GEOLOGICAL AND GEOCHEMICAL REPORT

- on the -

CHITA CLAIMS

- for -

BARRIER REEF RESOURCES LTD.,

#904-675 West Hastings Street, VANCOUVER, B. C. V6B 1N2.

COVERING: Chita #1 (20 units), Chita #3 (10 units), Chita #2 (12 units), Chita #4 (20 units).

WORK PERFORMED: August 19 to August 30, 1980.

LOCATION: (1). 67 km. Northwest of Goldbridge, B. C.

(2). N.T.S. 920/4E and /5E.

(3). Latitude 51°15.0' North; Longitude 123° 32.3'West.

PREPARED BY:

KERR, DAWSON & ASSOCIATES LTD. #1-219 Victoria Street, KAMLOOPS, B.C.

> W. Gruenwald, B. Sc., December 5,1980.

INDEX

												<u>P a</u>	ge No.
INTRODUCTION			•			•			•				1
SUMMARY AND	CONC	LUSI	ONS		•	•	•			•	•	•	2
LOCATION AND	ACCI	ESS				•			•				4
PROPERTY				. ,					•		•	•	5
HISTORY												•	6
PHYSIOGRAPHY	AN D	VEG	ЕТА	TIC	N					•	•		7
GEOLOGY			•	•		•	•			•		•	9
GEOCHEMISTRY	•				•	•	٠			•	•	•	16
RECOMMENDATION	ONS												21

APPENDICES

APPENDIX A

- Geochemical Results

APPENDIX B

- Personnel

APPENDIX C

- Statement of Expenditures

APPENDIX D

- References

APPENDIX E

- Writer's Certificate

APPENDIX F

- Maps

MAPS

		Scale
Figure #231 A-1	- Location Map	1"= 64 mi.
Figure #231 A-2	- Index Map	1 = 50,000
Figure #231 A-3	- Geological Plan	1 = 5,000
Figure #231 A-4	- Geochemical Plan (Molybdenum)	1 = 5,000
Figure #231 A-5	- Geochemical Plan (Copper)	1 = 5,000
Figure #231 Λ-6	- Geochemical Plan (Arsenic)	1 = 5,000
Figure #231 A-7	- Geochemical Plan (Gold)	1 = 5,000

INTRODUCTION

The Chita claims were staked in March, 1980, to cover an area of feldspar porphyry intrusive bodies that locally host disseminated copper-molybdenum mineralization. These intrusive rocks are thought to be similar to the feldspar porphyry intrusive that hosts the Poison Mountain Cu-Mo (+ low grade gold) deposit located some 50 kilometers of the east-southeast. The Chita claims and several other areas containing feldspar porphyries have recently been the subject of intensive exploration for precious metals.

At the request of Barrier Reef Resources Ltd., the writer and Renegade Mineral Exploration Services Ltd. carried out a programme of geological mapping and geochemical sampling over the central portions of the Chita claim block.

SUMMARY AND CONCLUSIONS

- (1). The Chita claim group consists of four modified grid claims totalling 62 units. The property is located 67 km. northwest of Goldbridge, B. C. in the Chilcotin Ranges of the Coast Mountains.
- (2). The claim area has been explored in the past by three mining companies, the last of which (Bethlehem 1969-70) drilled 21 percussion and 4 diamond drill holes in and around the known coppermolybdenite mineralization.
- (3). The geology of the Chita claims consists of sediments (+ minor + volcanics) of the Lower Cretaceous Taylor group that have been intruded by numerous plugs and dykes of Tertiary feldspar porphyry. Copper-molybdenite mineralization is found disseminated through an area of highly altered feldspar porphyry that has locally been brecciated (ie explosion breccia). Several areas of feldspar porphyry are quite limonitic; however, appear to be devoid of any economic mineralization.

(4). The geochemical sampling outlined two major anomalous zones (Cu-Mo) one of which was centered around the known mineralized zone. The extent of this anomaly may suggest that the mineralized zone could be considerably larger than presently known.

The second major anomaly (Cu-Mo) is located west of the baseline between L-2S and L-4N. Little or no exploration work has been done on this anomalous area which appears underlain by both sediments and feldspar porphyry intrusives.

No significant gold values were encountered over the grid area.

LOCATION AND ACCESS

The Chita claims are located along the east side of Lower Taseko Lake between Beece Creek and Chita Creek. The property is situated along the east flank of the Coast Mountains approximately 67 air kilometers northwest of Goldbridge, B. C. Geographic co-ordinates for the center of the property are 51°15.0' North latitude and 123°32.3' West longitude on NTS sheets 92 0/4 and 92 0/5. The claim block lies within the Clinton Mining Division.

Access to the property is via either helicopter from Goldbridge or by a rough road that heads southerly from Hanceville along the Williams Lake-Bella Coola road.

Total road distance from Williams Lake is approximately 210 kilometers.

PROPERTY

The Chita claim block consists of four contiguous claims totalling 62 units. Claim details are as follows:

Claim Name	No.of Units	Record No.	Expiry Date
Chita #1	20	654 (4)	April 21, 1981
Chita #2	12	655 (4)	April 21, 1981
Chita #3	10	656 (4)	April 21, 1981
Chita #4	20	657 (4)	April 21, 1981
Total	62 units		

 $\hbox{ The registered owner of the above claims} \\ \hbox{is Barrier Reef Resources Ltd. of Vancouver,} \quad \hbox{B. C.} \\$

HISTORY

The earliest recorded work was done by

Phelps Dodge Corporation Ltd. who in 1962 carried out

detailed geological mapping and minor trenching. In

1968 Bethex Exploration Ltd. carried out a programme

of geochemical sampling, detailed geological mapping,

and minor trenching. Following the above, Bethlehem

Copper Corporation carried out a work programme in

1969-70. This programme consisted of the drilling of

4 diamond drill holes totalling 390 meters, 21 percussion

holes totalling 1,280 meters and the construction of

approximately 8 kilometers of roads. Since 1970, no

further work has been carried out on the Chita claim

area.

PHYSIOGRAPHY AND VEGETATION

The Chita claims are situated on the northeast flanks of the Chilcotin Ranges of the Coast Mountains. The claims lie on the slopes immediately northeast of the narrows separating upper and lower Taseko Lakes.

The general slope of the claim area is to the west and southwest; however, slopes to the east, south, and north are found in some localities (i.e. creek valleys).

Tributaries of Chita creek drain the southern half of the claim block while the central portion of the claim block is drained by two westerly flowing creeks.

Tributaries of Beece creek drain the northernmost portion of the claim block.

The overall topographic relief of the claim block is approximately 1,050 meters from Chita creek in the southwest corner of the claim block (1,418 m) to the

peak on the east boundary of Chita #3 (2,470 m).

Vegetation on the lower slopes and creek valleys consists

primarily of stands of pine, balsam and fir. Subalpine

to alpine vegetation is generally found above the

6,500' (1,980 m) elevation.

GEOLOGY

On a regional scale, the Chita claims are situated within a belt of variably deformed Mesozoic volcanic and sedimentary rocks that are bounded by the west-northwesterly trending Taseko, Yalakom and Tchaikazan faults. These rocks are locally intruded by Tertiary plugs of feldspar + biotite porphyry. This belt of rocks is bounded to the northeast by relatively undeformed Cretaceous and Tertiary volcanics and sediments.

On a local scale the geology of the Chita claims consists of several rock types (see figure #231 A-3).

Unit #1 consists of dark gray to black argillite (shale?), pale, gray-brown to greenish sandstones and siltstones as well as quartz + chert pebble conglomerate.

These rocks are found over much of the Chita #1 and #3 claims, and are possibly in fault contact to the east and south with andesitic (+basaltic) feldspar porphyries and agglomerates of unit #4. Found within the Unit #1 sediments are narrow zones of pale yellow (locally pale green), platy to massive rhyolitic ash (Unit #2). The rhyolitic rocks are found near the eastern extremities of L-4N to L-12N and may in fact be ash norizons that are intercalated (?) with the Unit #1 sediments.

The sediments in the northern portions of Chita #1 and #3 strike from northwest to north-northeast and dip from 50° to 80° easterly. Attitudes in the southern portions of the same claims strike from northwest to west-northwest and dip from 70°-80° southerly. Such diversity in attitudes are probably the result of regional deformation (ie uplift, etc.), faulting and intrusive activity. Both Unit #1 and #2 are likely members of the Lower Cretaceous Taylor group as mapped by the G.S.C. (Open File #534).

Pyrite is found as disseminations and/or fracture fillings in the argillic sediments. Locally pyrrhotite and minor chalcopyrite have also been observed in some of the pyritic argillites. The proximity to feldspar porphyry intrusives probably plays an important role in the sulphide content of the surrounding sediments. Minor pyrite (and lesser pyrrhotite) was observed in some of the conglomerates and sandstones.

Unit #3 consists of medium to coarse grained feldspar + hornblende + biotite porphyry. These rocks are found as plugs and dyke-like masses that intrude the Unit #1 sediments over much of the grid area between L-12S and L-8N. These intrusives vary from

gray to buff, locally pinkish, altered rocks. The phenocrysts are generally plagioclase and vary in length from 0.2 to 1.0 cm. Often found in association with these phenocrysts are smaller hornblende phenocrysts and biotite "books", all of which are set in a grayish -brown groundmass of feldspars, quartz, hornblende and biotite (+ chlorite).

Alteration of the feldspar porphyries ranges from weak to strong, the latter of which is most notable on the hilltop outcrop between L-4N and L-6N (7+50-9+50E). Another area of well altered feldspar porphyries is found west of the baseline between L-2S and L-8S, where the intruded conglomerates as well as the porphyries are well oxidized and crumbly weathering. The alteration of the porphyries consists most likely of the breakdown of feldspar to sericite, + carbonate and possibly epidote, along with chloritization of the mafic minerals as well as the oxidation of pyrite and pyrrhotite to limonite.

The contacts between the porphyry intrusives and the sediments (Unit #1) are generally quite sharp

Located near the northern and southern limits of the altered and mineralized zone are at least two occurrences of breccia. The breccia zones are comprised of subrounded to subangular fragments (2 to 10 cm across) of dark gray, finely veined argillic rock, andesitic and basaltic volcanics as well as fragments of feldspar porphyry. The finer grained matrix between the fragments contains blebs of pyrite and chalcopyrite. Such breccias may imply that the emplacement of the main intrusive body in this area was possibly quite forceful (ie. explosion breccia). This type of emplacement may have, in part, provided the necessary "plumbing" system for the hydrothermal alteration and sulphide mineralization.

porphyries were observed within the grid area such as the area west of the baseline between L-4S to L-8S and between L-2S; 4+00E and L-2N; 2+50W. The former area, though well altered, contains only very minor sulphide mineralization. The latter area contains areas of altered feldspar porphyry which locally contains disseminated pyrite and very minor chalcopyrite and molybdenite. It is debatable whether these two areas

are related to the main altered and mineralized zone to the northeast or whether they represent altered and/or mineralized zones completely separate from the main zone.

The last major rock unit (Unit #4) is represented by dark green to gray fine grained andesitic (+ basaltic?) feldspar porphyries and agglomerates. These rocks are found south of L-12S where they may be in fault contact with Units #1 and #3. Unit #4 rocks are found at the very eastern extremities of L-8S to L-2N where they are represented by abundant agglomeritic rocks as well as feldspar porphyries. The very northeast corner of the grid is underlain by a very large expanse of pale green, massive, fine grained feldspar porphyry which would appear to overlie the Unit #1 sediments. These volcanics of Unit #4 probably correspond to the upper Cretaceous Kingsvale Group mapped by the G.S.C. and appear to extend for a considerable distance east of the grid area.

Sulphides (pyrite and/or pyrrhotite) are generally found in very small amounts in these rocks (<< 0.5%).

Several fine grained, dark colored dykes were observed on the property and appeared to cut rocks of both Units #1 and #3. These, generally, narrow and steeply dipping dykes are probably related to Unit #4 vulcanism or younger volcanic activity.

Evidence of faulting was observed in outcrops near L-2S and L-4S and in each case, these faults and strikes of west-northwest and dipped from 60° to 80°, southerly. One fault was observed to dip 90°. Displacement along these fault zones is thought to be minimal.

Several large faults were mapped on the basis of topographic linears, prominant land features (ie. distinct gullys) or geological contacts. (See figure #231 A-3).

GEOCHEMISTRY

During August, 1980, a chain and compass grid totalling 40.3 km was established over all of Chita #1 and portions of Chita #2 and #3. Soil samples were collected at 50 meter intervals on lines 200 meters apart. Rock chip samples were collected by the writer during the course of geological mapping.

A total of 763 soil and 86 rock chip samples were collected over the Chita claims.

Soil samples were collected from the "B" horizon when present, or from the residual soils developed in talus rich areas. All samples upon collection were placed in waterproof kraft envelopes and labelled by the appropriate grid co-ordinates. The samples were later packaged and shipped to Acme Analytical Laboratories in Vancouver, B. C. for analysis.

After drying, soil samples were seived to obtain an aliquot of -80 mesh material. Rock samples were crushed to -100 mesh size. All samples were analyzed for Molybdenum (Mo), Copper (Cu), Arsenic (As), and Gold (Au). The analysis for the above elements was as follows:

Element		Digestion	Determination
Molybdenum Copper Arsenic)	A 0.5 gm sample is digested in hot aqua regia.	Atomic absorption
Gold)	A 10 gm sample is heated to 600°C for 4 hours and digested in hot aqua regia.	Atomic absorption with background correction.

The results for each element was stated in parts per million (ppm). Gold values were converted to parts per billion (ppb) for plotting on the geochemical plan.

A statistical analysis was done for each element (using soils only) and stated as follows:

	<u>Molybdenum</u>	Copper	Arsenic	Go1d
Mean (\bar{x})	5.4 ppm	119 ppm	23.4 ppm	7.8 ppb
Standard Deviation	7.5 ppm	148.5 ppm	34.9 ppm	11.9 ppb
Background	5.4 ppm	119 ppm	23 ppm	8 ppb
Possibly Anomalous	5.4-12.9 ppm	119-266 ppm	23-58 ppm	8-20 ppb
Probably Anomalous	13-20.4 ppm	267-417 ppm	58-93 ppm	21-32 ppb
Definitely Anomalous	20.4 ppm	417 ppm	93 ppm	32 ppb

The geochemical anomalies for each element are detailed as follows:

Molybdenum: (Figure #231 A-4).

- all anomlous values are found north of L-8S (between 8+00W and 14+00E).
- the anomalies can be divided into two main areas.
- one area partially surrounds main mineralized zone (generally downhill of it).
- values up to 102 ppm.

- found over rock units #1 and #3.
- the other anomalous area is found west of the baseline between L-4N and L-2S.
- values to 70 ppm, also found over units #1 and #3.
- the remaining 1 and 2 sample anomalies are generally found between the above two areas and to the north.
- the two main anomalous zones and many of the smaller anomalies generally have a good co-incidence with copper.
- poor co-incidence with arsenic and gold.

Copper: (Figure #231 A-5).

- all definitely anomalous values essentially north of L-4S.
- 5 definitely anomalous areas with more than two values; these can be divided into two main areas.
- largest anomaly (600m x 800m) partially surrounds the known mineralized zone.
- values up to 2,889 ppm.
- many anomalous values found topographically below mineralized zone, (downhill dispersion?)
- found anomalous values over rock units #1, #2, #3.
- second definitely anomalous area west of baseline between L-2S and L-4N.

- values to 844 ppm, found over rock units #1 and #3.
- the remainder of the smaller anomalies are generally found between the two main anomalous areas much of which is covered by overburden and/or talus.
- no anomalous values were noted over any unit #4 rocks.
- co-incidence with molybdenum anomalies is good and poor with arsenic and gold.

Arsenic: (Figure #231 A-6).

- all anomalous values found between L-2N and L-10S.
- four definitely anomalous with > 2 samples.
- values to 541 ppm (extreme high of 5,805 recorded).
- largest anomaly west of baseline between L-0 and L-8S $(400 \times 700 \text{ m})$.
- found on and topographically below exposures of rock units #1 and #3.
- co-incidence with molybdenum and copper is poor.
- co-incidence with gold is weak.

Gold: (Figure #231 A-7).

- anomalies scattered over entire gold.
- 13 anomalies in the definitely anomalous category.
 only 2 have > 1 anomalous sample.
- .- anomalies appear over all rock types.
- co-incidence with arsenic is weak, only two gold anomalies co-incident with arsenic.

- co-incidence with copper-molybdenum is poor, only two small gold anomalies correspond with coppermolybdenum anomaly in the main mineralized area.

In summary, the major geochemical anomalies can be listed as follows:

- (1). Area on and around known mineralized zone (Rock units #1, #3, and #2 (?).
 - excellent copper-molybdenum co-incidence.
 - size of anomalous zone may suggest that mineralization is more extensive than presently known.
 - poor arsenic co-incidence, weak gold co-incidence.
- (2). Area west of baseline between L-2S and L-4N (Rock units #1, #3).
 - excellent copper-molybdenum co-incidence.
 - poor arsenic-gold co-incidence.

RECOMMENDATIONS

Based on information to date the following is recommended:

(1). Obtain any assay values for the Bethlehem diamond drilling and percussion drilling.
Relate this information to the present programme to determine whether the values (from the drilling) satisfactorily explained the present geochemical anomalies and if any untested areas exist.

W. GRUENWAL

Respectfully Submitted:

KERR, DAWSON AND ASSOCIATES LTD.,

Werner Grnenwald, B. Sc., GEOLOGIST

Kamloops, B. C.

December 5, 1980.

APPENDIX A

GEOCHEMICAL RESULTS

Ala 231

To: Kerr, Dawson & Associates Ltd., 1 - 219 Victoria St., Kamloops, B.C. V2C 2A1

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. 80-1011

Type of Samples _ Rocks___

GEOCHEMICAL ASSAY CERTIFICATE

B Disposition _ _____

SA	MPLE No.	Mo	Cu	As	Au							
	CR - 1	5	385	7	.005			1		- 		1
· `		ıí	80	4	.005							2
	3	2	99	1	.005							3
Ì	4	16	1163	17	.030							4
1	2 3 4 5 6 7 8	2	80	4	.005							5
	6	47	2569	4	.140							6
	7	33	3360	9	.040							7
ľ	8	39	1344	16	.020							. 8
	9	3	1394	17	.005							9
1 (CR - 10	3	835	11	.005							10
		•			, , ,							1
L0+00	0+95E	2	528	10	.010							12
	3+50	2 4	628	12	.005							1.
	6+50	2	105	10	.005							14
	15+00E	3	47	9	.005							15
	1+90W	2	238	3	.005							16
L0+00	3+05W	2 3 2 4	447	3	.005							T
		•		•								18
BL	0+00	3	87	4	.005							19
1	Ł.											20 21 22 23 24 25 26 27
0+05\$	8+15E	3	113	9	.005							21
	2+00E	3 3	75	6	.005							22
												23
L2N	4+45W	5 3	122	10	.005							24
L2N	6+50W	3	109	11	.005							25
1			Ų.									26
L4N	7+40E	18	+3.0%	5 5	.005							27
												28
L4+12!	N 2+35W	2	859	8	.005							29
	V 7+35W		717	6	.005							30
	V 4+80W	3 2	73	7	.005							31
ľ											1	32
İ												33
												34
												35
1												36
												37
												38 39
												39
	•											40

All reports are the confidencial property of clients All results are in PPM.

DIGESTION:

DETERMINATION:....

DATE SAMPLES RECEIVED_Sept__8, 1980_

DATE REPORTS MAILED Sept. 22, 1980

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone: 253 - 3158

80-1011

Type of Samples

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_

SAMPLE No.	Мо	Cu	As	Au					Ì		
0 0+50E	4	230	27	.015	<u> </u>	· · · · · · · · · · · · · · · · · · ·		·]
1	5	181	21	.005							2
1 +50	3	82	11	.005							3
2	15	474	24	.025							Z
2+50	5	146	20	.010							5
3	7	308	22	02E							6
3+50	16	472	5804 [×]	.110							7
4	4	113	35	.005							1
4+50	6	260		.010							3
5			31								ļ j
5 5+50	6	217	14	.005							1
	18	661	36	.010							1
6	5	221	19	.015]
6+50	4	160	33	.010							H
7	8	296	33	.015							
7+50	9	281	50	.020							1
8	5	234	75	.005							ļ.
8+50	5	218	51	.005							
9	7	191	44	.005							
9+50	5	210	110	.020							-
0 10 E	3	58	19	.005							
0 10+50E	4	82	38	.005							2
11	3	38	10	.005						·	2
11+50	4	63	20	.005					·		2
12	4	55	38	.005						•	[2
12+50	3	25	12	.005							2
13	4	76	17	.005							2
13+50	4	30	8	.005							2
14	2	35		.005							2
14+50	2		4								3
0 15 E		19	4	.005							13
0 12 E	4	44	7	.005							
0 0	5	322	30	.005							13
0+501/	4	124	13	.005							3
1	4	133	Ž	.005							3
1+50	9	271	14	.005							3
2	5	96	ĩo	.005							3
0 2+50W	25	521	18	.005							3
	20	7-1	10	• 0.7.7							[3
	<u> </u>										4
All reports are the	confidencial p	roperty	of clients			DATE SAM	PLES RE	CEIVED_	Sent	8	1980
All results are in						DATE REP				22,	
· · ·	· ·					LDATE REP	OKTS MA	ALED '	P - 0 8	,	

ΑII	reports	аге	the	confidencial	property	of	clients
ΑII	results	are	in P	PM.			

DIGESTION: DETERMINATION:.....

 $^{\mathrm{To:}}$ Kerr, Dawson & Associates Ltd.,

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6

phone:253 - 3158

File No. 80-1011 Type of Samples _ Soils

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_____

S AMPLE No.	Мо	Cu	As	Au			e i		
0 3 W	10	223	19	.005					
3+50	13	337	26	.005					
4	21	844	87	.010					
4+50	14	278	58	.005					
5	12	385	76	.015					
5+50	6	161	52	.005					
6	3	24	30	.005					
6+50	3	65	26	.015					
7	3	32	17	.005					
7+50	3	57	21	.005					
8	2	16	$\overline{14}$.005 .005					
8 +50	3	24	20	.005					ľ
9	2	18	14	.010					-
9+50	3 2 3 2 4	19	4	.005				r	Γ
0 10 W	2	14	5	.005				i	
2S 0+50W	6	324	22	.005					Γ
1	7	555	25	.005					
1+50	5 7	88	8	.005					Ī
2 ،	Ź	288	35	.045					
2+50	7	174	26	.050					[
3	6	197	70	,010					
3+50	23	372	32	.005				1	
4	7	152	31	.010					
4+50	7	200	44	.005					
5	6	252	52	.005					
5+50	6	236	82	.005					
6	8	366	266	.005					
6+50	5	214	194	.005					
7	5	91	96	.005					
7+50		50	34	.005					
8	3 2 3	17	14	.005					;
8+50	3	38	20	.005					-
9	2	21	13	.005					1
9+50	3	70	20	.005					
2S 10 W	3	158	44	.005					
72 TO M	J	100	"1" 1	• 000					
									3
									4

All reports are the con	fidencial	property	of	clients
All results are in PPM.				
DIGESTION:				

DETERMINATION:.....

DATE SAMPLES RECEIVED_Sept__8, 1980_

DATE REPORTS MAILED__ _Sept_ 22, 1980_

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone: 253 - 3158

F24 - 51	80-1011
File No.	

Type of Samples _S0115____

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_____

S AMPLE No.	Mo	Cu	As	Au					
2S 0	7	610	33	.005					
0+50E	4	328	26	.005					
1	5	574	29	.010					
1+50	6	479	25	.005					Ī
2	5	157	19	.015					Ī
2+50	3	159	24	.005					Ţ
3	6	193	14	.005					Ī
3+50	2	70	32	.005					Ī
. 4	2 3 3 4 5 3	215	27	.005					ļ
4+50	3.	111	30	.005					[
5	4	239	44	.020					[
5+50	5	276	79	.005					1
6	3	179	23	.005					Ì
6+50	4	349	141	.005 .020					
7	6	300	71	.025				•	Ī
7+50	3	112	61	.015					ĺ
8	3	113	92	.005					Ì
8+50	4	117	122	.005					1
9	3	134	101	.005					
9+50	3	109	38	.010					
10 ¹	3 2	55	39	.005					
10+50	3	55	40	.005					
11	3 2	43	23	.005	:				
11+50	3	51	13	.005					ſ
12	2	24	4	.005					
12+50	2 2	3 3	16	.005					
13	2	28	7	.005					
13+50	2	25	18	.015					
14	2	27	15	.005					
14+50	3	45	31	.015					į
2S 15 E	2 2 2 3 2	71	22	.005					
	_	, •		.000					ľ
2N BL	6	139	14	.005					ſ
0+50W	4	36	8	.005					
1	2	43	3	.005					ĺ
1+50	12	175	15	.005					ſ
2	13	158	19	.005					[
2N 2+50W	10	444	19	.010					Ţ,
	***		* -	.010					,
									7

All reports are the confidencial property of clients All results are in PPM.

DIGESTION:....

DETERMINATION:.....

DATE SAMPLES RECEIVED Sept 8, 1980 Sept. 22, 1980 DATE REPORTS MAILED

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6

phone: 253 - 3158

		-1011
	File No.	Soils
r	Type of Samples	

GEOCHEMICAL ASSAY CERTIFICATE Disposition _____

S AMPLE No. 2N 3 W 3+50 4 4+50 5 5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	Mo 10 13 34 20 5 6 2	356 249 554 402 167	As 17 58 32	.005 .015 .010						
3+50 4 4+50 5 5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	13 34 20 5 6 2	249 554 402	58 32	.015 .010						
4 4+50 5 5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	34 20 5 6 2	554 402	32	.010						1
4 4+50 5 5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	20 5 6 2	402		.010						ļ
4+50 5 5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	20 5 6 2	402								
5 5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	5 6 2		23	.005						
5+50 6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	6 2	107	42	.005						
6 6+50 7 7+50 8 8+50 9 9+50 2N 10 W	2	447	271	.005						
6+50 7 7+50 8 8+50 9 9+50 2N 10 W		73	26	.010						
7 7+50 8 8+50 9 9+50 2N 10 W	3	145	41	.005						
8 8+50 9 9+50 2N 10 W	3 2 2	28	25	.005						
8 8+50 9 9+50 2N 10 W	2	19	20	.005						
9 9+50 2N 10 W	1	13	12	.015						
9 9+50 2N 10 W	1	12	δ	.005						
9+50 2N 10 W	1	11	14	.015						
2N 10 W	1	9	9	.200						
0N 0.505	1	13	12	.005						
2N 0+50E	6	152	19	.005						
1	3	93	33	.005						
1+50	3	99	8	.005						
2 4	4	67	12	.005						
2+50	3	89	16	.005						
3	3	79	19	.010						
3+50	3	63	18	.005						
4	6	201	25	.005						
4+50	11	296	27	.020						
5	8	24 5	24	.005						
5+50	7	403	18	.010						
6	4	230	29	.005						
6+50	5	189	35	.005						
7	4	169	43/	.005						
7+ 50	2	9 8	30	.005						
8	3	129	37	.005					-	
8+50	3	195	31	.005						
9	3	13 5	21	.005						
9+50	3	182	34	.005						
10	2 3	9 9	17	.005						
10+50	_	84	18	.005						
2N 11 E	3									
	3 2	65	14	.005						
All reserve are the sected	2	65	14	.005						
All reports are the confidential All results are in PPM,	2			!	 DATE SAM	DI ES DEC	EIVED	Sen+		10

ΑII	reports	are	the	confidencial	property	of	clients			
Αll	results	are	in P	PM.						
DIGESTION:										

DETERMINATION:....

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. 80-1011

Type of Samples _Soils

GEOCHEMICAL ASSAY CERTIFICATE Disposition

SAMPLE No. Мо Cu As Αu 2N 11+50E .005 .005 12+50 .005 .005 13+50 .005 .005 14+50 .005 2N E .005 BL .005 0+50W .005 .005 1+50 .005 .005 2+50 .005 .005 3 + 50.015 .010 4+50 .005 5. .005 5+50 .005 N.S. 6+50 .005 .005 7+50 .005 .005 8+50 .005 .005 9+50 .005 W .005 0+50E .005 .005 1+50 .005 .005 2+50 .005 .005 3+50E .005 الملمسماماك

ΑII	reports	are	the	confidencial	property	of	clients
ΑII	results	are	in P	PM.			

DIGESTION: DETERMINATION: DETERMINATION:

DATE SAMPLES RECEIVED__Sept-_8,_1980_

DATE REPORTS MAILED___Sept__22_1980_

ASSAYER

To: Kerr, Dawson & Associates Ltd.,

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6

phone: 253 - 3158

Disposition _ _

80-1011 File No. Type of Samples

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE No. Мо Cu As Au Ε .005 4+50 .005 .005 5+50 .010 .015 6+50 .010 .005 7+50 .005 .005 8+50 .005 .005 9+50 .005 .005 10+50 .005 .005 11+50 .005 .005 12+50 .005 .005 13+50 .005 .005 14+50 .005 E .005 .005 **4N** BL .005 0+50W .005 1+50 .005 .005 2+50 .005 .005 3+50 .010 .005 4+50 .005 .005 5+50 .005 .005 4N 6+50W .005

All reports are the confidencial property	01 0	,,,,,,,,,,
All results are in PPM,		
DIGESTION:		
DETERMINATION,		

All reports are the confidencial property of clients

DATE SAMPLES RECEIVED Sept. 8. 1980 Sept. 22, 1980 DATE REPORTS MAILED

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. 80-1011

GEOCHEMICAL ASSAY CERTIFICATE

Disposition _ _____

SAMPLE No.	Мо	Cu	As	Au	ļ					
N 7 W	3	16	13	.005						
7+50	2	13	13	.005						
8	2	23	20	.130						
8+50	3	32	23	.005						
9	2	44	5	.005						
9+50	1	6	ź	.005						
IN 10 W	3 2 2 3 2 1 2	13	8	.005						Ì
IN 0+50E	8	298	25	.005						-
1	6	168	18	.005						}
1+50	9	305	24	.005						-
2	12	645	27	.015						-
2+50	18	3023	15	.005						-
3	23	460	54	.005						ŀ
3+50	19	338	17	.010						-
4	13	264	14	.005						}
4+50	11	243	10	.005						
5	21	656	9	.015						-
5+50	25	1028	14	.020						
6 }	49	979	9	.025						-
6+50	102	1465	16	.020						+
7	41	935	18	.035				!		
7+50	44	2889	7	.040					:	-
8	5	113	11	.005						
8+50	• 3	72	7	.005						-
. 9	5	83	17	.005						
9+50	5	109	17	.005						+
10	5 5 5 4	79	10	.005						
10+50	4	92	20	.005						
11	4	117	10	.005						
11+50	4	47	9	.005						
12 12+50	4	80	70	.005				•		ľ
12+50	4 5 7	116	18	.005					:	ţ
13	7	248	23	.005						
13+50	3 .	40	14	.005						
14	3	34	15	.005						1
14+50 N.	S.									
4N 15 E	2	9	4	.005						
-		-								

DETERMINATION										
DIGESTION:										
All results are in PPM.										
All reports are the confidencial propert	y of	clients								

DATE SAMPLES RECEIVED Sept. 8, 1980
DATE REPORTS MAILED Sept. 22, 1980

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

To: Kerr, Dawson & Associates Ltd.,

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. 80-1011

Type of Samples __Soils_

ATE
Disposition_____

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE No. Мо Cu As Au 6\$ BL .005 0+50W .005 .005 1+50 .010 .015 2+50 .045 .005 3+50.010 .005 4+50 .005 .015 5+50 .005 .005 6+50 .005 .005 7+50 .005 .005 8+50 .005 .005 9+50 .005 .005 0+50E .005 .005 1+50 .005 .005 2+50 .005 .005 3+50 .005 .005 4+50 .005 .005 5+50 .005 б .005 6+50.005 .005 7+50 .005 Ε .005

ΑII	reports	are	the	confidencial	property	ot	chents
ΑII	results	are	in P	PM.			

DIGESTION:

DATE SAMPLES RECEIVED Sept. 13, 1980.

DATE REPORTS MAILED__Sept__20,_1980___

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone: 253 - 3158

File No. 80-1011

Type of Samples _Soils___

GEOCHEMICAL ASSAY CERTIFICATE Disposition

SAMPLE No. Мо Cu As Au .005 8+50E .005 9+50 .005 .005 .005 10+50 .005 .005 11+50 .010 12+50 .005 .005 13+50 .005 .005 14+50 .005 .005 6N .005 BL .005 0+50W .005 1+50 .005 2. .005 2+50.005 б .005 3+50.005 .005 4+50 .010 .005 5+50 .005 .005 6+50 .005 .005 7+50 .005 .005 8+50 .005 .005 9+50 .005 .020 6N

Αll	reports	are	the	confidencial	property	of	clients
All	results	are	in F	PPM.			

DIGESTION:....

DETERMINATION:....

DATE SAMPLES RECEIVED Sept. 8, 1980

DATE REPORTS MAILED Sept. 22, 1980

ASSAYER

3+50W

Kerr, Dawson & Associates,

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone: 253 - 3158

Disposition.

	-1011
File No	
Type of Samples	So11

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE No. Αu Мо Cu As .005 6N 0+50E .010 1+50 .005 .010 2+50.005 .005 .010 3+50.005 4+50 .010 .015 5+50 .005 .015 6+50 .005 .010 7+50 .005 .005 .010 8+50 .010 9+50 .005 .010 .020 10+50 .005 11+50 .005 .010 12+50 .005 .020 13+50 .010 .020 .005 14+50 6N 15 E .010 .020 BL .005 0+50W .005 .010 1+50 .030 .010 2+50 .005

All reports are the confidencial property of clients	DATE SAMPLES RECEIVED	Sept. 8,	1980
All results are in PPM.	DATE REPORTS MAILED	Sept. 22,	1980
DIGESTION:	ASSAYER	/an	
DETERMINATION:	=======================================		=====
		1	

.005

DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

 $^{\text{To:}}$ Kerr, Dawson & Associates Ltd.,

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

80-1011

			File No.	
CECCHERATOAT	ACCAV			Samples Soils
GEOCHEMICAL	ASSAI	CERTIFICATE	Dispositio	on

S AMPLE No.	Мо	Cu	As	Au					
8S 4 W	4	27	16	.005	<u> </u>		<u> </u>	· * * * * * * * * * * * * * * * * * * *	 1
4+50	5	67	82	.005					2
5	5 5	7 8	60	.010			•		3
5+50	š	34	11	.005					4
6	3 3 3 3	50	42	.005					5
6+50	3	73	36	.005					6
7	3	72	41	.005					7
7+50		24	9	.005					8
8	2 2 2 2 3	35	13	.005					9
8+50	2	125	8	.005 .005					1
9	2	39	7	.005					1
9+50	3	21	30	.005					1
8S 10 W	2	16	19	.005					1
									1
8S 0+50E	2	17	14	.005					1
1	4	45	155	.015					1
1+50	3	44	58	.005					1
2	۲ļ	65	185	.030					1
2+50	3	22	18	.005					1
3,	3	30	25	.010					2
3+50	4	31	20	.005					2
4	3	19	31	.005					2
4+50	3	24	14	.005					2
5	3	19	14	.005					2
5+50	3 3	43	104	.005					2
6	3	40	22	.005					2
6+50	3	40	11	.005					2
7	3	26	12	.005					2
7+50	3	32	19	.005					2
8	2	22	9	.005					3
8+50	2	33	7	.005					3
9	2 2 2 2	15	. 8	.005					3
9+50	2	24	6	.005					3
10	3	33	18	.005					3
10+50	3	58	21	.010					3
11	2	14	5	.005					3 3 3
11+50	3	24	9	.005					3
8S 12 E	2	12	6	.005					3
									3
								_	4

All report	s are	the	confidencial	property	of	clients
All results	are	in P	PM.			
DICECTION	١.					

DIGESTION:....

DETERMINATION:....

DATE SAMPLES RECEIVED_				_
DATE REPORTS MAILED	Sept.	22,	1980	
ASSAYER ()	(O)E	211		•
	7	7==		=

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No.	80-1011
Type of Sa	mnles Soils

GEOCHEMICAL ASSAY CERTIFICATE Type of Samples _

Disposition_____

S A	MPLE No.	Мо	Cu	As	Au								
8\$	12+50E	2	25	6	.005	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	***		1	1		
	13	3	23	8	.005								
	13+50	3	14	7	.005								
	14	2	13	3	.005								
	14+50	2	11	4	.005								
88	15 E	3 2 2 4	10	6	.005								
8N	0+50W	9	29	4	.005								
	1	10	103	18	.005								
	1+50	_ 6	80	17	.005								[
	2	23	151	18	.005								
	2+50	19	2 80	11	.010								ĺ
	3	25	355	19	.005								
	3+50	9 5	260	21	.005								ĺ
	4	5	77	18	.005								
	4+50	9	285	22	.005								
	5	8	129	20	.005								Ì
	5+50	8	210	27	.005								
	6	4	7 5	29	.005					,			Ī
	6+50	5	70	17	.005								Ī
	7	5	35	21	.005								Ī
	7+50	3	28	17	.005								Ī
	8	2	14	13	.005								İ
	8+50	3	48	17	.005								Ī
	9	3	35	11	.005								Ī
	9+50	3	145	10	.005								1
8N	10 W	3 2	21	10	.010								
8N	BL	10	102	13	.065								
	0+50E	15	102	17	.005								
	1	156	255	3	.010								
	1+50	28	240	8	.010							ŧ	* * *-
	2	. 8	153	16	.005								t
	2+50	12	250	5	.010								ļ.
	3	16	285	12	.015								T.
	3+50	12	119	7	.005								
	4	7	190	12	.015								
81	4+50E	6	80	6	.005								
OIT	17 JUL	U	OU	U	.005								
													1

DETERMINATION:		•••••
DIGESTION:	*****	
All results are in PPM.		
All reports are the confidencial propert	v oi	chents

DATE SAMPLES RECEIVED	Sept.	8.	1980
DATE REPORTS MAILED	Sept.		

ASSAYER //

Sept. 22, 1980

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. ____80-1011

Type of Samples __S01]5___

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_____

S A	AMPLE No.	Мо	Cu	As	Au						
8N	5 E	10	325	10	.005	 	· 	 	1		1
	5+50	17	830	11	.010						2
	6	12	435	7	.005						2
	6+50	15	2280	10	.020						4
	7	ii	525		.030						5
	7+50	- 9	250	9 8	.005						6
	8	6	220	7	.005						7
	8+50	33	2100	9	.050						8
	9	16	470	9	.005						9
	9+50	24	760	18	.005						10
	10	16	425	21	.005						11
	10+50	9	295	20	.005						11 12
	11	7	210	19	.005						13
	11+50	5	192	15	.005						14
	12		380	64	.010					•	15
	12+50	6	320	110	.005						16
	13	9 6 5 6	174	50	.005						14 15 16 17
	13+50	6	118	37	.005						18
	14	4	87	23	.005						19
	14+50	4	74	21	.005						18 19 20 21 22
8N	15 E	5	68	13	.005						21
	20 2		00	13	.003						22
105	BL	4	52	156	.010						23
	0+50W		39	26	.005						24
	1	4	28	24	.010						25
	1+50	3	36	10	.005						26
	2	3	38	13	.005						24 25 26 27 28
	2+50	2	18	8	.005						28
	3	3 -	400	37							29
	3+50	3 4 3 2 3 3 3	27	12	.005						30
	4	3	15		.005						31
	4 +50	ა ე	58	7	.005						32
	5	3		9	.005					1	32
	5+50	4	33	17	.005						33 34
	6		48	25	.005						25
		3	26	15	.005						35 36
	6+50 7	4	13	36	.005						27
100		3	23	16	1.500						37
105	7+50W	3	101	18	.005						38 39
											139

All reports are the confidencial property of All results are in PPM.	of clients
DIGESTION:	
DETERMINATION:	••••••

DATE SAMPLES RECEIVED Sept. 8, 1980

DATE REPORTS MAILED_Sept_22, 1980_

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. 80-1011

Type of Samples _ Soils

GEOCHEMICAL ASSAY CERTIFICATE

Disposition______

S AI	MPLE No.	Мо	Cu	As	Au					
105	8 W	2	16	10	.015					1
	8 +50 9	2	17	10	.005					3
	9 9+50	2	16 52	10	.010					4
10\$	10 W	2	14	13 9	.010				=	5
103	10 M	۲.,	14	9	.005					6
10S	0+50E	3	30	72	.005					7
	1	3	23	24	.005					8
	1+50	3	18	14	.010					9
	2	2 2 3	13	6	.005					1
	2+50 3	2	14	8	.010					1
	3+50	ა ე	23	13 14	.005					1
	3+30 4	2 3 2	41 37	12	.005					1
	4+50	2	42	6	.005					1
	5	3	55	10	.005					1 1
	5+50	3	41	35	.005					1
	6	3 2	34	11	.005					1 1 2 2 2 2
	6+50	3	34	10	.005					1
	.7	3	38	10	.010					2
	7+50	3 2 1 2 2 2 3 3 3	23	8	.005					2
	8	1	10	4	.005					2
	8+50	2	10	7	.005					2
	9	2	10	7	.005					2 2 2
	9+50	2	9	5	.075					2
	10 10+50	3	48	15	.010					2
		3	34	13	.005					2
	11	3	38	7	.005					2
	11+50 12	3	37	9	.005					3
	12+50	2	33	7	.005					3
	13	1	7 45	4	.005					3
	13+50	3 3	45 31	9 10	.005					3
	14	2	14	10 5	.005					3.
	14+50	2		7	.005					3
105	15 E	2	12 17	9	.005					3
		-	4	•	.000					3
										38
										39
										40

All reports are the confidencial property of clients All results are in PPM.

DIGESTION:....

DETERMINATION:....

DATE SAMPLES RECEIVED—Sept.—8, 1980—DATE REPORTS MAILED_Sept. 22, 1980

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. Soils

Type of Samples

GEOCHEMICAL ASSAY CERTIFICATE Disposition__

0+50W 1 1+50 2 2+50 3 3+50 4 4+50 5 5+50 6	7 4 4 2 3 5 2 2 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5	56 30 48 15 65 116 20 41 54 53 29	19 13 13 5 9 16 7 8 12 19 7	.005 .005 .005 .005 .005 .005 .005 .005		•	·					2 5 6 7 8
1 1+50 2 2+50 3 3+50 4 4+50 5 5+50 6 6+50	4 4 2 3 5 2 2 3 5 3 5 3	30 48 15 65 116 20 41 54 53 29	13 13 5 9 16 7 8 12 19	.005 .005 .005 .005 .005 .005 .005 .005								2 5 7
1+50 2 2+50 3 3+50 4 4+50 5 5+50 6		48 15 65 116 20 41 54 53 29	13 5 9 16 7 8 12 19 7	.005 .005 .005 .005 .005 .005 .005								5 6 7
2 2+50 3 3+50 4 4+50 5 5+50 6 6+50		15 65 116 20 41 54 53 29 40	5 9 16 7 8 12 19 7	.005 .005 .005 .005 .005 .005								5 6 7
2+50 3 3+50 4 4+50 5 5+50 6 6+50 7		65 116 20 41 54 53 29 40	9 16 7 8 12 19 7	.005 .005 .005 .005 .005 .005								5 7
3 3+50 4 4+50 5 5+50 6 6+50		116 20 41 54 53 29 40	16 7 8 12 19 7	.005 .005 .005 .005 .005								7
3+50 4 4+50 5 5+50 6 6+50 7		20 41 54 53 29 40	7 8 12 19 7	.005 .005 .005 .005								7
4 4+50 5 5+50 6 6+50 7		41 54 53 29 40	8 12 19 7	.005 .005 .005 .005								8
4+50 5 5+50 6 6+50 7		54 53 29 40	12 19 7	.005 .005 .005								
5 5+50 6 6+50 7		53 29 40	19 7	.005 .005								3
5+50 6 6+50 7		29 40	7	.005								
6 6+50 7		40		.005]
6+50 7	3			~~~								1
7	3			.005								1
	_	37	9	.005								1
	5	62	21	.005]
7+ 50	5	49	18	.005								
8	27.	125	20	.005								[]
8+50	8	186	18	.005]
9	4	68	15	.005								1
9+50	3 2	42	17	.005								1
Q W	2	18	7	.005								2
BL	8	100	20	.010								2
0+50E				.005				,			i	2
1				.005								2
				.005								2
2	26			.005								2
2+50				.005								2
3				005								2
				005								2
4			2	005								3
				005								3
				010								3
		310		010								3
6.	15	126		.010								3
												3
												3
•												3
												3
ט ב	1/	405	10	.005								3
B01122334455667	L +50E +50 +50 +50 +50 +50 +50	L 8 +50E 10 12 +50 9 +50 26 +50 13 +50 91 +50 14 +50 13 +50 17 +50 17 +50 8	L 8 100 +50E 10 145 12 102 +50 9 99 26 116 +50 13 59 26 82 +50 91 33 13 36 +50 14 230 11 425 +50 13 310 15 425 +50 17 250 14 940 +50 8 380	L 8 100 20 +50E 10 145 15 12 102 11 +50 9 99 8 26 116 12 +50 13 59 8 26 82 10 +50 91 33 6 13 36 2 +50 14 230 17 11 425 8 +50 13 310 5 15 425 9 +50 17 250 8 14 940 13 +50 8 380 10	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 .2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005	L 8 100 20 .010 +50E 10 145 15 .005 12 102 11 .005 +50 9 99 8 .005 26 116 12 .005 +50 13 59 8 .005 26 82 10 .005 +50 91 33 6 .005 13 36 2 .005 +50 14 230 17 .005 11 425 8 .010 +50 13 310 5 .010 15 425 9 .005 +50 17 250 8 .010 14 940 13 .005 +50 8 380 10 .005

An reports are the confidencial	property	OI	chents
All results are in PPM.			
DIGESTION:			

DIGESTION: DETERMINATION: DETERMINATION:

DATE SAMPLES RECEIVED Sept. 8, 1980
DATE REPORTS MAILED Sept. 22, 1980

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. ___80_1011

Type of Samples ____Soils

GEOCHEMICAL ASSAY CERTIFICATE Disposition _____

S AMPLE No. Мо Cu As Αu 10N 8+50E .010 .010 9+50 .010 .005 10+50 .005 .005 11+50 .005 .005 12+50 .010 .005 13+50 .005 .005 14+50 .005 10N 15 .005 .005 12S BI_ 0+50W .005 .005 1+50 .005 .010 2+50 .005 .005 3 + 50.005 .005 4+50 .005 .005 5+50 .005 .010 6+50 .005 .005 7+50 .005 .005 8+50 .005 .005 9+50 .025 12S10 .005

ΑII	reports	are	the	confidencial	property	of	clients
All	results	are	in P	PM.			

DIGESTION:

DETERMINATION:....

DATE SAMPLES RECEIVED Sept. 8, 1980

DATE REPORTS MAILED___Sept. 22, 1980

ASSAYER

DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. 80-1011

Type of Samples Soils

GEOCHEMICAL ASSAY CERTIFICATE Disposition_

SA	MPLE No.	Mo	Cu	As	Au			!	
125	0+50E					 	 1		
143		4	63	11	.005				
	1	2	19	6	.005				
	1+50	2	16	11	.005				
	2	3	25	11	.005				
	2+50	2 2 3 3 2	25	11	.095				
	3		63	12	.005				
	3+50	3	22	12	.005				
	4	2 2 2	64	10	.005				
	4+50	2	42	8	.005				
	5	2	3 8	10	.005				
	5+50	3	36	9	.005				
	6	2	22	12	.005				
	6+50	3	57	9	.005				
	7	2	42	10	.005				
	7+50	2	51	7	.005				
	8	2 3 2 2 2	24	10	.005				
	8+50	3	16	17	.005				
	9	3	21	10	.005				
	9+50	2	40	9	.005				
	10	2	39	8	.005				
	10+50	2	14	8	.005				
	11	. 2	20		.005				
	11+50	2	15	10	.005				
	12	2		9	.005				
	12+50	ა ვ	20	8	.005				
		3	27	13	.005				
	13	3	34	15	.055				
	13+50	3	44	11	.005				
	14	3	37	13	.005				
	14+50	2 2 2 3 3 3 3 2 3	14	6	.005				
12S	15 E	3	28	11	.005				
12N	0+50W	3	35	6	.005				:
	1	6	89	12	.005				
	1+50	7 5	129	4	.005				
	2	10	172	12	.025				
	2+50	5	93	17	.025				
	3	7	260	12	.012				
12N	3+50W	8	360	14	.005				
1411	J T DUW	0	300	14	.015				

All reports are the confidencial	property	ot	clients
All results are in PPM.			
DIGESTION:			

DIGESTION:.....

DETERMINATION:....

DATE SAMPLES RECEIVED Sept. 8, 1980

DATE REPORTS MAILED_____Sept. 22, 1980

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

80-1011
File No. Soils

GEOCHEMICAL ASSAY CERTIFICATE | Type of Samples | Solits | Disposition

	AMPLE No.		Мо	Cu	As	Au	l						
12N	4 W		4	70	18	.005							
	4+50		3	27	13	.005					1	j	
	5		3	23	14	.005				,			
	5+50		2	122	10	.005				,	:		
	6		2	20	10	.005			1	1	į		
	6+50		2	245	15	.005		1		,			
	7		3	47	14	.005		1		į.	!		
	7+50		3	31	14	.005		i			1		
	8	· ·	3	37	15	.005			i		+		
	8+50		2	16	6	.005				1		ļ	
	9			17	7	.005							
	9+50		2	29	8	.005		1			1		
12N	10 W		. 3	13	.11	.005				1		1	
				1 = 1		1		1		÷	i		
12N	BL		8 6	85	10	.005				i	i		
	0+50E		6	194	15	.020				į			
	1		3 3	58	7	.005							
	1+50			63	7	.005					:		
	2		3	133	6	.005							
	2+50		7	164	13	.005							
	3 !	t	5	120	7	.005	:	i					
,	3+50		6	122	7	.005		1				1	
	4		7	158	5	.005	. [:	1	-		
	4+50		4	350	5	.005	. !	1				1	
	5		4	340	11	.005					I		
	5+50		4	88	10	.005							
	6		7	270	13	.005				:			
	<u>6</u> +50		7	270	33	.005				:			
	7		5	128	30	.005							
	7+50		6	142	39	.005							
	. 8		5	98	15	.025							
	8+50		5	141	17	.005			,			!	
	. 9		3	124	93	.015			,	.			
	9+50		8	410	19	.020	ŧ	1		!	:		
	10		6	345	21	.005							
	10+50		5	105	25	.005					:		
	11		4	97	20	.005							
12N	11+50E		3	113	16	.005						1	

All reports are the confidencial property of clients All results are in PPM.	DATE SAMPLES RECEIVEDSept. 16, 1980 DATE REPORTS MAILEDSept. 22, 1980
GESTION:	ASSAYER COCCESSION
	DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No.	80-1011
	Saile

GEOCHEMICAL ASSAY CERTIFICATE

SAN	IPLE No.	Мо	Cu	As	Au						
12N	12 E	3	90	20	.005	<u>-</u>		 			
A 6-14	12+50	2	57	12	.005						
	13	2	83	24	.005						
		2 2 2 2					•				
	13+50	2	33	9	.005						
	14	2	48	15	.020						
	14+50	2	38	34	.080						
12N	15 E	3	52	18	.005						
148	BL	2	29	10	.005						
	0+50W	2	34	10	.005						
	1	2	27	9	.005						
	1+50	2	16	8	.005				¥.		
	2	2 2 2	18	10	.005						
	2+50	ĩ	15	-6	.005						
	3	2	48	7	.005						
	3+50	2	18	9	.005						
	4	2	9	7	.005						
	4+50	2 2 2 2	11	6	.005						
	5	1	46	12	.005						
	,5+50	1	14	10	.005						
		2									
	6	2	21	12	.005						
	6+5 0	2 2 2 2 2 2 2	11	9	.005						
*	7	2	120	30	.015						
	7+50	2	345	31	.020						
	8		305	23	.010						
	8+50	1	14	5	.005						
	9	2	13	9	.005						
	9+50	2 2 2	23	11	.005						
14S	10 W	2	24	12	.005						
1.40	0.505	•	10	^	005						
145	0+50E	. 2	16	9	.005					-	
	1	2 2	14	7	.005					1	
	1+50	2	6	6	.005						
	2	1	11	7	.005						
	2+50	1	8	5	.005						
	3	1	7	6	.005						
	3+50	1	37	6	.005						
145	4 E	1	42	3	.005						
	- -	_		-							

	40
All reports are the confidencial property of clients All results are in PPM. DIGESTION: DETERMINATION:	DATE SAMPLES RECEIVED Sept. 8, 1980 DATE REPORTS MAILED Sept. 22, 1980 ASSAYER
	DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6

phone: 253 - 3158

80-1011 File No.

Type of Samples _SO11S____

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_____

S AMPLE No.	Mo Cu	ı As	Au						
14S 4+50E	1 7	7 6	.005				····		
5	2 26	5 12	.005						
5+50	2 25	5 10	.005						
6	2 12	2 8	.005				i	į	1
6+50	2 13		.005			i	1		
7	2 12	2 9	.005						
7+50	2 38	3 10	.005						
8	2 22	2 10	.005					\$ 5	
8+50	1 15	5 : 8	.005						ř
. 9	2 10		.005		1				1.
9+50	2 2:		.005						
, 1 0	2 23		.005		*				
10+50	2 16		.005	*	i			i.	
	2 11	. 7	.005		. 1		i		
11+50	2 21		.005				!	4	
12	2 16	8	.005		!		ŧ		
12+50	2 16	9	.005	1					
13 13+50	2 21	11	.005					 	i
13+50 14	3 5		.005						ł
14 14+50	2 23		.005		,				i
1450 14S 15 E	2 15 2 21	5 9 1 12	.005						:
143 IU E	2 21	12	.000					4 1	. 1
l6S BL	2 14	7	.005		-	*		* !	
0+50W	3 12		.005	į		1	t. :		i i
1	3/ 43		.005		***			1	
1+50	ž		.005					1	i
2	1 7		.005						
2+50	2 19		.005					1	•
3	2 174		.005						
3+50	2 22		.005						1
4	1 14	7	.005	,					ì
4+50	2 13	9	.005				į.		
5	2 20	13	.005	i	:		1	1	
5+50	1 10		.005			•			
6			.005						
6+50	2 147 2 11 2 63		.005						
16S 7 W	2 63	14	.005						
							1		
								į	1

ΑII	reports	are	the	confidencial	property	of	clients
ΑII	results	are	in P	PM.			

DIGESTION:

DETERMINATION:....

DATE REPORTS MAILED_

ASSAYER

1

To: Kerr, Dawson & Associates, # 1 - 219 Victoria St., Kamloops, B.C. V2C 2A1

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone: 253 - 3158

File No. 80-1008

Type of Samples Rocks Disposition_____

GEOCHEMICAL ASSAY CERTIFICATE

Chita Cree	k Attn.:	Mr.	Werner	Gruenw	ald		Dispo	sition	
S AMPLE No.	Мо	Cu	As	Au					
CR 11	2	28	14	.005			•		 1
12	118	2200		.020					2
13	2	270		.010					3
14	4	210		.005					4
15	3	171							5
16				.090					6
16	3	37		.010					7
17	2	170		.005					
18	3	43		.005					8
19	2	34		.005					9
20	3	3 9	11	.005					10
21	1	89	24	.005					11
22	5	111		.005					12
23	2	15		.005					13
24	11	420		.010					14
25	5	350		010					15
25				.010					15 16
26	56	360		.010					10
27	2	19		.010					17
28	7	56		.010					18
29	3	66	19	.005					19
430	3 2	42	8	.005					20
31	2	35	8	.005					21
CR 32	7	10		.005					22
	•	10	4.0	.005					23
L 2N 8+30 E	2	117	1.4	005					24
L 2N 0730 E	2	117	14	.005					25
									25
L 2S 0+80 W	3	75		.005					21 22 23 24 25 26 27
1+94 W	3 2 3	45	10	.005					27
L 2S 3+65 W	3	53	9	.010					28
									29
L 2S 1+50 E	1	122	4	.005					30
L 2S 3+60 E	2	30		.010					31
	-	•		.010					31 32 33
BL 2+30 S	2	156	7	010					33
DL 2730 3	2	130	7	.010					34
0.0FC F.70 F			0.0	005					35
3+95S 5+70 E	4	31	36	.005					35
									36
L 4S 3+73 E	2	67	8	.005					37
									38
5+50W 6+50 E	3	485	11	.005					39
	•	•							40
•		•							, 0

All results are in PPM.	n Gileries
DIGESTION:	
DETERMINATION:	

Sept. 27, 1980 DATE REPORTS MAILED

ASSAYER

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone: 253 - 3158

File No. 80=1008

Type of Samples Rocks

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_____

			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 			Т	1	
SAN	MPLE No.	Мо	Cu	As	Au					
L-6N	3+50E 8+45 11+65 12+85 13+60E	25 3 3 2 4	490 86 46 106 62	5 10 15 14 9	.020 .005 .005 .005 .005					
L-6S L-6S	3+14W 4+59 5+10 7+13W	3 9 3 1 2	12 42 117 39 30	9 12 27 11 23	.005 .005 .005 .005					
L-6S L-6S	13+50E 14+50E 10+80E	2 2	22 29 59	9 8 54	.005 .005					
6+10N 6+10N	10+00E 10+70E	2 8	520 93	11 17	.010 .005					
7+80S 7+82S L-8S	2+00W 2+00W 3+50W	3 2 2	35 52 17	37 25 8	.010 .005					
L-8S L-8S	2+00E 11+27E	2 2	93 33	34 7	.015 .005					
	9+55E 13+00S 14+90S	2 1 2 2 2 2 2 2	35 37 48 44 40 37 46 37 24	56 24 7 10 12 6 8 7 8	.005 .005 .005 .005 .005 .005 .005					•

ΑII	reports	are	the	confidencial	property	ot	clients
ΑII	results	are	in P	PM.			
DIG	ESTION						

DETERMINATION:....

DATE SAMPLES RECEIVED_Sept. 6, 1980

DATE REPORTS MAILED Sept. 27, 1980

ASSAYER

DEAN TOYE, B.Sc.
CHIEF CHEMIST
CERTIFIED B.C. ASSAYER

f-f-f------

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6

phone:253 - 3158

File No. 80-1011 Type of Samples _ Soils

GEOCHEMICAL ASSAY CERTIFICATE Disposition _____

SAI	MPLE No.		Мо	Cu	As	Au					
168	7+50W		2	11	10	.005		 <u> </u>	<u> </u>		1
	8		$\bar{2}$	14	9	.005					2
	8+50		2	17	11	.005					3
	9		2	10	8	.050					4
	9+50		2 2 2 2 2	20	8	.005					5
168	10 W		1	11	6	.010					6
168	0+50E		2	45	9	.005					7 8
	1		2	13	6	.005					9
	1+50		2	45	9	.005					1
	2		2	13	7	.005					1
	2+50		2	16	5	.005					1
	3		2	16	6	.005					1
	3+50		2	23		.005					1
	4		<u>-</u>	7	9 3	.005					1 1 1
	4+50		2222212222332222	9	7	.005					1
	5		2	33	9	.005					1
	5+50		2	33	13	.005					1
	6		2	13	5	.005					1 1 2 2 2
	6+50		3	40	13	.005					2
	7		3	29	13	.005					2
	7+50		2	12	5	.005					2
	8		$\bar{2}$	17	7	.005					2 2 2
	8+50		2	9	7	.005					2
	9		2	17	4	.005					2
	9+50		ī	15	8	.005					2
	19		ī	8	4	.005					2
	10+50	-	2	29	10	.005					2
	11		2	35	9	.005					2
	11+50		2 2 2	25	9	.005					3
	12		2	19	8	.005					3
	12+50		2	22	7	.005				İ	3
	13		1	6	5	.005					3
	13+50		1 2	24	9	.005					3
	14		3	18	8	.005					3
	14+50		1	20	4	.005					36
16S	15 E		2	20	7	.005					3
100	10 L		_	2.0	,	• 000					38
						•					39
											40

	140
All reports are the confidencial property of clients All results are in PPM.	DATE SAMPLES RECEIVED_Sept. 8, 1980 DATE REPORTS MAILED_Sept. 22, 1980
DIGESTION:	ASSAYER // // //
DETERMINATION:	=======================================
	DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

APPENDIX B

PERSONNEL

PERSONNEL

Field:

J. M. Dawson, P. Eng. - Geologist July 17, 18, 1980 1 1/2 days

W. Gruenwald, B. Sc. - Geologist August 20-30, 1980. 10 3/4 days

Office:

W. Gruenwald, B. Sc. - Geologist November 5, 7, 12, 13, November 19-21, 24, 28,

December 2,3,4, 10 3/4 days

J. M. Dawson, P. Eng. - Geologist August 18, 1980 1/2 day

M. Dawson, - Prospector November 20, 21 1 1/2 days

RENEGADE MINERAL EXPLORATION SERVICES LTD.

John Dalin - Field Assistant August 19-30, 1980 11 1/2 days

Brent Jardine - Field Assistant August 19-30, 1980 11 1/2 days

Brian Baker - Field Assistant August 19-30, 1980 11 1/2 days

APPENDIX C

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

(1).	LABOU	IR:
		Dawson, P. Eng., lays @ \$200.00/day \$ 400.00
		ruenwald, B. Sc., 2 days @ \$150.00/day 3,225.00
		wson, Prospector, days @ \$115.00/day 172.50
	Reneg	ade Mineral Exploration Services 3,450.00 \$ 7,247.50
(2).	EXPEN	ISES AND DISBURSEMENTS:
	(a).	Geochemical Analyses 5,260.15
	(b).	Helicopter Charter (5.8 hrs.@ \$350/hr. plus fuel) 2,218.50
	(c).	Truck Rental (Renegade) 600.00
	(d).	Camp Rental (Renegade) 100.00
	(e).	Food and Camp Supplies
	(f).	Field Supplies (Flagging, String, Sample Bags, Laths, Gas) 309.38
	(g).	Freight, Map Enlargements, Secretarial, Printing, and Xeroxing
		TOTAL HEREIN

APPENDIX D

REFERENCES

REFERENCES

Malcolm, D. C., B.A. Sc. 1963 - Chita Creek Geological Report, Assessment Report No. 473.

Anderson, R. E., P. Eng.

1968 - Summary Report
Geochemical Soil Survey Program
Banner Mineral Claims
Assessment Report #1606.

Tipper, H. W. 1978 - Geological Survey of Canada. Open File #534.
1"= 4 miles.

APPENDIX E

WRITER'S CERTIFICATE

Werner GRUENWALD, B. Sc.

Geologist

#1 - 219 VICTORIA STREET • KAMLOOPS, B.C. V2C 2A1 • TELEPHONE (604) 374-0544

CERT IF I CATE

- 1, WERNER GRUENWALD, OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:
- (1). I am a geologist residing at 45 West Battle Street, Kamloops, British Columbia, and employed by Kerr, Dawson and Associates Ltd. of Suite #1 219 Victoria Street, Kamloops, B. C.
- (2). I am a graduate of the University of British Columbia, B. Sc., (1972), and a fellow of the Geological Association of Canada. I have practised my profession for 8 1/2 years.
- (3). I am the author of this report which describes the results of a geological and geochemical exploration programme carried out by myself under the supervision of James M. Dawson, P. Eng. on the Chita claims, Clinton Mining Division, British Columbia.

KERR, DAWSON AND ASSOCIATES LTD.,

W. Gruenwold, B. Sc., GEOLOGIST

December 5th., 1980, KAMLOOPS, B. C.

APPENDIX

MAPS

į

