		66.9m. Moderate to strong silicifi-		<u> </u>	ļ		<u> </u> 	ļ	
		cation and bleaching especially 61.4-	1876	82	84	2m) 	1	4
		62.8. 64.8-69.0. Cut by biotite-pyrite		<u> </u>			<u> </u>	 	
		and by late chlorite-calcite-pyrite			ļ. <u>.</u>		: 		
		veinlets.	1877	84	86	2m	 		3
		66,9- 67,1 - Intense silicification		1	ļ		 -		
		with blebs of pyrite associated with				<u> </u>	<u> </u>		
		chlorite-biotite-amphibole, cut by	1878	86	88	2m	<u> </u>		.4
		calcite-chorite-pyrite veinlet.		 -			+	-	
		69.6-70.0 - Intense biotite, 10%			i - •		 		
		pyrite and 3mm pyrite veinlets at 70°	1879	88	90	2m	<u> </u>	<u> </u>	3
	<u> </u>	to core.		<u> </u>			<u> </u>		
	1	73.7 - Gradation in and out from feld-			ļ		1	+	
		spar porphyry to brecciated, altered					1		<u> </u>

From m	To m	Description	Sample No.	From m	To m	Length						
		feldspar porphyry										
		76.7 - 10cm silicified zone with multiple	_		٠,			<u> </u>	ļ <u>.</u>			ļ
		pyrite-biotite veinlets.					-	ļ			<u> </u>	
		77.4 - 4cm irregular chlorite-epidote-		<u> </u>					ļ	·		
		amphibole-pyrite-quartz veinlet @ 1000	<u> </u>	ļ	<u> </u>	•			ļ		ļ	
		with silicification and brown biotite	<u> </u>	ļ					1			<u>-</u> ا
		banding @ 450, also 1cm quartz vein with	ļ				_	ļ	ļ]
		pyrite and brown biotite (early?) @ 30°.										-
		87.6- 82.8- Intense silicification with			<u> </u>				ļ	ļ	L	
		10-15% rather yellow pyrite in blebs										
		and disseminations.										
		84.5- 102 - Patchy moderate to intense	ļ	<u> </u>			ļ		ļ	·		
		silicification with 5-10% blebs and	1						<u> </u>	<u> </u>		-
		disseminations of pyrite with biotite,	1	'	ļ							
		black amphibole +/- epidote. Porphyry	i i									
		texture often obscurred. Early brown	<u> </u>									
		biotite moderate. Abundant late		<u> </u>			_					
		calcite-chlorite-pyrite veinlets with	ļ	-	1		_				<u> </u>	1
		bleached envelopes to lcm, 6-10/metre.							_	ļ		1
		Scattered late biotite epidote-amphibole-			ļ		_		ļ <u>.</u>			ļ
		pyrite-quartz veins to 2cm generally <1cm.	ļ	<u> </u>					ļ		1973	1
		Sets @ 70°, 20°, 5°, to core.					_	ļ	<u> </u>	· · · · · · · · · · · · · · · · · · ·		╛
		88.6 - 89.4 - Intensely fractured,										1
		bleached, abundant calcite-chlorite-							·			
		pyrite veinlets @ 80° to core.	<u> </u>						 	 	ļ	1
		93.0 - Two irregular strings of blebs								<u> </u>	<u></u>	J

From m	To m	Description	Sample No.	From m	To m	Lengt
		of pyrite-epidote biotite-amphibole				
		in silicification.	1880	90	92	2111
		93.7 - Same		·		
		95.5 - 96.3 - Strong fracture set				
		nearly parallel to core with chlorite-	1881	92	94	2m
		calcite-pyrite, bleached.				ļ
		95.8 - Weak irregular quartz-MoS ₂ vein-				ļ
		let in silicified zone, older than pyrite	1882	94	96	2m
		+ green silicates.				1
		98.2 - 101.4- Moderate to intense				
		silicification associated with several	1883	96	98	2m
		chlorite-epidote-amphibole-pyrite quartz				
		veins, commonly @ 30° to core. 6-8%				
		disseminated pyrite with epidote and	1884	98	100	2m
		minor pyrrrhotite.				
		102-111.0 - Pervasive strong, silicifi-				
		cation with short, less silicified	1885	100	102	2m
		intervals. Alteration related to				
		chlorite-epidote-amphibole-pyrite-quartz				
		veining. Contains extremely rare quartz	1886	102	104	2m
		phenocrysts. 1-2cm blebs of pyrite		<u> </u>		
		and biotite in less silicified zones.				
		5-7% disseminated pyrite throughout.	1887	104	106	2m
	-	Veinlets to 2cm and fine networks of				
		chlorite-epidote-amphibole-pyrite-quartz				
		veinlets. One set 0 200, another 30-400.		<u> </u>		

Hole	No.	80- 3	
Page	No.	7	

Т		k	Chl-ep
	1	Ų	Chl-ep
7			
+			
			3
П			1
+			
4			
			4
7			
+			
\perp			
			4
+			
\dashv			
-			
٦			4
\dashv			
4			
			٠.
╛			5
4			
١-			
-			· ·
_			11
			
_			
			8
			4. Y. N.
_		agin j eoglika)	
_	· /		
			12
_			
_	<u> </u>	 	 -
_			
		1	
_	L		

From n	To m	Description	Sample No.	From m	To m	Length
		111.0 - Begin seeing pyrite-biotite	1888	106	108	2m
		veinlets - older than pyrite-chlorite			• •	
		veinlets, younger than green silicate-	ļ			
		pyrite-quartz veinlets. Biotite-pyrite	1889	108	110	2m 4
		blebs associated with this vein set?				•
		113.1- Several irregular hairline				ļ
		MoS ₂ veinlets @ 10°.	1890	110	112	2m
		111.6 - 114.9 - Moderate to intense				
		fracturing, late calcite-chlorite-pyrite			: !	
		veinlets @ 65-75° to core. A few @ 25-30°,	1891	112	114	2m
		perpendicular to first set, Strong				
		bleaching associated.		ļ ! 		
		114.9 -125.0 - Patchy silicification	1892	114_	116	2m
		associated with chlorite epidote-amph=				
		ibole-pyrite-quartz veinlets, and with				
		biotite hornfels alteration. Sporadic	1893	116	118	2m
		late calcite veinlets, especially 118-				
		ll9m. Occasional blebs and streaks				
		of pyrite with minor pyrrhotite in later	1894	118	120	2m
	·	brown biotite. 6-8% total sulfides.				<u> </u>
		119.0 - 2.5cm healed fault breccia in				
-		silicified zone @ 35°.	1895	120	122	2m
		122.0 - Irregular 3cm band of intense				
		biotite + pyrite .				<u> </u>
		125.0- 127.6 - Moderate to very strong	1896	122_	124	2m
		silicification. Abundant later brown				

	,		Chlear
]	Chl-er amph-p
_			mpir p
			12
_			
_			19
			7
_			,
_			
_			
_			5
_			
		_	2
_	P	io-py	
_		121	
	-		
_	ļ <u> </u> _	8	5
		10	7
_			<u> </u>
	 		
_	-		, ,,
		15	3
	1	en er gurane die g	
	 	0	
-	 	8	13
_			L

From m	To m	Description	Sample No.	From m	To m	Lengt
		biotite and up to 15% pyrite in blebs				
		and disseminations (overprint on early	1897	124	126	2m
		biotite hornfels)	į			<u> </u>
		127.5 - 128- Abundant late calcite-	1898	126	128	2m
		chlorite-pyrite veinlets @ 70° to core.				<u> </u>
		130.2 - 0.8cm pyrite quartz vein @ 300	1899	128	130	2m
		130.7 - 1cm pyrite-guartz-biotite yein				ļ
		@ 35° with pyrrhotite and chalcopyrite,	1900	130	1.32	<u>2π</u>
		in silicified zone.				1
		131.2 - Pyrite-black amphibole-epidote	1901	132	134	2m
		clots.		-		
		133.3 - 135.3- Strongly fractured, bleach-	1902	134	136	2m
		ed abundant late calcite-pyrite-epidote	_			
		-chlorite veinlets, small gouge planes	1903	136	138	2m
		@ 20-25 ⁰ . A few vuggy irregular quartz-	ļ .			
		epidote-pyrite veins as at 133.9.	1904	138	140_	2m
		135.9 - 136.4 - Fracture zone as above.				· /
		gougy.	1905	140	142_	2m
		137.9 - Trace disseminated chalcopyrite.				
		138,6 - 138.9- Breccia texture with	1906_	142	144	2m
		very abundant brown biotite in matrix				-
		as 56.4 - 61.5.	1907	144	146	2m
		139.4 - 139.9 - Strong silicification		<u> </u>		
		in feldspar porphyry with intense brown	1908	146	148	2m
		biotite, pyrite, and chalcopyrite as	-			-
	-	veins and replacements. Minor pyrrhotite,	1909	148	150	2m_

_	-	,	
		Bio-py	chl-ep amph-p
		11	1
		8	1
_		12_	1
_			
_		10_	2
_			
_		3	3
			<u> </u>
_		6	3
	 -	ļ	
_		8	3
_		3	2
_		 _ -	 _ _ _
_	 	3	4
			<u> </u>
-		2	5
-		 	11
-	 	0	1 1 1
-	 	 	
_		2	14
-			-
-	1	3_	3

From m	To m	Description	Sample No.	From m	To m	Length
		irredescent tarnish on chalcopyrite	1910	150	152	2m
		(possible bornite). Veins @ about			•	
		20° to core 2% Cu.				
139.9	142.0	Heterogeneous Breccia	1911	152	154	2m
		Strongly silicified, moderate green				•
		silicate alteration. Fragments poorly				
<u> </u>		defined except @ 141.7, 2-3% disseminated	1912	154	156	2m
		pyrite, pyrrhotite, chalcopyrite. Strong				
		fractures.				
142.0	147.5	Silicified Feldspar Porphyry (?)	1913	156	158	2m
 · · ·		Fine grained white to pale green, with		·		
		rounded indistinct feldspars averaging				
		1mm, no quartz, no primary mafics,	1914	158	160	2m
		vague breccia textures locally. Inter-				
		vals to 20cm of brown biotitic rock (fra-				
		gments or remnants of feldspar porphyry	1915	160	162	2m
		with streaks and disseminated pyrite,				
		chalcopyrite and pyrrhotite. Generally				
		5-7% disseminated and streaky pyrite	1916	162	164	2m
		with lesser chalcopyrite and pyrrhotite				
		replacing biotite. A few chlorite-				
		epidote-pyrite-quartz veinlets with re-	1917	164	166	2m
		placement sulfide blebs. 0.2% Cu?				
		142.0, 142.6 - 15cm intervals of inten-				
		se brown biotite in feldspar porphyry	1918	166	168	2m
		with the same of t				

Hole	No.	80-3	
Page	No.	10	·
		chl-py	chl-ep amph-p
		6	4
		-	
	3	4	3
	i	4	4
		2	13
	-		
		0	12
	-	<u> </u>	.*
		6	3
	 		
		6	2
	1	. Jacobski	
	 	5	17
	+	-	

Hole No.

Page No. 11

From m	To m	Description	Sample No.	From m	To m	Length					
		143.3 - 3mm glassy quartz vein with lcm									
		silicified margin @ 30° to core axis.			`.						
147.5	170.5	Heterogeneous Breccia	ļ	ļ ·						<u> </u>	
		Fragments to 30cm of: (most) dark bioti-	<u> </u>	1							
		tic metavolcanics, very fine grained									
		cherty buff to pink felsite, volcanics		:	<u> </u>						
		(?), augite porphyry mostly toward end,	1				<u>-</u>				
		white feldspar porphyry with white							<u> </u>		
	_	plagioclase phenocrysts to 5mm, squarish						<u> </u>		<u> </u>	
		to rounded, crowded in aphanitic grey			<u> </u>			1			
	_	groundmass, minor altered hornblende	5								
		(see 158.5m), (least) silicififed and	<u> </u>								
		veined feldspar porphyry as at 147.4.	<u> </u>		 			ļ			
		Matrix is rock flour strongly altered to									
		pale green silicates. Abundant irregular									
		veinlets, streaks and blebs of pyrite,						,			
		minor chalcopyrite and pyrrhotite. Cut									
		by occasional chlorite-epidote-pyrite-								1	
		quartz veinlets, a few pyrite-chlorite			1						
		veinlets, then granular epidote-amphibole				1		Ĺ			
		(actinolite?) -pyrite-calcite quartz		i							
		veins as at 154.0. Upper contact sharp									
		@ 50°.									
		154.4 - Pale granular green silicate									
		vein @ 20°.									
		159.0- 30cm dark volcanic fragment.		<u> </u>			l	<u> </u>			

From m	To 1 m	Description	Sample No.	From m	To m	Lengtl
		160.2- 161.7 - Silicified augite por-				
		phyry fragment.	1919	168	170.5	2.5
		164.7 - 167.0- Very intense sulfides				
		-15-20% pyrite-chalcopyrite-pyrrhotite	NS	170.5	172.7	
		replacing matrix, outlining, and partially				•
		replacing fragments as veinlets, streaks	1920	172.7	174_	1.3
		and blebs. 2% Cu, with epidote, dark	į.			
		amphibole and locally garnet (165.0).	1921	174	176,6	2.6
		From 167.0 - most of fragments are augite				
-		porphyry.	NS	176.6	178.1	
-		167-170.5 - Mineralization moderate,				
		less chalcopyrite, 0.5% Cu.	1922	178.1	180	2.1
		167 - 171.5 - Very strong fractures with				
		calcite @ 5°, 10°.	1923	-180	182	2m
170.5	172.7	Lamprophyre				
_		Upper contact @ 60°, lower in broken core	1924	182	184	2m
· ·		- 45°?				
		172.1 - 5cm fault gouge @ 30° to core.	1925	184	186	2m
172.7	176.6	Augite Porphyry	<u> </u>			1
		25% augite phenocrysts to 4mm,				
		average 2.5mm, moderately to strongly				
		altered to pale green silicates (chlor-				
- -		ite-actinolite?). Dark fine grained				
		matrix with brown biotite, feldspar,				
		fine augite. Rock moderately to strongly				
		altered to chlorite-epidote-actinolite-				

Hole	No.	80- 3
Page	No.	12

_			
			chi-ep
			chl-ep amph-p
		<u> </u>	
			Ì
\dashv			
, i			10
ᆚ			 -
			Ì
-			
			,
_		<u> </u>	2
1		:	i
_			· · · · ·
,			11
<u>'</u>			
)		
	l		
			15
_			1
_			ļ. <u> —</u> , —
			7
_			
_			<u></u>
		•	16
_		-	
			٠. ا
_			16
_			L
-	ļ		8
_			
_		<u> </u>	<u> </u>
_			
_			17
_			
	L	<u> </u>	
_			
_			
-			
		L	
	3 1 1 1 1	- 19V	
		į	ļ
-			
-		- 1	
		. '	
•			· · · · · ·
	1	ł	

To m	Description	Sample No.	From m	To m	Length						
	calcite. (especially 174.5m), associated					<u> </u>	<u> </u>				1
	with pyrite-epidote +/- quartz veinlets					.	ļ <u> </u>	· 			_, إ
	and granular chlorite-actinolite-epidote-		<u> </u>				ļ				4
	quartz veinlets often with biotite on					<u> </u>	ļ	<u> </u>			
	margins (175.0). Late gypsum veinlets.				•	<u> </u>	ļ	<u> </u>			
	late calcite veinlets. Pyrite-epidote		[_
	-quartz generally @ 30° + 5° to core					ļ	ļ <u>.</u>				
		<u> </u>									_
		<u> </u>				ļ					
	to core with chlorite + coarse pyrite.							ļ			_]
	5-7% sulfides, 2-4% disseminated pyrite,	<u> </u>	<u> </u>	1							
	trace chalcopyrite.	<u> </u>	ļ	·			ļ <u>.</u>	ļ			4
178.1	Lamprophyre						ļ				_
	Upper contact irregular, about 30°,							<u> </u>			4
		1						1	!	•1]
194.0	Augite Porphyry	[ļ <u>.</u>	ļ			1
	As 172.2 - 176.6, a bit more strongly	·	1					<u> </u>			
		<u>.</u>	<u> </u>	ļ. <u> </u>			_	<u>. </u>			_
	·			<u> </u>			-				_
		<u> </u>						-		ļ	╛
											_
		1								t _{al} ee .	
								. Languari	in and Negative and Security an		
 											
]
 								<u> </u>			
1		calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote-quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-7% sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°.	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-7% sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-7% pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on marqins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-7% sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-7% pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on margins (175.0). Late qypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-7% sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-7% pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm guartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-7% sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-7% pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-7% sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-7% pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-78 sulfides, 2-4% disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more shundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-78 pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz qenerally @ 30° + 5° to core granular veinlets @ 50°. 174 - 2.5cm quartz vein in shear @ 5° to core with chlorite + coarse pyrite. 5-78 sulfides, 2-48 disseminated pyrite, trace chalcopyrite. Lamprophyre Upper contact irregular, about 30°, lower sharp @ 90°. 194.0 Augite Porphyry As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-78 pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote -quartz generally 8 30° + 5° to core granular veinlets 4 50° 174 - 2.5cm quartz vein in shear 8 5° to core with chlorite + coarse pyrite. 5-78 sulfides, 2-48 disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, about 30°, lower sharp 8 90°. 194.0 Augite Porphysy As 172.2 - 176.6, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-78 pyrite disseminated, streaks + yein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured	calcite. (especially 174.5m), associated with pyrite-epidote +/- quartz veinlets and granular chlorite-actinolite-epidote- quartz veinlets often with biotite on margins (175.0). Late gypsum veinlets, late calcite veinlets. Pyrite-epidote - quartz generally 8 30° + 5° to core granular veinlets 8 50°. 174 - 2.5cm quartz vein in shear 8 5° to core with chlorite + coarse pyrite. 5-78 sulfides, 2-48 disseminated pyrite, trace chalcopyrite. 178.1 Lamprophyre Upper contact irregular, shout 30°, lower sharp 8 90°. 194.0 Augite Porphyry As 172.2 - 176.5, a bit more strongly altered, more abundant pyrite-epidote- chlorite +/- quartz veinlets, chalcopyrite locally abundant. 178.1 - 181.0 - Moderate alteration, 5-78 pyrite disseminated, streaks + vein- lets, generally with epidote, minor chalcopyrite. 181.0 - 182.7 - intensely fractured

From m	To m	Description	Sample No.	From m	To m	Length
		parallel to core. Calcite throughout			<u> </u>	
		and in late veinlets. Up to 10%	D 1926	186	188	2m
		disseminated pyrite, minor chalcopyrite,			!	
		0.1% Cu.				
		181.5- 5mm pyrite-MoS ₂ veinlet.	1927	188	190	2m
	,	182.7-194.0 - More intense mineraliz-				
		ation, larger veinlets + blebs of py-			<u> </u>	
		rite-chalcopyrite, trace pyrrhotite,	1928	190	1,92	2m
		minor hematite, many late calcite				
		veinlets. 0.5% Cu.		:		
		184.8, 185.2 - Coarse quartz-calcite	1929	192	194	2m
		veins @ 30° to core.			<u> </u>	
		185.9- Calcite veinlet with hematite			1	
		@ 20°.	1930	194	196	2m
		186.4 - 3cm gouge zone along quartz vein			<u> </u>	
		@ 10°. 10% pyrite, minor chalcopyrite.			!	
		186.7 - lcm sheared pyrite veinlet	1931	196	198_	2 m
	<u> </u>	with minor chalcopyrite, trace MoS2		<u> </u>	1	
		@ 10°.		!	!	
		188.9 - 1cm pyrite-chalcopyrite vein	1932	198	200	2π
	T	@ 25°.				
		191.6 - 2cm quartz-calcite vein with				
	<u> </u>	slicks @ 10°.				
		193.6 - Calcite-chlorite veinlet with	·			
	 	hematite @ 80°.				
	 	TOTAL CARE CONTRACTOR		1	1	

Hole	No.	80-3	
Page	No.	14	

		Qt.: -	amph-ba
4		0	23
4			
+			1.6
4		0	16
+			
		0	17
_	,, <u></u>		
4		3	16
-	·	<u></u>	
-		1	8
		6	9
_		<u> </u>	
_			
-		5	3
. –	3 - 1 M	Page	1
_	· · · · · · · · · · · · · · · · · · ·		
_			
_			

Hole No. 80-3

Page No.

15

From m	To m	Description	Sample No.	From m	To m	Length					
		with MoS, on margins and disseminated									
		to lcm thick @ 30° + parallel core.			٠						l
		30 ⁰ one cut by parallel quartz-epidote	<u> </u>						ļ		<u> </u>
		-pyrite veinlet and gypsum.									
		194.0 - lower contact at 30°.				•					
194.0	200.0	Grey Siltstone			! !						
		Thin bedded (lcm) grey to buff, fine		1	1						ļ
		grained clastics. Minor biotite.	<u> </u>	· ·	ļ	ļ <u>ļ.</u>					
		tuffaceous, bedding 20° to 40° to core				<u> </u>					
		axis, graded bedding (196.5) suggests	<u> </u>						ļ		<u> </u>
		overturning. (This is the source of		 	<u> </u>				ļ		
		fine grained cherty fragments in heter-				ļ ļ.			ļ		
		ogeneous breccias). Shattered and		<u> </u>			-				
		chloritized at contact with several	ļ		1						. 0
		chlorite veinlets. Average 2% pyrite	-	·	<u> </u>				<u> </u>		
		disseminated and on fractures parallel									·
		to bedding. Several glassy quartz	<u> </u>		ļ <u></u>						
		veins to lcm with MoS ₂ along margins.		ļ					ļ		ļ <u></u>
		These are cut by pyrite veinlets with	_								
		epidote, quartz, amphibole, specularite.	_	ļ 							<u> </u>
		Many late calcite veinlets, minor gypsum.							ļ		
		197.8 -198.5 - Crackled, up to 10%		ļ							
		pyrite with minor chalcopyrite as						31.1	1		<u> </u>
		streaks and replacement blebs - 0.3% Cu.	-								<u> </u>
200.0		End of Hole,								<u> </u>	

Rio Tinto Canadian Exploration Limited

Location	1:9944.8N	, 9900.2E		Diamond Dri	II Record					Hole N	o. ₈₀₋	4	
Azimuth	1: 135°		Dips - collar -50 °	Contractor	Camero Drill	n McCut	cheon		Property: 2				
Elevation	n: ₁₂₇₀ .	9m	Logged By	D. C. I	Durgin	Claim No.	Rockla	nd					
	291.2m		-130 ^m -46 °				1980		Section No	. 100 Soi	uth		
Core Siz			-270 ^m -45 °						Started: 00	ctober 6	, 1980		
Purpose								•	Completed	:			
From	To m		Description	- 7	Sample No.	From	To I m	Length	1	<u> </u>		kidizec	chl-ep
0	7.9	Overburder	1							-			- dimpir
	: I		ly broken, drilled o	ver core, all					Ţ				
		quartz lat	tite porphyry. 30%	rounded feld-				<u> </u>					
		spars aver	rage 2.5mm, 5mm maxi	mum, 10% bio-			<u> </u>	_	_				
		tite after	r hornblende. 1% rou	nded quartz									
		chenocryst	ts to 3mm in grey ap	hanitic matrix.					1				
		2-3%_disse	eminated pyrite with	biotite, A few			<u> </u>		_				
		early quar	rtz veinlets with mix	nor MoS , cut by					<u> </u>				
			rite-dark chlorite-e	-					_				
		with trace	chalcopyrite. Sup-	ergene covellite			<u> </u>		1				
		coating py	yrite. Abundant str	ongly oxidized			<u> </u>						
	,	veinlets a	and fractures. 5.0	- lcm oval		<u> </u>							
],	piece of c	quartz with MoS,			-	0	8.8					
7.9	1		eous Breccia			<u> </u>							81 ₁₃₂
	I	Fragments	to 8cm,most are qua	rtz latite porph-	D1933	8.8	10	1.2m				8	1
	,	ry, some	chloritic metavolca	nics, a few aug-								lane,	
	1	ite porphy	yry. Matrix is gran	lar to schistose					1				
	V	vith quart	z, chlorite, and ab	ındant dark									
	l	oiotite.	15% pyrite (2mm) 1a	argely dissem-	D1934	10	12	2m				5	2
	1	inated,_											

From	To m	Description	Sample No.	From m	To m	Length
		largely in matrix, also as streaks and blebs				
_		with minor epidote. Minor chalcopyrite, irri-				
		descent tarnish, covellite coating some pyrite				
		Many oxidized pyrite-chlorite veinlets @ 80°,				
		10° to core.	D1935	12	14	2m
13.1	15.5	Quartz Latite Porphyry	D1936	14	16	2m
		30% feldspars, average 2mm, 2-4% rounded quartz	t			
		phenocrysts, 5-7% biotite and pyrite after				T
		hornblende. Very fine grained matrix, overall	D1937	16	1.8	2m
	Ţ	pale greenish tinge, feldspars indistinct -				
		incipient quartz-sericite alteration? 2% dis-				
		seminated pyrite, strong silicification at	D1938	18	20	2m
		upper contact with abundant pyrite, decreasing			_	
		downward. Quartz-chlorite-pyrite +/- epidote				
		veinlets common. Very abundant later limonite-	D1939	20	22	2m
		coated fractures (pyrite-chlorite veinlets?),				
		most commonly @ 55-65°.				
		14.4 - Odd 3cm silicified band with feldspar	D1940	22	24	2m
	<u> </u>	fragments and 3% disseminated pyrite at 55° -				
		a breccia dyke?				
15.5	17.9	Heterogeneous Breccia (biotitic)	D1941	24	26	2m
		As 7.9 - 13.1 Contacts indistinct, masked by				
		silification. 10% total sulfides, pyrite rimmed				
		by blue-black covellite. 0.3% Cu as chalcopyrite				

	No.		2			
_	\neg	ОХ	id	zed	chl	-ep
		ve	in.	lets	amp	h-p
	i					
			_			
	<u>-</u>					
			<u> </u>	25_		_3
			7	25		3
			_			
			7	25		8
				25		12
						.]
		$\overline{}$	_			
				18		16
]	>	25		18
				- "		
				7.1		
	25.00		-			
			<u> </u>	25		15
]
		- 1				

From m	To m	Description	Sample No.	From m	To m	Length	ç	oxi ve i	dizeć nlets	s=l-ep
		same amount as covellite?	D1942	26	28	2m	-		> 25	
		15.6 - 2cm glassy quartz vein at 70° with dis-							<u> </u>	
		seminated very fine-grained blue-black metal-					-	_		
		lic needles (what?)	'				=			
		17.1 - 4cm clast of bull quartz with pyrite-	D1943	28	29.5	1.5m	-) 25	7
		chlorite-quartz veins.					-	+		
17.9	28.1	Early Porphyry	N S	29.5	32.3	2.8m	_		0	0
		Seriate texture; 40% subhedral plagioclase					_			
		phenocrysts from 6 to 1mm in aphanitic matrix,				!	-			
		7% biotite-chlorite after hornblende to 0.8cm,					-			
		1% hornblende to 0.8cm, 1% rounded quartz phen		<u> </u>		<u> </u>				
		ocrysts, generally 2mm, a few to 8mm. Freshest			<u>.</u>					
		at 25.8m. Biotite weakly to moderately chlori-	D1944	32.3	34	1.7m			18	13
		tized. 1 to 5% disseminated pyrite with minor		· ÷						
		epidote. Feldspars slightly green. Many chlor-		<u></u>						
		ite pyrite-epidote veinlets at 45°, 30°, 10°.					'	_		
		Later bleached, limonite-coated factures at		-						
		10°, 30°, 70°. Silicified near both contacts,								
		especially upper.	D1945	34	36	2m		1	19	13
		19 - Malachite, azurite, tennorite on frac-		!		1				**
		tures with limonite.		!		ļ			1,5	
		21.6- Covellite coating pyrite.		1		<u> </u>	•			
		25.1- Biotite quartz-pyrite-trace chalcopyrite								
		- 5cm patch.								
		25.3- Gouge @ 5° to core.	D1946	36	38	2m		1	14	8

From m	To m	Description	Sample No.	From m	To m	Length
28.1	40.1	Hetergenous Breccia	D1947	38	40	2m
		Fragments to 20cm, generally less than 8cm,				
		25% quartz latite porphyry, especially at top,	D1948	40	42	2m
		25% dark schistose metavolcanics, 5% augite				
		porphyry, 5% other, 30% matrix. Matrix granu-			, i 	•
		lar (rock flour?) altered to actinolite-chlor-		<u> </u>		
		ite-epidote-pyrite-quartz. 10% pyrite dissemi-				:
		nated and in blebs with epidote, minor chal-			<u> </u>	
		copyrite. Chlorite-epidote, minor chalcopyrite	D1949	42	44	2m
		Chlorite-epidote-pyrite veinlets, hairline			(
		chlorite-pyrite veinlets +/- calcite. Upper			!	
		contact @ 600, lower irregular, altered.				
		29.5 - 32.3 - 2.5m of core lost.				
		35.1 - Minor gouge @ 30°.				
		37.2 - 37.8 - 60cm core lost.	D1950	44	46	2 m
40.1	54.0	Early Porphyry	D1951	46	48	2 m
		As 17.9 - 28.1.				
		40.1 - 44.2 - Moderate to strong silicifica-				
		tion with fine pale brown biotite, feldspars				
		milky, matrix altered. Primary textures local-				
		ly obliterated, especially near contact.				
		2% disseminated pyrite. Pyrite-chlorite-epidote				
		-hematite-quartz veinlets common at 30° and				
		parallel core. A few replacement blebs of	D1952	48	50	2 m
		pyrite-chlorite-epidote (42.5m), Calcite on				

		4	
C V	xidize einlet	d gtz-	chl-ep amph-p
_	9	1	б
-		-	
-			
_	5	1	13
_			
_			<u></u> i
_			
-			
-			
•	3	6	11
_		<u> </u>	
_			
_			
_	> 25	1	10
_	· · · · · · · · · · · · · · · · · · ·		
_	20	7	1.5
-		1	15
_			
_			
_			
	الله اللهار دارية الم	r seletairy	
_	,		
_			
-			<u> </u>
	10	10	13
_			

Hole No. 80-4 5

From m	To m	Description	Sample No.	From m	To m	Length	,		qtz- Mo	chl-ep amph-p
		late fractures. Quartz-MoS2 veinlets with sil-		50	52	2m			1	8
	· · · · · · · · · · · · · · · · · · ·	icified envelopes @ 35°. Quartz-MoS2 vein para-			•					
		llel to core with pyrite-chlorite-epidote-								
		quartz veinlet down centre (44m).								
*		44.2 - 46.9 - Relatively fresh, altered only				•				
		along pyrite-chlorite-epidote veinlets. Strong	ļ 1	ļ i—			-			
		fracture sets @ 30°, 75° with limonite and	<u> </u>		,					
		black oxides (Fe,Mn,Cu?).	D1954	52	54	2m			0	10
		45.3 - Thick black oxides with white platy min-					_			
		eral - gypsum?					-			
		46.9 - 49.5 - Intense silicification, porphyri-					_			
.		ic texture oblitered, quartz eyes remain. 5%								
		very fine-grained brown biotite. Barren quartz-	1		i 		_		<u></u>	
		MoS, veinlets, later pyrite-chlorite-epidote-	D1955	54	56	2m	· -		0	14
		quartz +/- chalcopyrite +/- MoS2 veinlets.					<u>.</u>			
		Black oxides on fractures; some pyrite has					-			
		blue-black coating - supergene Cu.	D1956	56	58	2π	_	I	0	10
		49.5 - 54.0 - Relatively fresh, moderate pyrite-					_	\perp		
		chlorite-epidote-quartz veinlets with silici-					_			
		fied envelopes, sets at 60° and parallel to	D1957	58	60_	2m	_		0	8
		core. Late calcite-chlorite veinlets at 30°					· -			
	· ··· · · · · · · · · · · · · · · · ·	and parallel to core.	D1958	60	62	2m	_		0.0	7
		51.7 - MoS, in quartz vein with chlorite-epi-								
		dote-pyrite.	D1959	62	64	2m	_		0	6
							_			
			<u> </u>				_			

From 1	To m	Description	Sample No	From m	To m	Lengt
54.0	62.9	Heterogeneous Breccia	D1960	64	66	2m
t <u>i</u>		Fragments generally less than 5cm, contains			•	
		quartz latite porphyry, fine grained buff sil-				
		icieous rocks, feldspar porphyry, fine grained				
		biotite hornfels, others (?) in fine-grained				•
		silicified matrix with epidote + chlorite.	1961	_66	68_	2m
-		54.0 - 58.0 - Silicified, 5-7% pyrite, dissem-				
-		inated and in blebs with epidote, in veinlets				
		with chlorite and epidote, pale green. Upper		·		
		contact in broken core at low angle.				
-		54.5 - Vuggy chlorite-epidote-amphibole-pyrite	D1962	68	70	2m
-		veinlet with late 2mm fluorite crystals.				
		55.4 - Vuggy pyrite-epidote-chlorite-quartz				
, 		veinlets with well-displayed chalcocite on		,		
		pyrite crystals.				
		58 - 59.5 - Grades into black silicate (bio-	D1963	70	72	2m
		tite?) alteration replacing green silicates,				
		a bit more pyrite. Badly broken core. Pyrite				
		frequently has supergene Cu.				
		59.5 - 61.4 - Strong silicification, textures				
		still sharp.	D1964	72	74	2m
		61.4 - 62.8 - Fault zone, gouge at top and				
		bottom at 20° to core.				
62.8	99.8	Early Porphyry				
		As above (17.9 - 28.1).				
			D1965	74	76	2m

Н	lole	No.	80-4
P	age	No.	6

_	٠.	6		
				chl-ep
			qtz-Mo	chl-ep amph-py
			1	
<u>L</u>			2	12
	[lŧ
_				
				1 1
_				
-				
			3	11
_				
-		—	<u> </u>	
	İ			
_				
-				
			j	
_				
_	<u> </u>		3	14
	1			
-				
_				
	i			
-				
_				
			4	12
-			<u> </u>	
				L
]]
		_	·	-
	<u> </u>		3	17
		. 4		j
	-			
	L			
				[
	<u> </u>			
			7	10

From	To m	Description	Sample No.	From m	To m	Length
		62.8 - 72.7 - Intense silicification and brown	D1966	76	78	2m
		biotite, feldspars largely destroyed, relict				
		quartz eyes. Glassy quartz veining with MoS2.				
		Overprinted by pyrite-chlorite amphibile-epi-				
		dote veins, streaks and patchy replacements				<u> </u>
		silicified margins, average 3% sulfides. Up to				ļ
		10% locally: largely pyrite, minor pyrrhotite,	D1967	78	80	2m
		trace chalcopyrite. Veins at low angles and				
		parallel to core (69m) a few @ 40°. Above 65m				
		core badly fractured with late argillic alter-				
		ation and calcite veinlets. A few chlorite-				
		pyrite veinlets.	D1968	80	82	2 m
		70.6 - Pyrrohotite and chalcopyrite as replace				-
		ment blebs				ļ
		71.3 - 71.6 - 20% sulfides, abundant chalcopy-				
		rite.	D1969	82	84	2m
		71.3 - Weak silicification, brown biotite, a few				
		quartz-MoS ₂ veins.			<u></u>	
		72.7 - 73.5 - Coarse, relatively fresh, weakly				
		gneissic, seriate texture with 40% feldspar	D1970	84	86	2m
		phenocrysts to lcm, up to 10% founded quartz				
		phenocrysts to 8mm, 5-7% biotite after horn-				
		blende and around quartz eyes. Freshest at 81m,	D1971	86	88	2m
		generally at least 1% disseminated pyrite with				
	1	epidote. A few quartz-MoS, veins.				
		2				

	qtz- Mo	chl-ep amph-p
	7	13
	10	11
-		
-	11	5
+	10	3
	12	
	12	2
· programming and pro-		
-	22	4

From m	Го m	Description	Sample No.	From m	To I m	Length	<u> </u>		bio-p ₃	ygtz-Mo	chl-e amph-
		73.5 - 80.5 - Intense to moderate silicifica-	D1972	88	90	2m	-		0	8	5
		tion, mafics altered to brown biotite, then			,		_				
		chlorite. Strong irregular veining and blebs			<u> </u>		_				
		of chlorite-amphibite-epidote-pyrite +/- pyrr-	D1973	90	92	2m	<u>:</u>		0	5	2
		hotite, trace chalcopyrite, decreasing down-				•	=				
		ward. A few mafic zenoliths at 72.7, 73.2m.			<u> </u>		_				
	<u> </u>	Broken core, many late chlorite-calcite-pyrite	D1974	92	94	2m	1		0	7	3
		veinlets.			,		_				
		75.7 - 2cm fault gouge @ 100 to core.		1			-				
		80.5 - 93.1 - Relatively fresh, weak to moder-	D1975	94	96	2m	_		2	6	4
		ate silicification, mafics to brown biotite.				1	_				
		Many 1 to 2mm glassy quartz veins with MoS2.				!	· -				
		a few to 10cm with MoS, on margins and as part	D1976	96	98	2m	_		6	8	3_
		ings. A few chlorite-amphibole-epidote-pyrite		<i>.</i>	<u> </u>	1					,
·		veins. late calcite-chlorite-pyrite veinlets.									•
		83.9 - Green silicate veinlet with quartz-bio-	D1977	98	100	2m	_		9	1	5
	Ī	tite envelope @ 35°.					_				
		85.0 - 4cm pegmatite dyke @ 45°.					· -				
		88.6 - 4cm glassy quartz vein at 10°, cut by									
		late veinlet with radiating waterclear crystals									
		(gypsum?), plus pyrite-chlorite-calcite @ 90°.	D1978	100	102	2m		į	8	0	Я
		93.1 - 97.9 - Patchy intense silicification						_			
		and very fine brown biotite, relict quartz							ag tagen at	rayer.	
		eyes (93.1). Quartz-MoS, and chlorite-epidote-						_			
		amphibole-pyrite veinlets +/- hematite. Abund-						_		1	
		ant late chlorite-calcite-pyrite veinlets,	D1979	102	104	2m		?	11		- 6

116

Hole No. 80-4

Page No.

To From Description Sample No. From Length (bleached envelopes. 1 - 2% disseminated pyrite p1980 106 with epidote. 97.9 - 99.8 - Pervasive brown biotite and silicification, Pyrite - coarse biotite veining cut by chlorite-amphibole-epidote-pyrite veinlets, a few blebs of pyrite. Trace chalcopyrite at 106 108 2m 98.6, 98.9m. A few late calcite veinlets @ 30°, 99.8 109.4 Quartz Biotite Hornfels Extremely silicified with intense brown biotite, D1982 108 110 relict feldspar locally. Upper contact 0 40° foliated for 15cm @ 20°, Irregular patches and veinlets of chlorite-epidote-amphibole-pyrite with minor pyrrhotite and chalcopyrite, 2 or 3metre (103.5). Earlier biotite-pyrite veinlets D1983 110 112 with pyrite blebs (106.1). 100.8 - Quartz-pyrite-hematite veinlet @ 250 107.5 - Indistinct quartz-biotite-pyrite band parallel to core. 108.7 - 2cm gouge @ 40°. D1984 112 114 Lower contact gradational, arbitrary. 109.4 128.2 Feldspar Porphyry Seriate texture, fine to medium-grained, 45% feldspar phenocrysts, average 1.5mm, 5-10% brown D1985

	bio-py	ç±z-Mo	chl-ep amph-p	Y
_	11	0	3	
-				
_				
-	6	0	1	
-				
_				
	2	0	2	
-				
-	3	0		
	3	0	1	
-				
-			- Sugar	
er oper	9	0	.2	
+	. 4			
1				
+				
_1	_9	0	0	

From m	To m	Description	Sample No.	From m	To m	Lengt
				116	118	2m
		quartz eyes. Usually very strong brown biotite			- '	
		and silicification masking textures. Freshest				
		at 110.lm. Alteration intensity variable over	D1987	118	120	2m
		short intervals. 3-5% disseminated pyrite, to				
		10% locally. Scattered biotite-pyrite veinlets	,			
		occasional chlorite-epidote-amphibole-pyrite	D1988	120	122	_2m
		veinlets, especially near bottom. Abundant late				
		chlorite-calcite +/- pyrite veinlets with				
		bleached envelopes.				
		116 - 123.5 - Moderate to intense late fractur	D1989	122	124	2m
		ing at 30°, 70°, 90° with chlorite-calcite-				
		pyrite veinlets.	_			
		120.5 - 122.0-Vaque breccia texture, intense		1		
		biotite and silicification.	D1990	124	126	2m
		120.3 - 1cm gouge @ 10°.				
		124.5 - Irreqular coarse biotite-pyrite veinlets.		,		
		125.6 - 1cm quartz vein @ 50°, trace pyrite.	D1991	126	128	2m
		125.8 - 1,5cm - 2 quartz veins @ 30°, 60°, trace			_	
		MoS _a .				
		126.2 - 126.7 - Intensely fractured with gouge	D1992	128	130.3	2.3m
		@ 15°.				
			<u> </u>			
128.2	130.3	Heterogeneous Breccia	D1993	131.8	134	2.2r
		Fragments of feldspar porphyry, early porphyry,				
		tan cherty rocks, dark volcanics. Moderate to	L	L	L	L

	bio-py	qtz-Mc	chl-ep amph-p
_	7	0	11
-			
_	2	0	1
-			
_	3	1	1
-			
_			
_	9	0	1
-			
_			
-	11	11	11
_			
_	0	0	0
-			
_	3	. 0	423
. 7	7.		
_	1	0	1
-			
_	L	L	L

Rio Tinto Canadian Exploration Limited

Hole No. 80-4

Page No. 11

From To Description Sample No. Length strong silicification, 3-5% disseminated pyrite and a few blebs. D1994 134 136 130.3 | 131.8 Lamprophyre dyke Upper contact @ 45°, top 45°, broken core. 131.8 | 137.3 Heterogeneous Breccia (as above) D1995 136 138 Moderate to strong silicification to 135.5, fragments indistinct, green tinge due to epidote with 5-7% disseminated pyrite. Patchy remnant brown biotite, chlorite-epidote-amphibole-pyrite veinlets. D1996 138 140 133.0 - 133.5 - Shattered, gougy, bleached, chloritic. Slicks @ 40°. Lower contact arbitrary in intense silicification. 137.3 141.3 Early Porphyry D1997 140 142 2m As 17.9 - 28.1 - Possibly large breccia fragment. Remnant quartz eyes to 0.7cm, rounded feldspars to 0-6cm. Extreme silicification. strong fine brown biotite. Strong glassy D1998 142 144 quartz stockwork with minor MoS2, cut by scattered later quartz-MoS, veinlets with better Mo. Patchy pyrite-pyrrhotite-epidote-chlorite and biotite-pyrite veinlets. A few late calcite D1999 veinlets. 0.08% MoSa. 144 146

	bio-py	qtz-Mc	chl-e
_		early/ late	
- :	3		
_		_ 0	7
_			
-	3	1/1	7_
_			
	3	20/6	6
-			
+	· · · ·		
	3	20/3	4
4			
+			
	2	0/1	6
-		44. j.	
+			, .
_			
	0	0/1	2

From m]	To m	Description	Sample No.	From m	To m	Length
		138.7 - lcm quartz vein with patches of fine	D2000	146	148	2m
		grained brown tourmaline @ 35° to core axis.			,	
m	178.4	Heterogeneous Breccia				
		Indistinct fragments of fine grained biotite				•
		feldspar porphyry,	D4951	148	150	2m
		quartz latite porphyry. Extremely silicified,				
		matrix appears crystalline (142m). Patchy			ĺ	
		brown biotite largely in fragments. Up to 10%				
		blebs of pyrite-pyrrhotite-epidote. More in	D4952	150	152	2m
		matrix than fragments, scattered later chlorite-				
		amphibole-epidote-biotite-pyrite veinlets.				ļ
		148.2 - 148.4 - Very biotitic, irregular margins,				
		20% feldspar crystals to 1.5mm - angular, bro-				
		ken - a breccia dyke?	D4953	152	154	2m
		150.4 - 150.9 - Angular silicified porphyry				
		fragments in fine grained biotite matrix, mar-		2		
		gins ill-defined, 7% pyrite.				
		151.6 - Fractures, gouge @ 25%.	D4954	154	156	2π
		152.1 - 152.7 - Granular biotite-quartz with				
		feldspar remnants, altered margins, abundant				
		pyrite - a fragment?				
		154.3 - 155.2 - Flow textures, streaks, adjac-	D4955	156	158	2m
		ent to and in biotite breccia as 150.4 - 150.9				
		- Very silicified, abundant biotite.				
-			D4956	158	160	2m_

		r	
	bio-py	qtz-Mo	chl-ep amph-p
	5	0	5
	2	0	5_
			,
_	1	0	3
_			
_			
_			
_	3	0	1
Ī			
_			
	2	0	0.
_			
_			
_			
	Ö	Ö	1
-			
	1	0	1

From m	To m	Description	Sample No.	From m	To m	Length	, , , , , , , , , , , , , , , , , , ,		qtz-Mo	cul-eb
		156 - 158, 160.5 - Same flow textures.	D4957	160_	162	2m			0	1
		160 - 170.3 - Remains highly silicified breccia			,					
		with nebulous fragments, patchy brown biotite,								
		apple green overall. 2-3% disseminated pyrite								
		with epidote and chlorite-epidote-amphibole				•				
		pyrite veinlets, late calcite veinlets.	D4958	162	164	2m			0	2
•		165.7 - 165.8 - Intensely fractured @ 30°,								
		0.4m core lost.								
		166.8 - Pale green serpentine(?) and calcite					_			
		e 45°.								
_		170.3 - 178.5 - Very abruptly begin abundant	D4959	164	166	2m	_		0	1
		streaks, blebs and disseminations of coarse			_					
		pyrite, pyrrhotite, magnetite and chalcopyrite								
		with epidote and chlorite, locally garnet.			·					
		Chalcopyrite generally as wisps or as thin rims					_			
•		between pyrite and pyrrhotite. 10% to locally	D4960	166	168	2m	_		0	3
		20% sulfides.					•			1
		Chalcopyrite variable, generally lower than					•			1
		80-2. Average 0.5% Cu, locally 2% Cu, best at	D4961	168	170	2m	_		0	1
		173 - 174.5m. Streaks often elongate nearly					-			
		parallel to core and at 60° (less so). Chalco-	<u>.</u>							
		pyrite seems more abundant where pyrrhotite is	D4962	170	172	2m			a .	0
		abundant - is gold occurring with pyrrhotite?	D4963	172	174	2m	-	- 1 1 1 2 2	0	0
		177.0 - Begin streaky flow banding nearly para-	•				-	1		
		llel core.	D4964	174	176	2m	_		0	0
		· ·					-		T	T

From m	To m	Description	Sample No.	From m	To m	Length			qt=-M	ch1-ep amph-p
178.5	183.6	Rhyolite	D4965	176	178	2 m				0
		Very fine grained, tan to pink, flow banded,			` `	-				<u> ` </u>
		siliceous rock with grey quartz bands, green	-							
		bands with actinolite-epidote-pyrite, especi-	· · · · · · · · · · · · · · · · · · ·							<u> </u>
		ally 178.6m. Banding parallel core, grades to				•		-		<u> </u>
		silicified, highly fractured pink rhyolite.	D4966	178	180	2m				4
		Moderate to intense chlorite-actinolite-epidote		1						<u> </u>
		alteration with pyrite. Crackled and healed								
		with chlorite-quartz veinlets. A few quartz								<u> </u>
	<u> </u>	MoS, veinlets, earlier than pyrite-pyrrhotite		ļ 	ļ					
	<u></u>	(182.6m).	D4967	180	182	2m		-		5
183.6	217,3	Heterogeneous Breccia	D4968	182	184	2m			<u> </u>	7
		183.6 - 191.0 - Fragments indistinct.		·	ļ		-			<u> </u>
		Strong silicification; disseminated epidote					-			
		and pyrite. Occasional strong streaks and blebs	D4969	184	186	2m	-		_3	6
		of pyrite-pyrrhotite-magnetite, minor chalcopy			ļ <u>.</u>		_			
	<u> </u>	rite. Many streaks parallel to core - see				<u> </u>	_			ļ
		185.4m. Scattered quartz-MoS, veinlets in short	D4970	186	188	2m	-			6
		rhyolitic intervals - fragments? See 109.2m.					_			ļ.,
		Mineralization much weaker - 0.1% Cu.					_			الفليدون)
	<u></u>	189.7 - 190.1, 190.3 - 190.5, 190.6 - 190.8	D4971	188	190_	2m	.		(5
		- Strong fracturing @ 30° with pyrite-pyrrho-								\downarrow
		tite in coarse blebs and stringers, very abund					_			1
		ant dark chlorite. Minor chalcopyrite - 0.1% Cu	D4972	190	192	2m	 .		<u>'</u>	10
		ant dark chlorite. Minor chalcopyrite - 0.1% Cu	D4972	190	192	2m	-		1	_

Rio Tinto Canadian Exploration Limited

Hole No. 80-4

Page No. 15

Sample No. To From To m From Description Length 191.0 - 197.2 - Rock much less fractured. D4973 192 194 strong silicification, breccia fragments more distinct. 3% disseminated pyrite and pyrrho-D4974 194 tite, a few blebs and stringers of pyrite-196 2m pyrrhotite, minor chalcopyrite, 0.1% Cu. 197.2 - 201.5 - Very strong pale green silicate alteration with 5% disseminated pyrite and pyr- D4975 | 196 198 rhotite. Minor chalcopyrite - 0.1% Cu. 201.5 - 217.3 - Moderate to strong silification, fragments of early porphyry, augite por-D4976 | 198 200 phyry, dark schistose metavolcanics, brown feldspar porphyry. Overall pale green_color due to chlorite-actinolite-epidote alteration. .D4977 200 202 Irregularly distributed disseminations, streaks and blebs of pyrite-pyrrhotite-magnetite-chalcopyrite. Copper content variable, average D4978 202 204 2m 0.15% Cu. A few later pale green granular quartz-actinolite-chlorite-epidote-pyrite veins Other chlorite-epidote-amphibole-pyrite vein-D4979 204 206 lets, both may carry pyrrhotite-magnetite +/chalcopyrite. Late chlorite-calcite-pyrite veinlets. D4980 206 208 201.5 - 202.0 - 0.2% Cu. 203 - 203.4 - Strong pale green silicate D4981 208 alteration. 210

_	gran chl-ep act-py 0	qtz-Ma	chl-er chl-pv
•	acc py 0	4	0
-			
-			
-	2	0	4
-			
	2	. 0	5
	-		
-	3	0	- 5
-			
-	1	0	2
	<u> </u>		
	0	0	11
	 		
	-		
	0	0	2
	3	0	4
	ļ		
	0	0	2
	I	1	

Hole No. 80-4
Page No. 16

gran chl-eppy-po chl-ep act-py-cpy amph-p Sample No. From Τo Description From Length 206.5 - 207.0 - Strong pale green silicate D4982 210 212 2m alteration. 207.5 - 20cm intense silicification, 10% disseminated pyrrhotite and chalcopyrite - 0.5% Cu. 211.3 - 211.5 - Augite porphyry fragment, frac- D4983 212 tured, abundant pyrrhotite and chalcopyrite. 211.0 - Vague veining parallel to core. 212 - 217.3 - Many late calcite veinlets @ 80° pyrite-chlorite veinlets with chloritized mar- D4984 214 3 gins common @ 10°, 30°, Slight increase in Cu content toward bottom - 0.2% Cu. 217.4 - 1cm pyrite-pyrrhotite vein @ 450. D4985 216 218 217.3 227.0 Augite Porphyry Augite phenocrysts completely altered to chlorite and actinolite. Rock weakly silicified, well mineralized with streaks, blebs and dis-D4986 218 220 2m seminations of pyrite-pyrrhotite-chalcopyrite. late calcite veinlets at 70° - 80°. 217.3 - 220.8 - Vaque breccia texture, moder-D4987 220 0 222 ate silicification. Sulfides associated with 2m chlorite-actinolite-epidote. Several veinlets @ 30° - 0.5% Cu. 218.2 - 20cm intense biotitic alteration, D4988 222 224 2m 220 9 - 227 0 - 10-152 sulfides in blobs.

Hole No. 80-4

Page No.

Sample No. From Description Length streaks, veins associated with coarse dark D4989 226 brown biotite - irregular replacements along fractures, generally less than 200 to core (221.3), later veinlets of solid chalcopyrite to 3mm @ 30° (223.8) and parallel core (223.4) D4990 226 1.5% Cu. Occasional anhydrite veins (224.9). 221.6 - 221.8 - Vuggy, calcite-epidote-actinolite crystals. 225.6 - Anhydrite-pyrite-pyrrhotite vein with D4991 228 230 coarse biotite on margins. 229.3 Quartz Biotite Hornfels (siltstone?) 227.0 Fine grained siliceous, red-brown, bleached D4992 230 along hairline quartz-chlorite-pyrite +/- pyrrhotite +/- chalcopyrite veinlets nearly parallel to core. A few anhydrite veinlets with pyrite and chlorite, parallel core. Contacts at D4993 232 234 low angles masked by biotite alteration -0.05% Cu. 2m 231.6 Augite Porphyry D4994 234_ 229.3 As 217.3 - 227.0, one short interval of quartz biotite hornfels - 1.0% Cu. (2% at 230m). D4995 236 238 2m 231.6 249.7 Heterogeneous Breccia Coarse angular fragments, especially near top,

	anhyd veins	ру-ро -сру	chl-ep amph-p
	2	9	0
	3	3	0
_			
_			
	6	4	0
			•
	2	6	4
		1	
	1		
	2	8	2
	5	8	Ö
	Ī	27	,
	0	8	0
-			
		^	

From m	To m	Description	Sample No.	From m	To m	Length
		largely augite porphyry and siltstone hornfels	D4996	238	240	2m
		pale green silicate alteration of matrix and			•	
		strong silification. Style of mineralization				
		same as above, coarse brown biotite envelopes				
		best developed in augite porphyry - largely	D4997	240	242	2m
		chlorite-epidote in other rocks and matrix.				
		Late powdery gypsum veinlets. Abundant gaudy				
		pyrrhotite-chalcopyrite, less pyrite and mag-		<u> </u>		
		netite, patchy. Biotitic alteration strong in	D4998	242	244	2m
		augite porphyry and granitic fragments, over-		ļ		
		all - 1.5% Cu.				
		239.6 - 241.0 - 3% disseminated chalcopyrite				
		in matrix plus a few irregular veinlets -	D4999	244	246	2m
		2% Cu.		-		
		241.0 - 242.6 - Augite porphyry (large frag-				
		ment?) upper contact @ 10°, abundant blebs and				
		disseminated sulfides - 2% Cu.	050.00_	246	248	2m
		242.6 - 249.7 - Breccia largely hornfelsed				
		siltstone fragments.			 i	
		246.5 - 247.2, 248.3 - 249.0 - Augite porphyry			1	
		intervals. Mineralization as above but weaker.	D5001	248	250	2m
		less biotite, more chlorite + epidote - 1% Cu.				
		245.8 - Spectacular chalcopyrite-pyrrhotite				
		nearly parallel to core. Veinlets @ 25 - 30°.				
				J	l	

	· 1	O.	
	anhyd veins	ру-ро -сру	chl-ep amph-b
j	1	7	Q
•			`
_			
	0	3	0
_			
_			
	-		
_	1	6	0
_			
_			
_	0	8	0
-			·
-			
-	,	-	
_	1	7	0
-			
-			
_	1	8	_ 0
-		New York	
_			
_		,	
_			

Hole No. 80-4

Page No. 19

From m	To m	Description	Sample No.	From m	To m	Length
249.7	253.8	Hornfelsed Siltstone	D5002	250	252	2m
		Red-brown (biotite), bleached along fractures			•	
		1-2% disseminated pyrite. 250m - bedding @ 200.		ļ		
		249.7 - 250.5 - Intensely fractures, bleached,				
		silicified, weak pyrrhotite-chalcopyrite -	D5003	252	253.8	1:8m
		0.2% Cu.		<u> </u>		
		250.5 - 253.8 - Crackled, abundant hairline				
		chlorite-pyrite veinlets with silicification,				1
		@ 20°-30° minor Cu. Abundant late calcite vein-	D5004	255.6	257.1	1.5m
		lets, high angle, irregular.		ļ Ļ		
253.8	255.6	Lamprophyre Dyke		<u> </u>		
		Fresh, coarse, abundant biotite, upper contact				
		20°, lower 30°.	NS	256	258	2m
255.6	257.1	Augite Porphyry				
		(20cm of breccia at top). Slick with serpenting		,		
		at upper contact. Upper half poorly mineral-				
		ized, lower half intense biotite, several pyr-	D5005	258	260	2m
		rhotite-chalcopyrite veins and disseminations	ļ			
		@ 30°, 60° to core, 0.8% Cu.				
257.1	257.8	Lamprophyre Dyke				
		Less coarse than above, a few white spots.	D5006	260	262	2m
		Upper contact @ 20°, lower irregular,				
	<u></u>		<u> </u>	1		<u> </u>

2	nhyd eins	-сру -сру	chl-e amph-p
Ţ	1	2	3
4			
+			
+	-		
+	3	2	0
†			
Ť			
I	1	3	0
1			
4			
+			
+	2	6	0
+		0	
1			
1			
1			
1	5	8	0
+			
+			
+	- (
+	5		
†	<u> </u>	9	
1			

From m 1	To m	Description	Sample No.	From m	To m	Length	<u> </u>	anhyd veins	ру-рс	gt: Mo
257.8	264.9	Heterogeneous Breccia	D5007	262	264_	2m	 -	1	6	
		Fragments generally indistinct due to strong		-						ļ
		pale green silicate alteration. Strong pyrite-					1			L
		pyrrhotite-chalcopyrite as streaks, blebs and				•	_			<u></u>
		weakly disseminated. Veins and streaks gener-	D5008	264	266	_2m	_	0	5	
		ally at low angles to core. A few later anhy-					<u> </u>	<u>L</u>		
		drite veins, often irregular. Youngest are								
		hairline calcite-chlorite veinlets 0.8% Cu.								-
		263.5 - 264.9 - Schistose, strong coarse bio-	_D50.09	266	268	2m _		2	1]
		tite replacement, coarse disseminated pyrite,								
		trace chalcopyrite, Schistosity parallel core.								
	,		_							
264.9	291.2	Hornfelsed Siltstone	D5010	268	270	2m		. 2	7	. 5
		Brown-pink due to biotite, silicified, bedding		<u> </u>						1
		not obvious. Moderate late fracturing at 250,								
		5°. Quartz-MoS2 veins at various angles local-		<u> </u>						
		ly abundant with strong silicification (See	D5011	270	272	2m		1	-9.	5
		269.5 - 270.4, 271.1, 274.5 - 275.2). Erratic	:							
		later pyrite-pyrrhotite-chalcopyrite as above.		ļ. 						1
		Good grades over short intervals (268.5 - 269.0-								
		1.7% Cu) generally only hairline veinlets.	D5012	272	274	2m	<u> </u>	1	in the second	1
		disseminations and minor blebs, overall -					<u>.</u>		<u> </u>	<u>t</u>
		0.1% Cu.					<u> </u>			<u>L</u> _
		271.5 - 272.7 - Gouge, 3cm with 1cm gypsum	_							L
		vein.	D5013	274	276	2m	3	1	2	8

Hole No. 80-4
Page No. 21

From To m Sample No From Description Length c 277.5 Bedding @ 10° to core. D5014 276 278.3 - 280.3 - 3 to 5cm wide band of biotiteactinolite-pyrite replacement @ 50, minor chal D5015 280 copyrite and pyrrhotite as blebs and disseminations - 0.3% Cu. 2m° D5016 280 279.1 - 280.3 - Gouge zone with calcite, epidote @ 5° to core, badly fractured ground. D5017 282 2m 281.6 - 283.5 - Badly broken core, late calcite gypsum veinlets @ 70°, 50° D5018 284 286.2 - 291.1 - Irregular bands and streaks of coarse biotite and chlorite nearly parallel D5019 286 288 core. Minor pyrite and pyrrhotite, trace chalcopyrite. D5020 288 289.7 - 290.0- Granular irregular bands or veins of epidote-actinolite-pyrite @ 45°, 20°. D5021 290 291.2 1.2m 291.1 - 3cm gouge @ 30°. 291.2 - End of hole.

anhyd veins	py-po	qtz-Mo
2	3	. 7
		
1	4	5
-		
2	4	2
2	2	3
1	5	1
	· · · · -	
3	2	1
0	1	0
	_	·
0	1	0
		<u> </u>
*		: : : : : : : : : : : : : : : : : : : :
· अत्रक्षीरा	→ Folia	-

Rio Tinto Canadian Exploration Limited

Location: 9954.3N, 9952.9E					Diamond Dril	•					Hole N	No.	80-5	
Azimuth	1: 135 ⁰		Dips - collar	-50°	Contractor:	Cameron Dril		heon		Property:	Aylwin	Creek		
Elevation	n: -50°		- 60 ^m -	48	Logged By:	D.C. Du	rgin			Claim No.				
Length:	137.8m		- 136 ^m -	47	Date: Octob	er 10 &	11, 198	30		Section No. 50 South				
Core Siz			– m	0						Started: October 6, 1980				
Purpose	: To tes	t SE exte	nsion of main W	illa Zone					•	Completed				
From To Description			Sample No.	From m	To m	Lengtl				T	chl-ep amph-p			
0	1.60	Overbur	den											
		Boulder	s, gouge, drill	ed over o	core, very									
		poor re		· · · · · · · · · · · · · · · · · · ·				ļ		! :				
			16 - limonitic				<u> </u>		<u>i</u>		<u> </u>	-		
				e, largely quartz latite por-				<u> </u>		 		1	 	1
		phyry a	and black biotit	tic brecc	ia.					<u> </u>				_
16.0	20.1		eneous Breccia				16	18	2m	<u> </u>				3
			l fragments gene											
		Quartz	latite porphyry, biotitic volcanics,							Ļ				
<u> </u>		augite	porphyry, chert	y ones.	5% pyrite as	D 5048	18	20	2 m	_	1			4
	1	dissemi	nations and ble	ebs with e	epidote.									
20.1	21.1		ohyre dyke					<u> </u>						
		Upper o	contact 0 45°, 1	lower in 1	broken core.	D5049	20	22	2 m					4
21.1	23.7	Feldspa	ar Porphyry							 				
		Crowded	i feldspar pheno	ocrysts to	o 4mm,			<u></u>		_				
		average	e 2.5mm. Mafics	s gone to	pyrite +	D5050	22	24	2m	<u> </u>	* ** * ** *		A Comment	6
		chlori	te. Up to 7% py	yrite + m	agnetite					L				
		as dis	seminations, ble	ebs and v	einlets with									
		epidote	e and chlorite.	Strongl	y silicif-					I				
		ied, t	race chalcopyrit	te. Late	chlorite-									

From	To m	Description	Sample No.	From m	To m	Length				ıl-ep
		pyrite veinlets.	D5051	24	26	2m			am	mph-pv 2
23.7	26.7	Heterogeneous Breccia			,					
		Largely augite porphyry fragments upper,								
		feldspar porphyry lower. Strong chlor-	D5052	26	28	2m				5
		itization, fragments indistinct. Pyrite-		· - · · · · · · · · · · · · · · · · · ·						
		epidote blebs, disseminations, a few vein-								
		lets. A few late calcite veinlets @ 20°	D 5053	28	30	2m				0
		to_core.								
26.7	30.2	Feldspar Porphyry	-							
		As 21.1 - 23.7. Strong silicification.	D5054	30	32	2m	-	-		1
		3% disseminated pyrite with epidote +	 		ļ 		-			
		chlorite. Abundant chlorite-pyrite-		 -	}		-			
		magnetite hairline veinlets.	D5055	32	34	2 m	-			2
30.2	41.2	Tuff Breccia]		}		-			
		. 25% silicificed fragments of a feldspar	1	——————————————————————————————————————			-			
		porphyry to 5cm, generally 2cm, or less,	D5056	34	36	2m	<u>-</u>			4
		in biotitic matrix with 10% coarse augite	1		ļ \		_			
		phenocrysts to 5mm altered to pale green					_			
		actinolite. Weak schistosity at 70° to	D5057	36	38	2m	_			3
		core axis. Rhyolitic matrix moderately								
		chloritized. 3% disseminated pyrite and	1				-			110-1
		a few blebs with epidote. A few late	D5058	38	40	2m	-		7860 4330 5	4
		calcite veinlets. Fracture sets at 200,			<u></u>		_			
		45 ⁰ , 70 ⁰ . Limonite on fractures. A few					_			
		chlorite-epidote-actinolite +/- pyrite	D5059	40	42	2m	- -			3
	<u></u>	veinlets. Odd rock - an augite porphyry	Jl		l		-	-		

Hole No. 80-5 Page No. gran chl-ep qtz-Mo chl-ep act-py amph-py 5 3 12 _10 Mary Company

From	l m		ond Drill R					
	 	Description						
		tuff.	Sa	mple No.	Froi	יו ת	o Lë	ngth
		39.0 - 39.4 - Silicified prophyry as	D50	60	42	44	2m	
		below. Lower contact in broken core,						
41.2	47.8	Early Porphyry	D50	61	44_	46_	2m	
		Intensely silicifies	D50	52	46	48	2m°	
		feldspars indistinct, relict quartz eye						-
		rarely. @ 43.4m coarse seriate texture	s D506	3 /	48	50	2m	
		and quartz eyes obvious. Minor pink- brown biotite.	D506					+
		41.2 - 44 5		4	50	52	2m	!
		41.2 - 44.5 - Feldspars obvious. 3-4%	D506	L 5	52			
-		with black chlorite				54	2m	- -
		-44.5 - 47.8 - Follo	D5066		54	56	2m	+
		granular texture. Abundant brown biotite in hairline veinlets with						
		in hairline veinlets with pyrite and patches with pyrite	D5067		56	58	2m	İ
		chalcopyrite loss in	D5068		58	60		
		chlorite-epidote-actinolite granular veinlets, toward end	1			<u></u>	2m	+
7.8 5	9.7	veinlets toward end.	D5069		50	62	2m	-
		Heterogeneous Breccia						,
		Normal breccia. Fragments to 10cm of		-				_
 -		teldspar porphyry (57					 -	
	 - - <u>-</u> -	plack metavolcanics (57.6m) (54.1m)		1			 	
		tone. Fragmental matrix with pale green						

From m	To m	Description	Sample No.	From m	To m	Length
		actinolite-epidote-chlorite-pyrite				
·		alteration. 5-7% pyrite as dissemina-			•	
		tions, blebs, streaks. Trace pyrrhotite,			[
		minor magnetite, no chalcopyrite seen.	ס5070	62	64	2m
		Chlorite-epidote-amphibole-pyrite veinlets				•.
		and granular pale green actinolite-epidote-				
		chlorite-pyrite veinlets common.	D5071	64	66	2m
		52.0 - 53.0 - 0.7m core lost.				
		53.7 - White pegmatitic vein at 40°.				
		Scattered late chlorite-pyrite veinlets.	05072	66	68	2m
		A few very late calcite veinlets at 5-10°			1	
		to core.				
59.7	66.2	Feldspar Porphyry	D5073	68	70	2m
		Seriate texture, 35% feldspars to 3mm,		<u> </u>		
	1	average 1.5mm, no quartz phenocrysts.				
		Chlorite after minor hornblende, grey	d d			
		aphanitic matrix. Feldspars milky,				
		locally pale green, soft. 3-5% dis-				
		seminated pyrite with epidote. A few	Į	! !		
		early quartz veinlets, trace MoS,.				
		Hairline_ghlorite_epidote_pyrite_veinlets				
		_abundant,_Scattered_small_pyrite-epidote	1			
		blebs. Silicified lower 2 metres.				
66.3	67.4	Heterogeneous Breccia				
		Fragments largely feldspar porphyry and				
		brown_siltstone5%_pyrite_as_dissemin				

-		qtz-Mo	chl-ep
-		ļ	
-	 		
-		1	4
-	 		
-		2	4
_			
-	<u> </u>		
-		0	3
-	 	-	
-		1	5 .
_			
_			
_	ļ 		
-			
_			
-			
_			5 - 1 Sect. 1
_			
_		- V. (W.00)	
_			
-	-		
٢	L1		

Hole No 80-5
Page No 5

From m	To m	Description	Sample No.	From m	To m	Length	 ·		qtz-Mo	chl-ep amph-pv
		ations, blebs, streaks with chlorite and epidote. Granular quartz vein 10cm			 		•			
		wide with patches of chlorite and pyrite @					•	T		
		20 ^o -67m.	D5074	70	72	2m	•		0	1
67.4	68.8	Feldspar Porphyry				· -				
		As 59.7 - 66.2 lower half intensely sili-	<u> </u>		<u> </u>			<u> </u>	ļ	
		cified, little mineralization.					_			
		68.5 - Gouge, 10cm @ 80° to core.	D5075	72	74	2m			0	2
68.8	70.5	Heterogeneous Breccia								
		Feldspar porphyry fragments, green met-	 	<u> </u>	ļ					
		avolcanics. 7-10% pyrite, trace_chalcopy-					_	· · · · · · · · · · · · · · · · · · ·		
		rite, with chlorite-epidote. Intense	D5076	74	76	2m			0	2
		silicification.		<u> </u>			-			
70.5	74.0_	Feldspar Porphyry						<u> </u>		
		As 59.7 - 66.7, a bit more coarse,					_			
		fractured, kaolinized. Strong fracture	D5077	76,	78	2m			0	3
		set @ 40° to core with chlorite, slicks.								
74.0	75.4	Lamprophyre Dyke								
		Upper contact in broken core, lower at								
		80 ⁰ , as 68.8 - 70.5.	D5078	78	80	2m	•		0	0
76.2	82,9	Feldspar Porphyry								
		35% feldspar crystals to 6mm, most less			ļ					
		than 2mm, trace quartz phenocrysts, 5%					•			
		disseminated biotite (?) replaced by pyrite-	D5079	80	82	2m	· 54	Augustin	- O	8
		chlorite-epidote. Aphanitic grey matrix.		l						
	<u> </u>	Feldspars soft, slightly green, occasionally	l	<u> </u>	<u> </u>			<u> </u>	<u> </u>	

From	To m	Description	Sample No.	From	To m	Lenght
		just green waxypseudomorphs. Patchy.				_
		silicification. Abundant hairline vein-	D5080	82	84	2m
		lets of pyrite-chlorite @ 60°, 30° A		ļ		
		few late calcite veinlets. 7% total	_]	<u> </u>	· ——	
		sulphides.	D5081	84	86	3rħ
82.9	84.0	Lamprophyre dyke	<u> </u>	<u> </u>	<u> </u>	
		Upper contact 45°, lower 60°, fresh.				
84.0	133.7	Feldspar Porphyry	D5082	86	88	2m
		As 76.2 - 82.9, strongly altered, silici-		ļ		
		fied, fractured.	<u>"</u>		1	
		84.0 - 93.0 - Disseminated pyrite with	D5083	88	90	2m
		epidote, a few blebs and veinlets with			ļ	
		chlorite. Pale green color, some green				
·		waxy feldspar pseudomorphs. Increasing	D5084	90	92	2m
		silicification and coarse pyrite toward	ÿ L			
		bottom. Late calcite veinlets.				
		88.8 - Coarse pyrite-silicification band,	D5085	92	94	2m
	1	3cm 0 50°				
		89.9 - 90.0 - Intense silicification,				
		coarse pyrite.	D5086	94	96	3m
		93 - 94.5 - Intense silicification, 10%				
	İ	disseminated pyrite, trace chalcopyrite.				
	1	Strongly fractured at end.	D5087	96	98	2m
	 	94.5 - 100.8 - Strong dark green alter-	1		1	
_	- -	ation, intense fracturing, local silicif-			 	
	 	ication, Relict feldspars locally, May	D5088	98	100	2m

Hole	No.	80-5	
Page	No.	6	

-			
		qtz-Mo	chl-ep amph-py
		0	3
		0	6
		0	4
Ī			
_			
		0	2
		<u> </u>	
		0	1
-			
_			
_		0	io
-			
_			
-		0_	ln -
		, <u> </u>	T
		, a colored or "g" yes . The colored of the colore	
_		0	
_			
_		0	1501
_	L	1	L

From m	To m	Description	Sample No.	From m	To m	Length
		not be feldspar porphyry.	D5089	100	102	2m
		93.6 - Trace chalcopyrite.			<u> </u>	
		96.9 - 97.7 - Gouge at 35° to core.	<u> </u>	ļ		
		97.9 - 98.8 - More siliceous, intensely	D5090	102	104	2m
		shattered.	<u> </u>			•
		100.8 - 101.3 - Odd granular dyke largely	1		<u> </u>	<u> </u>
		quartz with chlorite streaks, patches of	D5091	104	106	2m
		pyrite @ 10°.	<u> </u>			
		101.3 - 114.3 - Strong silicification,				
		moderate to strong late fracturing with	D5092	106	108	2m
		calcite and clays. Grey colour, 1% dis-	ļ			
		seminated pyrite, minor biotite. Late	<u> </u>			
		fracture sets 60°, 30° Weak quartz-	D5093	108	110	2m
	•	MoS, veining locally.				
		105,3 - 105,7 - Gougy zone @ 15 ⁰				
		105.7 - abundant quartz-MoS2 veinlets,	D5094	110	112	2m
		some with pyrite, often at 45° - 0.05% MoS2.				
		114.3 - 133.7 - Intense silicification,				
		moderate brown bigtite. Good quartz	D5095	112	114	2m
,,		stockwork with weak MoS, veins in all				
		directionsLater_quartz-MoSvein_set	<u></u>	<u> </u>		
		at 30° to core - sparse. A few 4cm quartz	D5096	114	116	2m
		veins with coarse pyrite (124,8m) 0 65°				
		Later MoS, set has pyrite. Strong to				
		intense argillic alteration associated with	D5097	116	118	2m
		strong to intense late fracturing with	J	<u></u>	<u> </u>	

!	Hole	No.	80-5
	Page	No.	7

1.4	<u>v.</u> /		
		qtz-Mo	chl-ep amph-py
-		2	2
_			
	ļi		
-		0	0
_			
_		3	0
_			
	-	19	0
_			
_			
_		8	٥
_			
_			
_		2	0
_	ļ		
_			
_	ļ	5	1
_			
_	 		1000
	3,00	11	2
_		ļ	
_	ļ	ļ <u>.</u>	
		13	1
_	L	l	

From m	To m	Description	Sample No.	From m	To m	Length
		calcite. A few quartz eyes (129.2m).				
		Several gouge zones.				
		117.4 - Some argillic alteration around	D5098	118	120	2m
		quartz - MoS, veins.				
		117.9 - 3cm gouge @ 50° to core.	D5099	120	122	2ħ
		120.4 - 2cm gouge @ 60° to core.				
		122.6 - 122.9 - 4cm gouge at 10 ⁰ .	D5100	122	124	2m
		123.8 - Gouge at 50°.				
		125.2 - 1cm gouge @ 5° to core axis.	D5101	124	126	2m
		131.0 - 131.4 - Gouge - slicks @ 30°.				
		132.0 - 132.5 - Gouge - slicks @ 20°.	D5102	126	128	2m
		130.4 - 0.8cm pyrite-quartz vein @ 80°,				
		lower contact in broken core at 30°?	D5103	128	130	2m
	•	114.3 - 133.7 - 0.02% MoS ₂ .				1
133.7	137.8	Heterogeneous Breccia	D5104	130	132	2m
		Feldspar porphyry, black metavolcanic,				
		green chloritic fragments, many feldspar	D5105	132	134	2m
		fragments in matrix. Moderate chlorite-				
		epidote-amphibole alteration, minor	D5106	134	136	2m
		disseminated pyrite. A few barren quartz				
		veins.	D5107	136	137.8	1.8m
		135.1 - 2cm pink pegmatite vein with				
		spots of chlorite and coarse pyrite @ 20°.				
-		137.8 - End of Hole.				

Hole No.	80-5	
Page No.	g	

140.	8	
	qtz-No	chl-ep amph-py
	ear]; late	
-	_	
	225/3	0
	>25/8	0
-	>25/6	0
	>25/4	0
-		
	>25/3	0
	>25/3	0
	>25/1	0
	10/1	4
	0	4
	A 113	_ Sik
	0	5_
	of Judy Same	

Rio Tinto Canadian Exploration Limited

Location: 9993.9N, 9992.1E			Kio III	nto Canadian E Diamond Dril	•	n Liiiii	cu			Hole N	lo. 80)-6	
Azimu: th: 135°		Dips - collar	-50°	Contractor: Cameron-McCutcheon Drilling Pro		Property:	Aylwin (Creek		- 			
Elevati ton± 1250.2m	1	- 75m	-48 °	Logged By:	D.C. Du	rgin	-		Claim No.	Rockl	and		
Length: 210.3	3m	- 150m	-47 °	Date:	Oct. 11-1				Section No	. 00			
Core S.:ze: NQ		- 210 ^m	-45		***************************************				Started:	Octobe	r 10.	L980	_
Purpos.t: To tes	st norther			nd grade of 8	0-2 mine	ralizat	ion	•	Completed:	0ctobe	r 14,	1980	
From . To			ription		Sample No.	From	To I m	Length	 	•	<u> </u>	Ċ	hl-ep
0 3.7m	Overburde	n -			!				-	=			mbn= 5
	Drilled o	ver core, larg	ely hetero	geneous						-			
3.7 100.9m	Heterogen	eous Breccia			D5108	3.7	6m	2.3m	 	_			2
Coarse,		ragments to 15	cm, <u>cenerall</u>	y less than					<u></u>	_			
	<u>απος τωσ8</u>	osed of feldsp	ar porphyr	y_(most).			<u> </u>		_	_	1		
	brown bi	otitic metavol	canics, ch	erty silt-	D5109	6	8	2m		_			0
		her porphyrie							_	_	ļ		
		augite porphy		ones rounded	,		<u> </u>		-		ļ		
-		ngular. 70% fr			D5110	8	10	2m	-	_	<u> </u>		_3
		6 - matrix alt	- 	·			<u> </u>		1	_	ļ <u>.</u>		
		e-epidote-chlo							<u> </u>	-			
!		te as dissemin			D5111	10	12	2m	+	!	-		1 .
- 1		w veinlets wit						-	+	_	 		
	actinolite. Minor magnetite with pyrite. A few later chlorite-pyrite hairline veinlets. 5.7 - 6.4 - white pegmatitic dyke, minor pyrite & chlorite, @ 450 upper, 50 lower.					-	+	+ .	_	-		3	
			D5112	12	14	2m	+	, ; · -	12 Sec.				
			i						e Salahan	-	 	_ 	
		.9 - matrix gr			D5113	14	16	2m		5			0
	dark, nea	rly black, sam	e fragment	s as above									

From m	To m	Description	Sample No.	From m	To m	Length
		except more augite porphyry, dark metavolcanics.				
		4-5% pyrite, largely disseminated, especially			, ,	<u> </u>
		in augite porphyry fragments.				ļ
		Trace chalcopyrite, no veining except chlorite.	D5114	16	18	2m
		18.6m - 40cm amphibolite fragment.				•
			D5115	18	20	2π
		23.0 - 23.6 - large augite porphyry fragment.	D1516	20	22	2m
		21.8 - pegmatitic white irregular vein with				ļ
		patches of pyrite with minor epidote and	D1517	22	24	2m
		chlorite @ 10° to core.				
		24.9 - 29.1 - normal breccia. Up to 7% sul-	D1518	24	26	2m
		fides, usually 3%, abundant blebs of pyrite-				
		chlorite. Several large irregular "veins" of				
		granular actinolite-epidote-chlorite-pyrite				
		at about 250 to core - more an alteration	D1519	26	28	2m
		band than a true vein (26m). 0.25% Cu.				
		29.1 - 39.8 normal breccia. Only moderate	D1920	28	30	2m
		disseminated sulfides and a few blebs and				
		streaks. 2-3% sulfides, largely pyrite, minor				ļ
		pyrrhotite-chalcopyrite. Blebs largely pyrite	D1521	30	32	2m
		with magnetite. Hairline chlorite-pyrite +/-				
		epidote veinlets common. A few calcite vein-				
		lets. 0.15% Cu.	D1522	32	34	2m

Hole No.	80-6
Page No.	2

_	ру-сру -ро	gran act-ep chl-py	chl-ep amph- nv
_			
_			
_			
_		0	0
-			
-	 	٥	0
-			-
_		0	0
_			
_	<u></u>	0	1
_			
_	<u> </u>	3	0
-	<u> </u>		
-	 		
-		2	4
-			
_			
_		3	9.
_	ļ		*, ''.
) I	1 1 1 1 1 1 1 1 1	2	
_		9	7 -
-	 	-	
-	 	4	6

From m \	To m	Description	Sample No.	From m	To m	Length
		36.2, 36.8 - 1cm calcite-gypsum vein @ 30°		34	36	2m
		magnetite chalcopyrite.	D1523	34	36	2m
		35.7 - 39.8 -disseminated+ blebs pyrrhotite				
		+ minor chalcopyrite. Abundant siltstone frag-	D1524	.36	38	2m
		ments, biotite.				
		39.8 - 46.0 - normal breccia. Abundant streaks	D1525	_38	40	2m
		and blebs of coarse pyrite-pyrrhotite-chalcopy	li e			-
		rite. 7% sulfides associated with epidote and	D1526	40	42	2m
		dark chlorite alteration. Streaks @ 20°, 30°, 45° to core. Several granular actinolite-epi-	D1527	42	44	2m
		dote-chlorite veinlets. 42.2 - 42.6 - 30cm			<u>.</u>	
		core lost.	D1528	44	46	2m
		46.0 - 53.2 - normal breccia. Moderate to	D5129	46	48_	2m
		strong pale green silicate alteration (actino-		[ļ <u></u>
	<u> </u>	lite-epidote-chlorite) with silicification.		!		<u> </u>
		Several large augite porphyry fragments, only	D5130	48	50	2
		a few blebs of pyrite-pyrrhotite-magnetite,	D5130	48	50	2m
	 	minor chalcopyrite. 1% disseminated pyrite,	 	 		†
	 	3% sulfides overall. 46.3 - 48 - strongly fractured, several vuggy	1	<u> </u>		<u> </u>
<u>.</u>		actinolite-epidote-chlorite-pyrite veinlets.	D5131	50	52	2m
		85.7 - minor garnet. 0.1% Cu.				
						ì

Hole	No.	80-6	
Page	No	3	

	py-cpy	gran act-en chl-by	chl-e	B.
-		CDI-DA		
1	3	3	5	
_			*	
			:	
<u>5</u>	0.5	3	7	
_				ļ
_				
<u>;</u>	8	5	3	
- i_	11	4	4	
-	<u> </u>	7		
-	11	6	4	1
	12	1	8	
		-	·	
	2	2	_11	
	3	1	7	
	=		7 <u>. i.w</u>	
5.2	,	4.500		
	_1	1	4	
	_			
		ł		ı

From m	To m	Description	Sample No,	From m	To m	Length
		53.2 - 58.7 - normal breccia. Weak green sili-	D5132	52	54	2m
		cate alteration, moderate brown biotite, brown			,	<u> </u>
	-	colour. 3-5% sulfides, locally abundant blebs	D5133	54	56	2m
		and streaks of pyrite-pyrrhotite-chalcopyrite				<u> </u>
		(53.4, 56.3m), disseminated also. 0.4% Cu.	D5134	56	58	2m •
				· · · · · · · · · · · · · · · · · · ·		
		58.7 - 67.3 - general greenish tinge due to	D5135	58	60	2m
		moderate actinolite-epidote-chlorite-pyrite			<u> </u>	ļ
		alteration. Scattered small pyrite-pyrrhotite-			-	1
		chalcopyrite blebs. A few vuggy spots with				ļ .
		epidote + pyrite crystals. 3% sulfides, some				ļ <u>-</u> .
		streaks subparallel to core, often @ 30°. 0.2%				ļ
		Cu. Chlorite + calcite on later fractures.	D5136	60_	62	2m
			D5137	62	64	2m
			D5138	64	66	2m
		67.3 - 72.0 - same breccia, decreasing green	D5139	66	68	2m
		silicate alteration, increasing brown biotite				
		and silicification. Fragments still obvious.	D5140	68	70	2m
		Increasing disseminated pyrite & pyrrhotite,				
		5% sulfides. Sulfide blebs and streaks scatter-				
		ed with patchy chalcopyrite associated with				

Hole	No.	80-6	
Page	No.	4	

PAºcb.	gran chi-er	chl-eb	p
6	6	5	
5	2	9	
5	1	6	
5	2	6	
5	1	- 5	
8	4	11	
, 5	4	. 8	
			ļ
4	2	5	ŀ
. 3	2	5	
<u> </u>			Ì
<u>i</u>			

From m	To m	Description	Sample No.	From m	To m	Length
		pyrrhotite. 0.2% Cu.	D5141	70	72	2m
		71.0 - 1cm vuggy quartz vein with coarse acti-			,	
		nolite-epidote-pyrite.	D5142	72	74	2m
		71.1 - 15cm early porphyry fragment with sev-				1
		eral qtz-MoS, veinlets.	D5143	74	76	2m
		72.0 - 80.1 - Strong silicification, moderate				
		brown biotite, very little veining fragments				
		indistinct. 5-7% sulfides as patchy dissemina-	D5144	76	78_	2m
		tions, abundant pyrrhotite-chalcopyrite-less				
		pyrite. A few blebs and streaks. Later chlor-				
		ite-pyrite hairline veinlets. 0.2% Cu.	D5145	78	80	2m
		80.1 - 87.2 - normal breccia texture. Silici-	D5146	80	82_	2m
		fied, several bands and streaks of very strong				
		coarse brown biotite-alteration bands with 5%		<u> </u>		ļ
		disseminated pyrrhotite and chalcopyrite.				
		See 82.2m. Also color due to abundant brown	D5147	82	84	2m
		biotite-altered fragments. Several chalcopy-				
_		rite-pyrrhotite replacement blebs to 2 cm.				
		0.5% Cu.	D5148	84	86	2m
	ļ		D5149	86	88	2m
		87.2 - 100.9 - normal breccia. Silicified,	D2149	86	88	2m
		abundant disseminated epidote. Siltstone frag-		-		+
_,		ments, early porphyry, feldspar porphyry,				
	<u> </u>	a few augite porphyry. Strong pale green sili-		-	<u> </u>	·
	1	cate alteration, veining. Locally vuggy with	D5150	88	90	2m

Hole	No.	80-6	
Page	No.	5	·

-				
	PA-CDA	gran act-e chl-p	chl-er amph	p
Ī	7	1	4	
İ		1		
	2	2	9	
-				
-	1	1	4	
.		-		
]	1	0	5	
+				
,	3			
.1	2	0	8	
)	5	0	6	
Ţ				
-				
7	8	0	7	
_		-		
_				ļ
7_	_2	0	B	
_	-	 	- Tanana	ł
6	4	4	14	
_		 		1
_				1
9	2	0	12	

Hole No. 80-6

Page No.

From m	To m	Description	Sample No.	From m	To m	Length
		epidote + pyrite. 7% sulfides - ½ disseminated,				
		ኒ as streaks, blebs, and veinlets. Strongly				
		fractured at 10°, 70°, 35°. 0.3% Cu.	D5151	90	92	2m
		Late chlorite-calcite-pyrite hairline veinlets				
		95.4 - 96.3 - 0.7m core lost.	D5152	92	94	2m
		98.1 - 98.8 - Intensely factured. Many vuggy				
		chlorite-epidote-actinolite-pyrite veinlets,				
		a few late calcite veinlets @ 30°, 70°, 10°.	D5153	94	96	2m
		Lower contact obscured by alteration.		-		
			D5154	96	98	2m
			D5155	98	100	2m
100.9	116.5	Quartz Latite Porphyry (?)	D5156	100	102	2m
		Highly altered - ghostly feldspar phenocrysts				
		to 2mm, average 1mm, 2% round quartz pheno-				
		crysts to 3mm, generally 1.5mm. Silicified,	D5157	102	104	2m
		weak sericite, strong later green silicate				
		alteration - 3% disseminated epidote. Intense				
		early chlorite-pyrite veining, cut by later	D5158	104	106	2m
		irregular coarse, vuggy chlorite epidote-acti-				
		nolite-pyrite veinlets. A few associated blebs				
		of pyrite-magnetite +/- pyrrhotite +/- chaco-	D5159	106	108	2m
		pyrite. Latest are a few powdery gypsum vein-				
ra.		lets. <0.1% Cu.				

-ро ру-сру	gran act-ep chl-py	chl-e amph-
		
5	3	8
+;		
4	3	5
+		
1	1	10
1		
0	2	15
+	_	- ir
1	2	25
1	2	18
1	1	_17
+		
+		
+1	0	19
1	a constant	
1	0	19
1		<u> </u>

Hole No. 80-6

Page No.

Sample No. To m From From To Description Length: 111 - 111.6 - 40cm core lost. D5160 108 110 2m 112 - 113.8 - pink brown color due to secondary biotite, porphyry texture more apparent. D5161 110 112 2m D5162 112 114 2m 114.5 - begin seeing vague breccia texture. D5163 114 127.5 Heterogeneous Breccia 116.5 D5164 116 118 2m Early porphyry fragments most common, to 30cm. A few augite porphyry and cherty fragments. Increasing feldspar porphyry fragments towards bottom. Moderate silicification, strong epi-D5165 118 120 dote-actinotite-pyrite veinlets. Trace chalcopyrite, a few scattered blebs of pyrite-pyrrho D5166 120 122 2m tite, minor chalcopyrite. 127 - 127.5 - Fragments 4cm or less, more matrix, matrix very chloritic.0.1% Cu. D5167 122 124 D5168 126 2m D5169 126 128 127.5 135.4 Feldspar Porphyry 30% subrounded feldspar phenocrysts to 3mm, generally less than 2mm, seriate texture. No quartz seen, 5% biotite after hornblende. Strong pale brown biotite alteration and sili-D5170 128 130 2π fication.

_			
	ру-сру -ро	gran 8KI-8P	chl-er amph-
_	0	۵.	15
_			-
-			
-	0	1	11
-			
-	1	2	19
-	0	1	16
-	Lo	1	_11
-			
-	ļ		
-	0	0	9
-			3
	1	1	8
	<u> </u>		
-	ļ		
-	0	0	8
-	1	0	5
-	1	0	4 - , -
-		<u> </u>	
-	0	0	10

From m	To m	Description	Sample No.	From m	To m	Length
		127.5 - 128.1 breccia fragments all feldspar				
		porphyry, matrix strongly biotite altered.				<u> </u>
		128.7 - 129.9, 130.7, 133.0 - same	D5171	130	132	2m
		Superimposed on this - patchy epidote-chlorite				•
		pyrite alteration. Pyrite-chlorite veinlets,				
		cut by epidote-actinolite-chlorite-pyrite +/-	D5172	132	134	2m
		pyrrhotite +/- chalcopyrite. Bleached adjacent				
	ļ	to these veinlets. 3% disseminated pyrite,				
		minor pyrrhotite-chalcopyrite - 0.1% Cu.				
135.4	137.0	Lamprophyre Dyke	D5173	134	136	2m
· · · · · · · · · · · · · · · · · · ·		Upper contact @ 30°, lower in broken core.				
137.0	144.6	Feldspar Porphyry	D5174	136	138	2m
		(as 127.5 - 135.4)				İ
	<u> </u>	137.0 - 141.2 - brown biotite alteration				
		largely destroyed by green silicate alteration	D5175	138	140	2m
		mineralization as above. 0.1% Cu. Upper metre-				
	ļ	intense late fracturing @ 30°, 70°.		<u> </u>	! :	 -
	ļ	141.2 - 144.6 - abrupt change to intense epi-	D5176	140	142	2m
	ļ	dote-actinolite-chlorite alteration. Intricate				
		network of irregular streaks and patches of		,		
		alteration, 7% fine disseminated pyrite-			ļ. <u>-</u>	
		pyrrhotite-chalcopyrite. Possibly highly alter-	D51 <i>7</i> 7	142	144	2m
	1	ed homogeneous breccia. Lower contact ~30°.				

_				
	ру-сру -ро	gran chi-ep	chl-e	B.
-				
_	1	۵	6	
_				
-				
_	0	0	_13	
_				
_			·	
_				
-	.0	0	6	
-		*****		
	Q.	0	6	
_				
_			 _	
_	0	<u> </u>	6	
_				
-	a	0	_15	160 . 4
	u .			
_		might to 1,000 is		
_	1	0	20	
لــ				

Rio Tinto Canadian Exploration Limited

From m	To I m	Description	Sample No.	From m	To m	Length
		Many chlorite-epidote-pyrite veinlets +/- chal				
		copyrite. 0.25% Cu.				
144.6	146.6	Quartz Latite Porphyry	D5178	144	146	2m
		Rare quartz eyes to 3mm. 40% slightly rounded				•
		feldspars average 2mm, a few to 4mm, in grey				
]	aphanitic matrix. Mafics destroyed - replaced	D5179	146	148	2m
		by biotite-pyrrhotite-chalcopyrite. Pale red-				
		brown colour due to very fine biotite. Silici-				
		fication and biotite strongest at upper con-	D5180	148	150	2m
		tact. A few chlorite-epidote-pyrite veinlets.				
		0.1% Cu.				
		2 tiny quartz-MoS, veinlets. A few pyrite-				
		coarse biotite veinlets.	D518 <u>1</u>	150	152	2m
146.6	175.1	Siltstone	D5182	152	154	2m
		Grey-green to locally pale red-brown due to				
	•	pervasive moderate epidote-chlorite, and local			-	
		biotitic alteration. Bedding poorly preserved,				
			D5183	154	_156	2π
		streaks parallel to bedding may be replacement				
		of beds. Local brecciation, probably tectonic,				
		early. A few short tuff-breccia intervals.				
		3-5% sulfides. Veining sequence:	D5184	156	158	2m
		(1) early dark chlorite +/- pyrite				
		(2) quartz-MoS ₂ veinlets - very rare				

-	Bio-py	gran	chl-e
	-сру	ert-er	chl-e amph-p
Ī			
		† · · · · ·	
-		 	
-		├──	
_	1	00	7
_			
_			
-	3	<u> </u>	21
-	 		
_		ļ	
_	3	1	125
_			
_			
-		<u> </u>	
_	5	0	K 25
_			
	3	0	23
Τ			
_	1	1	25
_	·		
- Y	Talan ayada	. (28)	
			
	<u> </u>		
_	2	0	25

From m	To m	Description	Sample No.	From m	To m	Lengt
		(3) chlorite-epidote-actinolite-pyrite				
		+/- chalcopyrite				
		(4) brown biotite-pyrite-chalcopyrite	D 5185	158	160	2m
		+/- pyrrhotie				
		(5) gypsum				•
		(6) calcite- very late	D5186	160	162	2m
-		146.6 - 149.2 - intensely fractured, many				
		vuggy epidote-chlorite-actinolite pyrite	D5187	162	164	2m
		veinlets. Tuffaceous in part. 0.1% Cu.				<u> </u>
		152 - pyrrohotite-chotite-chalcopyrite vein-				
		let.	D5188	164	166	2m
		154.4 - 155.5 - tuffaceous, common vein				
		directions 30° + nearly parallel core.				
		161 - 162 - coarse biotite band parallel to	D5189	166	168	2m
-		core, sulfides more abundant where vein-				
		lets cut the biotitic parts.				
		146.6 - 154 - 0.2% Cu.	D5190	168	170	2m
		154 - 165 - 0.1% Cu.				
		165.4 - 165.9 - very odd augite porphyry	D5191	170	172	2m
		dyke or fragmental interval.				
		165 - 175 - more abundant sulfides, large-				
		ly disseminated pyrite, a few blebs and	D5192	172	174	2m
		streaks, 5.7% sulfies. 0.2% Cu.				

	bio-p	gran eri-s	chl-ep amph-	p
-	**			-
<u>)</u>	1	1	₹ 25	
_	2	0	4 25	
9	4	0	€25	
- 8	2		22	
_		0	22	
.9	1	0	4 25	
_				
14	0	0	₹ 25	
_				
	ST Light Co.			
L 2	1	4	₹ 25	
			1	
	iJ			

From m	To m	Description	Sample No.	From m	To m	Length
175.1	188.0	Altered Tuff	D5193	174	176	2m
		Spotted (augite phenocrysts?) tuffaceous inter	-		'	
		val, brecciated locally, still green siltstone				
		in part. Strong actinolite-epidote-chlorite				
		alteration. Mottled, streaky, spotted textures				•
		Fragments not distinct except locally. 5% sul-	D5194	176	178	2m
		fides, largely pyrite, minor chalcopyrite, mag-				
		netite, pyrrhotite; mostly disseminated, a few				
		replacement blebs and streaks. A few anhydrite				
		veins, weak chlorite-actinolite-epidote-pyrite				
		veining; 0.1% Cu.	D5195	178	180	2m
		Several granular actinolite-epidote-chlorite-				
		pyrite veins nearly parallel core.				
		180.3 - 4 cm quartz vein with garnet-pyrite-				
		magnetite-magnetite-chalcopyrite @ 20° to core	D5196	180	182	2π
		184.2 - 2mm MoS ₂ veinlet (no quartz) @ 30°.				
		184.9 - 1cm lavendar anhydrite vein with	D5197	182	184	2m
		coarse MoS ₂ , pyrite at 30°.				
		188 - 2 anhydrite veins - (lcm + 2cm) with	D5198	184	186	2m
		coarse MoS ₂ @ 30°.				
			D5199	186	188	2m
188.0	193.4	Siltstone	D5200	188	190	2m
		Grey-green, dense, fine grained, dark brown				

	anhyd veins	gran act-ep chl-py	shl⊼ep amph=p
]	0	1	25
1			
$\frac{1}{1}$	· .		
+			
+	1	1	19
1		-	19
]			
4			
4			
+	1	6	14
+			
1			
	2	5	20
\downarrow			
4			
+	3	6	21
+			
+	3	7	13
1			<u></u>
\downarrow			
-	3	4	6
_			

Hole No. 80-6

Page No.

12

From m]	To m	Description	Sample No.	From m	To m	Length	1	 anhyd veins	gran 881-61	chl-er amph
		with coarse biotite bands (more mafic beds?).					•	1	0.112	
		Bedding obscured (less than 20° to core?) by			•			1	,	
		moderate to strong epidote-chlorite-actino-	D5201	190	192	2m		0	11	15
	l	lite alteration and veining. Vein sequence as								
		above. A few tiny MoS, veinlets, late anhy-				•				
		drite veinlets, very minor chalcopyrite,								
		0.1% Cu.	D5202	192	194	2m		1	12	12
193.4	197.5	Augite porphyry	D5203	194	196	2m		1	10	12
		Contacts obscured by alteration. Augite altered	1							
		to chlorite-actinolite, patchy coarse biotite								···
		in matrix. 7% disseminated sulfides, largely								
		pyrite, minor pyrrhotite, trace chalcopyrite.								
		Many granular actinolite-epidote-chlorite-				<u> </u>				
		pyrite veins, a few gypsum ones. 0.1% Cu. Late	D5204	196	198	2m		0	4	10
		gypsum on fractures.	<u> </u>		-					
197.5	207.5	Siltstone	D5205	198	200	2m		0	7	14
		as 188 - 193.4								
		Several short augite porphyry intervals -	D5206	200	202	2m		0	6	13
		(199.4 - 20cm, 201.9 - 20 cm, 204 - 20cm).			<u> </u>					185
		Contacts irregular @ about 30°. Veining as	D5207	202	204	2m		0	2	15
		above. 3% sulfides.						(450)	1	
		200.9 - 5mm pyrite vein with minor chalcopy-	D5208	204	206	2m				·
		rite; no anhydrite, no sulfide streaks <0.1%	-						•	
		Cu. 205.1 - 3mm pyrite veinlet with chalcopyri	e.							

From m	To m	Description	Sample No.	From m	To m	Length		a. V	nhyd eins	gran act-ep chl-pv	chl-er amph
207.5	210.3	Augite Porphyry	D5209	206	208	2m	•		0	2	25
		as 193.4 - 197.5				1		 			ļ
		A few chlorite-epidote-pyrite veinlets, granu-			<u> </u>	<u> </u>		<u></u>			
		lar actinolite-epidote-chlorite-pyrite vein-								:	ļ <u>. </u>
		lets, late calcite veinlets. Trace Cu.				•		<u> </u>			<u>. </u>
			D5210	208_	210	2m			0	4	16
		208.3 pyrite-magnetite - trace chalcopyrite						1			
		vein @ 15°.				ļ					
											<u> </u>
		210.3m - End of hole.				<u> </u>		1			
								1			
											ļ
						<u> </u>		1			
								1			
								1			<u> </u>
								1			
								\perp			
											L
				· · · · · · · · · · · · · · · · · · ·							
								L		C equ	36.7
								- 1		Mark Sandard	₹ [©]
	-							\top	-		

Location	1: 10,022	.3N, 10,0	- 018.8E	_	nto Canadian Diamond Dr	•	Benne			Hole No. 80-7						
Azimuth	1: 135°	-	Dips - coltar	-50°	Contractor	Cameron-	McCutch	eon Dr:	illing	Property:	erty: Aylwin Creek					
Elevatio	n: 1250m		- 80 m	48°	Logged By	D.C. Du	rgin	··········		Claim No.						
Length:			- 130 m	4 7°	Date: Oct					Section No	D. 50 1	North				
Core Siz	ze: _{NQ}		-180 m	4 6°						Started: 0			30			
Purpose	· To tes	t continu	uity, grade and	strike o	f mineralizat	ion in 80	-2.		•	Completed						
Purpose: To test continuity, grade and strike of mineralization From To Description					Sample No.	From	To	Length		1	vuggy	py-po	chl-er			
0	6.4	Overb	urden	.,		D 5211	6.4	8	1.6m	-		amoń-by	7 -cpy 3	amoh-p		
		Quart	z latite porphy:	y augite	porphyry,		-		1	-		+	 	-		
		Nelso	n quartz monzon	ite bould	ers.	D 5212	8	10	2m	<u> </u>		_	12	10		
6.4	58.6	Heter	ogeneous Breccia			D 5213	10	12	2m			-	5	6		
		Coars	e, largest 20cm	8cm.	_											
		Early	porphyry, feld	spar porp	hyry,	D 5214	12	14	2m				4	5		
	<u> </u>	augit	e porphyry, darl	cschisto	se met-		_ <i></i>						1			
	•	avolc	anics, a few ch	erty silt	stone	D 5215	14	16	2m	i L		T	4	13		
		fragm	ents. Matrix f	ine grain	ed - rock											
		flour	? Moderate sil:	icificati	on, moder-	D 5216	16	18	2m	[_	4	7		
		ate a	ctinolite-cpido	te-chlori	te-pyrite					<u>.</u>						
		altera	tion and veining	g, chlori	te mearly	D 5217	18	20	2π	1		Ī -	2	11		
		black	<u> </u>													
		6.4 -	19.0 - 5% pyr	ite-chalc	opyrite-	D 5218	_20	22	2m			2	1	5		
		magne	tite as blebs,	streaks,	dissemin-	_								1		
		ation	s as replacemen	ts in mat	rix and	D 5219	22	24	2m	! !	1 2 1 - 12	12	ì	3		
		more	mafic fragmetns	. Often	outlines					Ī			\top			
		fragm	ents (see 9.0m).	Good Cu	, not	D 5220	24	26	2m	1		10	2	4		
	1L	marrel	المراكبة فمطلب المراكبة	7 ° C		,			· — · —	ŧ-			· · · · ·	1		

from m	To m	Description	Sample No.	From m	To m	Length	_		vuggy amph-py	py-po -cpv	chl-ep
		19.0 -22.5 - 3% sulfides as above,	D 5221	26	28	2m		•	18	2	3
		less chalcopyrite, a bit more pyrrho-		·	•			•			
		tite. 0.3% Cu. Several dark green					_				
		amphibole veinlets w/pyrite-quartz-	D 5222	28	30	2m	-	•	17	1	2
		epidote occasionally vuggy. At 300				•	-	•			
		and nearly parallel to core.						-			
		22.5-33.6 - same silicified breccia,	D 5223	30	32	2m	_		17	0	3
		several augite porphyry fragments to						-			
		20cm. Patchy abundant dark green									
		amphibole-pyrite veinlets, often	D 5224	32	34	2m	-	_	2	3	2
		irregular, vuggy, especially between	- 1					-		··-	
		fragments. Open breccia appearance						_			
		locally (26.9, 27.3m, 26.6m). Some	D 5224	34	36	2m :)	_	0	16	0
		chalcopyrite also. 7% total sulfides						_			
		(3% disseminated, 4% as veinlets),						_			
		0.7% Cu. Strongly silicified. Bleach-	D 5226	36	38	2m			3	7	0
		ed rims (lcm) on mafic fragments.									
	•	33.6-38.4 - abrupt but gradational						_			
		change - very strong pervasive coarse						_			
		brown biotite alteration with 10%	_								
		sulfides as blebs, streaks, wisps and						_			
		diss'eminations - pyrite-chalcopyrite,						_			
		minor pyrrhotite, especially in mafic									
		clasts. Beautiful mineralization. 2%									
		Cu.	_								H
		36.9-37.6 - white aplite/pegmatite_dyke	1	!			No. of the second	5125 (264)dd -			

From

Hole No. 80-7 Description Page No. 3 with pyrrhotite-pyrite-chalcopyrite-Sample From Length coarse biotite streaks - source of vuggy p:--po chl-ep D 5227 2m the biotite + copper? @ 30°. 14 Other mineralization not present destroyed? D 5228 40 42 38.4-47 - Silicified, strong actino-2m 13 lite-epidote-chlorite-pyrite alteration. Abundant vuggy dark green amphibole-D 5229 42 44 pyrite veining +/- quartz, epidote, 2m 16 magnetite. Decreasing toward bottom. 0 3-5% sulfides, mostly pyrite, decreas-D 5230 ing downward. Good chalcopyrite in 11 3 7 mafic clasts near top and in matrix locally (40.5). Strongly fractured D 5231 2m core. 0.2% Cu. 3 47.0-54.3 - Breccia, very strong actinolite-epidote-chlorite-pyrite alteration ^FD 5232 48 50 2m+ silicification, fragments often indis-12 tinct. Very few dark amphibole-pyrite veinlets. 2% total sulfides, largely D 5233 50 52. disseminated pyrite with minor magnet-3m ite, some chalcopyrite. 0.1% Cu. 54.3-58.6 - increasing augite porphyry D 5234 52 54 fragments, composing all of breccia 2m at end. Strong actinolite-epidote-chlorite alteration. 8% sulfides as D 5235 56 14

Rio Tinto Canadian Exploration Limited

Diamond Dittl Record

Hole No. 80-7

Page No. 4

l-rom m	To m	Description	Sample	From m	To m	Length			oio-py	cby by-bo	chl-ep amph-py
		streaks, blebs, disseminations -						1			
		pyrite-chalcopyrite-magnetite, minor						1			
		pyrrhotite. Disseminations most				1		1			
		abundant in augite porphyry fragments.						1			
		0.7% Cu.	D 5236	56	58	2m		-	4	8	11
58.6	81.7	Augite Porphyry					•	+			
		Massive, dark brown, more fine grained	D 5237	58	60	2m		1	5	1	9
		than ususal. Cut by short intervals						1			
		of breccia with strong actinolite-	<u> </u>					1			
		epidote-chlorite alteration along	D 5238	60	62	2m		1	3	2	10
		contacts with veining of same minerals.					-				
		Abundant disseminated pyrite-chalcopy-			l		-	1			
		rite-pyrrhotite, variable amounts.	D 5239	62	64	2m		1	6	3	8
		58.6-60.2 - fine to medium grained	1					1			
		augite porphyry. 5% disseminated					_	1			
		sulfides 0.3% Cu.	D 5240	64	66	2m	-	1	10	1	7
		60.2-61.3 - Intrusive breccia, largely					_	1			
		augite porphyry fragments, intense					_	1			
		actinolite-epidote alteration. 5%	D 5241	6.6	68	2m	-	1	1	4	5
		disseminated pyrite-chalcopyrite, a					<u>.</u>	1			
		few streaks. 0.2% Cu.					-	1			7
		61.3-63.9 - Vague to distinct breccia	D 5242	68	70	2m	<u>.</u>	-1	0	8	16
		texture in augite porphyry, a few other					· .	1			
		fragments. Intense brown biotite.					-	I			
		7% disseminated sulfides, especially				11	_	1		<u></u>	

From m i	To m	Description	Sample	From	To m	Length		
		pyrrhotite. 0.8% Cu.	1				:	
		63.9-65.7 - Breccia -strong silicif-			•		-	
		ication and brown biotite, various	D5243	70	72	2m	-	
		fragments. Biotite-pyrite veinlets.					-	
		3% disseminated pyrite-pyrrhotite-chal-				•	-	
		copyrite. 0.2% Cu.					-	
		65.7-67.4 - Augite porphyry abundant	D 5244	72	74	2m	-	
		granular veinlets of actinolite-epidote-					-	
		pyrite. 3% sulfides, 0.2% Cu.					-	
		67.4-69.3 - Breccia, pale green, silic-					-	
		ified, mostly augite porphyry, lower	D 5345	74	76	2m	-	
		contact 30°7 6% sulfides, 0.7% Cu.					_	
		69.3-73.7 - Augite porphyry, vague					_	
		fine breccia texture, intense brown						
		biotite, 4% sulfides, strong pale	D 5346	76	78	2m	_	
		green alteration at both ends. 0,3%					_	
		Cu,						
		73.7-75.6 - Breccia, fragments generally					_	
		less than 3cm, indistinct. Pale	D 5347	78	_80	2m		
		green, silicified, w/chlorite spots.					_	
		Biotite_along_pyrite_veinlets5%					_	
		sulfides, many blebs, 0.3% Cu.						الى دارد
		75.6-76.6 - Augite porphyry, 3%						
		sulfides, 0.2% Cu.					~	
		76.6-77 - Breccia as 73.7 - 75.6, 0.3%					_	
		Cu					_	

-			
	bio-py	ру-ро	chl-e
	+/- cp	d - cov	amph-p
			100.00
		ì	ł
i			1
			1
	6		
_	0	4	6
Ì		(
4		 	
ļ		1	j
1			
Į		Ī	1
1			
	13	10	5
1			
1			1
I		1	
ļ			<u> </u>
١		[]
+		 	
ļ	9	6	5
ł		 	
I			ļ
t			
l			
Į			
ļ			
l	4		
ł		3	4
١		ļ	!
ł		 	
ĺ		İ	
t		 	
l			
Ī			
l	0	2	8
l			
ļ			
ı			1.34
ŀ			
l	a Grazis	-37.54	
ŕ			
ĺ		!	
۲			
ľ		1	
١			
L			
ľ			
Ĺ,			

Irnam n	· To								le No. 8	U-7	
	- t	Description	. Samp	ole Fro	.13	То		Pag	e No.	6	
		77.0-81.7 - Augite porphyry, as 69.3-	<u>\\o</u>) m		m	Length		bio-p	у ру-р	x) chì
	 	The state of the s	1							у тсру	amph
		1 draseminated similar	1	<u> </u>	'						
	 	chalcopyrite-pyrite, a few blebs. 0.5% C	D 524	48 80)	82	2m		 		
		a lew blebs. 0.5% C	<u>u.</u>				210		5	2	8
81.7	88.4	Heterogeneous Breccia	, 								1-
		81.7-85.0- Augita									
		81.7-85.0- Augite porphyry fragments									 -
		and/or strong brown biotite alteration,							1		
			D_524	D 00					+		├
		DIOWN DIOFITE STATE		9 82	_ 8	4	2m		1 6		
_					- -				++	2	2
	-		<u> </u>								
		ototice envelopes 0 200	-						+	-	
		- Just Copyrite abundant o as -			_						
		- rew augite por-							+		
		riagments, pale green color	<u>D 5250</u>	84	86	5 .	2m				
		spots. Mineralization as above.					<u>Litt</u>	<u> </u>	5 5	_ 1 T	9
		0.5% Cu.			<u> </u>			_			
								_			
		86.7-88.4 - Augite porphyry, feldspar									
		- Iragments. Strong bear			 			_	T		
		biotite, patchy green silicates. 0.4%	D 5251	86				_	 		
			, ————————————————————————————————————		88	21	<u>m</u>	7	3		
		A few granular actinolite-epidote-	 	 	 -		 -	<u></u> _	 	0	_12
		chlorite-pyrite veinlets 0 10°.						_	 		
4 9	9.6	Feldspar Porphyry					<u> </u>				
		PILYLY	D 5252	88	90	2m				12	3

From	To m	Description	Sample So.	From m	To m	Length		 bio-py		chl-ep amph-py
		Medium to fine grained, feldspars					<u>.</u>			
		to 3mm, generally 1.5mm or less,		·	,	1	_			
		phenocrysts rounded. Less than 1%	D 5253	90	92	2m	_	4	0	24
		quartz crystals. Grey to pale green					_			
		to pale brown due to actinolite-epidote	,			-	-			
		and to biotite alteration. Silicified.	•				-			
		Breccia texture locally. 4-7% dissem-						<u> </u>		
		inated sulfides + as veinlets.	D 5254	92	94	2m	-	9	2	14
		88.4-94.1 - Strong green silicate						<u> </u>		
		alteration. Abundant chlorite-epidote-					-			
		amphibole-pyrite veinlets, biotite-						<u> </u>		
		pyrite-pyrrhotite-chalcopyrite veinlets,					-	1		
		blebs and disseminations. Silicified,	D_5255	94_	9.6_	2m	-	6	0_	8
		7% sulfides. Feldspars indistinct,					•			
		breccia locally, 0.3% Cu.	4		<u> </u>		-			1,175
		94.1-98.0- Moderate silicification and					-	<u> </u>		
		brown biotite, cut by patchy green					_	1		
		silicate alteration, granular veinlets	D 5256	9.6	9.8	2m	_	3	0	8
		and chlorite-epidote-amphibole-pyrite								
		veinlets and by dark biotite sulfide								
		veinlets. Up to 5% disseminated pyrr-					-	<u> </u>		
		hotite-chalcopyrite replacing biotite.	_				_			
		Freshest at 94.6m. 0.3% Cu.					_		and the same	
		98.0-99.6- Strong green silicates,					and the second	140		
		a few augite porphyry zenoliths (poss-					-			
		ibly a breccia), patchy replacement					-			

From T	To m	Description		ample No.	From m	To m	Length
		biotite. Mineralization as above.					
		0.2% Cu.	D	5257	98	`100	2m
99.6	108.4	Augite Porphyry					
		Augite phenocrysts altered to pale					•
		green aggregates. Biotite replaced	Ď	5258	100	102	2m
		by finely disseminated pyrite-pyrrho-	1			_	
		tite-chalcopyrite. Cut by patchy	į				
		actinolite-epidote-chlorite-pyrite	į.				
		lateration and veining, associated	D	5259	102	104	2m
		silicification. Short intervals may					
		be breccia - fragments not obvious.					
		Fresher porphyry has 4% disseminated	. 1				
	•	sulfides, intensely metasomatized	_i_D	5260	104	106	2m
		intervals have up to 15% sulfides as		[
,	_	blebs and veinlets as well.					
		102.1-102.4, 106.4-107.3 - breccia?	.]				-
	-	Overall 0.4% Cu,	D	5261	106	108	2m
		103.7- 3cm actinolite-epidote vein @	i -				
		15°. Many veinlets @ 20°, + nearly	1				ļ
		parallel to core.					
108.4	110.4	Lamprophyre	D	5262	108	110	2m
		Upper contact @ 25°, lower 15°? Coarse,					
		fresh, cut by several pale green gouge	-		 -		
		zones @ 30°, 60°, 5° (see 109).			1		

	bio-py +/- cpy	by-bo	chl-ep
_	6	2	15
_			
_			
4	2	0_	6
_			
4	·		-
4	 -		
4	3	0	7
-			
+			
_			
-	1	1	. 7
+			
	1		
		1_	
-			
			2
	. 0	- 6,	4
			<u> </u>
_			

Hole No.

BO-7

Page No.

9

bio-py py-po chl-ep +/- cpy -cpy amph-py Print To m From m sauple Description Length amph-py D 5263 110.4 | 110.7 Augite Porphyry 110 112 2mas 99.6 - 108.4 Lower contact @ 30°. 110.7 | 116.2 Feldspar Porphyry as 88.9 - 99.6 - breccia in part, D 5264 112 114 13 fragments nearly all feldspar porphyry, strong green silicate alteration and veining, moderately silicified. 3% sulfides (see 115m) 0.3% Cu. D 5265 114 . 116. 2 12 111.4 - 112.2 - Patches of early biotitic breccia, all feldspar porphyry, pale brown biotite interstital to D 5266 116 118 2m fragments. 7 114-115.1 - Augite porphyry, 10% disseminated sulfides. 0.4% Cu. 116.2 116.8 Biotitic Breccia D 5267 118 120 2m Angular milky quartz fragments, average 2mm, in fine brown biotite matrix. 4% disseminated sulfides. 0.3% Cu. 116.8 119.0 Lamprophyre Coarse, very biotitic, fresh. Lower contact 30°.

Rio Tinto Canadian Exploration Limited Diamond 19 - a cord

Maria Santa	ľo m	Description	ample No.	From m	To m	Length	ç			-cpy	chl
119.0	123.8	Brown Biotitic Metavolcanic									-
		Fine grained, abundant brown biotite,	D 5268	. 120	122	2m	-		 	6	1
		shattered fragments rotated only					-		1	1	1
		locally (121.6). Invaded by strong					_		†		1
		actinolite-epidote-chlorite-pyrite	,			•	-		1		1
		alteration + veining. Bleached +					-				1
		silicified adjacent to veins. 8-10%	D 5269	122	124	2m	-		 	2	
		sulfides, mostly disseminated, mostly					-	•			_
		pyrite. Several large blebs, moderate					<u>-</u>	•		<u> </u>	_
		pyrrhotite + chalcopyrite. 0.4% Cu.					<u>.</u>	•			
123.8	126.5	Feldspar Porphyry	D 5270	124	126	2m				1	ļ ·
123.0		Same rock as 110.7-116.2. Silicified,				2.11	-			 	+
		intense green silicate alteration		-			•		 	 	-
		as above, grades into heterogenous					•		 	 	
		breccia. Feldspars bleached along	-				•	-	-		-
		late chlorite-calcite veinlets at	D 5271	126	128	2m	•	-	<u> </u>	2	+
		20°, 30°, 5° to core.						-			+-
		Abundant chlorite-pyrite veinlets +/-					•	-			1
		epidote and amphibole. 3% sulfides-					•	•	†		1
		largely pyrite (+ magnetite). 0.1%						-			
		Cu.	D 5272	128	130	2 m	•	- 1 1184		1,545	
126.5	130.3	Heterogeneous_Breccia						-			
		Finer fragments that usual, generally						_			
		less than 2cm, feldspar porphyry, dark						_			

From To	To m	Description	ample	From	To	Length
		metavolcanics, tan cherty fragments.		1783 - E.S	**************************************	7
		Strong green silicate alteration,	•			
		silicification, dark chlorite spots			`	
		and rims on fragments, 2% sulfides.				1
		0.1% Cu.	•			•
		130.3 - gouge @ 30 ⁰ to core axis.	·			
130.3	134.4	Feldspar Porphyry	D 5273	130	132	2m
		as 110.7-116.2- very silicified,	1 - 32.3			Ziii
		moderate green silicate alteration.	ly to			
		Vague breccia texture toward bottom.				
		3% sulfides, largely disseminated	D 5274	132	134	2m
		pyrite, minor pyrrhotite, chalcopyrite				21(1
		0.1% Cu.	. #			
		Increasing pyrite veinlets, minor	1			
		chalcopyrite last 20cm.	D 5275	134	136	2m
134.4	137.7	Augite Porphyry/Biotitic Metavolcanic				
		Strong brown biotite, patchy green				
		silicate alteration and silicification.				
		Many 1-2mm pyrite veinlets +/- chal-	D 5276	136	138	2m
		copyrite-pyrrhotite, 3% disseminated				ZIII
		sulfides 0.3% Cu.				
		135.7-136.3 - heterogeneous breccia-				
		as below.				

<u> </u>	10. 1		
		ру-ро -сру	chl-ep amph-py
-			
•			
-			
-			
-	1		
-		0	7
-	 		
-	 	 	
-	 		
-	<u> </u>	1	1.2
-	 		12
-			
-	-		
	ļ		
-		5	14
-		 	
-	ļ		
-	 		
-	 		
-		4	9
e de la companya de l	- 2	7	
_			
_			
_			
-	li		

Hale No. 80-7

Page No. 12

Free Description Length D 5277 138 140 137.7 146.2 Heterogeneous Breccia 2m Coarse, fragments to 20m, average 8cm, of feldspar porphyry, early porphyry (?), augite porphyry, dark biotitic met-2m avolcanics, siltstone. Silicified, D 5278 140 142 very strong actinolite-epidote-chloritepyrite alteration, especially matrix. Alteration rims on fragments (138.7). Streaks, blebs, veinlets of pyrite-D 5279 142 pyrrhotite-magnetite abundant. Abundant 144 granular green silicate veins. 7% sulfides. 0.5% Cu. Last 1.5m darker, more chloritic, fragments of rock D 5280 144 146 below common. A few gypsum veinlets @ 30°, 80°. D 5281 146 148 146.2 180.8 Quartz Latite Porphyry Medium coarse grained, crowded, 40% white, slightly rounded feldspars average 2.5mm, a few more rounded ones to 4mm. D 5282 152 3% conspicuous rounded quartz phenocrysts to 9mm, 3% completely altered mafics (hornblende?) matrix grey apyanitic. Moderate propylitic alteration, weaken-D 5283 152 154 2m ing downward, mafics chloritized. Feldspars slightly green locally. A few

	qtz-No	ру-ро -сру	chl-ep amph-by
	-	6	10
	_	6	8
_			
		-	
_			
_	-	4	10
_			
_			
_			
_	_	1	5
_			
	2	1	6
		ĺ	
_			ini na cale
_	4	_2_	9 *
ے.	Mary See	-	
	1 m 1 m 1 m		
•			
•	7	1	17
•			
			, ,

Rio Tinto Canadian Legislaration Limited Diamond Breek, and

Fram	fo m	Description		.ple	From m (1 o :11	Length
		early quartz-MoS, veinlets. Cut by	D	5285	154	156	2m
		chlorite-epidote-amphibole-pyrite	ji	i			
		veinlets, later chlorite-calcite	ji H				
		veinlets @ 60°, 45°. Later gypsum	[}		
		veinlets @ 45°, 60°. Argillic alterat-	Ď	5286	156	158	2m °
		ion adjacent to latest calcite.					
		146.2-142.8 - strong green silicate				•	
		alteration, 5% disseminated sulfides,	1				
- 1		feldspars indistinct. 0.3% Cu.	D	5287	158	160	2m
		147.8-151 - many chlorite-epidote-	1 .				
		pyrite veinlets. 0.1% Cu.					
		150.2 - spatially related MoS ₂ - pyrite					
		-epidote-chlorite, superimposed?	1 .				
	•	151-156.6 - as described above, 3%	D	5288	160	162	2m_
		sulfides, 0.1% Cu.	. i.				
		156.0 - 3cm quartz vein parallel core.	i		ļ		
		Abundant coarse pyrite, minor chal-					
		copyrite.	-				
		156.6-159.0 - Bleached, silicified.	D	5289	162	164	2m
		Abundant patchy disseminated pyrite-					
-:-		chlorite-epidote. A few quartz-MoS ₂					
	-	veinlets. < 0.1% Cu.		-			
		159.0-165.5 - decreasing pyrite-epidote					
		veinlets and disseminations, increasing	D	5290	164	166	2m
		silicification and earlier quartz-MoS,					
		veinlets. 3% sulfides. 0.01% MoS ₂					

qtz-16	py-po	zubh-by
5	1	8
		·
5	1	5
9	1	8
8	1	9
1		
		
20	0	9
	,	
3.,	-	^ <u>-</u>
	200	
18	0	5
		·

Rio Tinto Canadian Emploration Limited Diamend Decord Record

Hole	No.	80-7	
در بالا	No	1.4	

From To	Description	Lample No.	From an	1 o	Length
	< 0.1% Cu.	i			
	162.0 - Anhyrite veinlet 1.2cm			·	11
	w/pyrite-chlorite-epidote @ 70° with	D 5291	166	168	2m
	lcm bleached envelope. Gypsum and				
	weak bleaching on late fractures.				
	165.5 - 168.1- Few quartz MoS, vein-		i		
	lets with silicification. Strong				
	brown biotite overprint with fine	D_5292	168	170	2m
	disseminated and coarse veinlet biotite	ļ			
	overprint with fine disseminated and	1			
	coarse veinlet biotite associated				
	with pyrite-pyrrhotite +/- chalcopyrite.	ii			
	Weak later chlorite-epidote-actinolite as	D 5293	170	172	2m
	veinlets and disseminated. Minor MoS2.				
	0.1% Cu.				
	166.7 - pyrrhotite-chalcopyrite				
	veinlets with biotite @ 30°.				
	168.1' - 176.2 - several quartz-MoS ₂	D 5294	172	174	2m
	veinlets near top, patchy moderate				
	silicification, weak propylitic alter-				
	ation, mafics partially replaced by				
	chlorite-epidote-pyrite, locally rather	İ			
	fresh. Scattered chlorite-pyrite-	D 5295	174	176	2m
	epidote veinlets. A few late calcite-				
	chlorite veinlets with narrow bleached				
	envelopes. 3% pyrite. <0.1% Cu.				

	~ * * *									
	qtz-Mo	-cpy by-po	chl-ep amph-pv							
_										
;	5	2	3							
_										
_										
-										
<u>.</u>	5	0	12							
_										
_										
_										
<u>:</u>	1	1	10							
-			· · · · · · · · · · · · · · · · · · ·							
_										
-	4	0	11							
_										
-			 1							
-	2	0	10							
-										
_										
-			L							

Hole No. 80-7

Page No.

py-po Sample No. From m chl-ep [rom 10 Description qtz-Mo Length -сру апріт-ру 176.2-180.8 - Relatively fresh, D 5296 176 178 2m mafics only partially replaced by pyrite + chlorite, locally fresh. Patchy weak silicification and chlorite -epidote-pyrite veining +/- amphibole. Feldspars fresh, except for bleaching D 5297 178 180 along late calcite veinlets. 180.8 - End of Hole.

Location	l:		Diamond Drill Record						Hole N	<u>lo.</u>	80-8			
Azimut	h: ₁₃₅ 0		Dips - collar	-50	Contractor:	Cameron	-McCutc	heon D	rilling	Property: A	Aylwin C	reek		
	n: 1250m	n	- 105 m	00			Claim No.							
Length:	107.2	····	- m				Section No). 150N	т					
Core Si			- m	0						Started: Oc				
Purpose: To test continuity of mineralization along strike to North.					1									
		t continu			ng strike to					Completed:	Octobe	x 26,		
From m	To m		Desc	ription		Sample No.	From m	To m	Lengt	<u>}</u> .				chl-ep amph-py
0	15.0	Overbu	rden						*************	Ī	_			
		Variou	s rock types,	abundant sa	nd, cased					I	_			
		to 15.	2m.								_			
15.0	28.0	Augite	Porphyry			D 5298	16	18	2m	[-	12
		Grain s	size quite var	iable, 15%	augite						_			1
		phenoc	rysts to 1cm 1	locally, gen	erally	D 5299	18	20	2m	<u> </u>			T-	20
		3-4mm	in grey-green	fine graine	d matrix.		·				_		T	
			rysts altered	- -							_			
). Many patch			D 5302	20	22	2m				T-	21
		of a ve	ery fine grain	ed pale gre	en silici-						_			
		ous roo	k-green silts	tone inclus	ions?	D 5301	22	24	2m	1	-		-	17
		Contact	t relationship	s unclear.	Granular						_			
			ts locally abu									1		
		top @ :	30 ⁰ , 50 ⁰ . A f	ew chlorite	-epidote-	D 5302	24	26	2m				-	9
			veinlets, abu										Car .	
			ne pyrite vein											
		blebs v	with pyrite +	magnetite.	3% pyrite,	5303 ם	26	28	2m	<u> </u>	,		2	15
			halcopyrite.]	_		T	1
		15.0 -	16.9 - Strong	pale green	silicate					Ţ	_			
1		alterat	tion.			1				T		1		+

From m	To m	Description	Sample No.	From m	To m	Lengt
		22.6-24.3 Green siltstone interval.	•			
		24.3-28.0 Texture becomes streaky,			1	
		schistose in augite porphyry with				
		increasing siltstone inclusions.				
						•
28.0	40.1	Interbedded Augite Porphyry/Green silt-	D 5304	28	30	2m
}		stone.	<u> </u>			
		60% streaky, altered augite porphyry as				
		above. 40% green to locally pink-brown				
		siltstone (tuffaceous probably). Graded	D 5305	30	32	2m
		bedding (?) at 33.8m at 15 ⁰ to core,				
		nearly parallel core at 31.5m. Highly				
		fractured core. Generally pale brown				
		biotite hornfels with strong green	D 5306	32	34	2m
		silicate overprint. 5% sulfides as				
		streaks and disseminations in augite		· · · -		
		porphyry, largely veinlets in brittle				
		siltstone. Abundant chlorite-epidote-	D 5307	34	36	2m
		actinolite-pyrite veinlets at many	1			
		angles, often leached, vuggy. Very				
		minor chalcopyrite. ((0.1% Cu.				
		A few quartz veinlets with very minor	D 5308	36	38	2m
		MoS ₂ .				
		34.1 - gouge @ 40°.				
		A few late hairline calcite veinlets				
	-	and spots.	D 5309	38	40	2m

2		
gtz- Mo	-сру ру-ро	chl-ep amph-p
	0	13
		13
		<u> </u>
1	1	18
5	0 ·	<25
0	0	₹ 25
		i av
2	- A	∢ 25
2		1-2
0	0	4 25

From	To m	Description	Sample No.	From m	To m	Lengt
40.1	58.6	Siltstone	D 5310	40	42	2m
		Fine grained, bedding only locally				
		apparent. Generally brown-pink biotit-				
		ic hornfels, patchy pale green silicate	D 5311	42	44	2m
		alteration, locally intense (46.2 46.7,				•
		52.1 - 52.9). Moderate to locally				
		strong chlorite-epidote-actionolite-	D 5312	44	46	2m
		pyrite veining.				
		A few short intervals of augite porphyry.				
		A few quartz veins, some with MoS2 at	D 5313	46	48	2m
· · · · · · · · · · · · · · · · · · ·		various angles. Late chlorite-pyrite-				
		calcite hairline veinlets with bleached				
		envelopes. 3% sulfides, largely veinlets.	D 5314	48	50	2m
		43.0-bedding? at 40°. Very minor Cu.				
		43.4- bedding @ 30°. Several biotite				
		veinlets.	D 5315	50	52	2m
		42.2-42.8- Augite porphyry, 5% pyrite.				
		46.2-46.8- Augite porphry, intense			_	
		green silicates.	D 5316	52	54	2m
		45- biotite-pyrite veinlets cut by				
		chlorite-epidote veinlets.				
•		50.8-51.1 - 2 quartz veins with multiple	D 5317	54	56	2m
		1mm MoS ₂ streaks, plus several small				
		quartz MoS, veinlets all at about 70°				
		to core.	D 5318	56	58	2m
		55.0 -57.9 pinkish color, a few green				

· <u>3</u>		
qtz- Mo	py-mag -cpy	chl-ep amph-p
0	Q	> 25
	-	, , ,
0	0	>25
1	1	20
	-	
0	1	18
1	0	15
7	0	18
1	3	20
4	0	16
3	0	19
	└ <u>.</u>	

From m	To m	Description	Sample No.	From	To m	Lengt
		veinlets.	D 5319	58	60	2m
58.6	65.2	Augite Porphyry	D 5320	60	62	2m
		A few short siltstone intervals. Prim-				
		ary mafics altered to biotite +/- actin-	D 5321	62	64	2m*
		olite, weak-moderate green silicate				
		alteration. A few vuggy granular actin-	D 5322	64	66	2m
		olinite-epidote-chlorite-pyrite vein-				
		lets +/- quartz. 3% pyrite, largely	D 5323	66	68	2m
		disseminated. A few chlorite-epidote-				
		pyrite veinlets.	D 5324	68	70	2m
		61.8 - vuggy granular silicate veinlet				
		@ 30°. No Cu.	D 5325	70	72	2m
		62.5-62.8- Siltstone.			_	
ĺ			D 5326	72	· 74	2m
65.2	84.9	Siltstone				
		Short Augite porphyry intervals as in-	D 5327	74	76	2m
		dicated below -apparently interbedded.				1
		Locally reddish brown due to hornfels,	D 5328	76	78	2m
		generally pale green due to later chlor-				
1		ite-epidote-actinolite alteration.	D 5329	78	80	2m
		Abundant erratically distributed py-				
		rite-epidote-amphibole veinlets at	D 5330	80	82	2m
		many angles, often vuggy, leached, and				1
		carrying minor chalcopyrite. A few	D 5331	82	84	2m
		granular green silicate veins. Rare				T

py-mag -cpv	chl-er amph-r
0	10
0	6
0_	12
	1
1	25
0	23
0	24
0	20
0	17
0	> 25
1	> 25
0	19
A - 200 - 1	14
	14
	1.1
- 0	11
	0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Hole No. 80-3 Page No. 5

From To Sample From Τo Description quartz-MoS, veinlets. Scattered late chlorite-calcite veinlets. Pyrite and magnetite in blebs locally. 65.9- 1cm quartz vein with blebs of pyrite, minor pyrrhotite + chalcopyrite @ 40°, with biotite envelope. Also abundant disseminated pyrrhotite + minor chalcopyrite for 20cm. 71.4-73.4- Augite porphyry, 3% pyrite, trace Cu. 72.5- MoS, in granular quartz veinlet a 650. 73.9 - Chlorite-amphibole-epidotepyrite veinlet with minor chalcopyrite. 73.9-76.9 - Abundant veining as above with minor Cu. Many veinlets @ 40°. 76.1 - 77.1 - Augite porphyry. 78.8 - 86.4 - patchy very strong green silicate alteration, abundant granular actinolite-epidote-chlorite-pyrite_ veins. Moderate silicification. 79.6- 79.8- Possible heterogeneous breccia-a few porphyry fragments in intense green silicate alteration.

Hole No.	80-8	
Page No.	6	

From m	To m	Description	Sample No.	From m	To m	Lengtl	1
84.8	86.1	Heterogeneous Breccia	D 5332	84	86	2m	Ι
		Intense green silicate alteration,			•		I
		fragments only locally obvious,					I
		largely siltstone and augite porphyry,	D 5333	86	88	2m	T
		a few feldspar porphyry. 4% pyrite				•	I
		as disseminations, veinlets, and small					I
-		blebs. Trace chalcopyrite.	D 5334	. 88	90	2m	+
86.1	100.4	Siltstone					+
		Short augite porphyry intervals.	D_5335	90	92	2m	
		Weak patchy green silicate alteration,					
		generally dark brown color. 2-3%					I
		sulfides, largely pyrite, 4-5% pyrite	D 5336	94	96	2m	
		in augite porphyry intervals.					
		87.1-87.9 strong fracture zone nearly					
		parallel core, abundant calcite vein-	D 5337	94	96	2m	
		lets, bleached.					I
		88.8m 3cm quartz vein at 30° with					
		patchy black tourmaline,	D 5338	96	98	2m	
	·	A few anyhdrite veinlets with pyrite					
		@ 20°, 70°.					I
		Late calcite veinlets.	D 5339	98	100	2m	
		90.6-94.0 Mostly augite porphyry.					T
		4% pyrite, trace chalcopyrite.					I
		99.4-99.7 - Augite porphry - 8%	D 5340	100	102	2m	I
		sulfides largely disseminated, a few					

	Ο.	6	' '	
_	qtz- Mo	py-mag -cpy	chl-ep amph-p	,
L	1	2	10	
-				
!	0	0_	10	
-				
	1	0	7	
_				
1	0	1	12	
1				
	0	2	19	
11				
-	1	0	11	
-				
4	0	0	12	
1				
187	0	3	7	
-	0	1	9	
۲				

Hole No. 80-8

qtz- py-magchl-ep Mo -cpy amph-py Sample From From To Description Length veinlets. 60/35/5 = pyrite/pyrrhotite/ D 5341 102 104 2m chalcopyrite. D 5342 106 2m 100.4 107.2 104 Augite Porphyry About 65% augite porphyry, 35% short intervals of siltstone. Patchy green silicate alteration, 2% sulfides, 2m D 5343 106 107.2largely pyrite, minor pyrrhotite, trace chalcopyrite. A few granular actinolite-epidote-chlorite-pyrite veins, most at 20°. A few anhydrite veinlets, late calcite veinlets. 101.8 - 102.2 trace chalcopyrite. 106.0 ~ bedding @ 35°. 106.7 - trace chalcopyrite. 107.2- End of hole.

APPENDIX V

DRILLING PLAN

