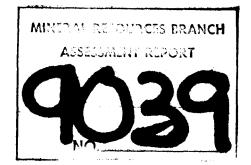
81-#266-#9039

REPORT ON

BIOGEOCHEMICAL SURVEY AND LINECUTTING

ON THE

ALAMO 1 AND 2 CLAIMS Record No.s: 784(4) - 785(4)


KAMLOOPS MINING DIVISION

N.T.S. 921/7W

LAT. 50[°]22', LONG. 120[°]59'

Owner: H. H. Shear 580 - 625 Howe Street Vancouver, B.C. V6C 2T6

Operator: Skylark Resources Ltd. 580 - 625 Howe Street Vancouver, B.C. V6C 2T6

By: H. H. Shear, P. Eng.

April 3, 1981

TABLE OF CONTENTS

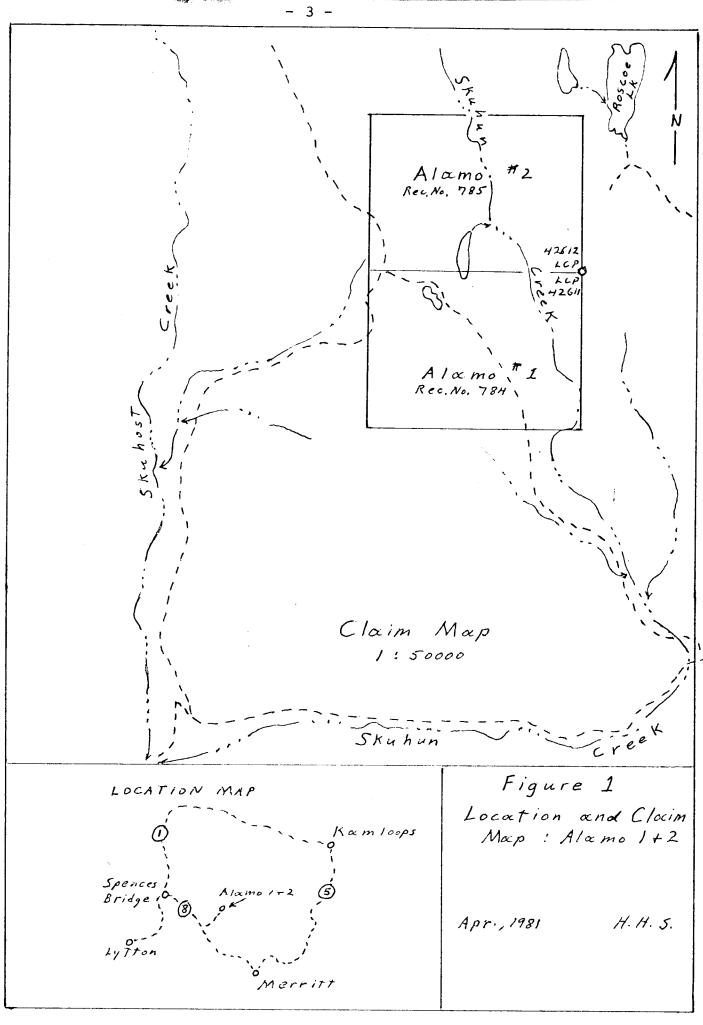
	Page
Introduction	2
Location and Claim Map Figure 1	3
Description of Program	4
Assay Procedure	5
Discussion of Results	5
Statement of Costs	7
Statement of Qualifications	8
Appendix Assay Sheets	9 - 12
Receipts and Statements	13 - 15
Enclosures:	
Figure 2 Plan showing Biogeochemical Mull S P.P.M in Ash.	Sampling Survey for Cu Reported in

ı.

- Figure 3 Plan showing Biogeochemical Mull Sampling Survey for Cu Reported in P.P.M. in Mull.
- Figure 4 Plan showing Biogeochemical Mull Sampling Survey for Mo Reported in P.P.M. in Ash.
- Figure 5 Plan showing Biogeochemical Mull Sampling Survey for Mo Reported in P.P.M. in Mull.
- Figure 6 Plan showing Biogeochemical Mull Sampling Survey for Ag Reported in P.P.M. in Ash.
- Figure 7 Plan showing Biogeochemical Mull Sampling Survey for Ag Reported in P.P.10M. in Mull.

.

Introduction:


The Alamo 1 and 2 claims are located 190 km northeast of Vancouver, B.C. and 32 km northwest of Merritt, B.C. The claims are situated in the southern part of the Highland Valley area, 5 km south of Gnawed Mt. The claims lie on a relatively flat plateau from 1,525 to 1,615 meters in elevation.

Access to the Alamo claims is from B.C. Highway No. 8 at a point 42 km west of Merritt. A rough gravel road follows the Skuhun Creek Valley, northeast from Highway No. 8. A branch road leaves this road, 15 km in, to run northerly for 6 km to the claims.

The Alamo property consists of two 20 unit claims staked 4N, 5W and 4S, 5W from a common legal corner post. The claims are mostly overburden covered and no showings have been located to date on the property. Interest in the claims stems from their close proximity to the Lornex and Highmont properties and to the existence of sporadic geochemical anomalies disclosed by past work. Also, some low order I.P. response was disclosed by a 1965 survey.

The claims are owned by H.H. Shear and work reported in this report was paid for by Skylark Resources Ltd., both of 580 - 625 Howe Street, Vancouver, B.C., V6C 2T6.

This report describes the results of a biogeochemical survey in which 133 mull samples were collected and assayed for Mo, Cu and Ag. There were 17.2 km of lines completed by blazing and flagging to collect these samples. This report also covers a 9.26 km linecuttng program completed in preparation for an Induced Polarization Survey.

Description of Program:

A soil sampling program completed in 1977, disclosed anomalous values in Cu and Mo in the area of a small lake and swamps in the northwest part of the Alamo #1 claim. A percussion drill hole completed in this area in 1979 passed through 76 feet of overburden before reaching barren bedrock. The depth of overburden thus indicates that the anomalous results are transported. Silt and soil samples collected from perennial, intermittent and dry streams and drainage patterns in 1977 suggested the possibility of a source of the anomalous results located in the west half of the Alamo #2 claim. The overburden in this area is sandy and bouldery and does not lend itself to good soil sample response. Also, the percussion drill hole completed indicated that deep overburden could be expected. A two-phase program was designed to try to locate meaningful drill targets in the west portion of the Alamo #2 claim. Also, low order I.P. anomalies disclosed in the northwest corner of the Alamo #1 claim in 1965 required checking.

A program of mull sampling was chosen in an attempt to get response from a potentially deeper penetration into the overburden by collecting the organic debris of the forest floor which collects there in this area mostly from jack or lodge pole pine trees. The second phase of the program was to be a follow-up I.P. survey but only the line cutting for this has been completed to date.

The first phase of the program was completed by Nielson Geophysics Ltd. of Vernon, B.C., from August 24th to September 3rd, 1980. There were 17.2 km of lines marked by blazing and flagging, including two base lines. The samples, totalling 133, were collected along 10 lines 200 meters apart, and at 100 meter intervals along the lines. Some stations were missed due to swamps and one lake. Each sample collected consisted of taking a complete cross-section of the Ao horizon at 3 to 4 spots around the station. The Ao horizon is the organic litter on the forest floor, from the coarse undecomposed material on surface, through the black decomposed humus lying at the top of the soil profile.

Little cutting was done to complete the blazed and flagged lines. Therefore, 9.26 km of line cutting, using power saws, was completed by contract from February 10 - 23, 1981, to prepare the lines for an I.P. survey. Snow conditions have prevented the start of the I.P. survey to date.

Location of the old lines, new blazed and flagged lines and new cut-out lines are shown on the enclosed maps, Figures 2 - 7.

Assay Procedure:

The mull samples were assayed by Acme Analytical Laboratories, Ltd., of 852 East Hastings Street, Vancouver, B.C., in the latter part of September, 1980.

The whole mull sample was dried at 120° F for one week and then shredded in a blender. A 10 gram sample was then taken and ashed by igniting overnight at 600° C. The lose on ignition (LOI) was determined by weighing.

A 0.1 gram sample of the ash was digested with hot dilute aqua regia and diluted to 10 mls. with demineralized water. The Mo and Cu were determined by atomic absorption from the solution. For Ag, the determination was by atomic absorption from the solution with background correction.

Discussion of Results:

Assay results are contained in the Appendix at the end of this report. The assayer reported the results in P.P.M. of the metal in ash, and in addition included the lose on ignition (LOI). In reviewing the LOI it became apparent that the sampling crew had trouble, in some cases, in collecting enough mull, since LOI was very low, indicating the inclusion of soil and sand with the sample. Consequently, the writer converted the metal content back to P.P.M. in mull using the formula: P.P.M. metal in ash X (1 - % LOI) = P.P.M. metal in mull. These results are shown next to the original assays on the assay sheets in the Appendix.

Results for both P.P.M. in ash and P.P.M. in mull for the Cu, Mo and Ag are shown on the enclosed maps, Figures 2 - 6. On Figure 7, which shows Ag in mull, values are reported in P.P. 10 M to eliminate very small values. Values in both mull and ash are plotted on separate plans in order to evaluate possible false anomalies. Samples with a very high LOI and good assay results in ash become unanomalaous when converted to P.P.M. in mull, particularly in the case of Cu. Conversely, samples with average or slightly above average values in ash and very low LOI convert to anomalous values in mull, particularly with regard to Ag. The writer believes that only those anomalies which are anomalous in both cases should be considered as first priority. In addition, the best anomalies are those which are anomalous in more than one metal.

In contouring the results, it is obvious that the same value cannot be used for the same metal on the ash and mull plans due to concentration of values in the ash compared to the values in mull. Because of the experimental nature of the work, the writer saw little point in using more than one contour interval on the various maps. A careful assessment was made in the case of each set of results and a contour value was chosen which would clearly outline the most anomalous values.

Two areas qualify as zones of interest using the parameters discussed above. The best anomaly of the survey is centered along a line between 19N, 6W and 15N, 3W. Anomalous values occur along this zone on all 6 maps (anomalous values in mull and ash in Cu, Mo. and Ag). A second anomaly of lower priority occurs in the area from 7N, 7E to 11N, 7E. The rest of the small one to three station anomalies are considered erratics at this time.

A program of I.P. surveying is planned to test the two anomalous areas described above. In addition, some I.P. surveying is planned on the old grid, where new lines were cut, to check marginal anomalous I.P. response disclosed in a 1965 survey. Any I.P. anomalies found will be tested by percussion drilling.

Statement of Costs:

Linecutting (Blaze and Flag) and Mull Sample Collection; by Contract:	
Nielsen Geophysics, Ltd., Vernon, B.C. Aug. 24 - Sept. 3, 1980	
Linecutting 17.2 km X 155/Rm: Mull Sample collection Shipping Telephone	\$ 2,580.00 370.00 10.00 12.50 \$ 2,972.50 \$ 2,972.50
Assaying: Acme Analytical Labs. Ltd., Vancouver, B.C.	
Geochem assays Cu, Mo, and Ag 133 X \$2.50 LOI determination 133 X \$1.00 Sample Preparation 133 X \$1.75	\$ 332.50 133.00 232.75 \$ 698.25 \$ 698.25
Linecutting (by power saw) for proposed I.P. Survey; by Contract	i ,
Ken Thorpe and Brian Burtnick, Merritt, B.C. Feb. 10 - 22, 1981	
9.0 km X \$400/km	\$ 3,600.00
(Note: Contractors provided their own snow-mobile transportation from Chataway Lake, power saws and fuel. Contractor charged for 9 km but actually cut 9.26 km)	
Drafting: Altaire Drafting Services Ltd. Vancouver, B.C.	
12 hr X \$21.00/hr Printing	\$ 252.00 93.49 \$ 345.49 \$ 345.49
Report Writing: H. H. Shear, P. Eng	
March 29 - April 3, 1981 2 days X \$150.00 per day Total	OF \$7,916.24
	BRITISH BRITISH CLUMBESpectfully submitted CLUME BRITISH CLUME CLU

1.....

Statement of Qualifications

Name:	Henry Herbert Shear
Profession:	Exploration Mining Geologist
Education:	B. Sc. Geological Engineering (1959) B. Sc. Mining Engineering (1960) (both from University of Arizona)
Professional Associatons:	Member of the Association of Professional Engineers of British Columbia
	Member of the Canada Institute of Mining and Metallurgy
Experience:	4 years – field geologist with various mining exploration companies in British Columbia.
	1 year (1964-5) - Exploration Manager for General Resources Ltd. in Australia.
	5 years - Independent Geologist and Prospector.
	4 years - Consulting Geologist and Project Manager with Quintana Mineral Corp. (1967 - 70).
	1 year - Project Geologist with Giant Mascot Mines, Ltd. (Aug. 1973 - Aug. 1974).
	May, 1976 - Dec. 1979 - Project Geologist with Granges Exploration A.B.
	Jan. 1980 to present - President of Dentonia Resources Ltd. and Consulting Geologist.
	Will ESSI
	AND THE TON SA

Assaying & Trace Analysis

Nº 411

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone:253 - 3158

PPM in

File No. 80-1124

Type of Samples _ Mull____

Disposition _____

To: Skylark Resources Ltd., 930 - 625 Howe St., Vancouver, B.C. V6C 2T6

PPM in Ash

		<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				VI / M	<u></u>			<u> </u>
S A	MPLE No.	Mo	Cu	Ag	LOI%		Mo	Cu	Ag			
1N	1 E	260	360	2.9	95.0		/ 3.0	180	. 145			1
	2	55	305	1.8	97.0				AN			2
	3	20					1.6		,054			3
	1		70	.2	71.0		5,8		,058			
	4 r	70	300	.9	90.0		7.0		,090			4
	5	1	50		52.5		.5	23.7	.140			5
	б	3	. 90	.1	30.5		2.1	62.5	1070			6
	7 E	2	140	.1	81.0		,4		,019			7
	1 W	1	35	.1	35.5		.6		.064			8
	2	45	230	1.8	90.5		4.3		.017			9
Į	3	20	160	.7	89.0		2.2					10
ł	4	50	310	2.2	94.0				077	÷		11
	. г Б						3,0		132	*	-	
	C	40	150	7	84.0	· · · · · · · · ·	6.4		112			12
1.1	6	45	130	3	_56.0		20.7	_59.8	.138			13
. 1N.	7 W	1	90.	. 4	63 . 5	· · · · · · · · · · · · · · · · · · ·	<u>,</u> H	32.8	.146			14
												15
3N	<u>3</u> E	. 1	50	.1	64.5		, 3	/7,7	,035	:		16
· · · · ·	3+25	· 1.	40	5	64.0						,	17
l	6	_30	225	1.1			3,9		,143			18
		. 2		.3	86.0		3		, 642	i		19
	1 W		135.		85.5		3.6	191	101			20
	3									··· · · ·		21
							8_2		.064	· · · · ·		21
	4	··· _·· 1_···			84.0		2			······································		22
	4A								. 364	i.		23
	5			.4			. 4				·	24
• • • • •		125 .	250 0 .	1.9	89.0		/3,7_	275.0	,209			25
3N	. <u>7</u> . W	65	190	1.5	90.0		که ک	19.0	.150			26
										j		27
5N	1.E	2	20	.3	66.5		,7	6.7	. 100		1	28
	2	25	75	.1	82.5		4.4			· · · - · · · · ·		29
	3		85			· · · · · · · · ·			154			30
	Δ :	1	20	.1								31
· · ······	– <u>– – – – – – – – – – – – – – – – – – </u>		45	1_				7,2		~		32
••• •••		·										
• • • • • • • •	- <u>6</u>		45			· · ·						33
	7-E		105	6				22.0				34
· · ···-	• 1 W • • • • • • • • • • • • • • • • •					!			,063			35
	-2 !	1	. 30	.1								36
	3	1	20		23.5		, 8	15.3	. 306			37
_ 5N	_ 4 W	. 1	. 30.	1 .	33.0			20.1		1		38
												39
		1							·····	i		40
					· · · · · ·		<u>-</u>		<u> </u>	- + 00		
	orts are the confide	encial proj	perty of	clients			DATE SAMPI	ES RECE	CIVED	pt. 22	2 , 198	50
	Its are in PPM.						DATE REPOR		90	t. 1	1, 198	30
DIGESTI	on:1gm.of./	Ash.witl	h.Hot.	AquaR	egia.		DATE REPOR	CIS MAIL	······································			
				•	5		ASSAYER					
DETEKN	NWATEUN:			••••••			===	========		<u></u>		===:
							1			/		
							1	DEAN	N TOYE, Β	Sc.		
								СН	EF CHEMIST			
								CERTIFI	ED B.C. ASSA	YER		
I.							1					
							1				<u> </u>	

GEOCHEMICAL ASSAY CERTIFICATE

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone:253 - 3158

2

To: Skylark Resources Ltd.,

File No. 80-1124

GEOCHEMICAL ASSAY CERTIFICATE

PPM in Ash P.P.M Mall 10 S AMPLE No. Мо Cu Ag LOI% AA 0 Cu Ag 1 5N 5 W 1 35 .1 39.5 ,6 21.2 .060 2 6 1 .1 .5 55 45.030.2 1055 3 5N 7 1.5 W 2 35 25.7 .1 26.5 ,072 4 1 E , 3 7N 1 95 .3 69.5 29.0 ,071 5 7N 2 E 50 .2 4.7 13.8 145 90.5 .019 6 3 4 295 .6 94.0 .2 17.7 .036 7 . 2 4 2 85 .8 8.5 90.0 .080 8 5 1 230 .1 85.5 .1 33.3 ,014 9 70 6 330 .7 90.5 6.6 31,3 ,066 10 7 Ε 3 31,5 .084 225 .6 86.0 14 11 1 W 120 .5 315 92.0 9,6 25.2 ,040 12 2 215 375 35.5 138,7241.9,516 .8 13 3 4 200 .1 85.0 .6 30.0 ,015 14 65 90.5 6.2 17.1 .066 180 15 31.5 22.6 .084 300 215 .8 89.5 16 45.0 .045 3 .1 1,3 100 55.0 17 23.0 7N 200 290 .4 88.5 33.3 ,046 W 18 19 . 7 337 .067 9N 1 E 50 32.5 1 .1 20 23.6 ,043 . 4 2 .1 1 55 57.0 21 16.8 _, 6 30... .056 1 .1. 44.0 22 55 78.5 ,2 11.8 .021 1 23 .7 16.9 ,067 . .1. 32.5 24 ,6 25.9 ,057 .1 1 42.5 _ 25 28.9 26.8 ,051 7. E 315 340 .6 91.5 26 1.9 50,8 ,127 1 W 3 36.5 27 . 6 22.7 ,390 35 35.0 1___ 28 3 80 74.5 20,4 ,076 29 ___25 14.5 ,348 1 . 6 30 1 ... 5 13.9 .186 5... 30 .4 53.5 31 .5 .5 25.2 ,090 6 3 140 82.0 32 20.2 .081 25 .8 W .1 19.0 33 34 18.6 ,046 11N 1 E .40 .1 53.5 35 2 .7 21.6 .072 1 30 28.0 19.5 36 3 .3 88.5 36,2 ,034 170 315 ,5 14.8 ,049 37 11N 4 E ____1 30 .1_ 50.5 38 39 40 All reports are the confidencial property of clients DATE SAMPLES RECEIVED_Sept_ 22_ 1980_ All results are in PPM. Oct. 1, 1980 DATE REPORTS MAILED_ DIGESTION · //· ///// ASSAYER DETERMINATION: DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone:253 - 3158

To: Skylark Resources Ltd.,

80-1124 File No.

Mull

GEOCHEMICAL ASSAY CERTIFICATE

S AMPLE No. 11N 5 E 6 11N 7 E 11N 1 W 2 3 4 5 6 11N 7 W 13N 1 E 2 3 5 5	25 345	.1 .2 .4 .3	35.5 87.5 36.5	,6 22.6, 129 45.6 51.2 .075 1.3 16.1 ,193 .8 108.5 ,077 .7 14.0 ,070 1.2 27.7 .246	1 2 3 4 5 6 7 8 9 10
6 11N 7 E 11N 1 W 2 3 4 5 6 11N 7 W 13N 1 E 2 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.2 .6 .3 .1 .2 .4 .3 .4 .2	35.5 87.5 36.5 22.5 65.0 38.5 51.5 60.5	. 6 20.3 . 2.32 , 6 22.6 , 129 45.6 51.2 . 075 1.3 16.1 , 193 . 8 108.5 .077 . 7 14.0 ,070 1.2 27.7 . 246 1.4 24.2 , 145 . 6 22.1 , 118	2 3 4 5 6 7 8 9
6 11N 7 E 11N 1 W 2 3 4 5 6 11N 7 W 13N 1 E 2 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.2 .6 .3 .1 .2 .4 .3 .4 .2	35.5 87.5 36.5 22.5 65.0 38.5 51.5 60.5	,6 22.6 ,129 45.6 51.2 .075 1.3 16.1 ,193 .8 108.5 .077 .7 14.0 .070 1.2 27.7 .246 1.4 24.2 ,145 .6 22.1 ,118	2 3 4 5 6 7 8 9
11N 7 E 11N 1 W 2 3 4 5 6 11N 7 W 13N 1 E 2 3 3	365 410 2 25 1 140 2 40 2 45 3 50 2 75 55 120 80 460 25 345	.6 .3 .1 .2 .4 .3 .4 .2	87.5 36.5 22.5 65.0 38.5 51.5 60.5	45.6 51.2 .075 1.3 16.1 ,193 .8 108.5 ,077 .7 14.0 ,070 1.2 27.7 ,246 1.4 24.2 ,145 .6 22.1 ,118	3 4 5 6 7 8 9
11N 1 W 2 3 4 5 6 11N 7 W 13N 1 E 2 3	2 25 1 140 2 40 2 45 3 50 2 75 55 120 80 460 25 345	.3 .1 .2 .4 .3 .4 .2	36.5 22.5 65.0 38.5 51.5 60.5	1,3 16,1 ,193 ,8 108,5 ,077 ,7 14,0 ,070 1,2 27,7 ,246 1,4 24,2 ,145 ,6 22,1 ,118	4 5 6 7 8 9
2 3 4 5 6 11N 7 W 13N 1 E 2 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.1 .2 .4 .3 .4 .2	22.5 65.0 38.5 51.5 60.5	.8 108.5 .077 .7 14.0 .070 1.2 27.7 .246 1.4 24.2 .145 .6 22.1 .118	5 6 7 8 9
2 3 4 5 6 11N 7 W 13N 1 E 2 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.1 .2 .4 .3 .4 .2	22.5 65.0 38.5 51.5 60.5	.8 108.5 .077 .7 14.0 .070 1.2 27.7 .246 1.4 24.2 .145 .6 22.1 .118	6 7 8 9
3 4 5 6 11N 7 W 13N 1 E 2 3	2 40 2 45 3 50 2 75 55 120 80 460 25 345	.2 .4 .3 .4 .2	65.0 38.5 51.5 60.5	.7 14.0 1070 1.2 27.7 .246 1.4 24.2 ,145 .6 22.1 ,118	7 8 9
5 6 11N 7 W 13N 1 E2 3	2 45 3 50 2 75 55 120 80 460 25 345	.4 .3 .4 .2	38.5 51.5 60.5	1,2 27,7 ,246 1,4 24,2 ,145 .6 22.1 ,118	8 9
5 6 11N 7 W 2 3	3 50 2 75 55 120 80 460 25 345	.3 .4 .2	51.5 60.5	1.4 24.2 ,145 .6 22.1 ,118	9
11N 7 W 13N 1 E2 3	2 75 55 120 80 460 25 345	.4	60.5	.6 22.1 , 1/8	_
13N _1 E2 3	55 120 80 460 25 345	. 2			111
2	80 460 25 345				1
2	25 345	2.6			12
2	25 345		95.0	4.0 23.0 , 130	13
			89.0		14
5	1 110	.4	85.5		15
				13 18.3 ,091	16
6			92.0	4.4. 36.0 048	17
7 E	30 200	.9	90.0	3.0 20,0 ,090	18
	2	.7			19
· · ··· 2 ·····	2 120	.8	. 78.5	4 25.8 172	20
3		1.8	90.5		21
		9_		3,3 16,5,099	22
6		1.0	89.5	5.8 7.3 . 105	23
13N	1 100	5 .	63.0	.4 37.0 , 185	24
-	· · · · · · · · ·	_ ·			25
15N 1 E		7	92.5	2.2 42.7 ,052	26
2	3 135 .:	4_	91.5	12 11.5 , 034	27
3		9	90.0	2,5 43.5 .090	28
4	35375	.8_	90.5	3.3 35.6,076	29
-	3 225			14_30,4,081	30
<u> 6 </u>	195		83.0	.2 16.1 ,085	31
<u>7 E</u>	3 190		67.5	1.0 61.7 , 227	32
1 W		1.8	94.0	3.3 20.4 . 108	33
	140	1	28.5	.7 28.6 .071	34
		1.0	83.5	33.0 95.7 , 165	35
4		2.4	77.0	17.2 359.0 ,552	36
	560 310	.8		50. 4 27.9 ,072	37
1EN 7 N	. 2. 75.			1.1 39.7 ,053	38
15N 7 W	3 35	.5	58.5	1.2 14.5 .207	39
	· · · · · · · · · · · · · · · · · · ·				40
All reports are the confid	dencial property of	f client	s	DATE SAMPLES RECEIVED Sept. 22, 19	เลก
All results are in PPM.	, -			0c+1 1 10	
DIGESTION:				DATE REPORTS MAILED	
				ASSAYER	
DETERMINATION:			-	***************************************	== =:
				DEAN TOYE, B.Sc.	
				CHIEF CHEMIST Certified B.C. Assayer	
				OV PODATER	

Ma 11

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone:253 - 3158

PPM in

80-1124 File No.

Disposition _ ____

SAMPLE No.	Мо	Cu Ag	LOI%	Mo Cu Ag	
17N 1 E 2 3 4 5 E 1 W 2 3 4 5 6 17N 7 W	1 3 25 1 85 2 1 600 95 35 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.5 69.0 85.0 79.5 56.0 90.0 72.5 63.0 87.0 89.5 84.5 62.0	,5 28.5 ,095 $,3 13.9 ,031$ $,4 13.5 ,030$ $5.1 33.8 ,061$ $,4 13.2 ,044$ $8,5 13.5 ,140$ $,5 20.6 ,027$ $,4 27.7 ,074$ $78.0 36.4 ,169$ $10.0 81.4 ,189$ $5.4 38.7 .124$ $,8 28.5 ,190$	1 2 3 4 5 6 7 8 9 10 11 11 12 13
2 W 3 4 5 6 19N 7 W	85 50 1 40 20 75 2 25 1 20 65 200 245	145 .8 430 .9 55 .5 625 7.9 225 .7 350 2.6 110 .4 280 .8 60 .1 80 .2 430 1.3 580 1.1 480 2.8	93.0 92.5 81.5 96.0 91.0 93.0 69.5 86.5 71.5 44.0 87.5 94.0 95.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
All reports are the confi All results are in PPM. DIGESTION: DETERMINATION:				DATE SAMPLES RECEIVED_Sept. 22, 19 DATE REPORTS MAILED_Oct. 1, 19 ASSAYER	
				DEAN TOYE, B.Sc.	

GEOCHEMICAL ASSAY CERTIFICATE

4

17N 1 E....

19N 1 E ----- 1A 2

17N

To: Skylark Resources Ltd.,

PPM in Ash

C.,

CHIEF CHEMIST CERTIFIED B.C. ASSAYER NIELSEN GEOPHYSICS LTD #205-2910-30th. Ave., Vernon, B.C. VIT 2B7

Skylark Resources Ltd. 100-789 West Pender St., Vancouver, B.C. V6C 1H2

Sept.5/80

Đ

INVOICE # 223

RE Linecutting and Mull Sampling Program Alamo Claims, Highland Valley, B.C. Period: Aug 24 - Sept. 3, 1980.

10	Services Kendered:	
Ι.	Linecutting - 17.2 Kms. @ \$155/ Km	\$2580.00
2.	Mull Sampling - 74 Samples @ \$5/ sample	\$ 370.00
3.	Shipping -	\$ 10.00
4.	Telephone	\$ 12.50
	Total Amount	\$2972.50
	Less Deposit	\$1500.00

AMOUNT DUE

\$1472.50 sungersen

OK SV.J.

PHONE: 253-3158

KINGHOLOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHO

Oct. 1, 1980 File # 80-1124

\$698.25

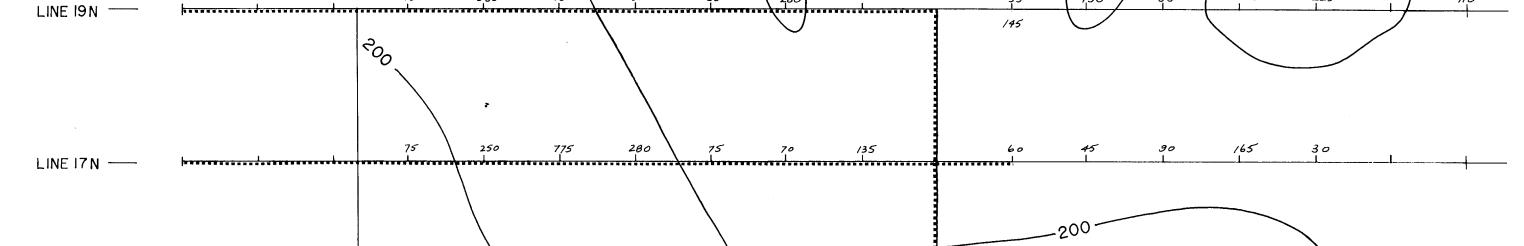
852 East Hastings St., Vancouver, B.C. V6A 1R6

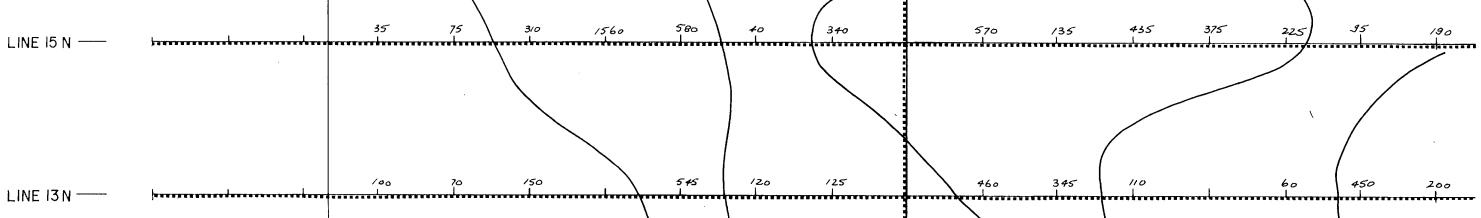
930 Van	<pre>lark Resources Ltd., - 625 Howe St., couver, B.C. 2T6 Attn.: Mr. H. Shear</pre>	TERMS: NET TWO WEEKS INT 1%% PER MONTH CH. OVERDUE ACCO	ARGED ON
NUMBER	ASSAY	PRICE	AMOUNT
133	Geochem Mo, Cu and Ag assays @	\$2.50	\$332.50
133	Geochem LOI assays @	1.00	133.00
133	Sample preparations @	1.75	232.75

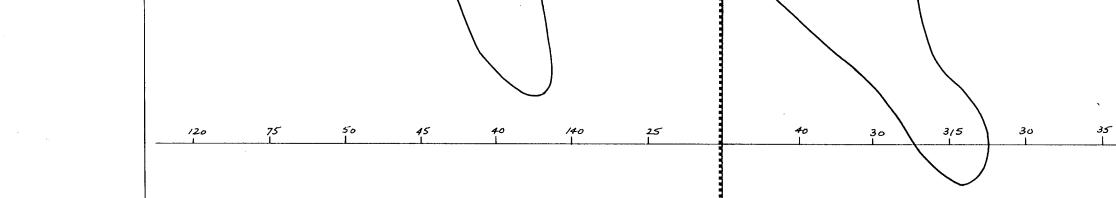
CK.No. 111-17/12/80. #69825.

SHIPPING CHARGES:

10493 120

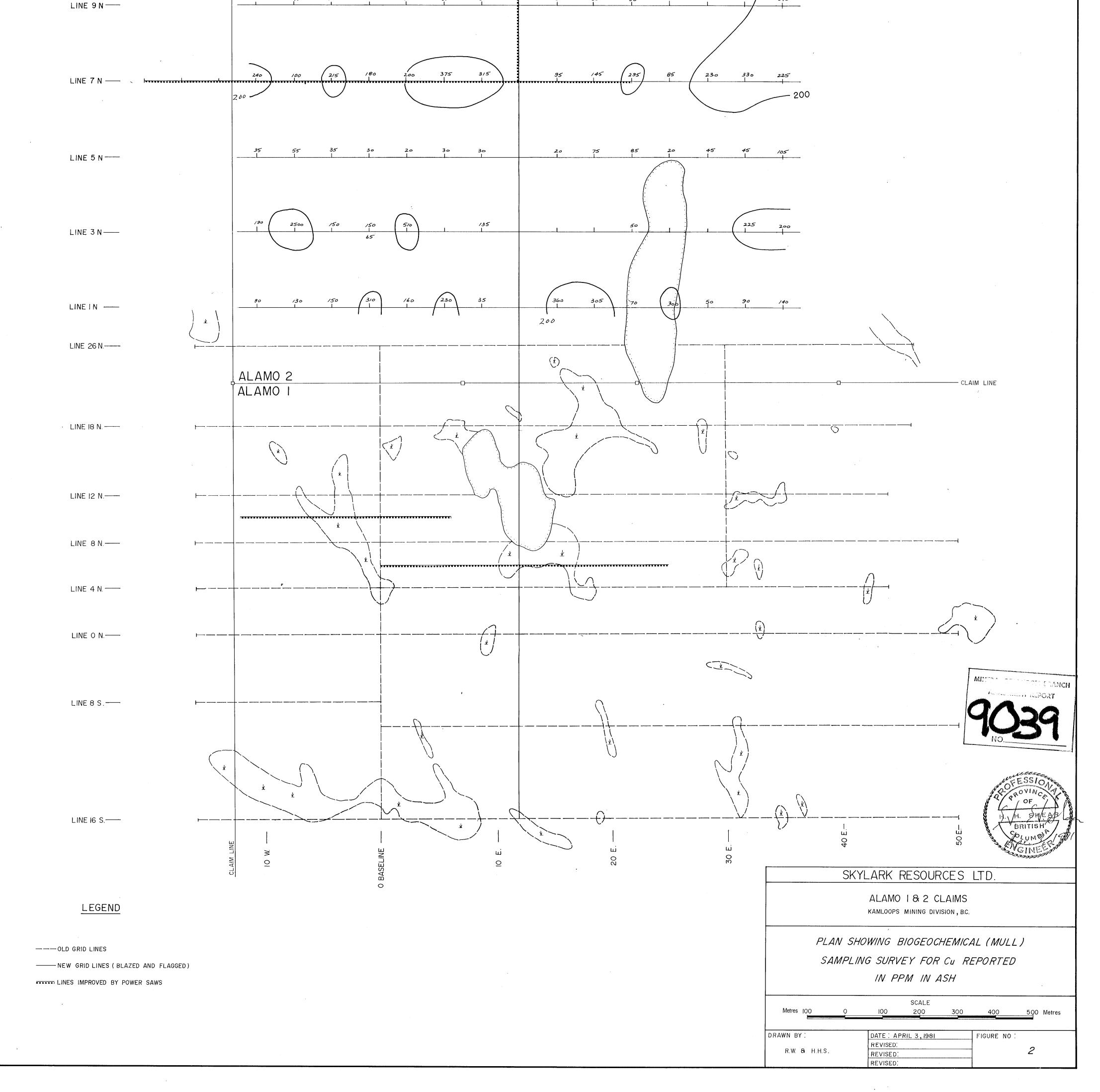

PLEASE PAY LAST AMOUNT

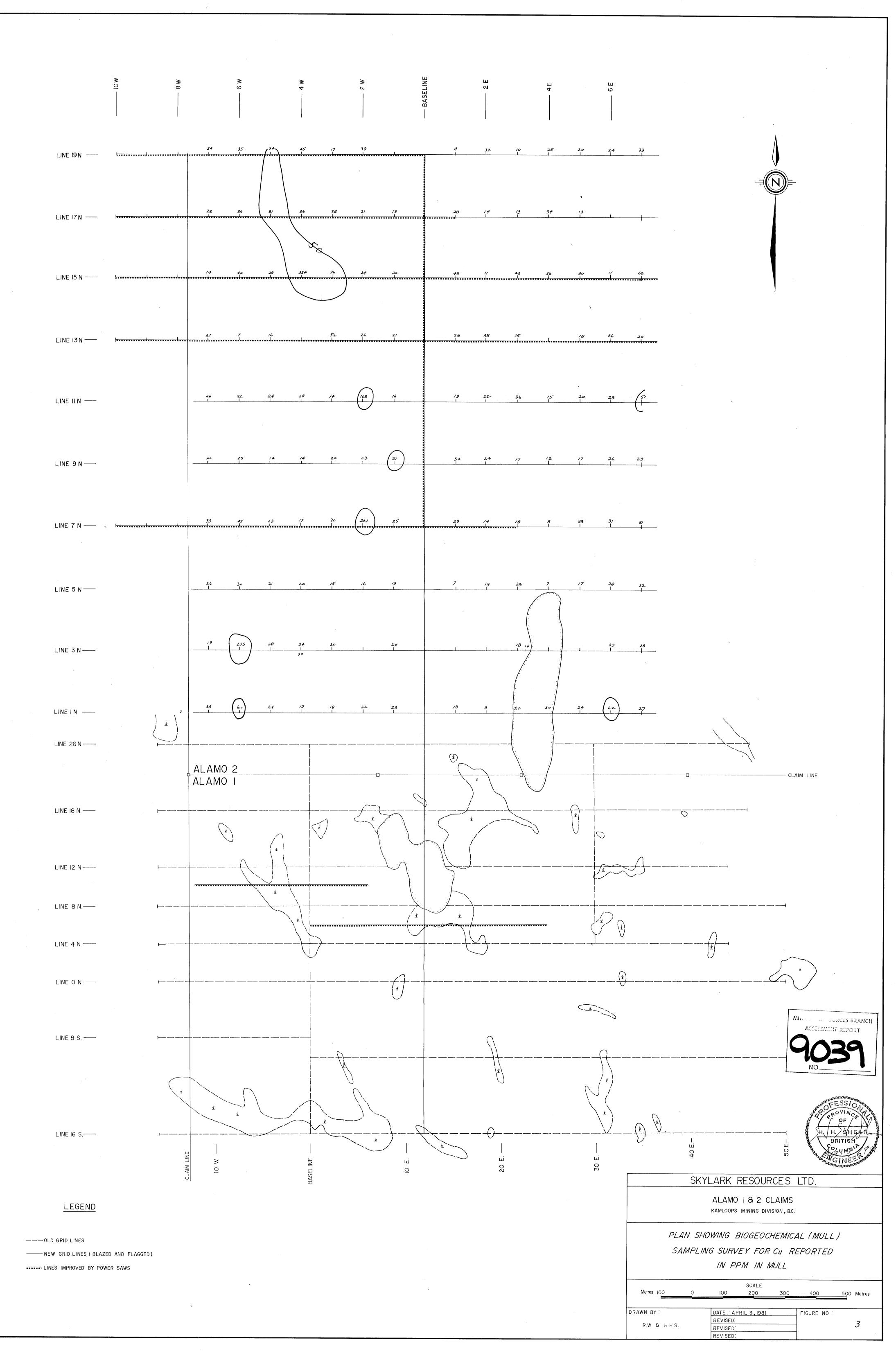

Ken Theore - Line Cutter Box 2130 Nerritt, B.C., Vok 2BO. Invoice to '. Skylark Resources Ltd 930-625 Howe St. Vanconver, B.C., 16C2T6 For line catting contract completed on the Alamo 1+2 mineral stat claims 8.955 59 9 Km 2 400 / Km = 3600. Ch. # 114 Advance received a contrat 1000.00 Feb. 9, 81 ch. # 116 Balance owing 2600, a Mar, 2, 81


Paid in Sall Pentope

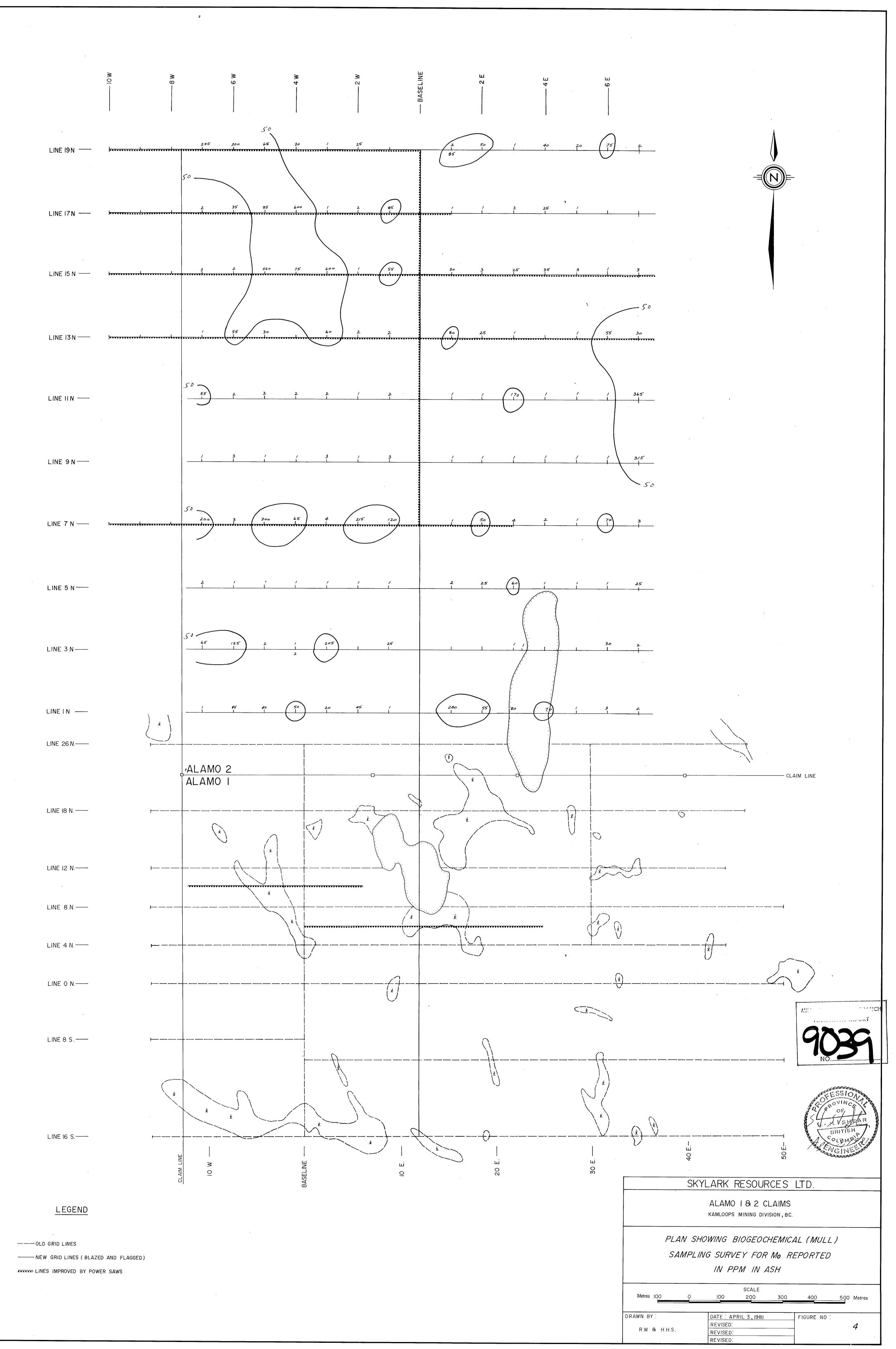
Actually completed 9.26 km of the line. Now Grid 1 old Grid Gl. J. t. 3E = 13:00 , 6N: BL t. 25700E DN: 100 1600 m 13N: 1000 to 65 1011 12W A 6E 1750 cm ISN : IOW to RESOE 1 = 4300' 1100 m to 1E ITN : IOW + = 1310 m = 9.26 km to O (BL) 1000 m 19N: 10u 6750 m

BASELINE IO W 8 W 6 W ш ≥ ≥ ш е Б 2 Ņ 4 4 200 625 350 480 580 430 430 / 55 225 60 55 280

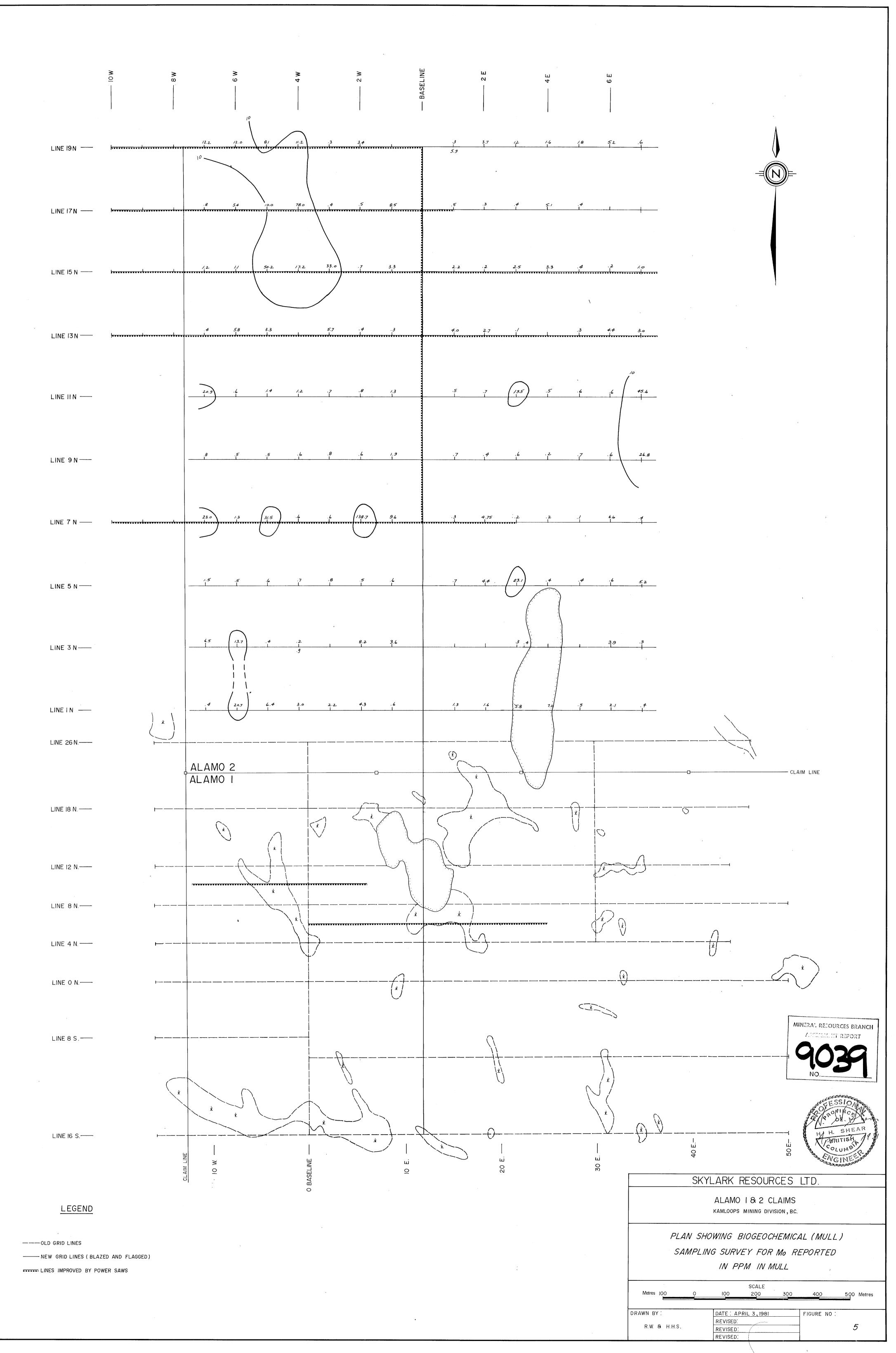


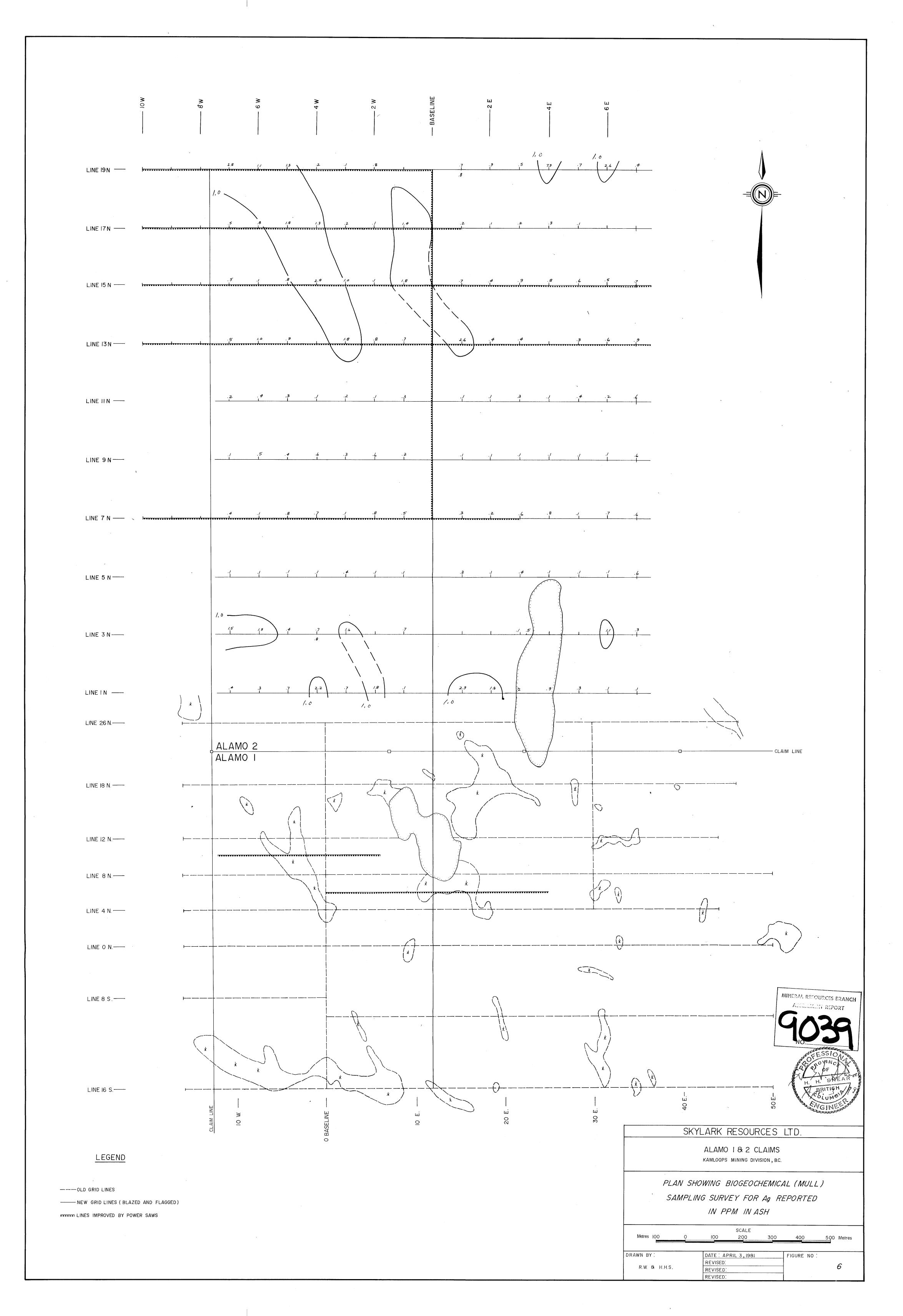


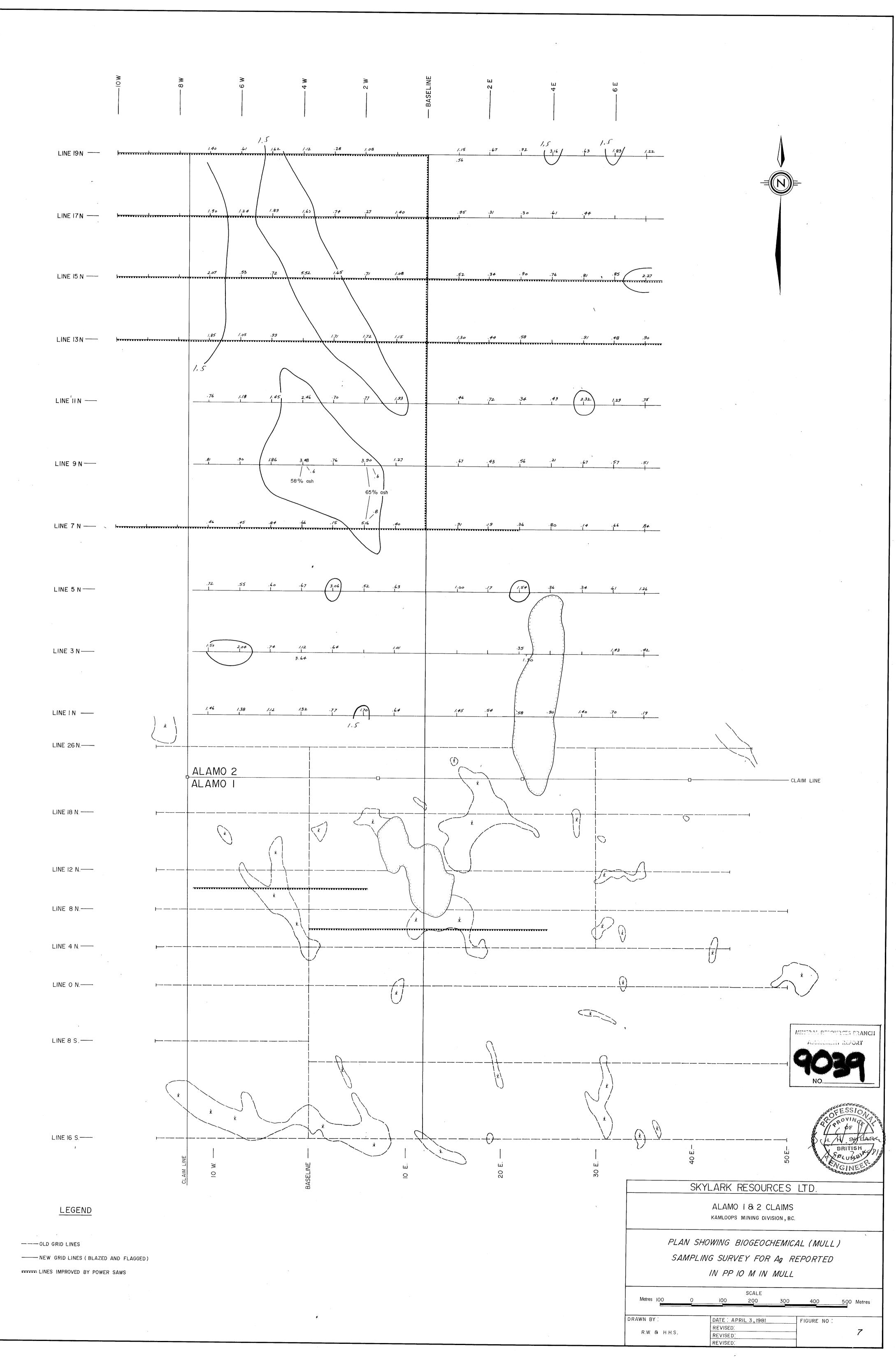
35


ı

1


•


-



•

.

