

REPORT ON GEOLOGICAL ASSESSMENT WORK ON ATLIN GOLD PROSPECT, UNION MOUNTAIN AREA, ATLIN, B.C. 181- #31- # 9055

CONDUCTED JUNE 3 - 10 AND SEPTEMBER 16 - 26, 1980 ON CLAIM UNITS LP1-4, LS1-3, LOT 912 AND LOT 909 ATLIN MINING DIVISION

MAP SHEET NTS 104 N/12 EAST HALF 133° 34' LONGITUDE, 59° 32' LATITUDE

OPERATED BY RIO ALTO EXPLORATION LTD.,

CALGARY, ALBERTA

-BY-

J. BANKOWSKI, B.Sc. (GEOLOGY)

SUBMITTED JANUARY , 1981

TABLE OF CONTENTS

1.	Introduction	P			1
	Figure 1 - Location Map		,		2
	Figure 2 - Claim Group Sketch		i i		4
lA.	Work Summaries		-		5
lB.	Work Locations			,	6
2.	Technical Data and Interpretat	ion			6
3.	Cost Statement				11
4.	Author's Qualifications				13
5.	References				13

APPENDIX

ALC: NOT

Figure	3	-	Geochemical	Assays	4
	4	-		19	5
	5	-	. n	10	6
	6		11	1.	7.
	7	-	**	18	8
	8	-	"	19	9
	9		"	20	0
1	0	-	11	21	1
1	.1	-	"	22	2
1	2	-			- ב.

ł

L

REPORT ON

GEOLOGICAL ASSESSMENT WORK ON

ATLIN GOLD PROSPECT, UNION MOUNTAIN AREA,

ATLIN, B.C. 181- #31- # 90 55

1. INTRODUCTION

The Atlin Gold Prospect is located within the Lina Ranges of northwestern B.C. on a deeply eroded plateau region east of the Coast Ranges (Figure 1). The mountains are generally rounded and subdued with relief of about 2000'.

Access to the prospect is by road or small plane to the town of Atlin then 8 km. ESE by helicopter.

The prospect contains two principle mappable units consisting of the Pennsylvanian Cache Creek Group and the Permian Atlin Intrusions (Aitken, 1958). The Cache Creek Group is a volcano-sedimentary sequence of dominant fine grained basic volcanics, carbonates, chert and chert pebble conglomerate (Hoy, 1980). The Cache Creek Group is the dominant lithology on the prospect and flanks the band of coarse grained peridotites, serpentinites and diorite comprising the Atlin Intrusions.

Intense serpentinization and carbonitization characterize the contacts between the Cache Creek Group and the Atlin Intrusions on the property. Slickensides and slipfibre texture exhibited by serpentine and tremolite give visible evidence of shearing near the contacts.

These rocks are transected by two dominant sets of quartz vein systems bearing at 304° and 108° predominantly within the Cache Creek Group in the north-central portion of the prospect.

The Atlin Gold Prospect consists of the Alexandra and Victoria Crown grants (Lots 912 and 909) and 112

.../2

Figure 1 : Location Map of the Atlin Gold Prospect Claims, British Colambia. scale 1:50,000 (after 110y, 1980)

adjoining claims (Figure 2). The earliest recorded work on the property was performed in 1912 by prospectors, looking for the source of placer gold, who found goldbearing quartz veins and subsequently staked and patented the Crown grants. An inclined winze, now covered, was sunk on the Alexandra Crown grant. The Victoria Crown grant has no easily visible workings and a search of the records revealed no information.

In 1949, a prospector by the name of N. Matsen, found visible gold in hand trenches on the northwest slope of Union Mountain on the since lapsed eight "Golden View" claims. Further trenching was carried on by Matsen and Trans Continental Resources in 1950. The results of the 1950 program indicate gold values of 0.52 oz/ton over 9" in one location as well as a variety of other lesser gold assays.

The property was abandoned after 1951 and it was not until the 1979 price of gold rose to \$400/oz that Merle Cloutier acquired the Crown grants and Marvin Sherman acquired the 60 adjoining claims. Rio Alto Exploration Ltd., Calgary, is the present operator.

Small flecks of visible gold were found at the "Main" quartz vein system in the northeastern part of the claim group during the 1980 field season (Hoy, 1980). Assays of chip samples from this area have ranged up to 2.76 oz/ton Au. As a result, Rio Alto commissioned the staking of an additional 52 claims during the 1980 field season.

Minor molybdenum, serpentine and tremolite are also present on the prospect.

з.

.../4

1A. WORK SUMMARIES

- i) Geochemical Surveys
 - a) Conducted June 3 10, 1980: Thirty-three (33) soil samples designated DH 80 01 to DH 80 33 and nine (9) rock chip samples designated 301 to 309.
 - b) Conducted September 16 26, 1980:
 Two hundred ninety-two (292) soil samples with various coordinate designations and thirty-three (33) rock chip samples.

Total for 1980 field season is: 325 Soil Samples 42 Rock Chip Samples

- ii) Geological Surveys
 - a) An area approximately 2400 m x 2000 m was geologically mapped on a scale of 1:20,000 during the period June 3 - 10, 1980 (Hoy, 1980, Figure 2).
 - b) An area approximately 1500 m x 300 m was geologically mapped on a scale of 1:3,048 during the period September 16 - 26, 1980 (Hoy, 1980, Figure 2).
 - c) Two areas, one approximately 60 m x 40 m (Hoy, 1980, Figure 5) and the other approximately 100 m x 40 m (Hoy, 1980, Figure 3) were geologically mapped on a scale of 1:250 during the period September 16 - 26, 1980.
 - An area approximately 50 m x 150 m was geologically mapped on a scale of 1:500 during the period September 16 - 26, 1980 (Hoy, 1980, Figure 4).

5.

.../6

l

۱

iii) Prospecting

An area of roughly 3000 m x 2500 m was propected during the periods June 3 - 10 and September 16 - 26, 1980.

iv) Linecutting

A total of 12 kilometers of line was cut during the 1980 field season to establish a geochemical sampling grid.

į

.../7

1

ł

İ.

ł

1B. WORK LOCATIONS

The claims upon which various types of work were performed are as follows:

- i) Geochemical Surveys June 3 - 10, 1980: LP 1 - 2 a) September 16 - 26, 1980: LS1 and LP1 b) ii) Geological Surveys June 3 - 10, 1980: LP1 - 2 a) September 16 - 26, 1980: LS1 and LP1 b) iii) Prospecting a) June 3 - 10, 1980: LP1 - 2 September 16 - 26, 1980: LP1 - 4 and LS 1 - 3 b)
- iv) Linecutting LS1 - 3
- 2. TECHNICAL DATA AND INTERPRETATION

In March of 1980, Cloutier and Sherman, to whom the

6.

Crown grants and 60 adjoining claims were respectively registered, approached P.S. White, representing Rio Alto Exploration Ltd., to be their agent for the combined prospect areas.

White researched the property in March-June, 1980, examined it in May and June, 1980 and supervised a brief prospecting and sampling program with a staff geologist and assistants during the perod June 3 - 10, 1980. Sufficient assay verification of the research data was obtained to recommend acquisition of the prospects by Rio Alto Exploration Ltd.

Subsequent to the results of the June 3 - 10, 1980 program and the recommendations of P.S. White, the property was acquired by Rio Alto as operator and 52 additional claims were staked to better cover the volcanic-intrusive contact.

A program of geological mapping, geochemical sampling, prospecting and bulldozer trenching was conducted during the period September 16 - 26, 1980. The primary objectives of this program were:

- a) Geochemically sample the Atlin Intrusion-Cache Creek Group contact and also verify the anomalous assays obtained form samples collected in June, 1980,
- b) Determine possible extensions of known vein systems and gold mineralization using bulldozer trenching and so outline possible 1981 drill targets,
- c) Prospect the claim block to locate any additional mineralization.

The results obtained from both the June and September, 1980 programs were encouraging. Assays of soil samples

7.

.../8

(Appendix, Figures 3-13) were generally not anomalous but assays of rock chip samples (Appendix, Figures 14-17) from known mineralized areas yielded up to 2.76 oz. Au/ton. Maps of sample locations from the June, 1980 program (Appendix, Figure 18) and chip sample locations from the September, 1980 program (Appendix, Figures 19-21) are included.

Bulldozer trenching during the September, 1980 program was restricted to three main areas designated as the North Vein Trench System (Appendix, Figure 19), the Main Vein Trench System (northwest branch) (Appendix, Figure 20) and the Main Vein Trench System (southeast branch) (Appendix, Figure 21) (Hoy, 1980).

Two subparallel quartz veins about 5 inches wide and striking at 323° were traced over a strike length of 70 meters in the North Vein Trench System before they dissipated into a network of small veinlets striking at 300° in the northwest area of the trench. Malachite, pyrite and chalcopyrite occur in the "bull" quartz veins. Fourteen (14) chip samples across this trench system yielded up to 0.14 oz. Au/ton. No visible gold was found in this trench (Hoy, 1980).

Two, discontinuous, subparallel quartz veins averaging 6 inches in width were exposed over a strike length of 130 meters at a bearing of 316⁰ in the Main Vein Trench System (southeast branch) but dispersed to quartz veinlet networks at the extreme southeast area of the trench. Malachite staining and minor pyrite are found in the quartz. Thirteen (13) chip samples from this trench yielded up to 0.57 oz. Au/ton. No visible gold was found in this trench.

8.

.../9

A vein of smoky quartz averaging 12 inches in width containing visible gold, malachite, pyrite, azurite and arsenopyrite was exposed in the Main Vein Trench System (northwest branch) but due to topography and ground conditions, could only be traced for 10 meters. The vein strikes at 350° and apparently is an extension of the quartz vein exposed in the Matsen main pit. Five chip samples yielded assays of .005, .002, .002, .270 and .750 oz. Au/ton.

Several mineralized showings were located during the June program (Hoy, 1980).

The Molybdenum Showing (Mo) consists of veinlets and coarse rosettes of molybdenum and disseminated pyrite in a massive, milky quartz vein which is hosted in a coarse grained, equigranular diorite. Molybdenum was also seen within the diorite itself.

The Malachite Showing (M) consists of malachite and pyrite in a quartz vein and silicified rock of the Cache Creek Group.

The Serpentine Showings (S) consist of partially to completely serpentinized bodies of ultramafic rocks of the Atlin Intrusions and less commonly basic rocks of the Cache Creek Group in close proximity to the volcanicintrusive contact. Slip fibre texture and slickensides were present indicating proximity to a shear or fault zone.

The Tremolite-Crysotile? Showing (T) consists of elongated, fibrous, needle-like crystals of tremolite in highly sheared basic volcanics of the Cache Creek Group close to the volcanic-intrusive contact in a small fractured zone.

9.

.../10

I.

The Gold Showing (Au) consists of small flecks of visible gold in the main (Matsen) pit of the Main Vein Trench System. The gold is within veins of smoky to milky quartz hosted in tan to orange carbonatized rocks of the Cache Creek Group. Azurite, malachite, pyrite, magnesite and calcite are also found in the vein.

Gold placer operations have figured prominantly in the history of the Atlin area since before the turn of the century to the present. An inspection of the regional geology shows that the major placer operations such as Pine, Birch, Otter and Spruce Creeks have drainages across greenstone of the Cache Creek Group. Several local lode occurrences of Au, one in the Cache Creek greenstone and two in Atlin Intrusive rock are also present.

It is generally accepted that greenstones have high background values in gold especially Archean greenstone terrain. Paleozoic greenstone would be expected to have lesser values but still significant Au content.

In addition to the greenstone across which the major placer creeks drain, there is also spatially associated rocks of the Atlin Intrusions, As a matter of a fact, it can be seen that the major placer gold camps of the area are generally located closer to Atlin Intrusive rocks than Cache Creek Group volcanic rocks.

It is suggested that the Cache Creek greenstone rock has anomalous Au background values which have been mobilized and concentr ated by the Atlin Intrusions resulting in Au lode occurrences within both the Cache Creek Group and the Atlin Intrusions and spatially related to the volcanic-intrusive contact. Erosion of local Au lodes has

10.

.../11

resulted in the placer Au of the area. This idea is reinforced by the Timmins-Porcupine area of Ontario where rich Au lodes are found in greenstone, sediments or intrusives nearly always close to volcanic-intrusive contact and are often geometrically related to the intrusives.

Since the Atlin Gold Prospect is located within this favourable volcanic-intrusive terrain, the possibility of finding an economic concentration of lode gold is excellent and warrants further exploration.

3. COST STATEMENT

A. Period of June 3 to 10, 1980, 8 days

i) Wages

エ ノ	wages	
	Supervisor at \$200/day for 2 days	\$ 400
	Geologist at \$150/day for 8 days	1,200
	Assistant at \$100/day for 1 day	100
	Assistant at \$100/day for 8 days	800
		 2,500
ii)	Accommodation	
	Cabin at \$100/day for 8 days	800
iii)	Food	
	\$20/day for 19 man-days	380
iv)	Transportation	
	4WD, 2-3/4 ton trucks, leased at \$800/mo. each for 8 days	425
	Helicopter at \$100/trip for 16 trips	1,600
		 2,025
V)	Analyses	
	33 soil samples assayed for Au \$3/sample	99
	9 rock samples assayed for Au, Ag, Cu & Mo, \$9/sample	81
		 180

TOTAL COST (JUNE) \$ 5,885

ł

11.

в.	Period of September 16 to 26, 1980, elever	n days
i)	Wages	
	Geologist at \$150/day for 11 days	\$ 1,650
	Geologist at \$150/day for 3 days	450
	Assistants (3) at \$100/day for ll days	3,300
	-	5,400
ii)	Accommodations	
	Cabins (2) at \$100/day for ll days	2,200
iii)	Food	
	\$20/day for 47 man-days	940
iv)	Transporation	*
	4WD, 3/4 ton trucks (2) leased at	
	Holigopher at 6100 (here for 22 to	585
	Helicopter at \$100/trip for 22 trips	2,785
		2,785
V)	Analyses	l
	<pre>127 soil samples assayed for Ag and Cu \$4/sample</pre>	508
	83 soil samples assayed for Ag, Cu and Mo \$5/sample	415
	82 soil samples assayed for Au, \$3/sample	246
	33 rock samples assayed for Au, Ag and Cu	
	\$7/sample	231
	_	1,200
vi)	Geochemical Survey	
	Linecutting of 12 km for grid at \$100/km	1,200
vii)	Equipment	
	Bulldozer and operator cost	3,265
	TOTAL COST (SEPTEMBER) \$	16,990
	TOTAL COST (JUNE AND SEPTEMBER) \$	22.875

12.

l

4. AUTHOR'S QUALIFICATIONS

Education - Degrees

- a) Geological Technician, Cambrian College, Sudbury, Ontario 1972 (Bankowski)
- b) Hon. B. Sc. (Geology), University of Western Ontario, London, Ontario, 1980. (Hoy and Bankowski)

5. REFERENCES

Aitken, J.D. 1958 Atlin Map-Area, British Columbia (104N) Geol. Surv. of Can. Mem. 307 Aitken, J.D. 1958 Atlin Map-Area, British Columbia (104N) Geol. Surv. of Can. Map accompanying Mem. 307 Hoy, D. Preliminary Report of Geological 1980 Program Conducted June 3 - June 10, 1980. Company Report (unpublished). Hoy, D. 1980 Report of Geological Assessment, September 16 - 26, 1980. Company Report (unpublished).

APPENDIX

PHONE: (403) 667-6523 TELEX: 036-8-460

ļ

Geochemical Lab Report

FROM: Paul White & Associates REPORT NUMBER: 40 - 137

PROJECT:

ſ

DATE: July 5, 1980

SAMPLE NUMBERS	Au ppb						 		
DH 80 01 02 03 04 05	5 L5 65 75 L5								
06 07 08 09 10	L5 30 L5 L5 L5								
11 12 13 14 15	L5 L5 5 L5 5			•					
16 17 18 19 20	L5 L5 L5 L5 L5								
21 22 23 24 25	L5 L5 L5 5 L5		-						
26 27 28 29 30	L5 L5 L5 5 L5								· .
31 32 33	110 5 5	L de			* I				

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

BONDAR-CLEGG & COMPANY LTD.

136B INDUSTRIAL RD, WHITEHORSE, YUKON Y1A 4X1

PHONE: (4)

PHONE: (403) 667-6523 TELEX: 036-8-460

Geochemical Lab Report

FROM: Paul White & Associates

REPORT NUMBER: 40 - 438

PROJECT:

DATE: October 13, 1980

SAMPLE NUMBERS	Ag ppm	Cu ppm						
511 3000E							1	1
12005	0.6	76						
12002	0.5	35						
15005	0.4	27						
1500E	0.3	28						
IGODE	0.2	16					· •	
1800E	0.2	25						
1950E	0.2	16						
2100E	0.2	18						
2250E	0.1	34						
2400E	0.1	38						
2550E	0.2	11						
2700E	0.1	15						
2850E	0.2.	52						
. 3000E	0.1	26					-	
3150E	0.1	13						
3300E	0.4	14						
3450	0.1	10						
3600	0.1	12						
3700	0.1	11						
3900	0.1	10						
4050F	0.1	7						
4250F 2200	0.1							
4350	0.2	14						
FN 1050	0.2	10			1			
1200	0.3	20						
1200	0.1	25						
1350E	0.1	20		1				
1500	0.1	23	· · · · •					
1650	0.2	14						
1800	0.2	9		·		-		
1950	0.1	16						
2100E	0.2	21						
2250	0.1	15			2			
2400	0.1	10						
2550	0.1	8	-					
2700	0.1	26						
		20						
	l							
		• 5				Fi	gure	4

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

16. BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

REPORT NUMBER: 40 - 438

W. Same

PAGE: 2

SAMPLE NUMBERS	Ag ppm	Cu ppm							
ON 2950F	10.1	12							
3000		0						1	1
3150		9 96					•		
3300	10.1	16							
3450	10.1	25							
		2.5							
3600E	L0.1	42			<i></i>				
3750	L0.1	22							
3900	L0.1	31							
4050	L0.1	19							
4200	0.1	25							
4350E	0.2	8							
4500	L0.1	11							
45E 150S	LO.1	6							
300	L0.1	15							
450	L0.1	53							
600S	LO.1	47							
750	0.1	39							
900	L0.1	28							1
1050	LO.1	47						[
1200	L0.1	32						[
13500					1	ł			
15005		26							
1650		20		Í					
1800		25							
1950	0.2	18							
		10							
2100S	L0.1	11							
5S 150E	0.1	14							'
315	L0.1	18					. 1		
450	N.S.	N.S.		1			1		· · ·
600	L0.1	33							
750E	0.1	34						.	
900	0.1	78							
1050	L0.1	49							
1200	0.2	26							
1350	0.6	56						· ·]	
1500E	L0.1	43							
1650	L0.1	41					1	ł	
1800	L0.1	18							- 1 I
1950	L0.1	17					. .		
2100	L0.1	22							
	<u> </u>		<u> </u>						
, 	••••					÷ /	-igui	re 5	

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

PORT NUMBER: _____ 40 - 438

PAGE: 3

	SAMPLE NUMBERS	Ag	Cu	1	1			T	·····	
		ppm	ppm		•					
	55 2250F									<u> </u>
	2400	0.2	14							
	2550	0.5	36							
	2700		10					ŗ		
	2850		23							
		10.1	18			i i				
	3000E	10.1	0							
1	3150	10.1	18							
1	3350	10.1	17							
I	3450	10.1	17							
I	3600	L0.1	18							
	3750E	0.2	16							
	3900	L0.1	10					· · · ·		
	4000	L0.1	14				1		-i -	
	10S 150E	0.2	22					1		
	300	0.1	11							
	4505									
	600	0.1	9							
	700	0.2	20				1			
	900	0.0	47							
	1050	0.2	18							
		V.+	13							
	1200E	0.1	29							
	1350	L0.1	21							
	1500	LO.1	28							
	1650	L0.1	18							•
	1800	L0.1	26							
	10505									
	1950E	L0.1	20							
	2250	L0.1	18							
	2250	0.2	12							
	2400	LO.1	17							·
	2550E							1		
	2700	10.1	20	1				1		
	2850		28				,			
	3000		10						1	
	3150		10							
		20.1	15							
	3300E	LO.1	38							
	3450	LO.1	26				1			
	3600	LO.1	26							
	3750	L0.1	10							
	3900	L0.1	17							
-										
_						<u> </u>	·		l	
							gure	6		

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

SPORT NUMBER: 40 - 438

PAGE: 4

SAMPLE NUMBERS	Ag ppm	Cu ppm							1
40E 600S	L0.1	25		1				1	
700	L0.1	15							
800	L0.1	13					•		
900	L0.1	21							
, 1000	L0.1	15							
1100S	L0.1	11							
1200	L0.1	19		1					
1300 .	L0.1	67							
1400	N.S.	N.S.		1					
1500	L0.1	22							
1600S	L0.1	20							
1700	L0.1	19							
1800	L0.1	22						1	
1900	LO.1	18			1				
2000	L0.1	40					ļ		
	L den	otes le	s than						
	N.S. 0	ienotes	no same	la					
								1	
									1
				1					
	1								ł
_			1						
·				1					
•				1					1
								1	, i
									·
	*					~			
							gur	e 7	. [

19.

EGG & COMPAN

136B INDUSTRIAL RD, WHITEHORSE, YUKON Y1A 4X1

PHONE: (403) 667-6523 TELEX: 036-8-460

Geochemical Lab Report

FROM:_

Г

Paul White & Assoc. REPORT NUMBER: 40-431

•

PROJECT: _____ DATE: October, 2/80

	PPM	PPM	PPM				
0W 0S 1505 3005 5005 6005	0.7 0.3 0.2 0.2 0.3	58 39 38 15 14	2 5 2 2 2 2				
75a s 9005 1,0505 1,2005 1,3505	0.4 0.3 0.2 0.3 0.3	16 19 10 24 26	2 2 2 1 7				
ISOOS ISON BOON GOON	0.2 0.3 0.2 0.2 0.2	36 23 16 30 14	1 3 2 1 2			,	
1050N 1200N 1350N 1500N SW 05	0.2 0.2 0.2 0.2 0.3	36 169 19 12 136	2 2 3 /3				
SW 1505 3005 4505 6005 7505	0.3 0.2 0.4 0.2 0.3	31 33 31 31 31	21253				
9005 10505 12005 13505 15005	0.3 0.2 0.2 0.2 0.2	15 14 15 12 11	3 2 1 1 1				
150N 300N 450N 600N 750N	0.2 0.1 0.1 0.2 0.2	14 17 10 10 15	1 1 1 2				

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

1997 B. 1 20.

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

- EPORT NUMBER: 40-431

• **

PAGE: 2

- ``

SAMPLE NUMBERS	Ag PPM	Cu PPM	MO PPM					
SW 900N 1.050N 1.200N 1.350N 1.500N	0.2 0.2 0.1 0.2 0.1	15 13 11 12 10	2 2 1 1 1					
.OW OS Sq5 3005 4505 6025	0.1 0.1 0.2 0.2	10 1.4 26 54 36	/ /2 2 2					
7505 9005 10505 1,2005 1,3505	0.2 0.2 0.2 0.2 0.2	52 1.8 1.4 43 19	3 1 1 2 3					
1.5005 1.0WI.50N 30QN 45QN 600N	0.4 0.2 0.2 0.1 0.2	28 16 33 6 15	21222					
75aN 90an 1050N 1200N 1350N	0.1 0,2 0.2 0.2 0.2	24 9 16 8 12	 					
1500N 15W OS 1505 3005 4505	0.2 0.2 0.2 0.2 0.2 0.3	1:3 45 31 32 26	1 1223					
6005 7505 9005 10305 12005	0.2 0.2 0.2 0.2 0.2	39 21 18 16 9	2 2 2 2 2 2 2 2 2					
							•.	
					Fi	qure	9	

21.

ONDAR-CLEGG & COMPANY LTD.

136B INDUSTRIAL RD, WHITEHORSE, YUKON Y1A 4X1

PHONE: (403) 667-6523 TELEX: 036-8-460

Geochemical Lab Report

FROM: Paul Mhite & Associatos Ltd.

REPORT NUMBER: _ .

40431

PROJECT:

DATE: Octobser 3, 1980

SAMPLE NUMBERS	h h m Y C	ppm CU	110 ppm					
15W 1350 S 1500S 0 N 150 N 300 N	0.1 0.3 0.1 0.1 0.1	12 14 13 14 17	2 2 2 2 1					
450 N 600 N 750 N 900 N 1050 N	0.2 0.1 0.2 0.2	12 14 10 14 23	21222					
1200N 1350N 1500N	0.2 0.1 0.2	12 20 24	322	· · · · · · · · · · · · · · · · · · ·				
						2		
-							i	
··	13				F	igur	е 1с	,

22.

and the second

EGG & COMPANY A TD.

136B INDUSTRIAL RD, WHITEHORSE, YUKON Y1A 4X1

PHONE: (403) 667-6523 TELEX: 036-8-460

ţ

ł

١

1

Geochemical Lab Report

Paul White & Assoc. FROM:_

REPORT NUMBER: 40-431

PROJECT: _____

DATE: October 20, 1980

SAMPLE NUMBERS	Auppb										
5W 1350 N 00 N 10W 0S 150 S 300 S 450 S 600 S 750 S 900 S 1050 S	L5 L5 L5 L5 L5 L5 L5 L5 L5										
1200 S 1350 S 1500 S 150 N 300 N 450 N 600 N 750 N 900 N 1050 N	L5 L5 10 L5 L5 L5 L5 L5 L5	×						l			
1200 N 1350 N 1500 N 15W 0 S 150 S 300 S 450 S 600 S 750 S 900 S	L5 L5 5 L5 L5 L5 L5 L5 L5										
1050 S 1200 S 1350 S 1500 S 0 N/S 150 N 300 N 450 N	L5 5 L5 L5 10 L5 5 L5										
L denotes less	L denotes less than										

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

	ali de constante de la constante de la constan Ali de constante de la constante		23.								
BONDAR-CLEGG & COMPANY LTD.											
136B INDU	136B INDUSTRIAL RD, WHITEHORSE, YUKON Y1A 4X1 TELEX: 036-8-460										
	t		000-0-400	•							
FROM: Paul.White &	NUMBER:		40-	431							
PROJECT:		-	DATE:	0c1	tober	20,19 8	0				
SAMPLE NUMBERS	Auppb			1		<u>`</u>		T			
15W 600N 750N	L5										
900N 1050N 1200N 1350N 1500N 0W 0S 150S 300S 500S 600S	L5 L5 L5 L5 L5 L5 L5 L5 L5						•				
750\$ 900S 1050S 1200S 1350S 1500S 150N 300N 450N 600N	L5 L5 L5 L5 L5 L5 L5 L5 L5 L5										
1050N 1200N 1350N 1500N 5W OS 150S 300S 450 S 600S 750S	5 10 L5 5 L5 L5 L5 L5 L5 L5										
900S 1050S 1200S 1350S 1500S 150N	L5 L5 10 5 L5 L5				1		· · ·				
	Figure 12										

1

1

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

İ

ł

BONDAR-CLEGG & COMPANY LTD.												
136B INDUS		D, WHITEHORS	E, YUKON	Y1A 4X1	-	PHONE: (403) 667-6523						
	Geo	chemical	Lab Report									
FROM: Paul White & A	REPORT NUMBER:											
PROJECT:	DATE:	October	20,1	980	Pg	,3						
SAMPLE NUMBERS	ррь					Ŷ						
300N 450N 600N 750N 900N 1050N 1200N	L5 15 L5 L5 L5 5											
ř					•							
·												
				······	· /	Figu	re 1:	3				

FOR METHOD, EXTRACTION AND FRACTION USED - SEE ATTACHED

ł

24.

PHONE: (403) 667-6523 TELEX: 036-8-460

Certificate of Analysis

TO _____ Poul White & Assoc.

2151 2nd Ave.

Whitehorse, Y.T. YIA 1C6

MARKED	oz/ton	oz/ton	%	70								
	MAINED	Au	Ag	Cu	Mo							
Figure 14	301 302 303 304 305 306 307 308 309	0.025 0.002 2.76 0.765 0.240 0.020 0.015 L de	L0.05 L0.05 2.77 0.90 0.06 0.06 L0.05	L0.01 L0.01 0.08 0.03 L0.01 L0.01 L0.01	1.09					-		
NOTE:						- 5	BONDAF	-CLEGO	5 & CON	MPANY	LTD.	
Reject Pulps	ts retained two weeks retained three months						A	leven .	lemp	<u>.</u>		
unless	otherwise arranand							•••••	•••	· · · · · · · ·	· · · · · · · · · · · ·	•

25.

PHONE: (40°) 667-6523 TELEX: 036-8-460

Certificate of Analysis

TO _____ Paul White & Assoc.

2151-2nd Ave,

Whitehorse, Y.T.

DATE October .28, 1980

MARKED		oz/ton	oz/ton	%		1	1	1	T	
	Αυ	Ag	Cu							
60 60 60 60	1 2 3 4 5	0.140 0.005 0.005 0.005 0.020	0.14 0.20 0.09 0.12 0.07	0.01 L0.01 L0.01 L0.01 L0.01						26.
		0.020 0.005 0.010 0.005 0.020	0.17 0.09 0.07 0.17 0.13	L0.01 L0.01 L0.01 0.01 L0.01						
0 611 612 613 5 614 615		0.010 0.002 0.002 0.005 0.002	0.05 L0.05 L0.05 L0.05 L0.05	L0.01 L0.01 L0.01 L0.01 L0.01				-		

NOTE: L denotes less than

Rejects retained two weeks

Pulps retained three months unless otherwise arranged.

BONDAR-CLEGG & COMPANY LTD.

PHONE: (403) 667-6523 TELEX: 036-8-460

Certificate of Analysis

Paul White & assoc.

TO

REPORT NO. . A-40-21.7. DATE October 28, 1980

I hereby certify

	MARKED	oz/ton	oz/ton	70			T		1	<u> </u>	1	
		Au	Ag	Cu					1			
	616 617 618 619 620	0.002 0.002 0.002 0.002 0.025	L0.05 L0.05 0.06 0.06 L0.05	L0.01 L0.01 L0.01 L0.01 L0.01			-					
Figu	621 622 623 624 661	0.010 0.002 0.270 0.750 0.010	L0.05 L0.05 0.58 0.50 L0.05	L0.01 L0.01 0.02 0.01 L0.01	3 main	N. Vein (A	W. E)					
ire 16	662 663 664 665 666	0.005 0.040 0.090 0.570 0.025	L0.05 0.07 L0.05 0.69 0.13	L0.01 L0.01 L0.01 L0.01 L0.01	- Main	· vein(s	.E)	,				
	667	0.005	0.14	L0.01								
NOTE:	l denotes l					3	ONDAR	-CLEGG	S & CON	1PANY I	ТО	

NOTE: L denotes less than

Rejects retained two weeks

Pulps retained three months

unless otherwise arranged.

PHONE: (403) 667-6523 TELEX: 036-8-460

Certificate of Analysis

TO _____ Paul White & Assoc.

 REPORT NO.
 A-40-217

 DATE
 October 28, 1980

MARKED		oz/ton	oz/ton	7		1	1	1		T	T
		Au	Âg	Cυ							
•	668 669	0.020 0.002	L0.05 L0.05	L0.01 L0.01							N C C
		-				-					-
Figu			-		-						·
re								•			
17					-						
NOTE:	L denotes le:	ss than				E	ONDAR	-CLEGG		PANY 1	- TD
Reject Pulps i unless	s retained two weeks retained three months otherwise arranged.	••					. St.	en fen	fm.	• • • • • • • • •	

FIGURE 18: LOCATION MAP OF SAMPLING LOCATIONS (OFECT Hoy, 1980)

· 🛞 Soil Sample Location B Chip Somple Location ---- Reverted Crown Grant 0 200 100 metres scale 1: 20,000

Hard State of the State of State of States

