GEOCHEMICAL REPORT

ON THE

SNIP #2 CLAIM

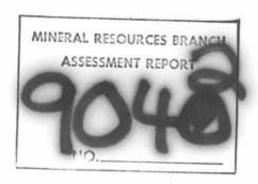
LIARD MINING DIVISION

104B/10 W

56° 35' N 130° 153' W

BY

P. FOLK P. ENG.


OF

TECK EXPLORATIONS LIMITED

FOR

TECK CORPORATION

March, 1981

TABLE OF CONTENTS

			Page
INTRODU	CTIO	N	1
Lo	cati	on and Access	. 1
Pre	oper	ty, History, Work Done	1
GEOCHEM	ICAL	SURVEY	1
Me	thod	s	1
Pu	rpos	e ·	2
Res	sult	s	2
SUMMARY	AND	CONCLUSIONS	3
RECOMME	NDAT	IONS	3
		MAPS AND FIGURES	
igure	1	Location	after page 1
	2	Claims	after page 1
	3	Soil Geochemistry Mo, Cu	enclosed
	4	Soil Geochemistry Ag, Au	enclosed
	5	Soil Geochemistry Zn	enclosed

INTRODUCTION

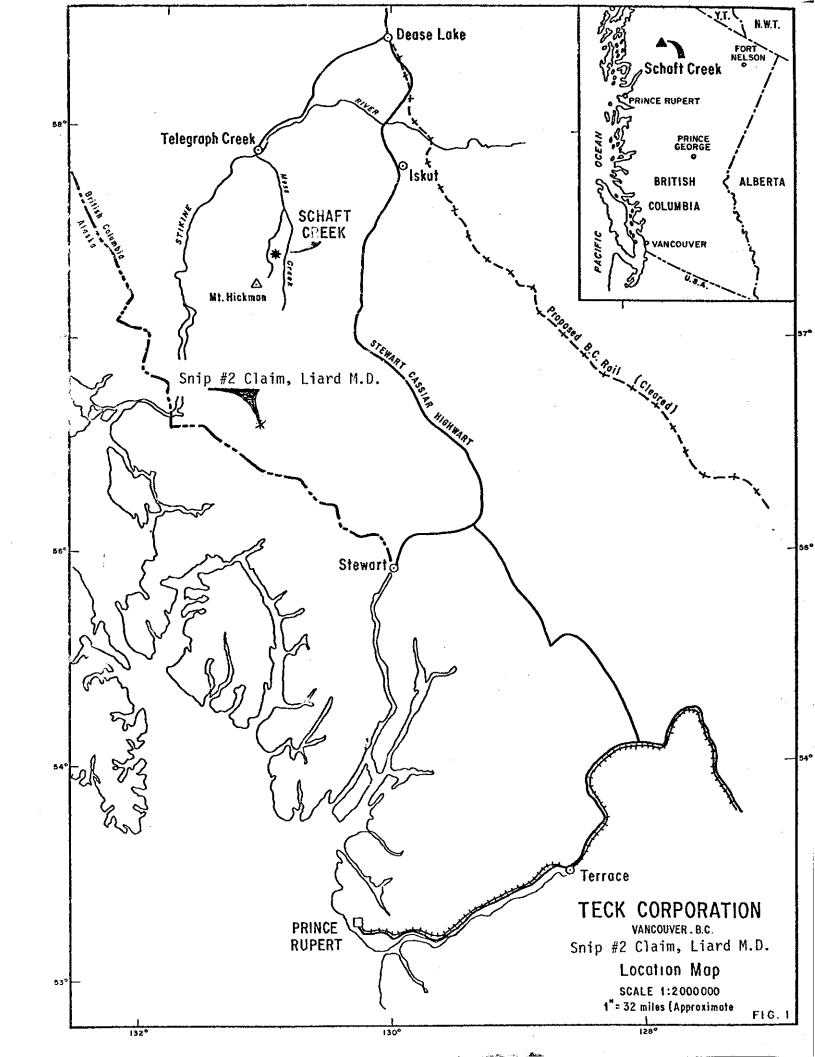
Location and Access (Fig. 1)

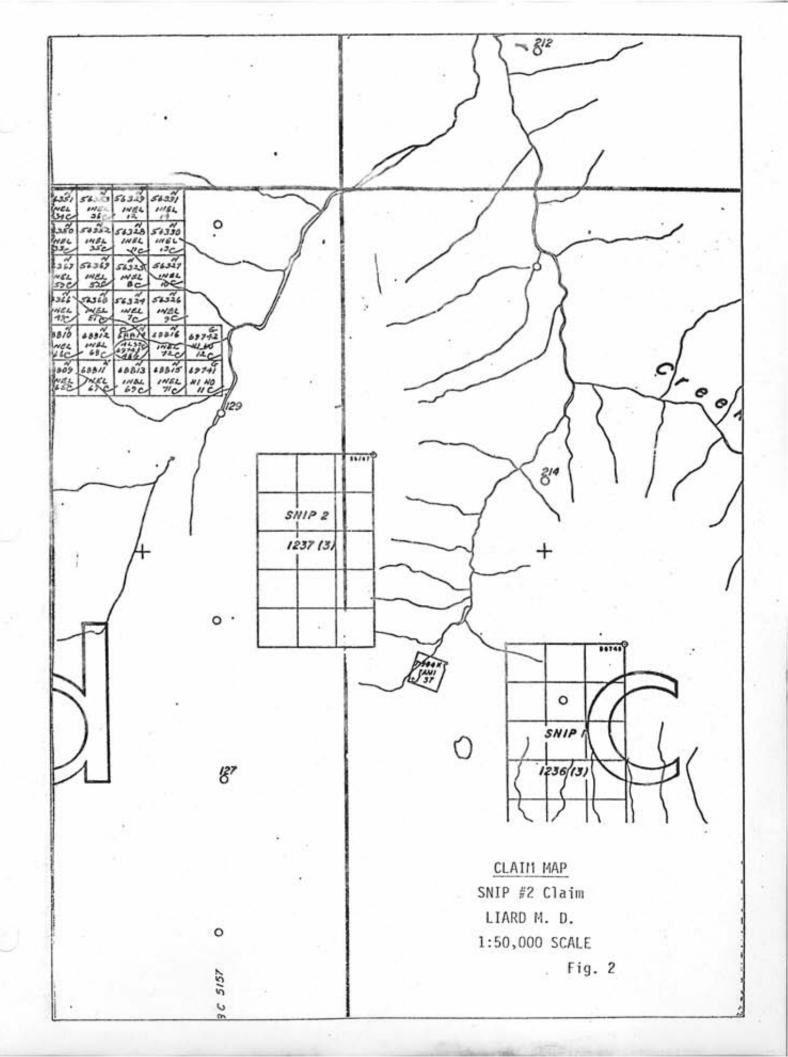
The Snip #2 claim, Liard M.D. is located about 9 km. south of the junction of the Iskut River and Snippaker Creek in the Stikine region. Access is by helicopter only to the claims which are above tree-line at about 1500 m. elevation.

Property, History, Work Done (Fig. 2)

In March, 1980 employees of Teck Explorations Limited staked the Snip #2 claim of 15 units over an area in which Silver Standard had claims in the 1960's and Great Plains Development Co. did work in the 1970's. No drilling has been done in the area.

SNIP #2 Rec. No. 1237 (3) 15 units


During August 1980 Teck Explorations Limited conducted a soil geochemical survey on behalf of Teck Corporation.


One hundred and one soil samples were taken on a 50 m. by 150 m. flagged grid which was not corrected for slope distances.

GEOCHEMICAL SURVEY

Methods

Soil samples were taken at depths of a few cm. mostly in "C" horizon material consisting of talus fines and some thin glacial material. The material was assayed by standard atomic

absorption techniques at Acme Analytical Labs in Vancouver. Assay methods are described in the appendix.

Purpose

The purpose of the sampling was to determine the geochemical nature particularly with regard to gold and silver of an outstanding gossan zone on the property.

Results

Analyses were performed for Au, Ag, Zn, Cu and Mo and are on figures 3 through 5.

Mo, Cu

Mo and Cu results are low and non coincidental. The erratic distribution and low grades of both Mo and Cu values do not indicate that economic concentrations of these elements are present.

Zn

Zinc geochemistry likewise is of low tenor and of erratic nature.

Au, Ag,

The gold and silver geochemistry is moderately anomalous (greater than 1 ppm Ag, 0.1 ppm Au) in the region of 1000 south on all three lines. Peak values are 1.8 ppm Ag and 1.02 ppm Au within an anomalous zone 300 m. long and 200 m. wide and open. Altered, bleached and heavily pyritized material was noted.

SUMMARY AND CONCLUSIONS

- 1. Cu, Mo and Zn in the soils is of erratic nature and of low tenor.
- 2. A moderate Au Ag anomaly in soils 200 m. wide and 300 m. long was located in the region 1000 m. south of the legal claim post.
- 3. It is likely that the Au and Ag values are associated with intense pyritization in this area.

RECOMMENDATIONS

Rock samples should be taken and assayed to determine the grade of gold and silver in bedrock in the anomalous zone.

Respectively Submitted,

Peter Folk, P. ENG.

March, 1981

ITEMIZED COST STATEMENT

P. Folk - P. Eng.		
August 9 - 12 4 days @ \$200/day	\$	800.00
D. Graham, Helper		•
August 9 - 12 4 days @ \$50/day		200.00
Northern Mountain Helicopters, Jet Range 206B		
@ Schaft Creek 4 hrs. @ \$400/hr	1	,600.00
Room and Board		
8 man days @ \$20/day		160.00
Radio Rental, Freight, Transportation from Vancouver		500.00
Geochemical analyses		
101 samples @ \$6.40		646.00
Report Preparation, Drafting		600.00
	\$4	,506.00

CERTIFICATE OF QUALIFICATIONS

Peter G. Folk, P. ENG.

I hereby certify that:

- 1. I graduated from the University of British Columbia in 1971 with a B.A.S.C. degree in geological engineering.
- I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 3. I have worked since graduation as an exploration geologist and mine geologist in Canada and the United States.
- 4. The work described herein was done under my direct supervision.

12/2 -de

APPENDIX

Analytical Techniques

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

GEOCHEMICAL LABORATORY METHODOLOGY - 1981

SAMPLE PREPARATION

- 1. Soil samples are dried at 60°C and sieved to -80 mesh.
- 2. Rock samples are pulverized to -100 mesh.

Geochemical Analysis for Ag*, Bi*, Cd*, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sb*, V, Zn

- 0.5 gram samples are digested hot dilute aqua regia in a boiling water bath and diluted to 10 ml with dimineralized water.
- All the above elements are determined in the acid solution by Atomic Absorption.
- * demotes background correction.

Geochemical Analysis for Au

10.0 gram samples that have been ignited overnite at 600°C are digested with hot dilute aqua regia, and the Clear solution obtained is extracted with Methyl Isobutyl Ketone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 5 ppb direct AA and 1 ppb graphite AA.)

Geochemical Analysis for Au, Pd, Pt, Rh

10.0 - 30.0 gram samples are subjected to Fire assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au, Pd, Pt, and Rh are determined in the solution by Atomic Absorption.

Geochemical Analysis for As

0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml.

As is determined in the solution by Graphite Furnace Atomic Absorption.

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C V6A 1R6

Telephone: 253-3158

Geochemical Analysis of Hg

Digestion

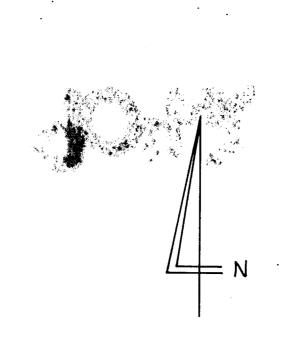
A .50 gram sample is digested with aqua regia and diluted with 20% HCl.

Determination

Hg in the solution is determinated by cold vapour AA using F & J Scientific Hg assembly. An aliquot is added to stannous chloride-hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it determined by AA.

Oxalic Acid Leach of Rock, Soil & Silt Samples

A .50 gram sample is digested hot with 10 mls 5% oxalic acid solution. The oxalic acid will dissolve Fe and Mn from their oxided of M - 1 fraction (but not from magnetite & ilmenite) limonites and clays. The following metals are analysed by atomic absorption: Cu, Zn, Pb, Ni, Mo, Fe & Mn.


Cold HCl Acid Extraction

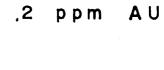
A .50 gram sample is leached with 10 ml 5% HCl solution at room temperature for 2 hours with ocasional shaking. Copper is dissolved from the organic and surface layers of clay fractions.

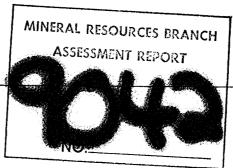
EDTA Extraction

A .50 gram sample is leached at room temperature for 4 hours with 10 mls of 2.5% EDTA solution.

	300 €	>		•	3		
5	TINE 300M		1		LCP	SNIP # 2	
.9	. 090		.090		110	•	
			. 025		.015		•
.9 .8		8	. 040	_	. 005		100 S
. 3 . 4		1.0			.095		
. 7	. 045		. 160		. 170		200 S
a	///		. 080	.8	. 310		2
.9	. 120	. 8	1./20	1.2	P		300 5
. 9		1.7 7.7		.5			una C
.6			. 130		. 180		400 5
	. 020	8.	. 210	/ 1.2			
/. 4	. 065		./20	1.6	. 075		500 5
		1	. 120		. 005		
	. 055		. 060		. 005		600 S
1.2.		.7		.4	. 320		
	. 030	(1.0			.090		700 S
.5	. 005	. 3	. 015	.5	. 160		•
.6	. 020	.4	. 020	.4	.025		800 5
. 7	.080		. 045		230		
	. 045	.6	. 045	(.5)	. 040		900 5
T.3		į	. 370		. 200		
1.8		1.4	. 360	(.3	.025		1000 5
1.5			. 280	.8'	. 200 -		
1.2	. 310	. 8	. 170	(.6	.015		/100 S
/		. 4	. /60	1.0	. 280 —		
1.1	.080	1.0	. 060	.7	. /30	、	1200 S
1.1	./20	1.0	.120	.5	. 050		
1.5	. 080		. 070	. 2	. 030		1300 \$
		1.6	. 080	.9	.025		
1.6	. 030	1.2	.095	.7	. 070		1400 5
.9	. 035	1.3	. 040	.6	. 085		
1.2	.025	.8	. 035	. 7	. 060		1500 5
		1.0	.570	. 4	.010		
			. 045	. 3	. 025	My, et	/600 S
		- 9	. 050		.030		
		1.1	. 070		. 045		1700 S
			.030	.7	. 030		
		1.2	.630	.7	. 055		1800 5
FIG	5. 5	ı	,				

TECK EXPLORATIONS LTD

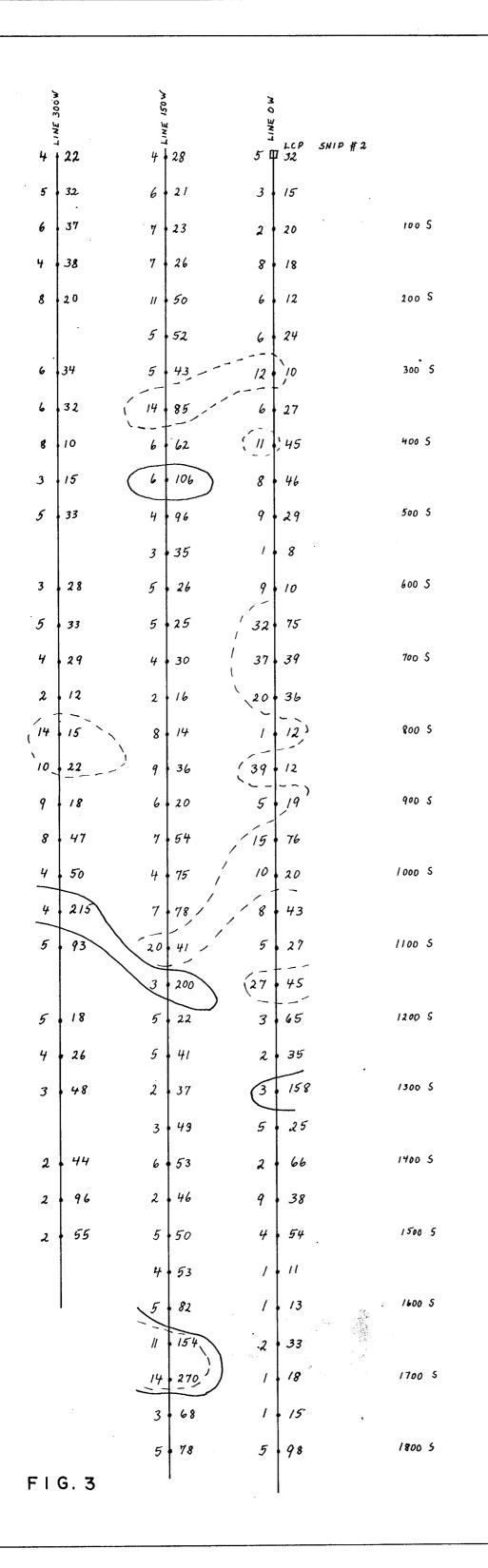

STIKINE REGION

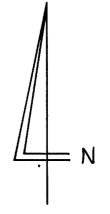

SNIP # 2 CLAIM

SOIL GEOCHEMISTRY:

A G / A U p, p,m

CONTOURS @ .1 and





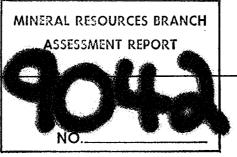
SCALE 1:5 000

0 100 200 300 400 500

m

TECK EXPLORATIONS LTD

STIKINE REGION


SNIP # 2 CLAIM

SOIL GEOCHEMISTRY:

M O / C U p, p, m,

MO ----CONTOUR @ 10 ppm.

CU ------CONTOUR @ 100 p.p.m.

SCALE 1:5 000

0 100 200 300 400 500

m

		`		
₹ 300€	LINK 150 W	LINE O W		
70 TO	168	LCP SNIP # 2		
72	60	48		
80	70	30	100 5	
91	81	90		
110	108	54	200 S	
	72	75		
80	70	32	300 5	<u> </u>
72	210	98		
115	140	92	400 5	
98	130	//2		
85	110	110	500 5	
	81	40		
62	60	100	600 S	
80	82	240		
65	65	105	700° \$	
30	42	96		
. 49	70	55	800 5	
95	58	/36		
56	58	65	900 5	
75	78	105		
75	92	70	1000 S	TECK EXPLORATIONS LTD
73	82	67		OTIVINE DECION
90	150	73	1100 5	STIKINE REGION
	50	168		SNIP # 2 CLAIM
85	72	67	1200 S	
80	90	50		SOIL GEOCHEMISTRY:
100	100	47	1300 \$	
	90	70		Z N p, p, m.
81	80	72	1400 5	
158	70	72		
80	75	90	1500 5	MINERAL RESOURCES BRANCH
	98	35		ASSESSMENT REPORT
	75 .	27	1600 5	
	80	5/	terist.	· No.
	95	40	1700 S	
	72	32		SCALE I; 5 000
	90	53	1800 5	
F1G. 4	1 .			0 100 200 300 400 500 m

.

_