COMINCO LTD.

EXPLORATION

NTS: 92-I-9

GEOPHYSICAL REPORT

ON

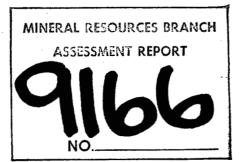
INDUCED POLARIZATION AND MAGNETICS SURVEYS

AJAX PROPERTY

KAMLOOPS AREA: KAMLOOPS MINING DIVISION, B.C.

LATITUDE: 50°37'N

LCNGITUDE: 120⁰23'W


FIELD WORK PERFORMED:

MAY 5-16, 18-31, JUNE 1-6,

22-28, JULY 31 - AUG. 4, 1980

ON CLAIMS: JACKO 4, 6fr.,8fr.,10fr.; AJAX CG, AJAX 6, 11,

AJAX fr., 4fr.; LOT 411; NEPTUNE CG; COPPER STAR CG; FORLORN CG; DAVE 44A; WHEAL TAMAR CG; MONTE CARLO CG; GRASS ROOTS CG; SULTAN CG; DAVE 1C fr.; MAP 3fr.,4fr., 2fr.; WADE 3; DON 7,8,9fr.,5fr; PAM 11, 13,16,18-24,28,32

ALAN R. SCOTT

WESTERN DISTRICT

APRIL 1981

TABLE OF CONTENTS

	Page
INTRODUCTION	. 1
LOCATION AND ACCESS	. 1
GEOPHYSICAL SURVEYS	. 1
Induced Polarization	1
Magnetics	. 2
DESCRIPTION OF RESULTS	. 2
CONCLUSIONS	. 4

APPENDIX I	Statement
APPENDIX II	Statement of Expenditures
APPENDIX III	Certification

ATTACHMENTS

Plate 174-80-1	Location Map
Plate 174-80-2	Claims and Grid Map
Plate 174-80-3 to 22	Induced Polarization/Apparent Resistivity pseudosections
Plate 174-80-23	Magnetic Field Contour Plan
Plate 174-80-24	Chargeability Contour Plan (n=1)
Plate 174-80-25	Apparent Resistivity Contour Plan (n=1)
Plate 174-80-26	n=1→4 Averaged Chargeability Plan

EXPLORATION

NTS: 921-10

WESTERN DISTRICT

APRIL 1981

GEOPHYSICAL REPORT

<u>ON</u>

INDUCED POLARIZATION AND MAGNETICS SURVEYS

AJAX PROPERTY

KAMLOOPS AREA: KAMLOOPS MINING DIVISION, B.C.

INTRODUCTION

During the periods May 5 to June 6 and June 22 to 28, 1980, a Cominco geophysical crew completed some 66 line kilometers of multiseparation induced polarization over portions of the AJAX-MONTE CARLO property. A total field magnetometer survey was also completed on the grid.

The purpose of the survey was to map the geophysical response of the property as a guide to drill testing for copper mineralization of the Afton type.

This report describes the procedures used on the survey, presents the data, and discusses the geophysical results.

LOCATION AND ACCESS

The Ajax property is located immediately east of Jacko Lake, about 8 kilometers southwest of the city of Kamloops. The general location of the property is shown on plate 174-80-1 and the location of the survey lines in relation to the claims on plate 174-80-2.

GEOPHYSICAL SURVEYS

Induced Polarization

A Huntec 7.5 kw induced polarization transmitter in combination with two Scintrex IPR-8 receivers were used on the AJAX IP survey. Readings were taken in the time domain using a 2 second current on/2 second current off alternating square wave signal. The chargeability values plotted are those for the M₂₃₂ window from 650-1170 milliseconds following cessation of the current pulse. Units of chargeability response for the IPR-8 receiver are in millivolts per volt.

Geophysical Report/Ajax Property/ 15 April 1981/Page 2/

A pole dipole electrode array was used on the survey with an "a" spacing of 50 meters and "n" separations of 1,2,3, and 4. The current electrode was to the north of the receiver dipole on all the survey lines.

The apparent resistivity values are given in units of ohm meters and were calculated from the relation:-

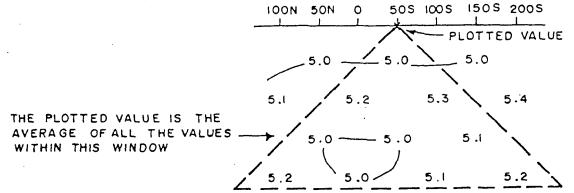
apparent resistivity = $(V/I) \cdot K$,

where V is the voltage across a pair of measuring electrodes during the current on period (I), and K is a constant for a given "a" spacing and "n" separation.

Magnetics

A Scintrex MP-2 total field proton precession magnetometer was used for the magnetics survey. Corrections for diurnal variations were made by reference to a Scintrex MBS-2 base station magnetometer.

DESCRIPTIONS


Induced Polarization Survey

The chargeability (IP) and apparent resistivity results are presented in pseudo section format on accompanying plates 174-80-3 to 22. This is a schematic form of data presentation and no specific target depth or geometry is implied by it as the plotted values represent an "average" response over large volumes of the ground. IP anomalies have been categorized on the sections in the following manner:

	strong IP high	$(>30\frac{mv}{v}$ at near separations)
	moderate IP high	(20-30 $\frac{mv}{v}$ at near separations)
CHIII.	weak IP high	(10-20 mv/v at near separations)
		(>10 $\frac{mv}{v}$ at far separations)

As the IP will be responding to iron sulphides as well as to copper minerals, target testing should not necessairly be confined only to the higher amplitude responses.

The first separation results (n=1) are also presented in contour plan form on plate 174-80-24 (chargeability) and 25 (apparent resistivity). Plate 174-80-25 is a contour plan of the simple average of a moving 10 point window of one n=1 value, two n=2 values, three n=3 values, and four n=4 values as indicated below:

Geophysical Report/Ajax Property/ 15 April 1981/Page 3/

Magnetics

The magnetic field survey results are presented in contour plan form on plate 174-80-23. The contour interval is 1000 gammas and areas of greater than 59000 gammas magnetic field strength are indicated by the stippled pattern. Generally, the northern portion of the grid area is characterized by magnetic field highs and shows strong magnetic field relief, while the southern portion (underlain by volcanics) is relatively flat magnetically.

General Discussion

For discussion purposes, 10 anomalously high chargeability response zones have been defined on the chargeability contour plan (plate 174-80-24). These have been arbitrarily defined by the greater than 10 $\frac{m_V}{V}$ contour. As economic copper mineralization could be represented by even lower response, if no iron is present or mineralization is at depth, target testing should not necessarily be confined only to these areas.

Anomaly I

Anomaly I covers a very large elliptical area of some 2500 metres eastwest by 1,000 metres north-south in the central grid area. The strongest response of 65 $\frac{mv}{v}$ plots at 475 S on line 1100E. This highest amplitude portion of Anomaly I is associated with high resistivity (1000+ ohm metres) indicative of reduced pore space. Mostly Anomaly I is associated with moderate resistivities of a few hundred ohm metres. The major portion of Anomaly I lies in an area of generally low magnetic field strength, being discontinuously flanked on all sides by magnetic field highs. The western portion of Anomaly I is, however, coincident with a magnetic field high.

Anomaly II

Anomaly II lies immediately south of the baseline and just east of Anomaly I. On the $n=1 \rightarrow 4$ averaged IP response plan, anomalies I and II are joined. Anomaly II is also located in a magnetic field low, and is associated with moderate apparent resistivity (\simeq 300 ohm metres).

Anomaly III and IV

Anomalies III and IV lie on the western edge of the grid. They are both associated with high magnetic field strength and moderately high (Anomaly IV) to high (Anomaly III) apparent resistivities.

Anomaly V

Anomaly V lies at the north end of line 0. It is adjacent to a wire fence and pipeline and if either of these are grounded, it may be caused by those features. This could be resolved by resurvey with a shorter spacing.

Geophysical Report/Ajax Property/ April 15, 1980/Page 4/

Anomaly VI

Anomaly VI is centred at about 625S on line 1900E. It gives a moderately high amplitude IP response, and is coincident with high resistivity and locally high magnetic field strength.

Anomalies VII, VIII and IX

Anomaly VII trends from about 300S to the northern edge of the grid on lines 25E and 26E. The anomaly is open to the north. Anomaly VIII is located immediately south of Anomaly VII, and Anomaly IX to the east of VIII. On the $n=1 \rightarrow 4$ averaged chargeability plan, Anomalies VII, VIII, IX converge. Anomalies VII and VIII are coincident with a local weak resistivity high (greater than 100 ohm metres), and Anomaly IX with a moderate resistivity high (up to 300 ohm metres). Anomaly VII is associated with high magnetic field strength, Anomaly VIII with a magnetically low area, and Anomaly IX with a magnetic high in the northern portion. The southern portion of Anomaly IX was not covered by the magnetometer survey.

Anomaly X

Anomaly X is located at about 1200S on line 1900E and is open to the east. It is a "shallow" anomaly, and does not show on further separation. It is an area of low magnetic field strength and flanks an area of high resistivity to the south.

CONCLUSIONS

The major portion of the Ajax property was surveyed with multiseparation time domain IP and total field magnetics in the summer of 1980. Several areas of weak to strong chargeability response were detected on the survey, and have been discussed in this report (Anomalies $I \rightarrow X$).

There is not, in general, a strong positive correlation of magnetic field highs to chargeability highs. This suggests that the two surveys are seeing different source materials, most likely magnetite content on the magnetics and sulphides for the IP. Where magnetic highs and IP highs correspond, there is presumably some mix of these minerals.

As the IP will be responding to economically uninteresting minerals (e.g. pyrite) as well as copper minerals, selection of targets for testing should not be limited to higher amplitude responses alone. Targets should be selected on the basis of correlation of the geophysical results to geology, geochemistry and past drilling results.

If any diamond drilling is undertaken, downhole resistivity and IP logging should be considered in order to specifically define in situ physical properties and allow a more quantitative assessment of these geophysical results. Failing this, core samples should be kept for such analysis. Geophysical Report/Ajax Property/ April 15, 1980/Page 5/

Report by: A.R. Scoft Geophysicist

Approved for Release by:

G. Harden, Manager G. Harden, Manager Exploration Western District

ARS/gmk

Distribution:

E & B Exploration (1) Western District (1) Geophysics File (1) Vernon Office (1) Administration (1) Mining Recorder (2)

APPENDIX I

IN THE MATTER OF THE B.C. MINERAL ACT AND IN THE MATTER OF A GEOPHYSICAL PROGRAMME CARRIED OUT ON PORTIONS OF THE AJAX MONTE-CARLO PROPERTY LOCATED SOUTHWEST OF KAMLOOPS IN THE KAMLOOPS MINING DIVISION OF THE PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY

NTS: 921/9

STATEMENT

I, Alan R. Scott, of the City of Vancouver, in the Province of British Columbia, make oath and say:-

- THAT I am employed as a geophysicist by Cominco Ltd. and, as such 1. have a personal knowledge of the facts to which I hereinafter depose;
- THAT annexed hereto and marked as "Appendix II" to this statement 2. is a true copy of expenditures incurred on geophysical survey on the Ajax Monte-Carlo property.
- THAT the said expenditures were incurred for the purpose of mineral 3. exploration of the above noted claims between the 5th day of May and the 4th day of August, 1980.

Signed:

Alan R Geophysicist

APPENDIX II

STATEMENT OF EXPENDITURES - AJAX PROPERTY

(INDUCED POLARIZATION, MAGNETOMETER SURVEYS, LINECUTTING)

TIME BREAKDOWN:	Travel Days	-	May 5, June 5, 6, 22
	IP/Mag Survey	-	May 6-16, 18-31, June 23-28
• •	Mag Survey Only	÷	July 31-August 4 (Burnshaw only)

1. SALARIES:

S. Holland, geophysicist in training,	39 days @ 105 = \$4,095	
D. Milne, geophysical technician,	39 days @ 105 = 4,095	
E. Burnshaw, IP Crewman,	44 days @ 83 = 3,652	
Y. Fortin, IP Crewman,	39 days @ 83 = 3,237	
D. Campbell, IP Crewman,	39 days @ 83 = 3,237	
J. Allen, IP Crewman,	39 days @ 83 = <u>3,237</u> 21,5	53

2. EQUIPMENT RENTALS

7.5	km IP	survey	system.	magnetometer,	truck	10,989
-----	-------	--------	---------	---------------	-------	--------

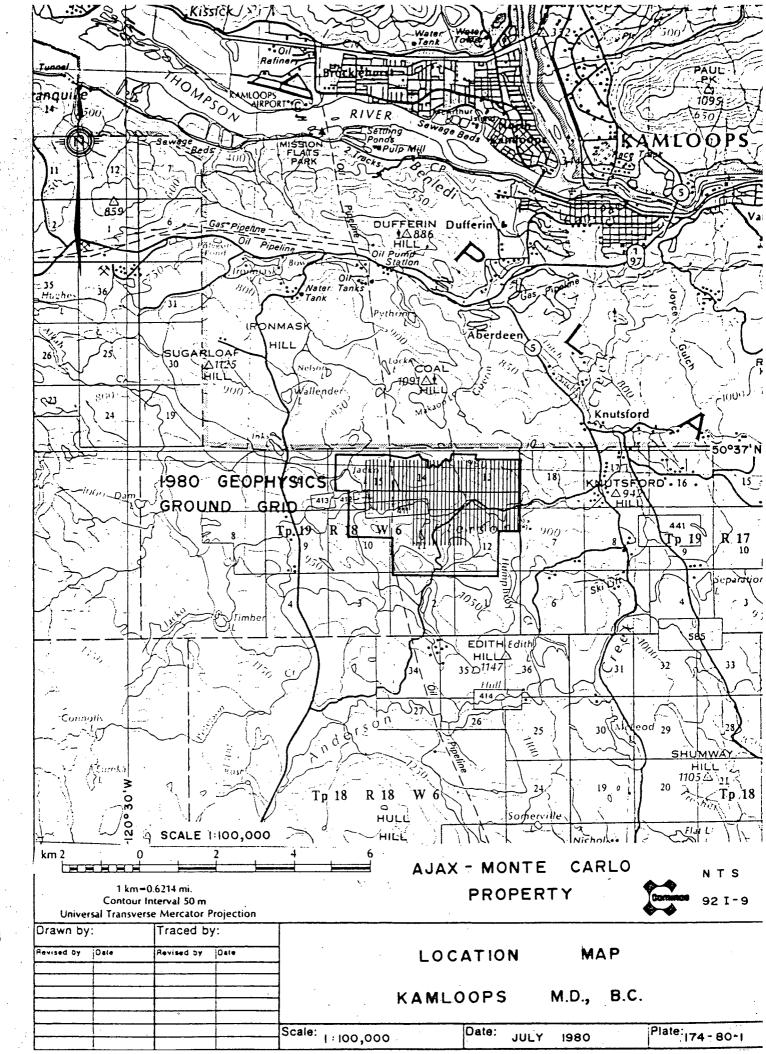
<u>CHARGES PER SURVEY DAY</u> (towards drafting, report, supervision)
 35 days IP survey at 175/day
 6,125

4. MISCELLANEOUS

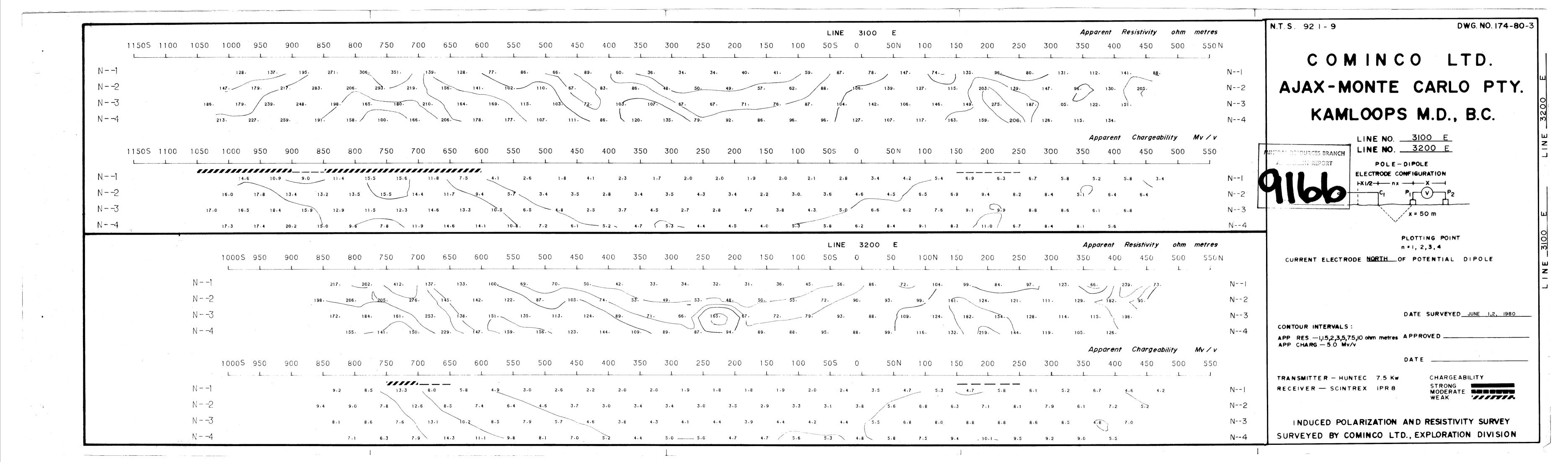
Food, gas, lodging, consumables

8,097

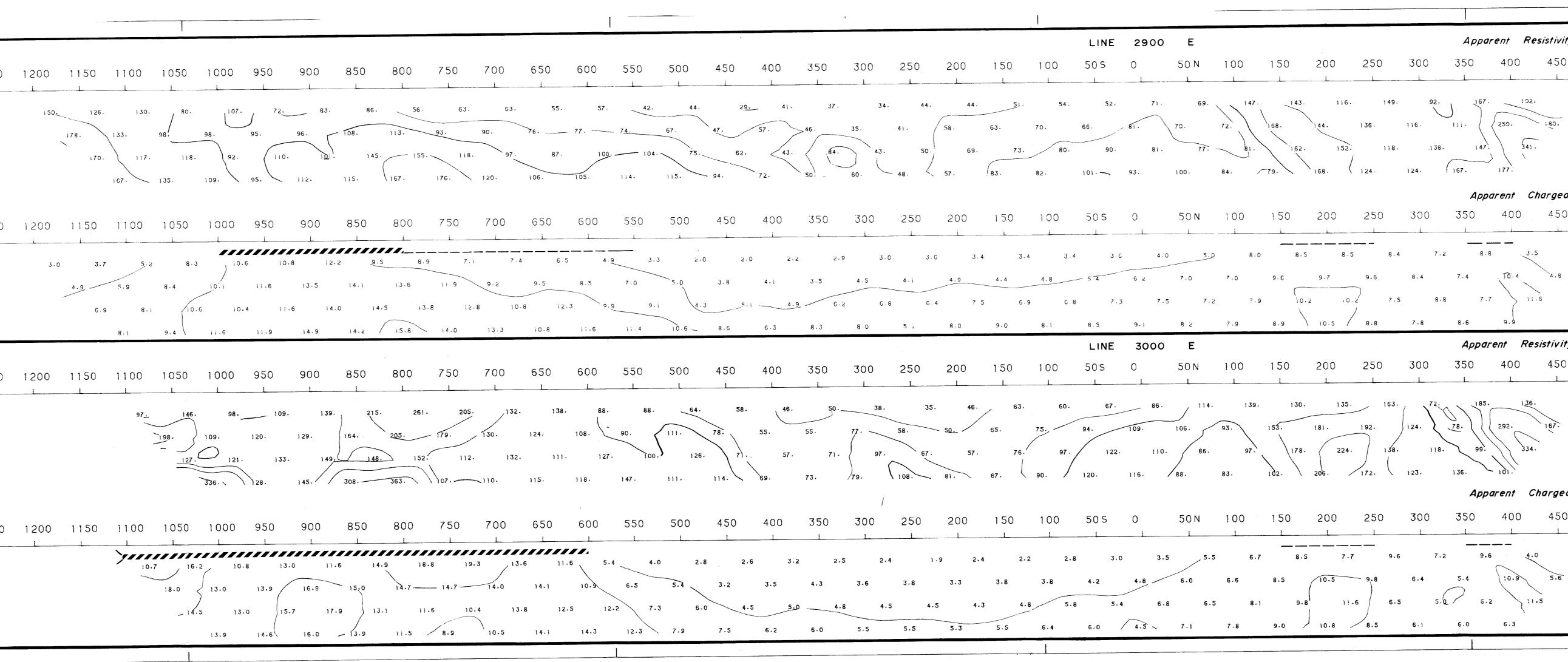
\$46,764 len tro

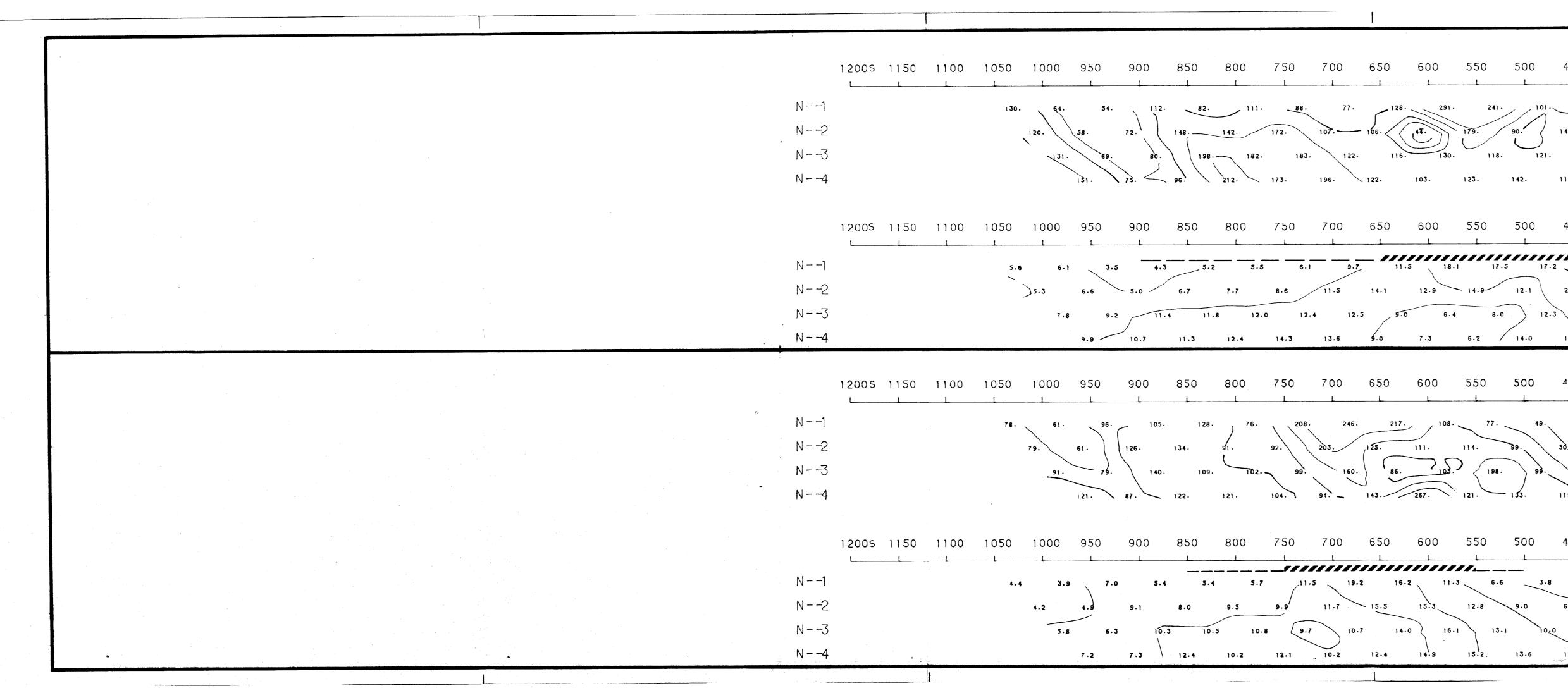

APPENDIX III

CERTIFICATION


I, Alan R. Scott, of 4013 West 14th Avenue, in the City of Vancouver, in the Province of British Columbia, do hereby certify:-

- THAT I graduated from the University of British Columbia in 1970 with a B.Sc. in Geophysics;
- THAT I am a member of the Association of Professional Engineers of the Province of Saskatchewan, the Society of Exploration Geophysicists of America, and the British Columbia Geophysical Society;
- THAT I have been practising my profession for the past eleven years.

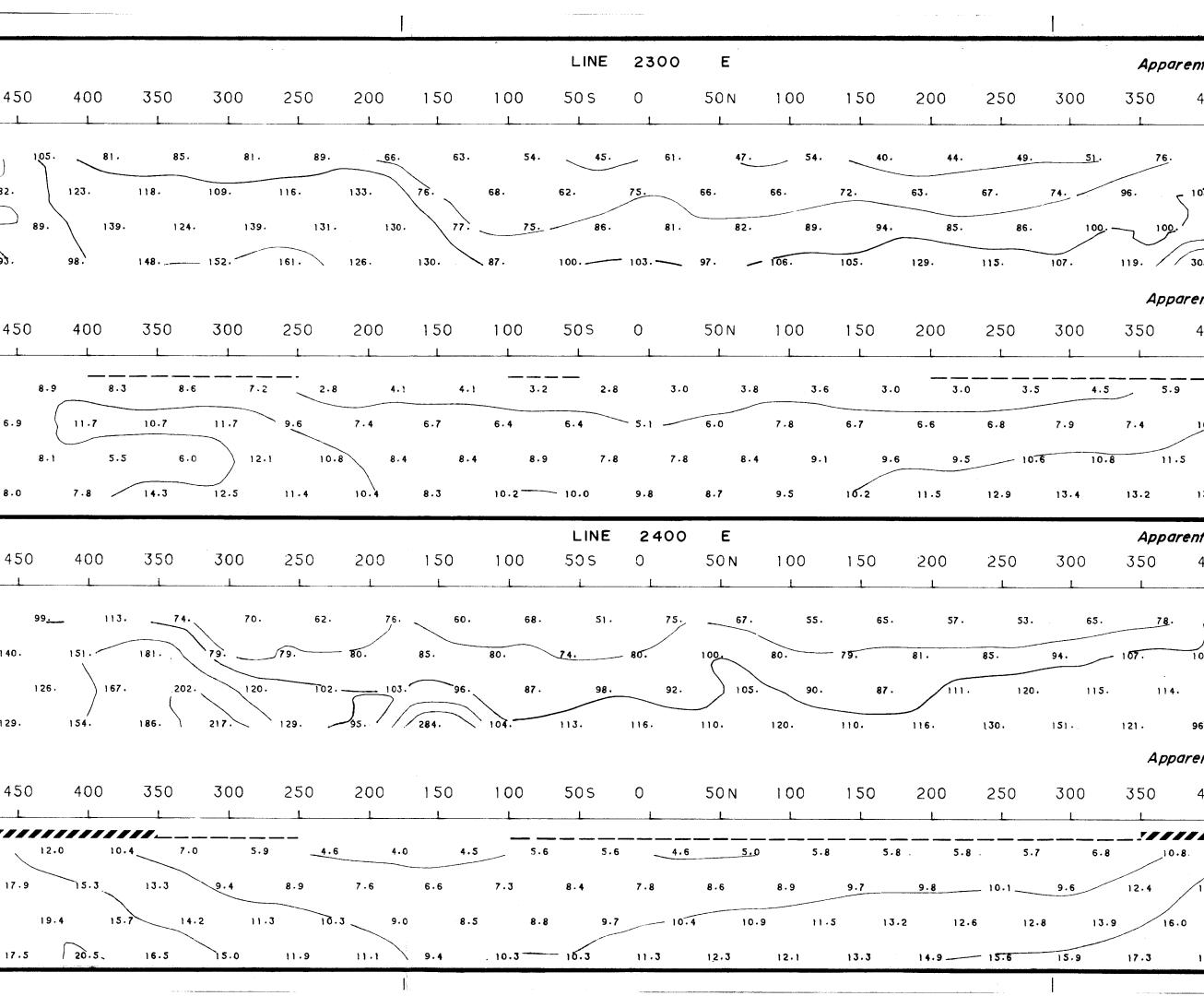

Signed: Scoft, Geophysicist


. .

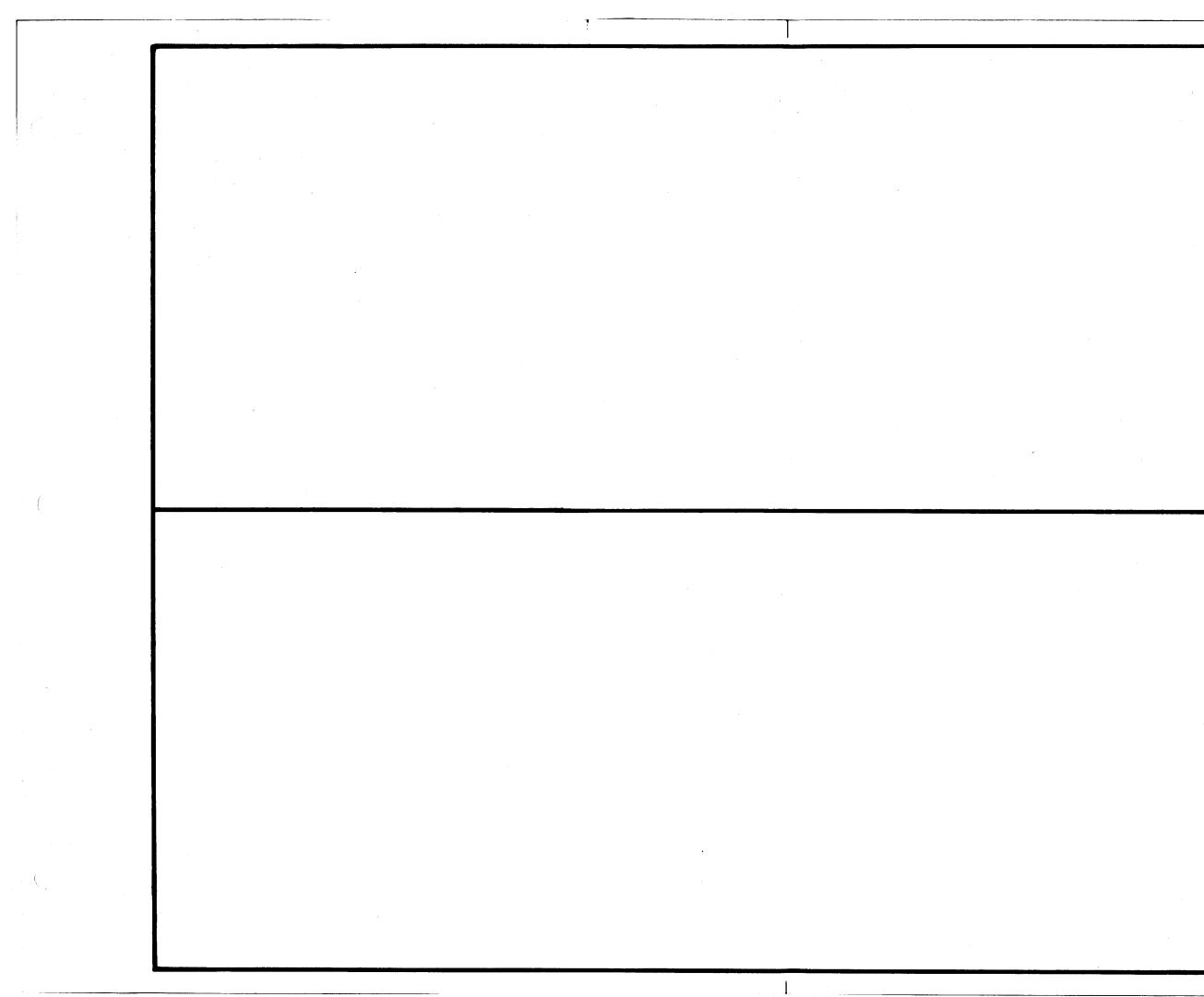

	13505 1300 1
·	LL [] − −]
	N2
	N3
	N4
	1350S 1300
	N1
	N2
	£3
	N4
	1
	N1
	N2
	N3
	N4
	N1
	N2
	N3
	N4

tivity ohm metres		N.T.S. 921-9	DWG. NO. 174-80-4
50 500 550 N			
		COMINCO	D LID.
120.	N1	AJAX-MONTE (ARIO PTY
0.	N2	AUAA MONTE	
	N3	KAMLOOPS	M.D., B.C.
	N4		
geability Mv / v		MINITAL RECOURCES BRANCH LINE NO. 29 LINE NO. 30	
150 500 550N		A POLE-DIPO	
3.2	N1		URATION
\$.B	N2		
	N3		= 50 m
	N4		
ivity ohm metres			TING POINT
50 500 550N	· · · · · · · · · · · · · · · · · · ·	CURRENT ELECTRODE NORTH_OF P	2,3,4 OTENTIAL DIPOLE
<u> </u>			
106.	N		:
1.	N2		
	N3	DAT	E SURVEYED_MAY 29,30,31, 1980
	N4	CONTOUR INTERVALS : APP. RES 1,1.5,2,3,5,7.5,10 ohm metres APP	
geability Mv / v		APP RES. $-1,1.5,2,5,5,7.5,10$ onm metres -1.7 APP CHARG -5.0 Mv/v	
150 500 550 N		DAT	Έ
- L		TRANSMITTER - HUNTEC 7.5 Kw.	CHARGEABILITY
4.0	N1	RECEIVER - SCINTREX IPR 8	STRONG MODERATE WEAK
5.6	N2		
	N3	INDUCED POLARIZATION AND	D RESISTIVITY SURVEY
	N4	SURVEYED BY COMINCO LTD., E	EXPLORATION DIVISION

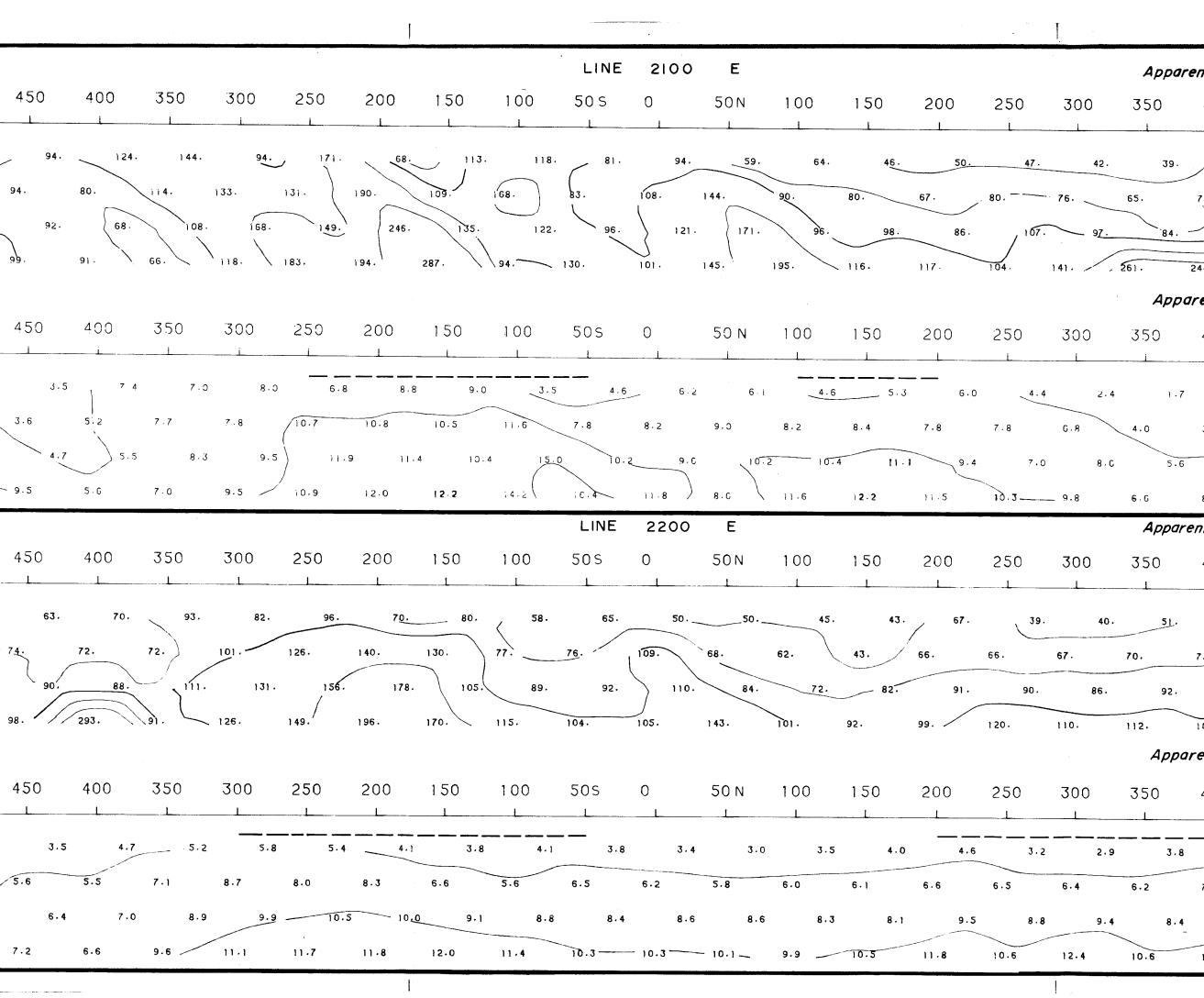
LINE 2700 E Apparent Resistivity ohm metr		T.S. 921-9	DWG. NO. 174-80-
400 350 300 250 200 150 100 505 0 50N 100 150 200 250 300 350 400 450 500 55	50 N J	COMINCO	LTD.
$51. 73. 64. 78. 65. 51. 54. 56. 62. 79. 71. 82. 94. 100. 94. 67. 115. 81. \\ 83. 66. 90. 62. 55. 74. 73. 69. 69. 79. 81. 80. 89. 104. 126. 99. 102. 108. \\ \hline \end{array}$		AJAX-MONTE CA	RLO PTY.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N3 N4	KAMLOOPS M.	D., B.C.
Apparent Chargeability Mv / 400 350. 300 250 200 150 100 50s 0 50N 100 150 200 250 300 350 400 450 500 55 		LINE NO. 2700 LINE NO. 2800 POLE-DIPOLE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N1 N2		
5 11.8 7.7 9.5 5.3 6.3 (12.0 13.1 14.5 14.4 16.0 17.0 16.9 15.9 17.0 16.5 13.2 11.8 17.3 12.1 8.4 8.2 6.5 8.0 11.4 14.8 13.9 15.1 16.7 16.0 16.7 17.1 17.7 17.8 12.3	N3 N4	x = 50 m	<u></u>
LINE 2800 E Apparent Resistivity ohm metre	es	PLOTTING n = 1, 2,3,	
400 350 300 250 200 150 100 50S 0 50N 100 150 200 250 300 350 400 450 500 55	50 N	CURRENT ELECTRODE NORTH OF POTEN	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 N2		
54. 71. 41. 34. 50. 79. 81. 88. 70. 80. 102. 97. 91. 127. 141. 130. 107. $76. 65. 70. 47. 40. 63. 103. 97. 112. 87. 95. 105. 97 106. 133. 144. 153.$	N4	CONTOUR INTERVALS :	RVEYED MAY 27,28, 198
Apparent Chargeability Mv /		APP. RES. — 1,1.5,2,3,5,7.5,10 ohm metres APPROVE APP CHARG. — 5.0 Mv/v	D
400 350 300 250 200 150 100 50S 0 50N 100 150 200 250 300 350 400 450 500 55	50 N	DATE	
			HARGEABILITY FRONG DDERATE
2.5 2.6 4.8 5.8 5.1 4.8 5.0 5.8 6.8 8.0 10.0 9.1 9.8 6.6 6.1 5.4 6.2 2.5 4.0 4.5 5.2 5.4 8.2 7.5 8.0 8.8 6.5 8.4 10.3 10.6 12.0 9.1 9.3 6.8	N1 N2	Ma W1	EAK
2.5 2.6 4.8 5.8 5.1 4.8 5.0 5.8 6.8 8.0 10.0 9.1 9.8 6.6 6.1 5.4 6.2		INDUCED POLARIZATION AND RES	EAK


.

LINE 2500 E Apparent Resistivity ohm metres	N.T.S. 921-9 DWG. NO. 174-80-6
450 400 350 300 250 200 150 100 50S 0 50N 100 150 200 250 300 350 400 450 500 550N	
	COMINCO LTD.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AJAX-MONTE CARLO PTY.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KAMLOOPS M.D., B.C.
Apparent Chargeability Mv / v	LINE NO. 2500 E
450 400 350 300 250 200 150 100 50S 0 50N 100 150 200 250 300 350 400 450 500 550N	A TERMENT REPORT POLE - DIPOLE
12.0 10.0 7.4 7.9 10.2 12.3 11.3 10.0 13.3 19.2 23.5 21.0 10.9 9.2 10.5 12.6 16.5 21.5 N1	ELECTRODE CONFIGURATION
16.4 14.6 14.1 11.5 11.4 11.1 13.2 13.6 14.2 19.2 14.4 16.8 18.3 14.9 13.8 12.3 15.1 16.5 21.0 N2	
16.6 15.0 16.0 13.7 11.0 10.4 13.0 14.5 12.2 9.8 15.5 20.5 18.0 14.4 16.5 19.3 17.5 $N-3$	x = 50 m
22.0 16.8 16.0 / 14.2 11.5 11.2 10.8 13.7 15.6 12.2 9.9 12.9 16.4 23.5 20.5 18.4 18.4 17.1 N-4	
LINE 2600 E Apparent Resistivity ohm metres	PLOTTING POINT n = 1, 2, 3, 4
450 400 350 300 250 200 150 100 50\$ 0 50N 100 150 200 250 300 350 400 450 500 550	CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE
95. 117. 141. 138. 171. 124. 139. 128. 106. 123. 84. 115. 103. 103. 86. 77. 98. 99. 113. N^{-1}	
	DATE SURVEYED MAY 25,26, 1980
3. 93. 154. 112. 106. 156. 121. 139. 103. 119. 121. 90. 136. 134. 105. 98. 106. 115. 127. N2 $- 99. 113. 118. 100. 90. 128. 112. 108. 115. 117. 124. 97. 128. 121. 97. 107. 115. 141. N3$	DATE SURVEYED MAY 25, 26, 1980 CONTOUR INTERVALS: APP. RES. — 1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG. — 5.0 Mv/v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CONTOUR INTERVALS : APP. RES
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CONTOUR INTERVALS : APP. RES.—1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG.— 5.0 Mv/v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CONTOUR INTERVALS: APP. RES.—I,I.5,2,3,5,75,IO ohm metres APPROVED APP CHARG.— 5.0 MV/V DATE TRANSMITTER — HUNTEC 7.5 KW. CHARGEABILITY RECEIVER — SCINTREX IPR 8 MODERATE WEAK
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CONTOUR INTERVALS: APP. RES

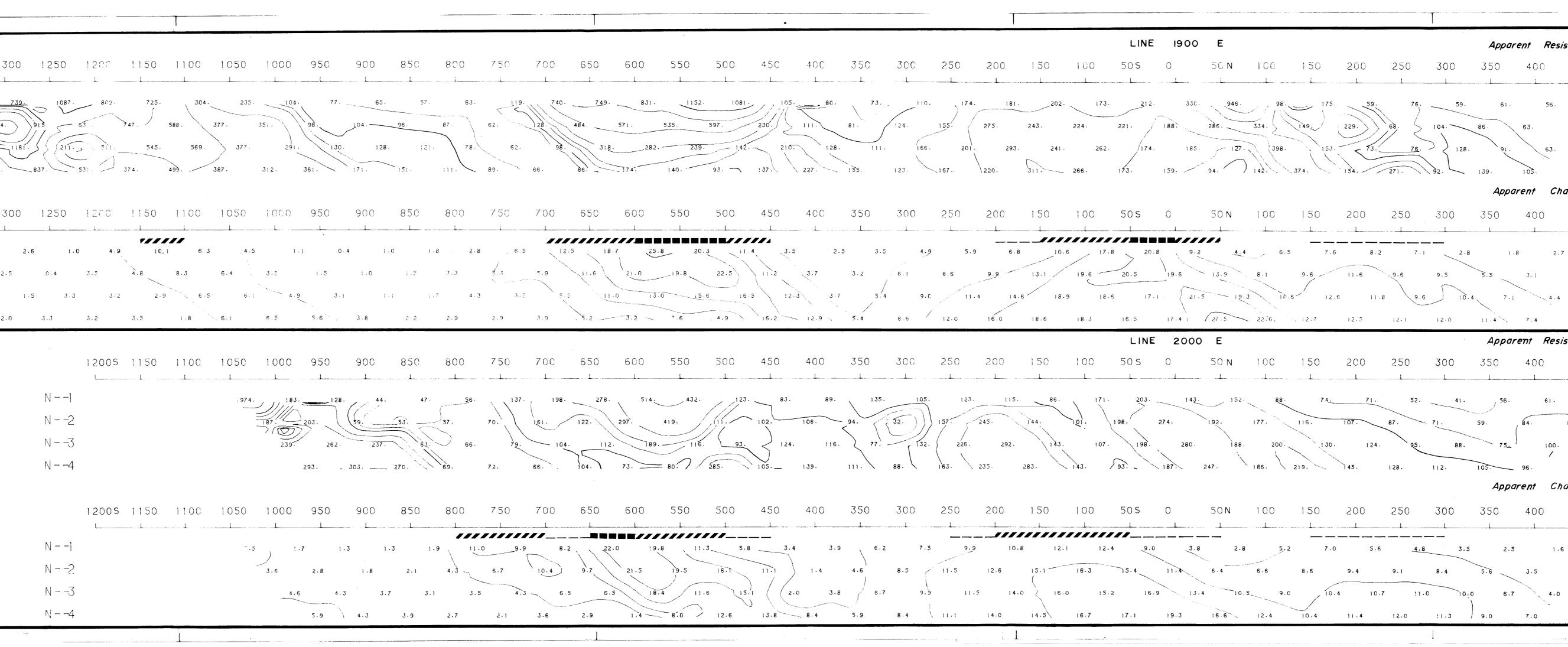

-

......


	 			l							· · · · · · · · · · · · · · · · · · ·		[
-		1200s	1150	1100	1050	1000	950	900	850	800	750	700	650	600 L	550	500	450
	N1				105.	57.	76.	59.	77.	82.	84.	73.	75.	74	. 89	. 66.	
	N2) 9 <u>5.</u>	-77.	79.	67.		- 101.	82.	86.	,	101.>		82.
	N3					129.	86.	93.	77.	97 .	92.	80.	95.			. 89.	\bigcirc
	N4						45.	101		- 11. //		83.	88 .	109.	1	_ 304.	93.
		1200S	1150 L	1100	1050	1000 L	950 L	900	850	800 L	750 L	700	650	600 L	550	500	450
	N1				3.5	3.5	6.3	3.0	2.6	6 2.5	5 2.2	2.4	۱ <u>۱</u> .	8 2	.8 3.	.3 4.	8
	N2					1.9	1.9	4.4	2.8	2.6	3.0	2.7	2.3	4.0	3.3	5.8	6.9
	N3					1.9	3.0	3.9	9 2.6	6 2.4	3.0) 2.9	. 4.2	2 3	.8 6.	4 7.	2
	N4						2.6	3.3	2.5	3.7	1.9	4.0	4.9	4.3	6.3	7 - 4	8.0
	 	12005	1150	1100	1050	1000	950	900	850	800	7 50	700	650	600	550	500	450
	N – –1																
	1 N 1				60.	60.	87.	95.	85.	, 105	. 78.	56.	121	• • • • • •	098	112	2.
	N2				60.	60 .	87.	95.	85. 87.	99.	. 78.	56. 85.	\langle		0. <u>98</u>	· 112 137.	
					60.				87.	99.	67. 78.	85.	205.	170.	137.	137.	140.
	N2				60.	55.	57.		87.	99.	67.	\searrow	205.	170.	137.	137.	140.
	N2 N3				60.	55.	57 .	77.	87 . 90 .	99.	67. 78.	85.	205.	170.	8. 14	137. 5. 126	140.
	N2 N3		1150	1100	60. 1050 L	55.	57 .	77.	87 . 90 .	99.	67. 78.	85.	205.	170.	8. 14	137. 5. 126	140. 5. 129.
	N2 N3		1150	1100	1050 L	55. 56. 1000 L	57. 57. 59. 950	77. 77. 60. 900	87. 90. 80. 850	99. 72. 73. 800	67. 78. 77. 750	85. 81. 88. 700	205: 63. 89. 650	170. 17 223. 600	137. 8. 14 191. 550	137. 5. 126 126. 500	140. 5. 129. 450
	N2 N3 N4	1200S	1150	1100		55. 56. 1000 L	57. 57. 59. 950	77. 77. 60. 900	87. 90. 80. 850 L 2 2.	99. 72. 73. 800 5 3.3	67. 78. 77. 750	85. 88. 700 4 3.6	205: 63. 89. 650	170. 170. 177 223. 600 L 600 8	137. 8. 14 191. 550	137. 5. 126 126. 500 1 5.3 17	140. 5. 129. 450 L
	N2 N3 N4	1200S	1150	1100	1050 L	55. 56. 1000 L 3.1	57. 57. 59. 950 1 4.1 2.0	77. 77. 60. 900 1 3.8	87. 90. 80. 850 1 2 2.9	99. 72. 73. 800 5 3.3 2.5	67. 78. 77. 750 1 2.8	85. 81. 88. 700 1 3.8 4.1	205: 63. 89. 650 6.8	170. 170. 17 223. 600 L 9.8 9.8	137. 8. 14 191. 550 1 .6 13 13.0	137. 5. 126 126. 500 1 5.3 17 18.6	140. 5. 129. 45(17.9
	N2 N3 N4 N1 N2	1200S	1150	1100	1050 L	55. 56. 1000 L 2.3	57. 57. 59. 950 1 4.1 2.0	77. 77. 60. 900 1 3.8	87. 90. 80. 850 1 2 2.9	99. 72. 73. 800 5 3.3 2.5	67. 78. 77. 750 1 2 2.8 4 4.5	85. 81. 88. 700 1 3.8 4.1	205: 63. 89. 650 6.8	170. 170. 17 223. 600 L 9.8 9.8	137. 8. 14 191. 550 1 .6 13.0	137. 5. 126 126. 500 1 5.3 17 18.6	140. 5. 129. 450 L 7.1 17.9

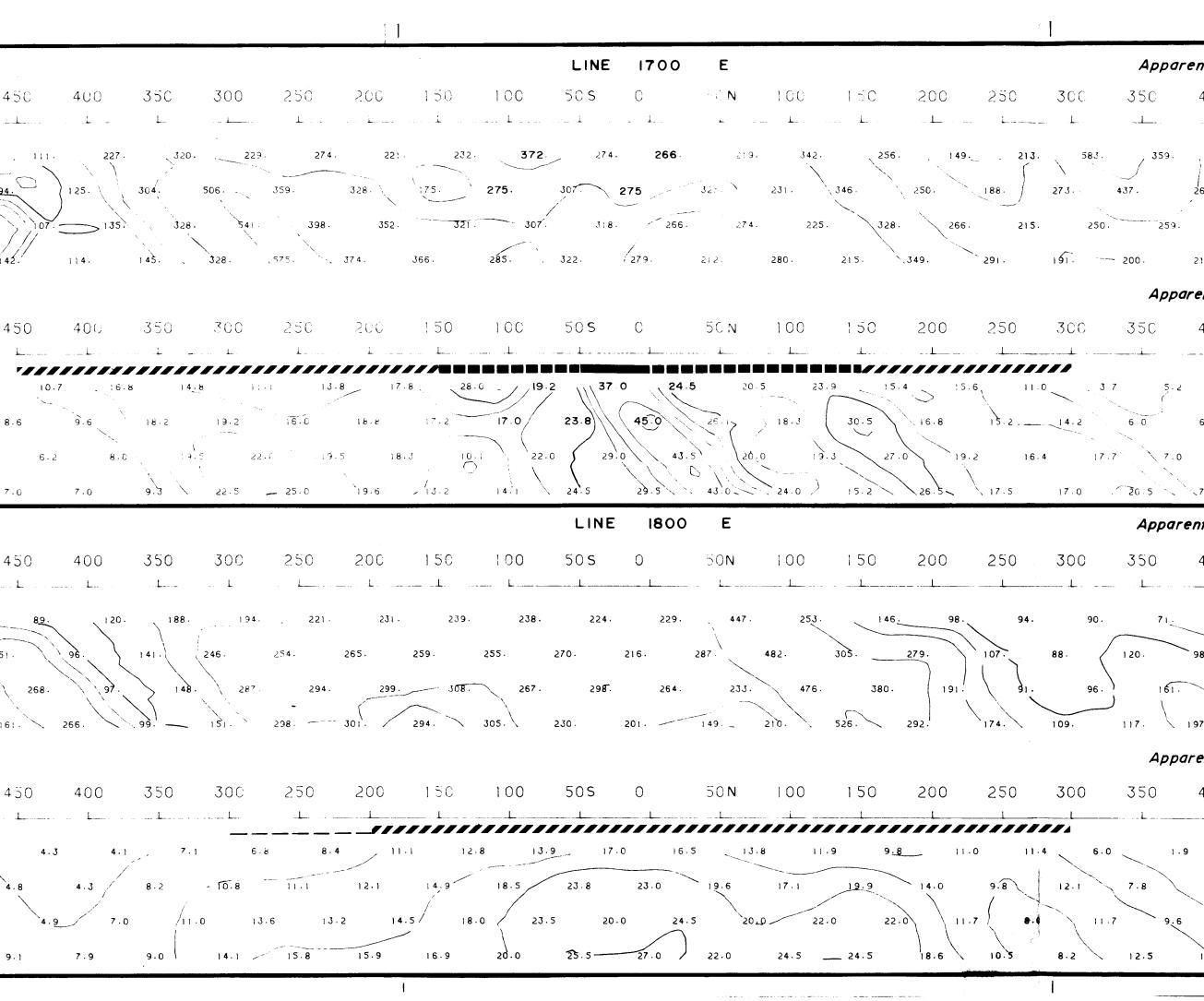
-	1	
nt Resistivity ohm metres		N.T.S. 92 - 9 DWG. NO. 174-80-7
400 450 500 550 N		
<u> </u>		COMINCO LTD.
97. <u>99</u> .	N1	A LAY MONTE CADLO DEV
5. 136.	N2	AJAX-MONTE CARLO PTY.
120.	N3	KAMLOOPS M.D., B.C.
5.	N4	KAMLOUI J MI.D., D.C.
ent Chargeability Mv / v	, Γ	LINE NO. 2300 E
400 450 500 550N		MNERAL RESOURCES BRANCH- LINE NO. 2400 E
7.9 12.0	N+-1	POLE - DIPOLE ELECTRODE CONFIGURATION
10.1 13.6		
13.6	N2	
	N3	x = 50 m
13.5	N⊦-4	PLOTTING POINT
t Resistivity ohm metres 400 450 500 550 N		n = 1, 2, 3, 4
-L		CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE
136. 128.	N1	
))5. 113.	N2	
83.	N3	DATE SURVEYED MAY 24,25, 1980
	N4	CONTOUR INTERVALS :
nt Chargeability Mv / v		APP RES — 1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG — 5.0 Mv/v
400 450 500 550 N		DATE
		TRANSMITTER - HUNTEC 7.5 KW. CHARGEABILITY
16.3 20.5	N1	RECEIVER - SCINTREX IPR 8 STRONG MODERATE
		WEAK TETTT
6.3 19.1	N2	
16.3 19.1	N2 N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY

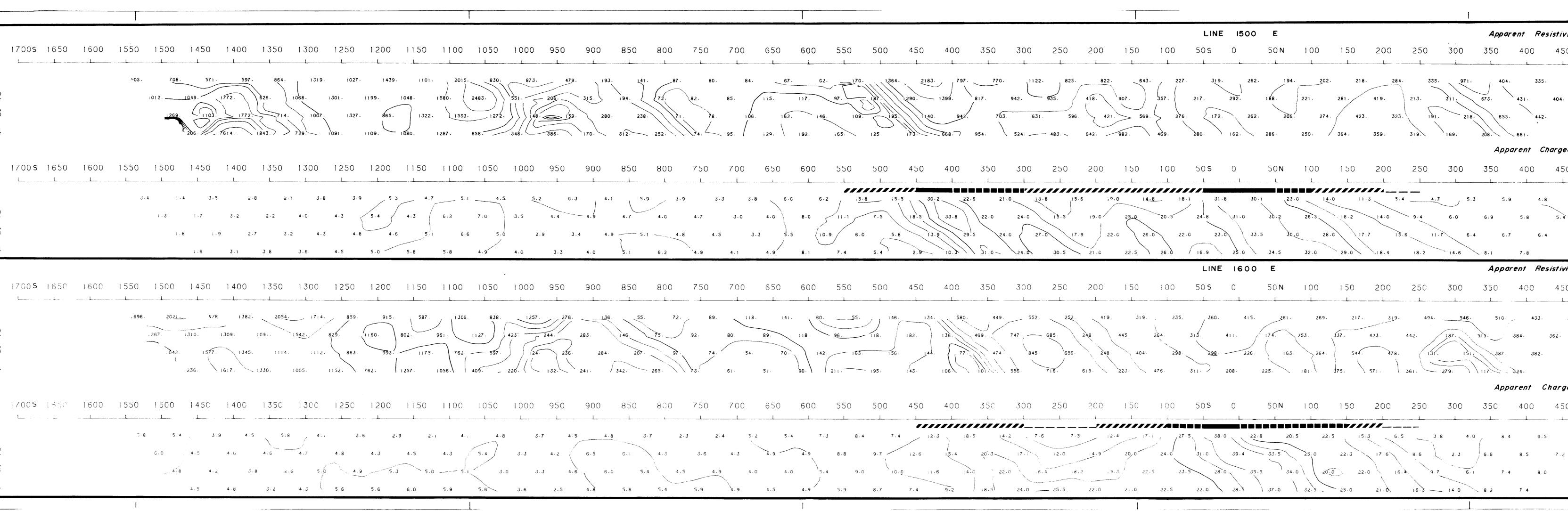
		12005	1150	1100	1050	1000	950	900	850	800 i	750	700	650	600	550	500	45
	N1		•		314.	184.	39.	40.	40.	72.	99.	86.	235.	170.	, 72.	71.	·
	N2					305.	315.		51	52.	113.	N/R	150.	210.	97.	80.	94.
	N3 N4				1282-	359.	423-	69. 	57.	63.	105	108'			. 97.	99.	
	N4		•		997.		4)9.	446.		67.	63.	93.	92.	61.	190.1	109.	. 99
		12005	1150	1100	1050	1000	950	900	850	800	750	700	650	600	550	500	45
,	N – –1	L				i	i	<u>l</u>	i	<u> </u>	I	<u> </u>					
	N2				3 · 4	2 - 4 3 - 2	0 i - 8	0,3	·6 i ·		/	/			.5 6.		
	N3				1.).9 ز.	4.5	6·4 5 6·	8.7	12.7	12.4 C	7.6	3.6
	N4				3.5		4.2	3.3	0	3.8	3.0	3.1	3.6	4.0	9.3	11.6	9.5
		1200S	1150	1100	1050	1000	950 L	900 L	850	800	750 L	700	650	600 L	550	500	450
	N1				133.	261.	. 84.	46		79.	63.	74.	68.	65.	65.	67 <i>.</i>	
	N2					106.	282.	117.	48.	65. L	96.	81.	82.	71.	72.	79.	74.
	N3				·) 29.	362	129	55.	<u> </u>	101	. 82.	83.	81.	79.	87.	. (
	N4					-	464.	357.	144.	58.	66.	03.	86.	91.	87.	84.	98. 1
		1200s	1150	1100	1050	1000	950	900	850	800	750	700	650	600	550	500	450
	N – –1	L	L ,	A	2. 7	2.7	1.	5 1.3	ـــــــــــــــــــــــــــــــــــــ		L						L .
	N2				2.1	2.7	3.5	2.5	4.3	2.3	4 2. 3.4	4 2.5 3.4	5 2.5	9 3. 3.7	2 2.: 3.7	5 3. 3.8	5.6
	N3					3.0											5
	N4						3.9	4.3	2.5	2.9	3.7	4.3	4.3	3.6	15.4	6.5	7.2
																	5



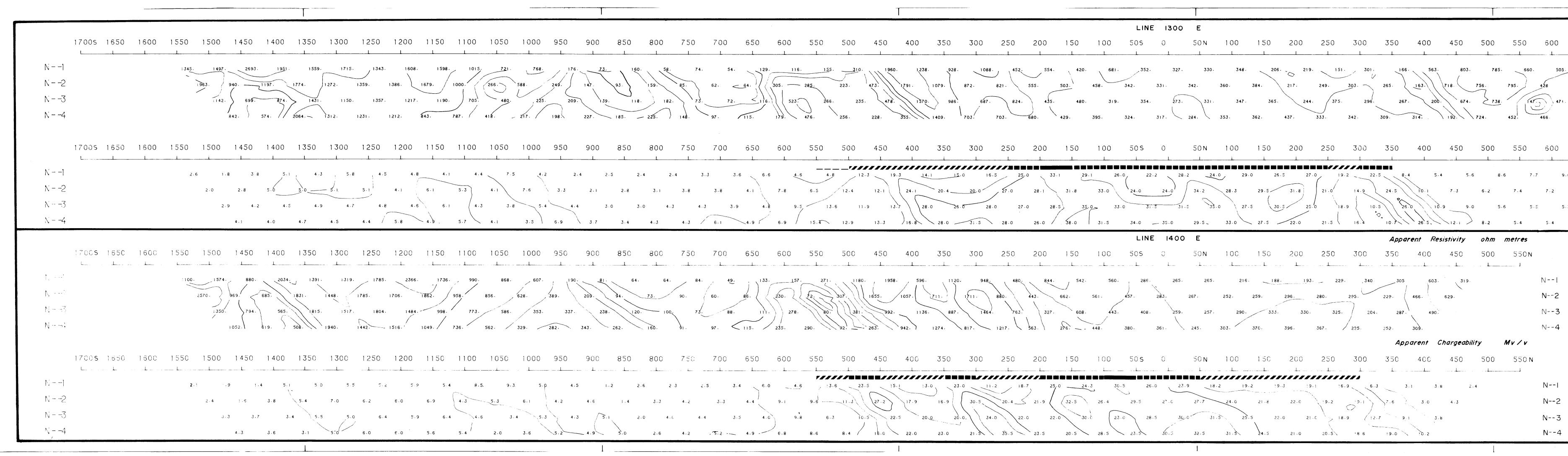
ent Resistivity ohm metres		N.T.S. 92 - 9 DWG. NO. 174-80-8
400 450 500 550N		COMINCO LTD.
75. 32.	NI	
78. 81.	N2	AJAX-MONTE CARLO PTY.
93.	N3	
244.	N4	KAMLOOPS M.D., B.C.
Arent Chargeability Mv / v 400 450 500 550 N		LINE NO. 2100 E MINIRAL RELOURCES BRANCH ALLEMENT REPORT POLE - DIPOLE
1.5 3.0	NI	ELECTRODE CONFIGURATION
3.1 4.0	N2	
6.5	N3	x = 50 m
8.1	N4	
400 450 500 550 N		PLOTTING POINT n=1, 2,3,4 CURRENT ELECTRODE <u>NORTH</u> OF POTENTIAL DIPOLE
61. 90.	N1	
73. 205.	N2	
102.	N3	DATE SURVEYED MAY 22,23, 1980
103.	N4.	CONTOUR INTERVALS :
rent Chargeability Mv / v		APP RES. — 1,1.5,2,3,5,75,10 ohm metres APPROVED APP CHARG — 5.0 Mv/v
400 450 500 550 N		DATE
		TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
4.5 5.8	N1	RECEIVER SCINTREX IPR 8 STRONG MODERATE
7.0 8.6	N2	WEAK 'IIIITII.
9.6	N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY
11.2	N4	SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

		17005 1650 L	1600	1550	1500	1450	1400	1350	1300
	N1			500.	540.	1408.	461.	636.	73
	N2				500.	838.	983.	468.	3384.
	N3				519.	786.	1003.	598 ·	
	N4					598.	811.	1176.	621
	N4	1700s 1650	1600 L	1550	1500	598. 1450			
	N		1600 L				1400 L	1350	1300
		1700s 1650	1600 L		l	1450	1400 L	1350 	1300
	N1	1700s 1650	1600 L		.7 0 0.8	1450 L .9 0.	1400 	1350 6 1. 1.9	1 3 0 (


• -

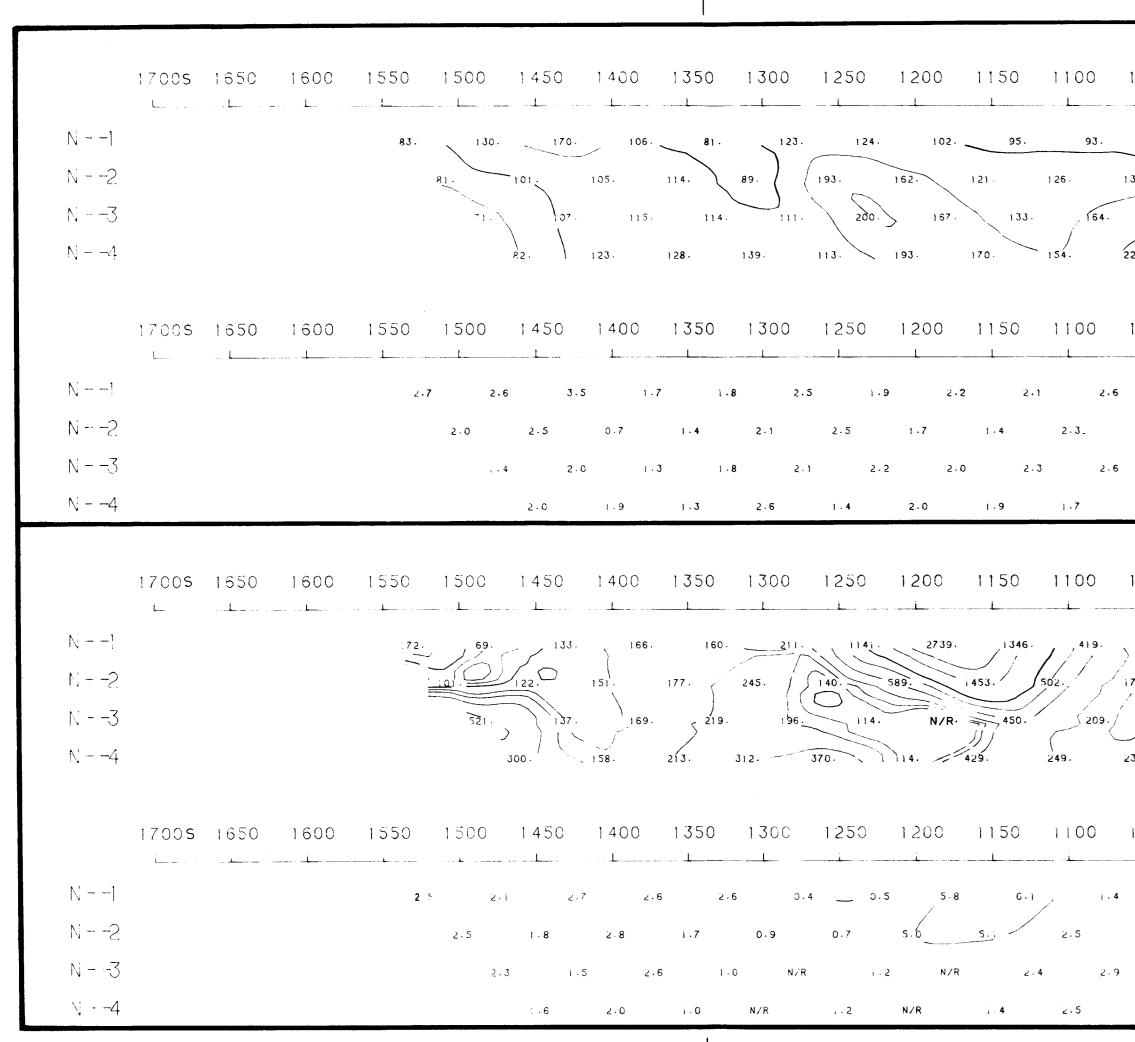

nt Resistivity ohm m	etres	N.T.S. 92 - 9 DWG. NO. 174-80-9
400 450 500	550N	
<u> </u>		COMINCO LTD.
56. 66.	N I	
. 48. \	N2	AJAX-MONTE CARLO PTY.
63.	N3	KAMLOOPS M.D., B.C.
5.	N 4	MANLOUFS MI.D., D.C.
t Chargeability M	<i>′∨ ∕ ∨</i>	LINE NO 1900 E
00 450 500	550 N	AINERAL RECOURCES BRANCH LINE NO. 2000 E
2.7 2.1	N1	POLE - DIPOLE ELECTRODE CONFIGURATION
-1 3.1	N2	$H_{1/2} + nx - x - 1$
х.	N3	
4.4	N4	x = 50 m
t Resistivity ohm m		PLOTTING POINT
450 500		n=1, 2, 3, 4 CURRENT ELECTRODE <u>NORTH</u> OF POTENTIAL DIPOLE
<u> </u>]	CONCENT ELECTRODE INCLUE OF FOTENTIAL DIFOLE
61. 49.	N1	
. 88.	N2	
100.	N3	DATE SURVEYED MAY 21,22, 1980
	N4	CONTOUR INTERVALS : APP RES — 1,1.5,2,3,5,75,10 ohm metres APPROVED
nt Chargeability Mu	/ / V	APP CHARG -50 MV/V
450 500	550 N	DATE
<u> </u>		TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
1.6 1.2	N1	RÉCEIVER SCINTREX IPR 8 STRONG MODERATE COMPANY CONTRESS OF CONTRES OF CONTRESS OF CONTRESS OF CONTRESS OF CON
5 2.8	N2	
4.0	N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY
.0	N4	SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

	1700\$ 1650 1600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 550 500 4	
	1011., 2040; 3383. 2639. 2898. 1830. 2362. 624. 589. 679. 150. 162. 52. 60. 44. 64. 71. 90. 89. 105. 69. 58.	,
	N = -2 $N = -3$ $N = -4$ N	94.
	N = -3 1476. 1136. 2247. 1816. 1477. 895. 827. 598. 264. 236. 234. 362. 107. 92. 62. 67. 68. 84. 98. 130. 467.	
	N = -4 1568. 1033. 1574. 1464. 1018. 837. 813. 233. 272. 259. 306. 456. 120. 95. 62. 57. 72. 105. 128. 552. 10	142.
	1700\$ 1650 1600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 550 500 4	
	$N = -1 \\ N = -2 \\ 1.0 \\ 1.0 \\ 4.4 \\ 4.1 \\ 5.4 \\ 5.4 \\ 4.3 \\ 1.0 \\ 4.6 \\ 3.4 \\ 5.4 $	
	$\sqrt{3}$	
	N4 2.5 3.5 3.9 4.3 3.0 4.6 2.9 2.1 3.3 5.1 6.5 7.0 1.7 2.9 3.6 4.0 4.4 4.5 5.3 5.0	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	450 L 251. 251.
	1700\$ 1650 1600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 550 500 4	
	N = -1 2.3 2.4 2.9 0.6 2.0 0.8 2.5 5.8 7.2 5.6 7.8 0.0 0.6 1.1 0.2 2.9 1.8 8.1 5.5 12.2 4.8	
	N = -2 1.8 1.6 1.7 0.2 0.7 3.0 4.1 8.0 3.0 5.0 N/R 0.3 1.3 0.4 1.0 2.3 1.8 4.8 3.4 7.5 9.4	4.8
-		
	N = -3 1.7 0.6 1.5 0.5 3.1 4.1 5.4 1.7 2.4 5.2 9.8 2.0 0.0 0.0 1.9 1.0 3.6 2.4 3.5 6.1 8.8	

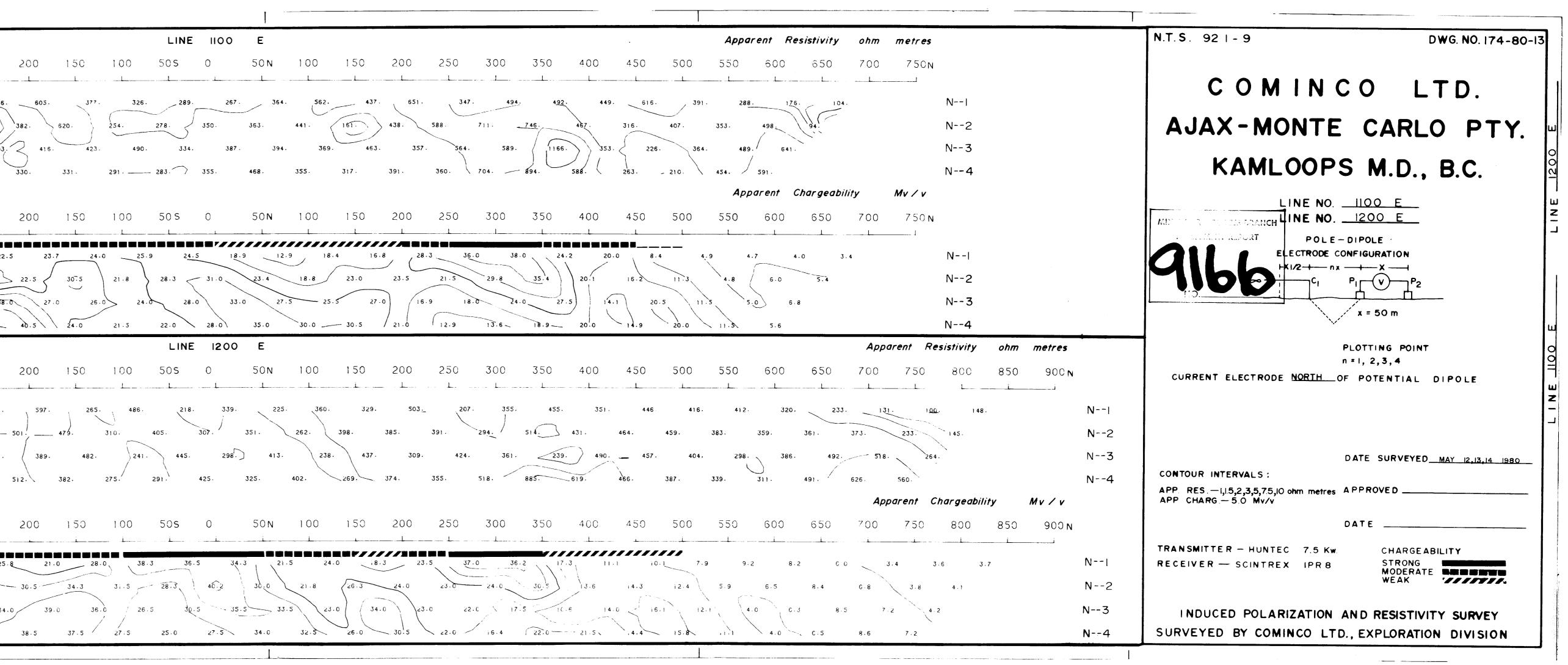


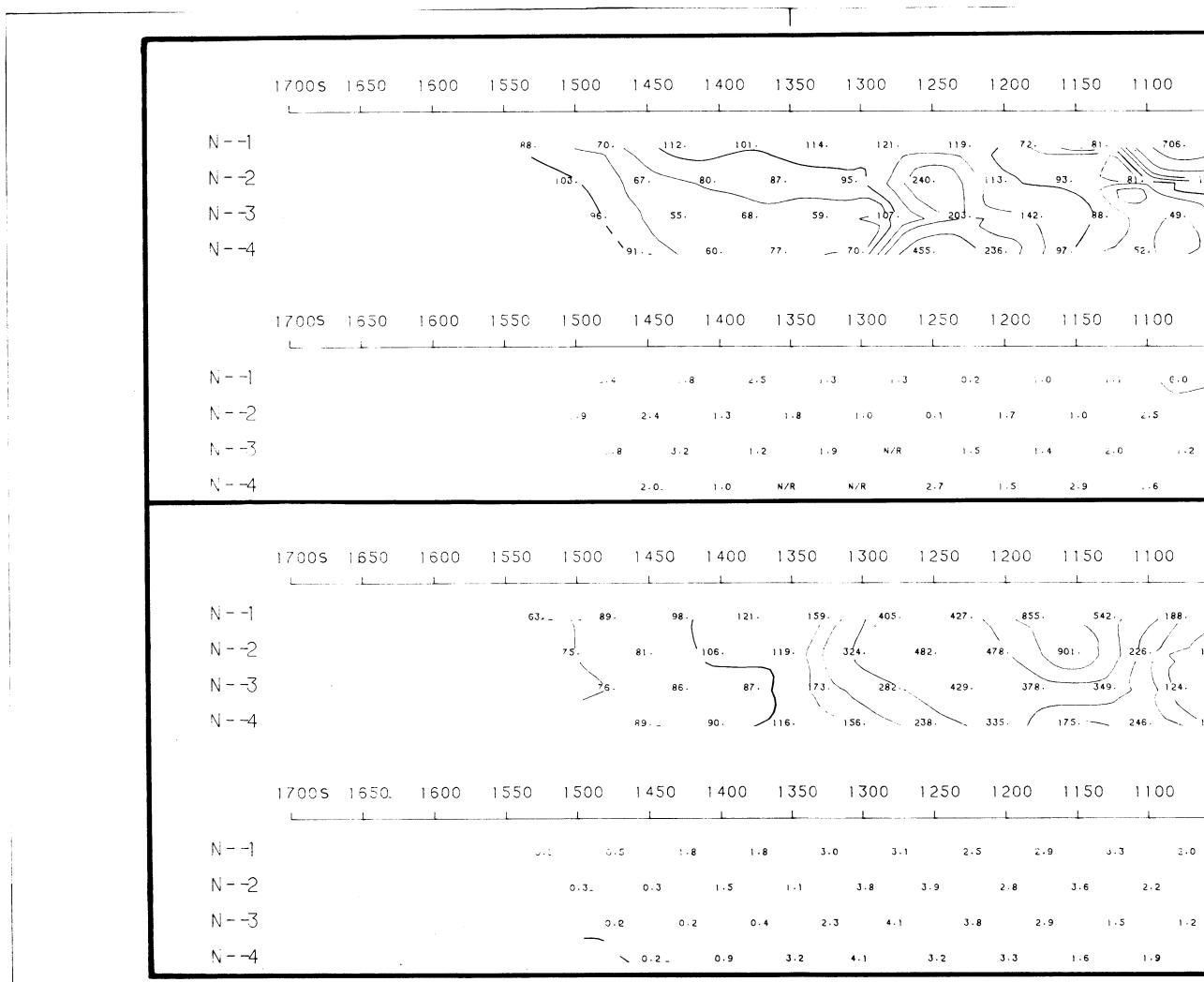
Apparent Resistivity ohm me	otres	N.T.S. 921-9 DWG.NO.174-80-10
	50 N	
	N1	COMINCO LTD.
359. 196. 187. 	N2	A LAY MONTE CADLO DTY
252. 134.	N3	AJAX-MONTE CARLO PTY.
217.	N4	KAMLOOPS M.D., B.C.
ApparentChargeabilityMv5C40045C500111	550	MINITY AND URCES BRANCH LINE NO. 1700 E ASSECTIMENT REPORT LINE NO. 1800 E
5.2 7.1 7.4	NI	POLE - DIPOLE ELECTRODE CONFIGURATION
6.3 5.1	N2	$\frac{1}{1} + \frac{1}{2} + \frac{1}$
7.0 4.2	N3	
5 7.2	N4	x = 50 m
Apparent Resistivity ohm me	etres	PLOTTING POINT
60 400 450 500	550 n	n=1, 2,3,4 CURRENT ELECTRODE <u>NORTH</u> OF POTENTIAL DIPOLE
		
71. 50. 46.	NI	
98. 73.	N2	
161. 123.	N3	DATE SURVEYED MAY 19,20, 1980
197.	N4	CONTOUR INTERVALS :
Apparent Chargeability Mv	/ v	APP RES. — 1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG. — 5.0 Mv/v
50 400 45 0 500	550 N	DATE
		TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
1.9 1.5 1.8	N1	RECEIVER SCINTREX IPR 8 STRONG MODERATE
2.6 2.4	N2	WEAK 'JJJJJJ.
9.6 3.6	N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY
.5 10.4	N4	SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

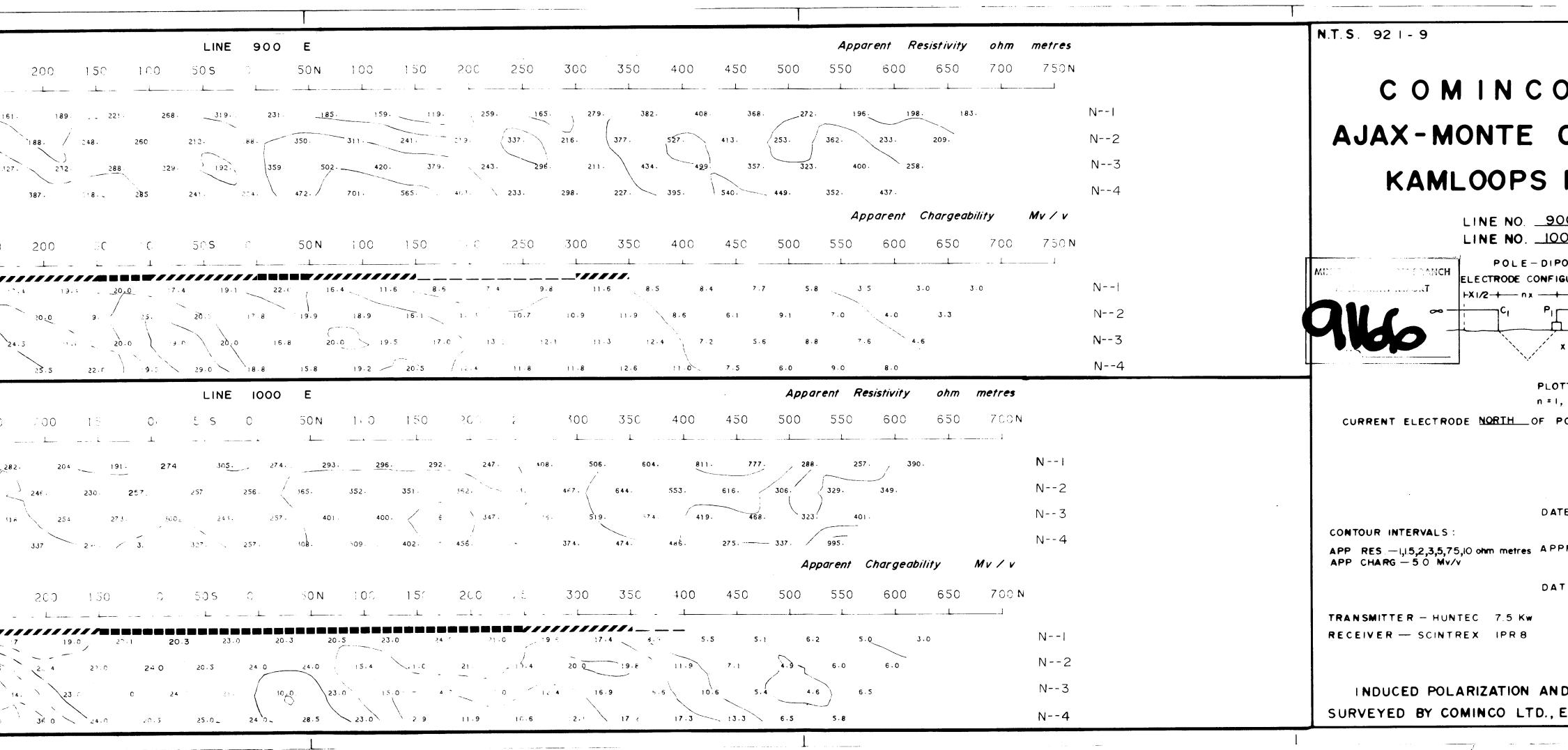
N - -1 N - -2 1012. _____1049 N - -3 N – –4 N – –1 3.4 1.4 3.5 2.8 2.1 3.8 3.9 5.3 4.7 5.1 4.5 N - -2 N - -3 1.8 1.9 2.7 3.2 4.3 4.8 N - -4 N - -11696. 202<u>1.</u> N/R 1382. 2054. 1714. 859. N - -2 N - -3 N - -4 N - -1N - -2 6.0 4.5 4.6 4.7 4.8 4.3 4.5 4.3 5.4 N - -3N - -4

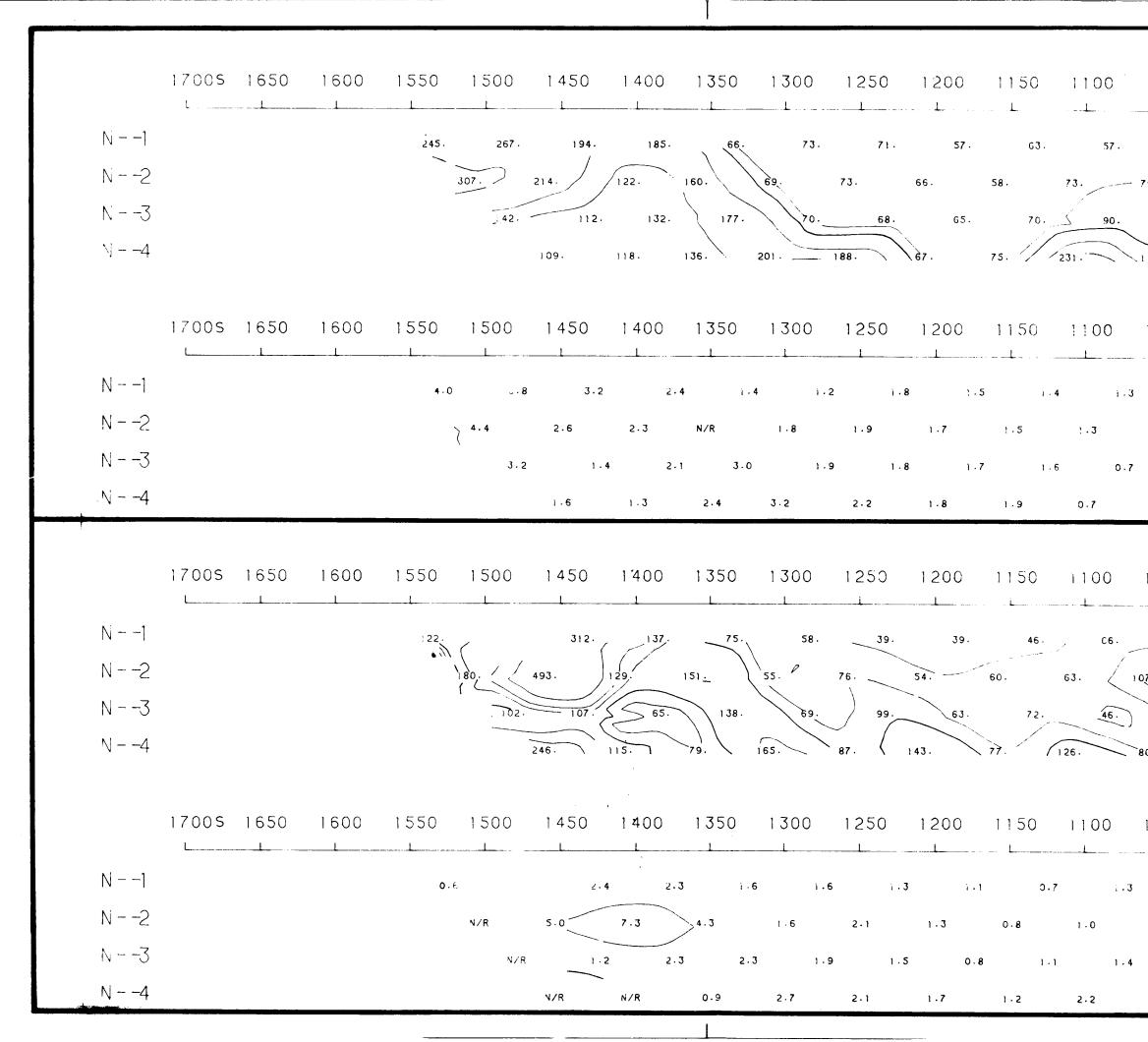


Pesistivity ohm metres		N.T.S. 92 - 9 DWG. NO. 174-80-11
450 500 550N		
35. 347.	N1	COMINCO LTD.
404.	N2	AJAX-MONTE CARLO PTY.
¥2.	N3	
	N4	KAMLOOPS M.D., B.C.
Chargeability Mv / v		LINE NO. 1500 E
450 500 550 n		ALL A THE BRANCH LINE NO. 1600 E
1		POLE - DIPOLE
2.6	N1	ELECTRODE CONFIGURATION
5.4	N2	
. 4	N3	x = 50 m
	N4	Y
Resistivity ohm metres		PLOTTING POINT n = 1, 2, 3, 4
450 500 550 n		CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE
	N1	
X	N2	
362.	N3	DATE SURVEYED MAY 16,18, 1980
	N4	CONTOUR INTERVALS :
Chargeability Mv / v	N4	APP RES
450 500 550 N		DATE
		TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
5.5 7.1	N!	RECEIVER SCINTREX IPR 8 STRONG MODERATE CHARGEABILITY
7.2	N2	WEAK 'TTTTT.
- O	N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY
	N4	SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

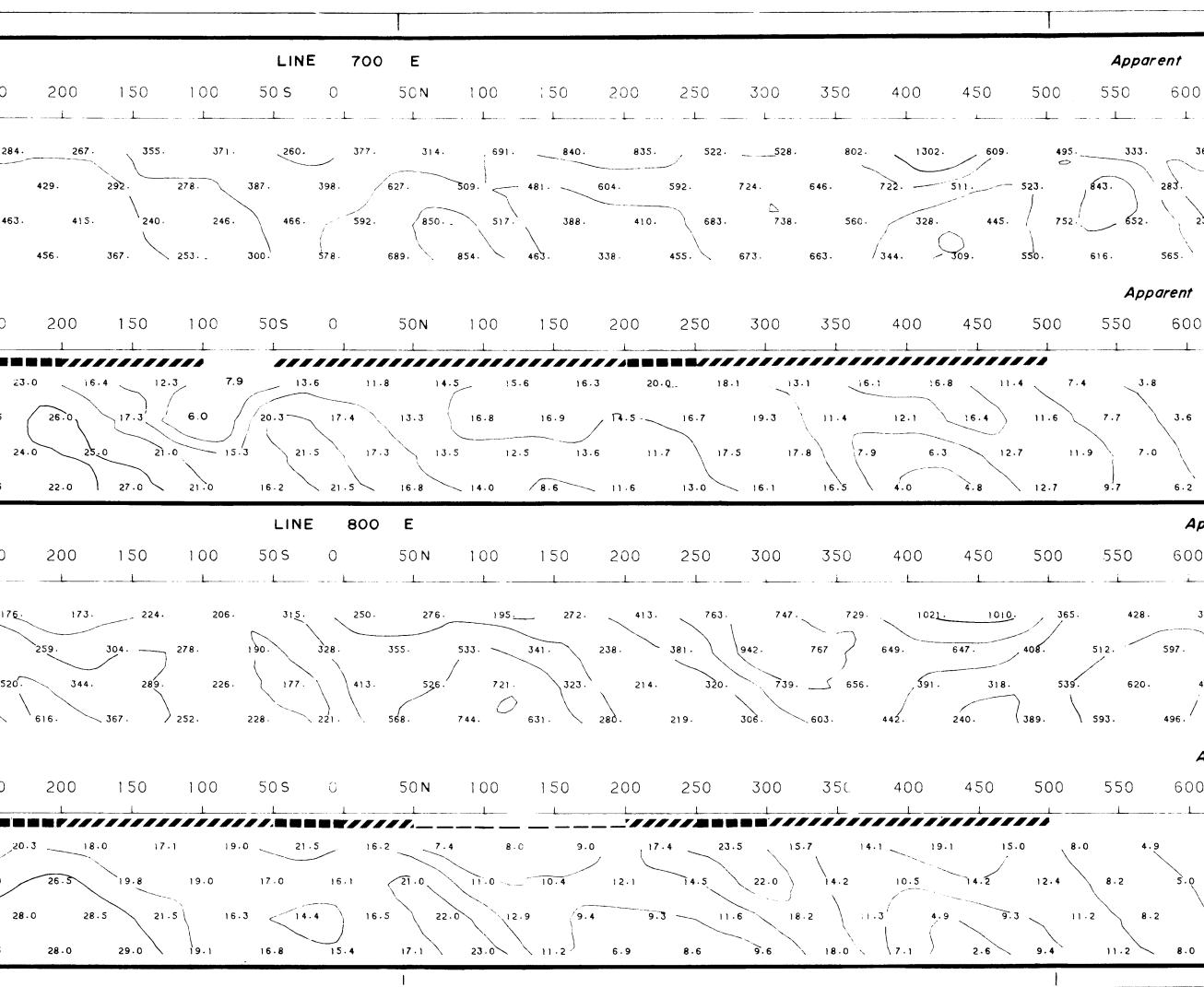

	Арра	rent	Resistiv	vity	o hm	metres	
С	650	700	75	0	800	850N	
	1	L	L	· · · · · · · · · · · · · · · · · · ·	1	J	
505.	432.	2	275.	244.			N I
	452.	383.	285.				N2
47).	408	3	342.				N3
:	3617	330.					N4
	Арра	Irent	Chargea	bility		Mv / v	
0	650	700	75	0	800	850 N	
	l	<u> </u>	L		<u>L</u>]	
9.0	4.	7	4.4	4.0			NI
	8 - 2	4.9	4 - 8				N2
5.7	8 .	0	5.5				N3
	6 - 0	8 - 2					N


N.T.S. 92	I - 9	DWG. NO. 174-80-12
c	OMINCO	D LTD.
	X-MONTE	CARLO PTY.
ł	KAMLOOPS	M.D., B.C.
	POLE-DIP ELECTRODE CONFIN HX1/2 nx + C1 PIT XX PLO n = 1	$\frac{20 \text{ E}}{\text{SURATION}}$ $\frac{1}{\sqrt{1-2}}$
CONTOUR H	NTERVALS :	E SURVEYED MAY 14,15, 1980
APP RES - APP CHARC	-1,1 5,2,3,5,75,1 0 ohm metres APF 3 — 5 0 Mv/v 0 A	T E
		CHARGEABILITY STRONG MODERATE CONSTITUTE WEAK '0000000000
	CED POLARIZATION AN ED BY COMINCO LTD.,	D RESISTIVITY SURVEY EXPLORATION DIVISION

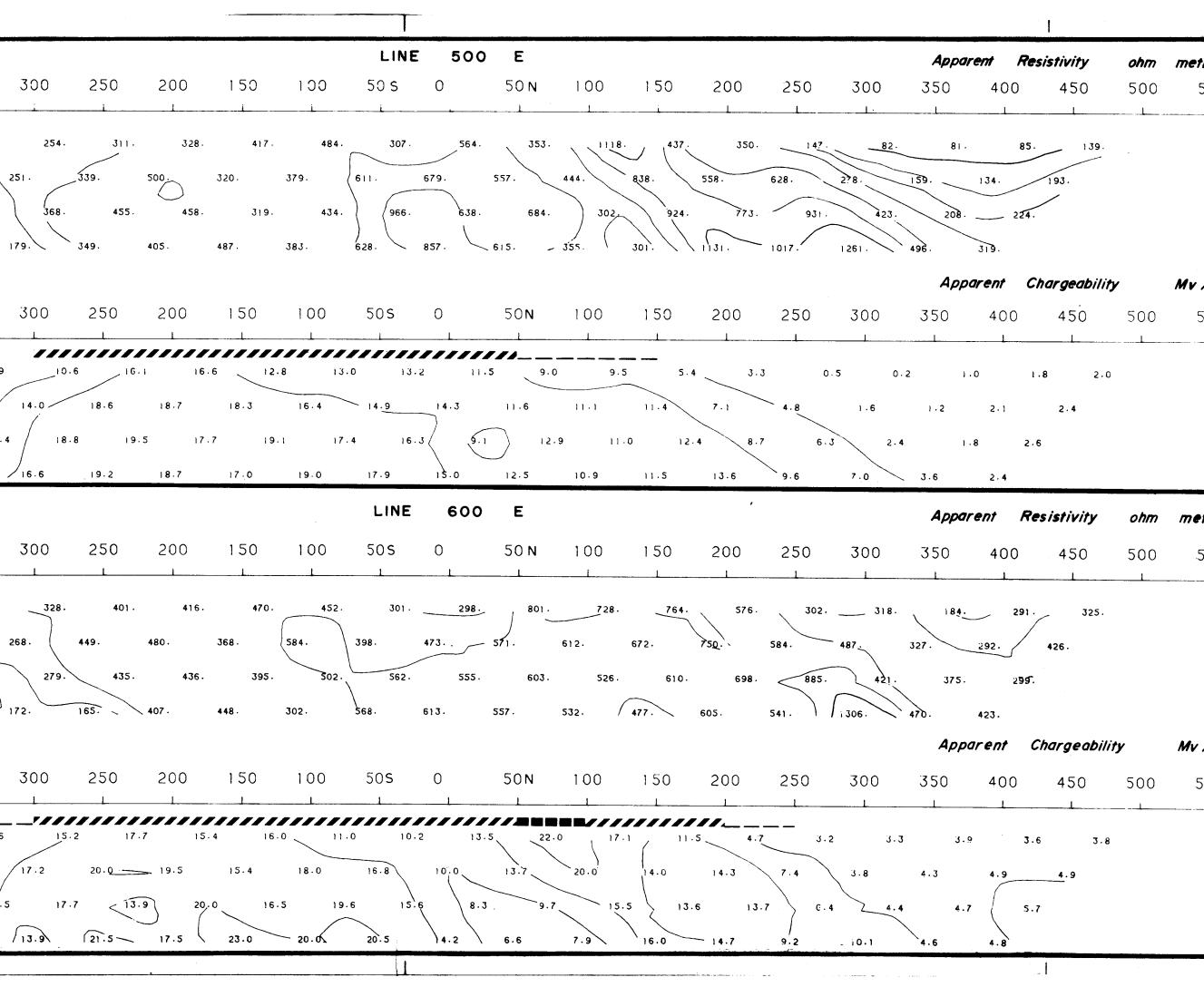

	· · · · · · · · · · · · · · · · · · ·		I													
1050	1000	950 	900	850	800	750	700	650	600	550	500	450 L	400	350	300	250
71.		96.	\backslash $/$				91.		265.	268.	5184	3060	662.	576. 801.	342.	446.
134. 198. 224.	127 · 143 · 235 ·	123. 109 148.	92. 75.	138.	118. 106. 119.	87.		262		161.	475: 3333 - 146:	1332	$/(\langle$	\bigcirc	650. 580.	3 03. 47 1.
1050 L	1000	950	900	850	800 L	750	700	650	600 L	550	500 l	450	400	350 L	300	250
2.4	0 i.	4 1 2 · 2	·4 2 1·4	.) 2. J.8	4.3	.2 4 4.3	.4 6.6 3.6	6 G	·1 4	13.4		.5 65	40.5	.5 56	.0 34.	2 22.5
2.1	6 2. 3.7	8 3	.6 3 3.8	.0 4.	.3 3	.5 2	3.9 4 3.2	4.9	8 12	9.0.	.0 23	.0 31	.5 38 29.5	.5 38 36.5	34.5	46.0
1050	1000	950	900 L	850 L	800	750	700	650 L	600 L	550 L	500	450	400	350	300	250
176.	110.	69. 129.	26.	96.	68. 89.	92.	83.		306.	248 366.		210.	983.	. 591.	5 4 3.	417. 513. 5 551. 571. 5
239.	246.	- 236.	72.	79.	124	121.	. III 169.	. 154	234.	539.	452.	307.	782.	735.	929. 540.	551.
1050	1000	950 	900	850	800	750 L	700	650	600 L	550	500	450	400	350	300	250
3.6	5 2.	4 i 2.3	.8 2 2.1	3.1	.6 3 J.S	·6 5.	1 3	· 8 7 · 1	8 4 . 9.1	3 3	.8 i0	.8 22	.4 33	.0 	.8 39.	0 25.8 31.7 .0 34.0 35.5
) 2. 3.4	.9 2. 3.7	2 2 - 6	· 8 2	- 8 3 - 4 - 0	. 3 3 4. 0	.0 4.	s.5	5. 6.0	i 8.	4 11	.3 13	.3 14	.5 24	23.5	.5 33. 29.5	.0 34.0 35.5
					· · · · · · · · · · · · · · · · · · ·											

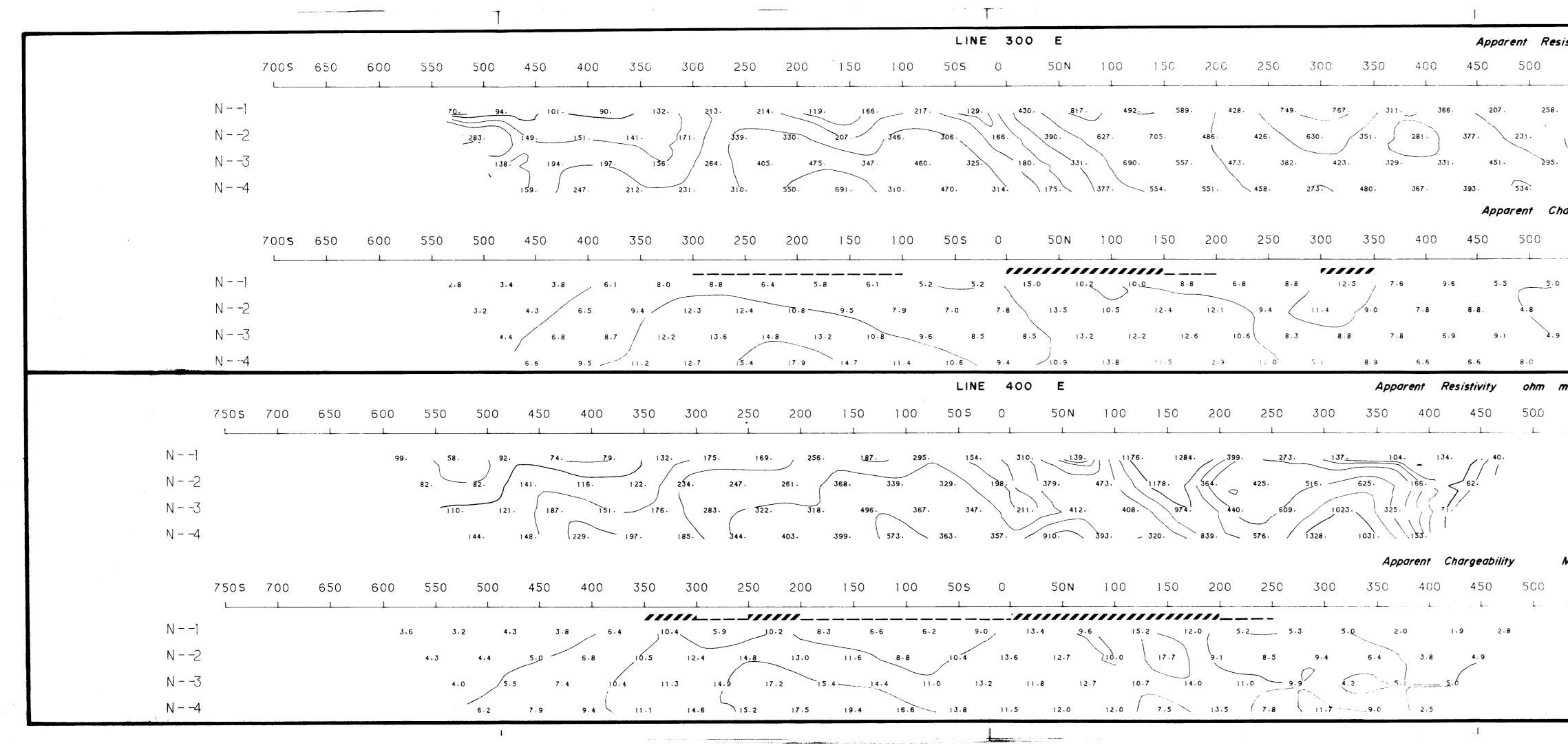


	I	genergen en som er standen at dette standen at de som d					ī —				<u></u>			<u></u>	
	I						1			<u></u>			LINE	900	E
	900 850	800 750	700 650	600	550	500 450	400	350	300 25) 200 L	150	100	50S) 	50 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69. 65. 73. 78. 8. 65. 81. 145. 68.	5. 93. 99. 80. 118. 90. 83. 121 90. 89.	<u>98</u> . 119. 73. 99.	79. 81. 67. 80. 84.	94. 105. 111. 96.	.180. 26 103. 207. .107. 22 124. 125.	9. 268. 356. 7. 358. 215.	249. 316. 307. 356.	262 86. 298. 293. 45. 300.	161. 189 188. / 127. 232 387.	248.	268 - 260 229 - 285	319. 212. 192. 241.	231 .88. 359. 224.	<u>185.</u> 350. 3 502. <u>-</u> 472. 7
	900 850	800 750	700 650	600	550	500 450	400	350	300 25	0 200	: -	· C.	50 S	C	50 N
3.4 2.8 2.0 2.7 3.5 4.2 1.9 2.8 2.2 N/R 3.2	2.0 1.9 2 2.0 2.0 2.9 2.4 2 4.0 2.0	2.6 2.8 3. 2.8 3.3 2.4 3.4 3. 2.8 3.2	1 3.5 4.0 2.8 6 2.0 3.4 3.1	4.0 5.1 4.3 3.9 6.3 5.8	7 . 4 7 . 4 9 . 4 8 . 0	14.5 12.1 13.2 11.6 13.6	9.8 21 22.0 8.9 24	0 17.1 25.0 0 30.5	15.1 24.5 30.5 30.5	24.5	9. · · 20. 9. · · 20. 22. c	25. .0 .9.5	4 19-1 20-3 20-0 29-0	22.0 17.8 16.8	16.4 19.9 20.0
													LINE	1000	E
	900 850	800 750	700 650	600	550	500 450	400	350	30 0 2 -	0 200		0	LINE 5 S	1000 0	E 50 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	900 850	800 750	700 650	600 L	550	500 450	400	35C	300 2 ·	0 200	13	0,	LINE 5 S	1000	E 50 N
<u></u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800 750 9. 107. 113 180. 170. 6. 193. 167 97. 156.	700 650 167. 151. 55. 83. 96. 112.	39. 80 75. 83. 90 93.	550 1 122. 146. 104.	500	400 8 . 251 449 . 0 . 49 4 5 14.	350 	30(. 2 · 	0 200 282. 20 246. 118 25 337	1 5 4 191 - 230 - 4 27 3 - 2	0 257. 	LINE 5 S 	1000 0 274. 256. 257. 257.	E 50 N 1 293. 365. 3 401.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800 750 9. 107. 113 180. 170. 6. 193. 167 97. 156. 800 750	700 650 1 167. 151. 55. 83. 96. 112. 700 650	600 39. 80 75. 90 93. 600	550 L 69. 122. 146. 104. 550	500	400 8 . 251 449 . 0 . 49 4 5 14. 4 00	350 	300 2 4 - 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5 4 191. 230. 4 27 3. 2 1 50	0 1 274 257. 300.	LINE 5 S 305. 257 243. 327. 50 S L	1000 0 274. 256. 257. 257.	E 50 N 1 293. 365. 3 401. 308. 5 50 N 1

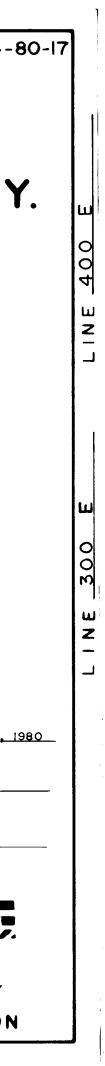


Resistivity ohi	m metres	N.T.S. 92 - 9 DWC	G. NO. 174-80-1
) 650 70	0 750 N		
198. 183.	NI	COMINCO LT	D.
209.	N2	AJAX-MONTE CARLO	PTY.
258.	N3		
	N4	KAMLOOPS M.D., B	B.C .
Chargeability	Mv / v	LINE NO. 900 E	
650 70	0 750N	LINE NO. 1000 E	
3.0 3.0	NI	MELTING OTERANCH ALLENTING T HX1/2 + nx - + X	
3.3	N2	$ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} $	
4.6	N3	X = 50 m	
	N4		
y ohm metre	es	PLOTTING POINT n = 1, 2,3,4	
	0 N	CURRENT ELECTRODE NORTH OF POTENTIAL DI	POLE
390.	N I		
	N2		
	N3	DATE SURVEYED M	AY 10,11, 1980
	N4	CONTOUR INTERVALS : APP RES 1,1.5,2,3,5,75,10 ohm metres APPROVED	
ability Mv /	V	APP CHARG - 5.0 Mv/v	
650 70	0 N	DATE	
i		TRANSMITTER - HUNTEC 7.5 KW CHARGEABIL	ITY
3.0	N1	MODERATE I	NR 11 (1977).
	N2		
	N3	INDUCED POLARIZATION AND RESISTIVITY	
	N4	SURVEYED BY COMINCO LTD., EXPLORATION	DIVISION

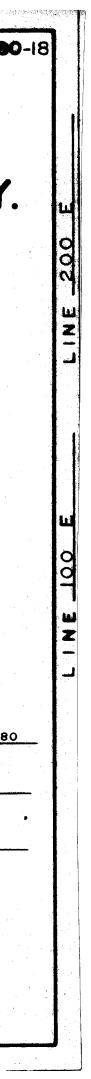

10.50 1000 9 1 1 7. 52. 58. - 79. 80. 57	950 900 850 46. 7. 62. 50. 63.	800 750 1 1 5. 85. 80. 81. 71.		L	0 450 400 	350 300 250
7. 52. 58. 	46. 102. 75 7. 62. 117. 60. 63. 10	5. 85. 80. 81. 71.	79. 59.	<u> </u>	74. 118	k
79. 80. 57	7. 62. 117. 60. 63. 10	81. 71.				255. 275. 284.
). 102. 74.	\sim	06. ¹ 66. 66.	68. 88. 79. 113.	83. 75. 69. 94. 97.	90. 141. 158.	287. 294. 356. 221. 336. 463.
93. 80	0. 68. 59	96.	77. 100.	144. 134. 118.	106. 114.	1 43 . 262. 359.
i050 1000 9	950 900 850	800 750				
1.3 0.6 0.6 1.0 0.8		2.4 0.8 2.4 0.9 2.2	-0.1 2.8			2.4 i 3.6 20.5 23 19.0 21.5 22.5 5.8 23.5 20.5 24
0.7 1.2 1.8		2.6 -0.5			8.4 11.2 15	5.8 23.5 20.5 24 18.3 22.5 22.5
1050 1000 9	950 900 850	800 750	700 650	600 550 500	0 450 400	350 300 250
· <u>75</u> . 60.	90. 69. 77	. 72. 86.	77. 74.	68. 59.	110. 184. 437.	251. 325. 176.
105. 116. 80. 114. 112	83. 101. 70 2. 82. 108.	76. 86. 72. 82.	93. 79. 103. 91.	96. 96. 122. 107.	90. 120. 148. 191. 145.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1050 1000 9		800 750			0 450 400	350 300 250
·····	·		<u>↓</u>	<u> </u>	L	
1-8 1-4	1.7 2.0 1.7	2.1 2.2	2.4 3.5	3.3 4.0 7.3	. 11.1 13.8	17.8 20.0 23.0
1.4 1.6 1.6	1.8 1.4 2.0 1.6 2.4	2.4 2.2 1.9 2.9 2.0	3.0 2.7 3.5 2.6	7.6	11.5 15.0 18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
						· · · · · · · · · · · · · · · · · · ·

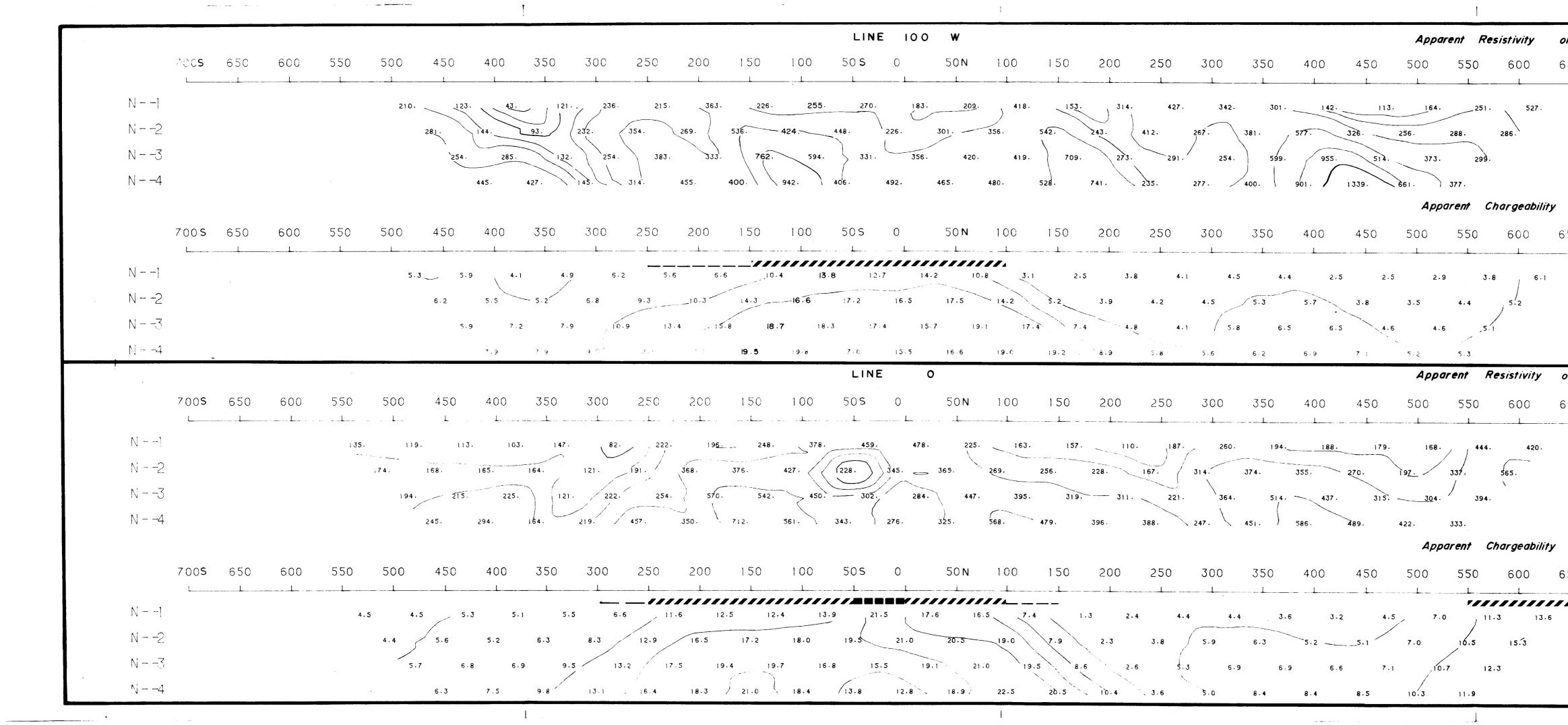

Apparent Resistivity ohm metres	N.T.S. 921-9 DWG. NO. 174-80-15
550 600 650 700 750 n	COMINCO LTD.
333. 368. 704. NI	
43. 283. 226. N2	AJAX-MONTE CARLO PTY.
652. N3	KAMLOOPS M.D., B.C.
N4	
Apparent Chargeability Mv / v 550 600 650 700 750 N	LINE NO. 700 E MINER OF DE DE DES BRANCH LINE NO. 800 E POLE DIPOLE
3.8 3.9 4.8 NI	ELECTRODE CONFIGURATION
7.7 3.6 3.8 N2	
7.0 2.4 N3	x = 50 m
9.7 6.2 N4	
Apparent Resistivity ohm metres	PLOTTING POINT n = 1, 2, 3, 4
550 600 650 700 750 800 N	CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE
428. 380. 293. 285.	-1
12. 597. 211. 244.	-2
620. 417. 162.	3 CONTOUR INTERVALS :
	APP RES -1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG - 5.0 Mv/v
Apparent Chargeability Mv / v 550 600 650 700 750 800 N	DATE
	TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
4.9 3.2 4.5 3.4	RECEIVER - SCINTREX IPR8 MODERATE WE MODERATE WE AK
8.2 5.0 4.2 5.5	2
8.2 4.4 4.5	3 INDUCED POLARIZATION AND RESISTIVITY SURVEY
11.2 8.0 4.3	4 SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

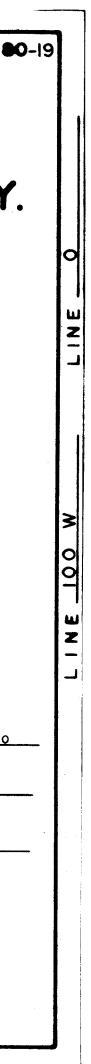
				I		·					
							650 60				350
						N1	ł	66		. 82	116. , 210.
	·					N2			90. 93		159.
						V			124.	146. 15	5864.
						N4			188	8. 166.	148.
						700	650 60	0 550	500 4	450 400	350
						N!	<u> </u>				
						N = -2		2		4.2	4.4 6
						N3 N4			<u>4.7</u> <u>6.2</u>		7.5
1700s 1650 N1 N2 N3 N4	i i i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	LL	850 800 . 74. 67 64. 88. . 55. 94 50. 59.	7 50 7 00 1 1 . 75. 5 84. 89. . 90. 9	<u>l</u>	53. 65 77 100 10	. 57 . 73. 80	450 400	350 53. 27 226. 62. 16
N1 N2 N3 N4 1700 1650	$535. \qquad 535. \qquad 323. \qquad 283. \qquad 165. \\ 460. \qquad 336. \qquad 294. \qquad 332. \qquad 189. \\ 328. \qquad 296. \qquad 270. \qquad 331. \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52. 59. 54 64. 60. 67. 61. 59 66. 60.	. 74. 67 64. 88. . 55. 94 50. 59. 850 800	750 700 1 1 1 . 75. 5 84. 89. . 90. 9 . 97. 97. 7 750 700	B. 54. 66. 76. 8. 76. 114. 99. 650 60	53. 65 	. 57. 73. 8 1. <u>99.</u> 141. 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350 53. 21 226. 62. 10 138. 350
N = -1 N = -2 N = -3 N = -4 1700 1650 N = -1	$535. \qquad 535. \qquad 535. \qquad 323. \qquad 283. \qquad 165. \\ 460. \qquad 336. \qquad 294. \qquad 270. \qquad 331. \qquad 283. \qquad 189. \\ 328. \qquad 296. \qquad 270. \qquad 331. \qquad 293. \\ 261. \qquad 261. \qquad 261. \qquad 285. \qquad 293. \\ 1600 \qquad 1550 \qquad 1500 \qquad 1450 \qquad 1400 \qquad 1350 \qquad 1 \\ 400 \qquad 1 \\ 400 \qquad 1350 \qquad 1 \\ 400 \qquad 1 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52. 59. 54 $64. 60.$ $67. 61. 59$ $66. 60.$ $00 950 900$ $1.3 2.0 2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750 700 $1 1$ $. 75. 5$ $84. 89.$ $. 90. 9$ $97. 97. 7$ $750 700$ $1 1$ $. 3. 2.5$	$\begin{array}{c} 1 \\ 8. \\ 54. \\ 66. \\ 76. \\ 114. \\ 99. \\ 650 \\ 60 \\ 1 \\ 2.7 \\ 2.8 \end{array}$	53. 65 	. 57. 73. 80 11. <u>99.</u> 141. 12 500 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350 53. 27 226. 62. 16 138. 350
N = -1 N = -2 N = -3 N = -4 1700 1650 N = -1 N = -2	$535. \qquad 535. \qquad 535. \qquad 323. \qquad 283. \qquad 165. \qquad 336. \qquad 294. \qquad 332. \qquad 189. \qquad 328. \qquad 296. \qquad 270. \qquad 331. \qquad 293. \qquad 261. \qquad 285. \qquad 293. \qquad 261. \qquad 285. \qquad 293. \qquad 293. \qquad 293. \qquad 294. \qquad 204. \qquad $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52. 59. 54 $64. 60.$ $67. 61. 59$ $66. 60.$ $00 950 900$ $1.3 2.0 2$ $3.3 2.0 2.4$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750 700 -1 $. 75. 5$ $84. 89.$ $90. 9$ $97. 97. 7$ $750 700$ -1 $.3. 2.5$ $3.4 2 3$	$\begin{array}{c} 1 \\ 8. \\ 54. \\ 66. \\ 76. \\ 76. \\ 114. \\ 99. \\ 650 \\ 60 \\ 1 \\ 2.7 \\ 2.8 \\ 3.3 \\ 4. \end{array}$	$53. 65 \\ - 77 100 \\ 131 10 \\ 131 2.5 2 \\ 3.9 $	57. $73.$ $99.$ $141.$ 13 500 1 5.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350 53. 27 226. 62. 16 138. 350 6.8
N = -1 N = -2 N = -3 N = -4 1700 1650 N = -1	$535. \qquad 535. \qquad 535. \qquad 323. \qquad 283. \qquad 165. \\ 460. \qquad 336. \qquad 294. \qquad 270. \qquad 331. \qquad 283. \qquad 189. \\ 328. \qquad 296. \qquad 270. \qquad 331. \qquad 293. \\ 261. \qquad 261. \qquad 261. \qquad 285. \qquad 293. \\ 1600 \qquad 1550 \qquad 1500 \qquad 1450 \qquad 1400 \qquad 1350 \qquad 1 \\ 400 \qquad 1 \\ 400 \qquad 1350 \qquad 1 \\ 400 \qquad 1 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52. 59. 54 $64. 60.$ $67. 61. 59$ $66. 60.$ $00 950 900$ $1.3 2.0 2$ $1.3 2.0 2$ $5 2.0 2.4$ $1.8 2.0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750 700 -1 $. 75. 5$ $84. 89.$ $. 90. 9$ $97. 97. 7$ $750 700$ -1 $.3. 2.5$ $3.4 2 3$ $.6 4.2$	$\begin{array}{c} 1 \\ 8. \\ 54. \\ 66. \\ 76. \\ 76. \\ 114. \\ 99. \\ 650 \\ 60 \\ 1 \\ 2.7 \\ 2.8 \\ 3.3 \\ 4. \\ 2.7 \\ 2.5 \end{array}$	$53. 65 \\ - 77 100 \\ 131 10 \\ 131 2.5 2 \\ 3.9 \\ 4.7 5 $	57. $73.$ $99.$ $141.$ 500 $141.$ 500 1 5.2 5.2 6.7 9.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350 53. 27 226. 62. 16 138. 350 6.8 10.6 9.6

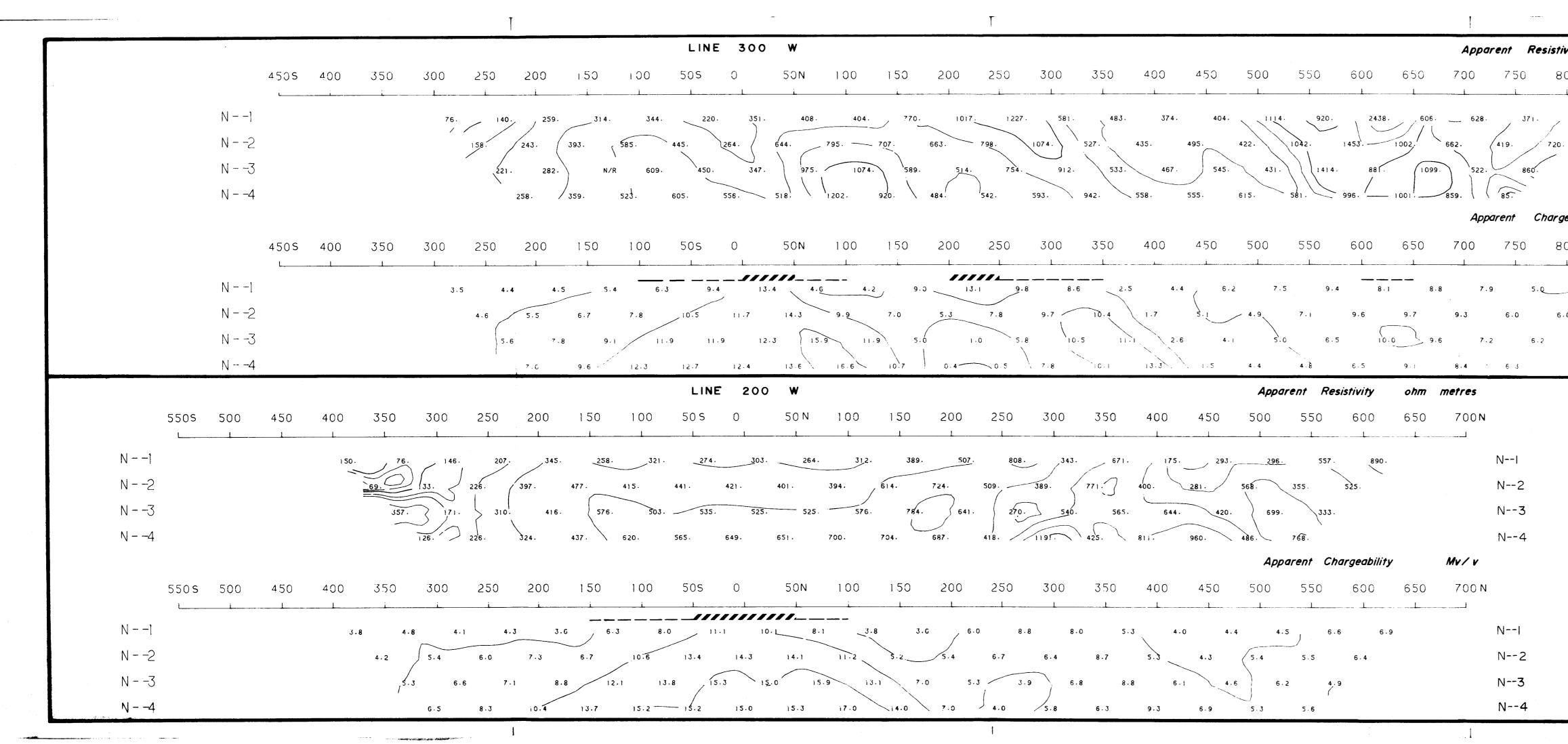


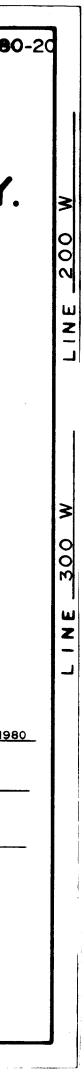
etres	N.T.S. 921-9 DWG. NO. 174-80-10
550 n	
L	COMINCO LTD.
NI	
N2	AJAX-MONTE CARLO PTY.
N3	
N4	KAMLOOPS M.D., B.C.
/ V	
550 N	LINE NO. 500 E LINE NO. 600 E
N1	POLE-DIPOLE ELECTRODE CONFIGURATION
N2	$\begin{array}{c} +X_{1/2} \rightarrow & n_{X} \rightarrow & X \rightarrow \\ + & - & - & - & - \\ + & - & - & - & - \\ + & - & - & - & - \\ - & - & - & - & - \\ - & - &$
N3	
N4	x = 50 m
etres	PLOTTING POINT n = 1, 2,3,4
550 n	CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE
N1	
N2	
N3	DATE SURVEYED MAY 6,7, 1980
N4	CONTOUR INTERVALS :
/v	APP RES -1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG - 5.0 Mv/v
550 n	DATE
	TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
N1	TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY RECEIVER - SCINTREX IPR 8 STRONG MODERATE MODERATE MERCEMPTER WEAK '////////////////////////////////////
N2	
N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY
N4	SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

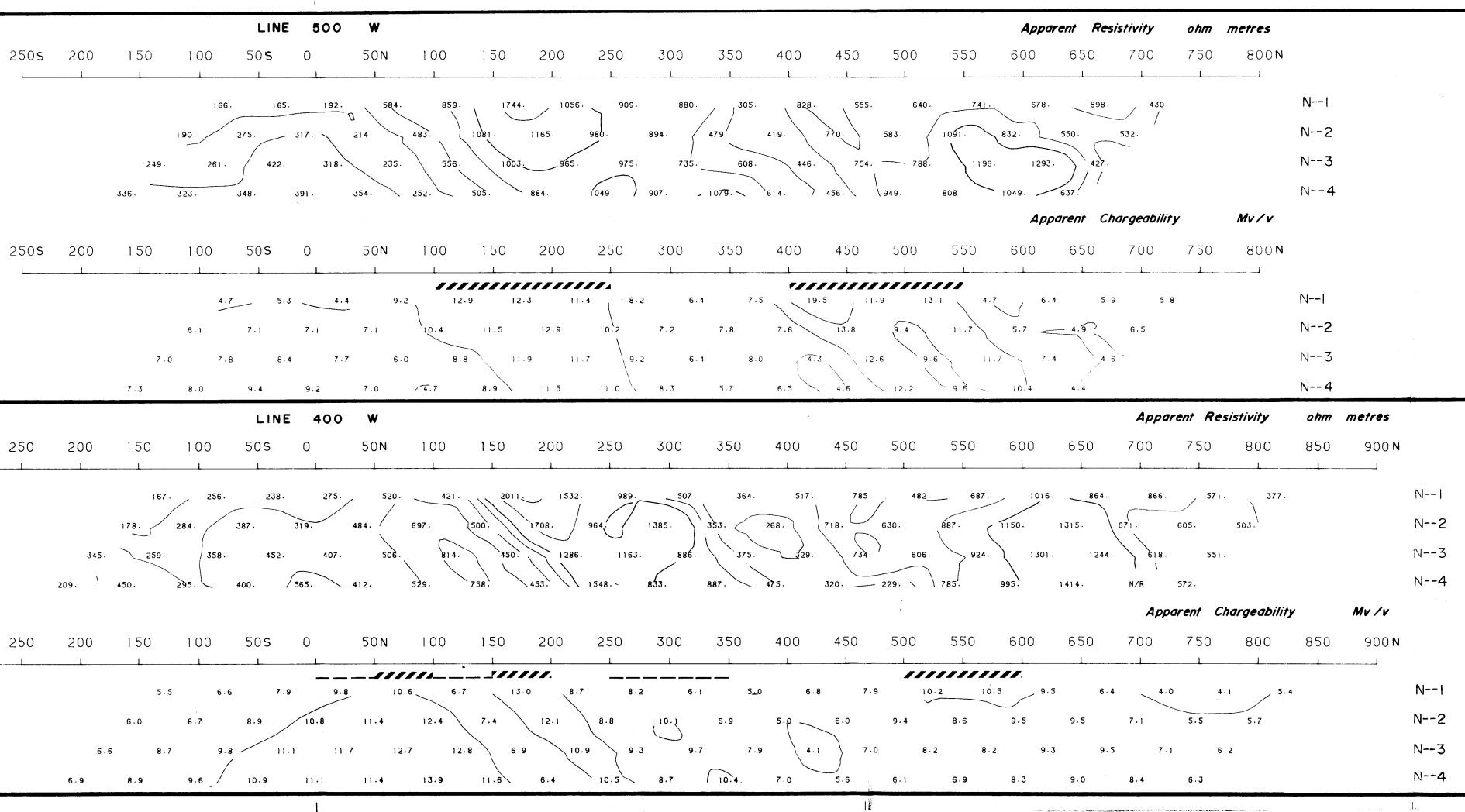



sistivity ohm metres		N.T.S. 92 - 9	DWG. NO. 174-1
550 600 650	N		
J . 468.	N1	COMINC	O LID.
344.	N2	AJAX-MONTE	CARLO PTY
	N3		
	N4	KAMLOOPS	M .D., B .C.
hargeability Mv / v		LINE NO3	
550 600 650	N	NECTOR BOAD ANCH LINE NO	
) 4.1	N1	FILL ALPOIT POLE-D ELECTRODE CON	
4.8	N2		
9	N3		x = 50 m
	N4		
metres			OTTING POINT 1, 2, 3, 4
550 N		CURRENT ELECTRODE NORTH OF	
N1			
N2			
N3		D	ATE SURVEYED JUNE 2,3,27,28, 1
N4		CONTOUR INTERVALS : APP RES -1,1.5,2,3,5,7.5,10 ohm metres A	PPROVED
Mv / v		APP RES -1,1.5,2,5,5,7.5,10 0000 menes - APP CHARG - 5.0 Mv/v	
550 N		D	ATE
		TRANSMITTER - HUNTEC 7.5 KW RECEIVER - SCINTREX IPR 8	CHARGEABILITY STRONG
N1 N2		RECEIVER SCINTREA ITRO	MODERATE SEDERATE WEAK '////////
N2 N3		INDUCED POLARIZATION A	N.D. RESISTIVITY SURVEY
N4		SURVEYED BY COMINCO LTD.	



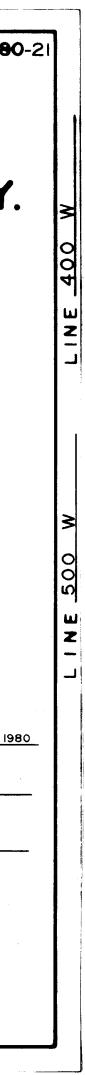

Apparent Resistivity ohm metres	<u> </u>	N.T.S. 921-9 DWG.NO.17	4-1
700 750 800 850 900 950	N		
		COMINCO LTD.	
1409. 968. 522. 825. 248. 924. 710. 701.	N1 N2	AJAX-MONTE CARLO PT	
248. 924. 710. 701. 932. 778. 852.	N2	AUAA MUNIL CANLO I	
57. 840. 901.	N4	KAMLOOPS M.D., B.C.	· .
Apparent Chargeability Mv / v		LINE NO. 100 E	
700 750 800 850 900 950	N	MILEDA DE CH LINE NO. 200 E	
<u>k</u>		Anna Anna startent POLE - DIPOLE	
6.3 5.8 4.8 5.7	N1	ELECTRODE CONFIGURATION	
6.5 5.3 6.3 5.3	N=-2		
6.3 5.8 6.6	N3	x = 50 m	
8.0 6.9 5.9	N4	PLOTTING POINT	
		n = 1, 2, 3, 4	
		CURRENT ELECTRODE MORTH OF POTENTIAL DIPOLE	
NI			
N2			
N3		DATE SURVEYED JUNE 26,27	<u>. 19</u>
N4		CONTOUR INTERVALS:	
		APP. RES 1,1.5,2,3,5,75,10 ohm metres APPROVED APP CHARG - 5.0 MV/V	-
		DATE	
		TRANSMITTER - HUNTEC 7.5 KW. CHARGEABILITY	
NI		RECEIVER — SCINTREX IPR 8 MODERATE WEAK WEAK	
N2			
N3	х х х	INDUCED POLARIZATION AND RESISTIVITY SURVERSED BY COMINCO LTD., EXPLORATION DIVISI	
N4		Souvered by common erd., externation bitter	

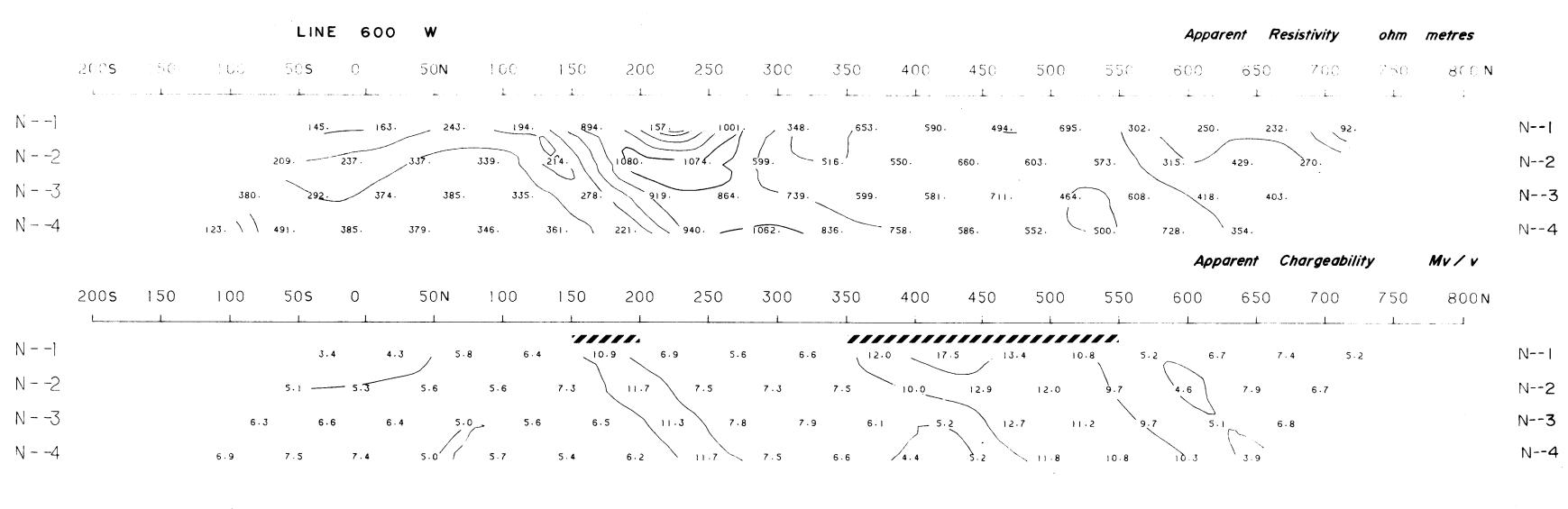

ohm	metres		N.T.S. 92 - 9 DWG. NO. 174-8
650	700 N		
		N1	COMINCO LTD.
		N2	AJAX-MONTE CARLO PTY
		N3	AVAA MONTE CANEO FIT
		N4.	KAMLOOPS M.D., B.C.
,	Mv / v		LINE NO. 100 W
650	700 N		LINE NO.
L	J	NI	ADVORT DU CULTURS L. UICH POLE - DIPOLE
		N2	
		N3	
		N4	x = 50 m
o hm	metres		PLOTTING POINT
650	700 N		n=1, 2,3,4 CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE
_			
		N!	
		N2	
		N3	DATE SURVEYED JUNE 25,26, 1980 CONTOUR INTERVALS :
,	Mv / v	N4	APP RES1,1.5,2,3,5,7.5,10 ohm metres APPROVED APP CHARG - 5.0 MV/V
650	700N		DATE
			TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY
a k		N1	RECEIVER SCINTREX IPR8 STRONG MODERATE MODERATE
		N2	WEAK "
		N3	INDUCED POLARIZATION AND RESISTIVITY SURVEY
		N4	SURVEYED BY COMINCO LTD., EXPLORATION DIVISION



vity ohm me	tres	N.T.S. 921-9	DWG. NO. 174-8
00 850	900 N		
<u> </u>		COMINCO	D LTD.
857.	N1		
r	N2	AJAX-MONTE	CARLO PIN
	N3	KAMLOOPS	MD BC
eability M	N4		M.D., D.C.
-	900N	LINE NO. 30	
1L		MNERA DE DE LE DIE POLE - DIE	
5.3	N1	ELECTRODE CONFI	GURATION
0	N2		
	N3		= 50 m
	N4		- 50 m
			TTI NG POINT , 2, 3,4
		CURRENT ELECTRODE NORTH OF	
		CONTOUR INTERVALS :	TE SURVEYED <u>june 24,25,28, h</u>
		APP RES. — 1,1.5,2,3,5,7.5,10 ohm metres AP1 APP CHARG. — 5.0 Mv/v	PROVED
		DA	ΤΕ
		TRANSMITTER - HUNTEC 7.5 KW	CHARGEABILITY
		RECEIVER - SCINTREX IPR 8	STRONG MODERATE WEAK
		INDUCED POLARIZATION AN	D RESISTIVITY SURVEY
	· · · ·	SURVEYED BY COMINCO LTD.,	EXPLORATION DIVISION

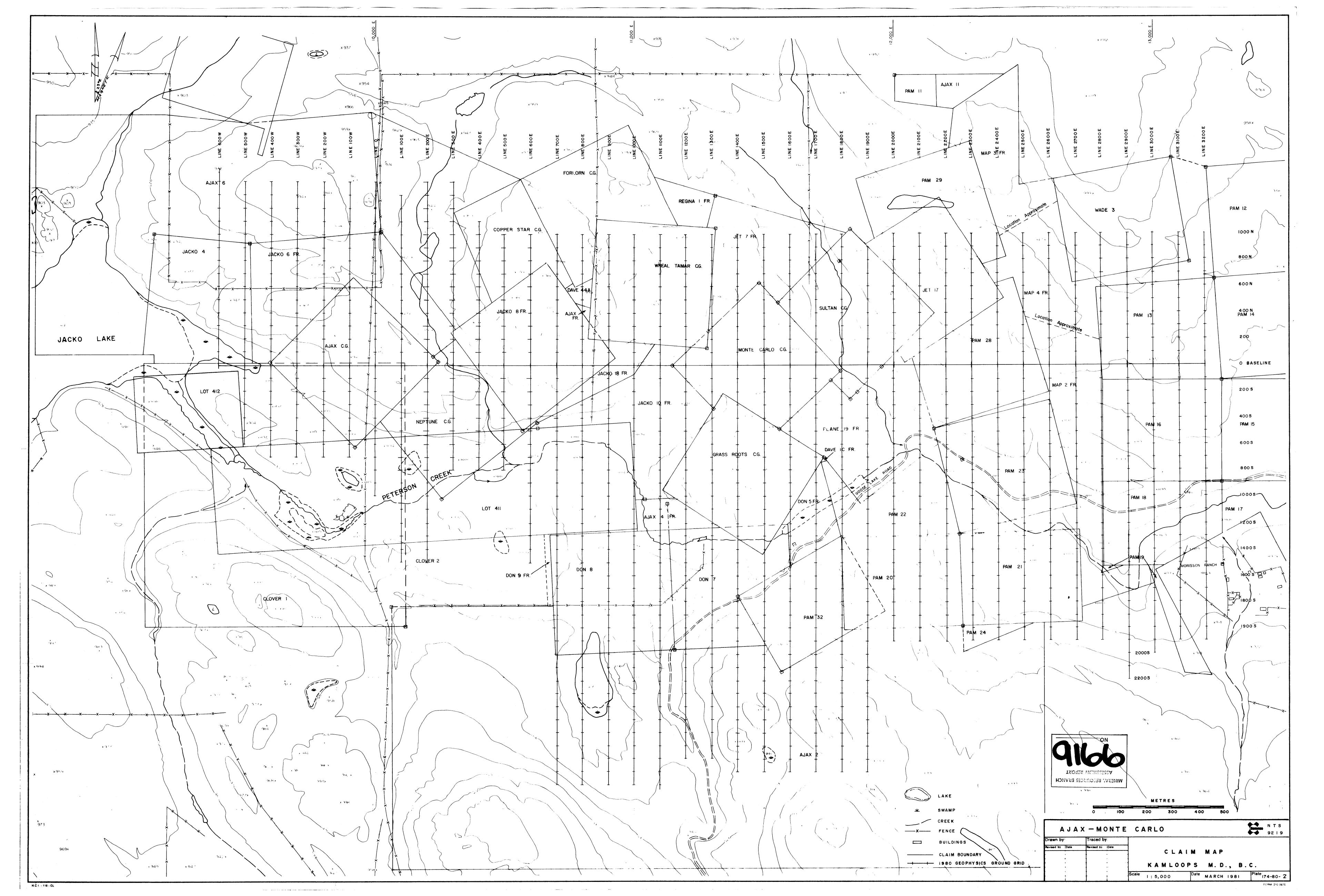
in the second state of the

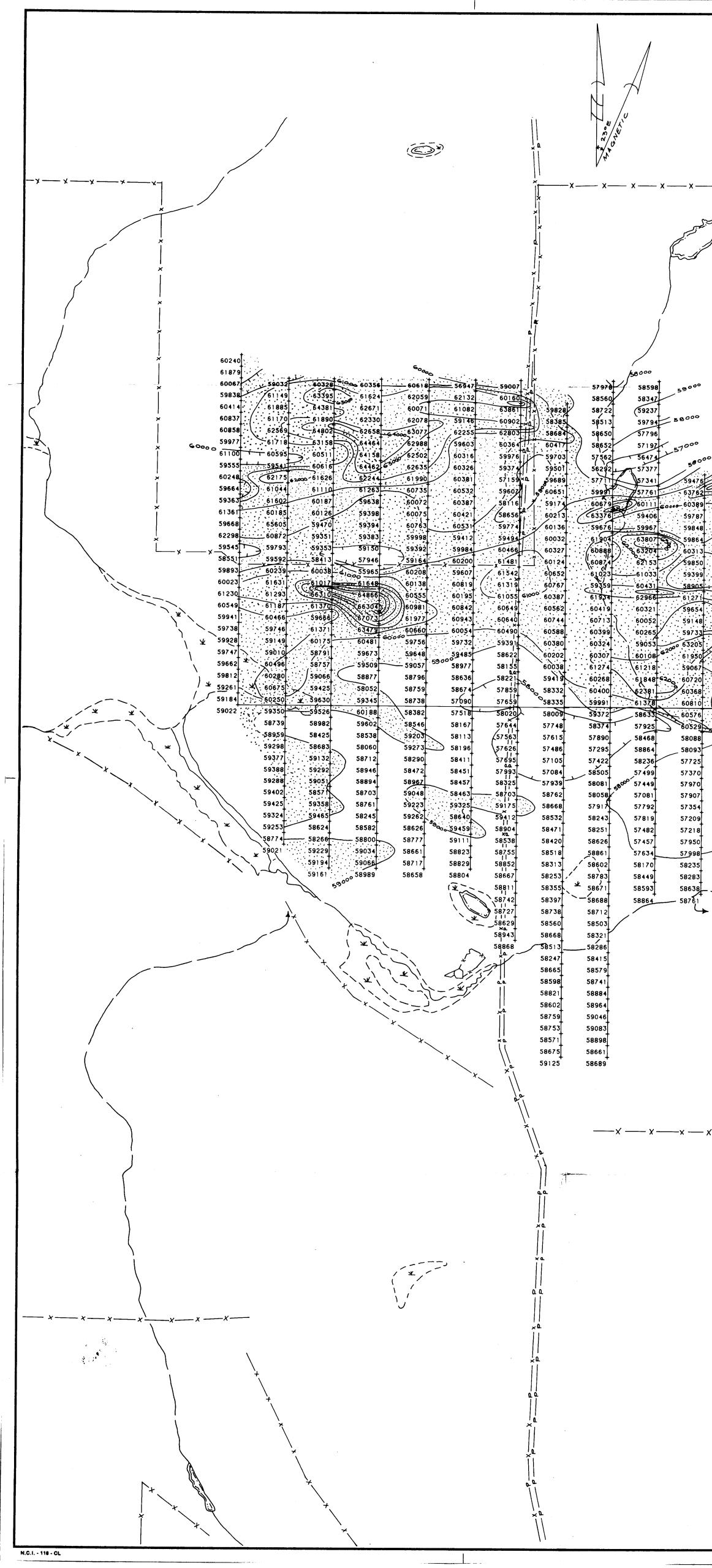


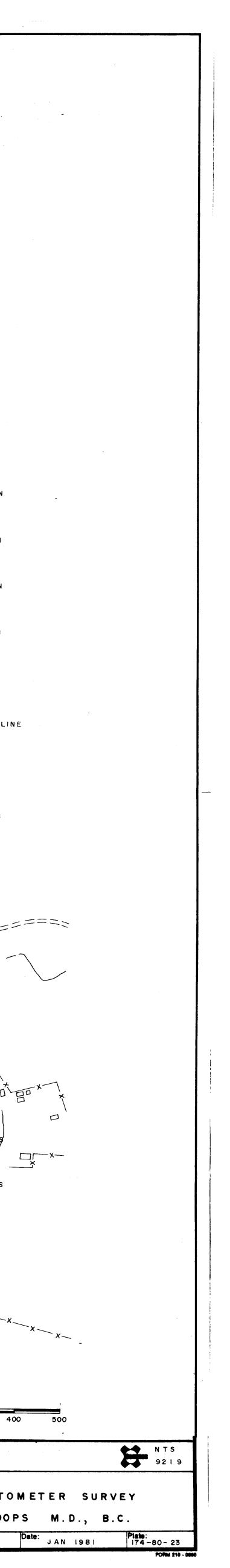

a and an an a LINE 500 W 250s 200 150 100 50s 0 50n 100 150 200 250 300 N – –1 N - -2 190. 275. N - -3 N - -4 354. *......* N - -1 N - -2 6.1 7.1 7.1 7.1 N - -3 7.0 7.8 8.4 7.7 6.0 8.8 N - -4 LINE 400 W 300S 250 200 150 100 50S 0 N – –1 N - -2 178. N - -3 259. N - -4 300S 250 200 150 100 50S 0 _____ N - -1 5.5 6.6 7.9 9.8 10.6 6.7 N - -2 6.0 8.7 8.9 10.8 11.4 12.4 7.4 N - -3 6.6 8.7 9.8 11.1 11.7 12.7 12.8 6.9 10.9 9.3 9.7 7.9 N - -4 6.9 8.9 9.6 / 10.9 11.1 11.4 13.9 11.6 6.4

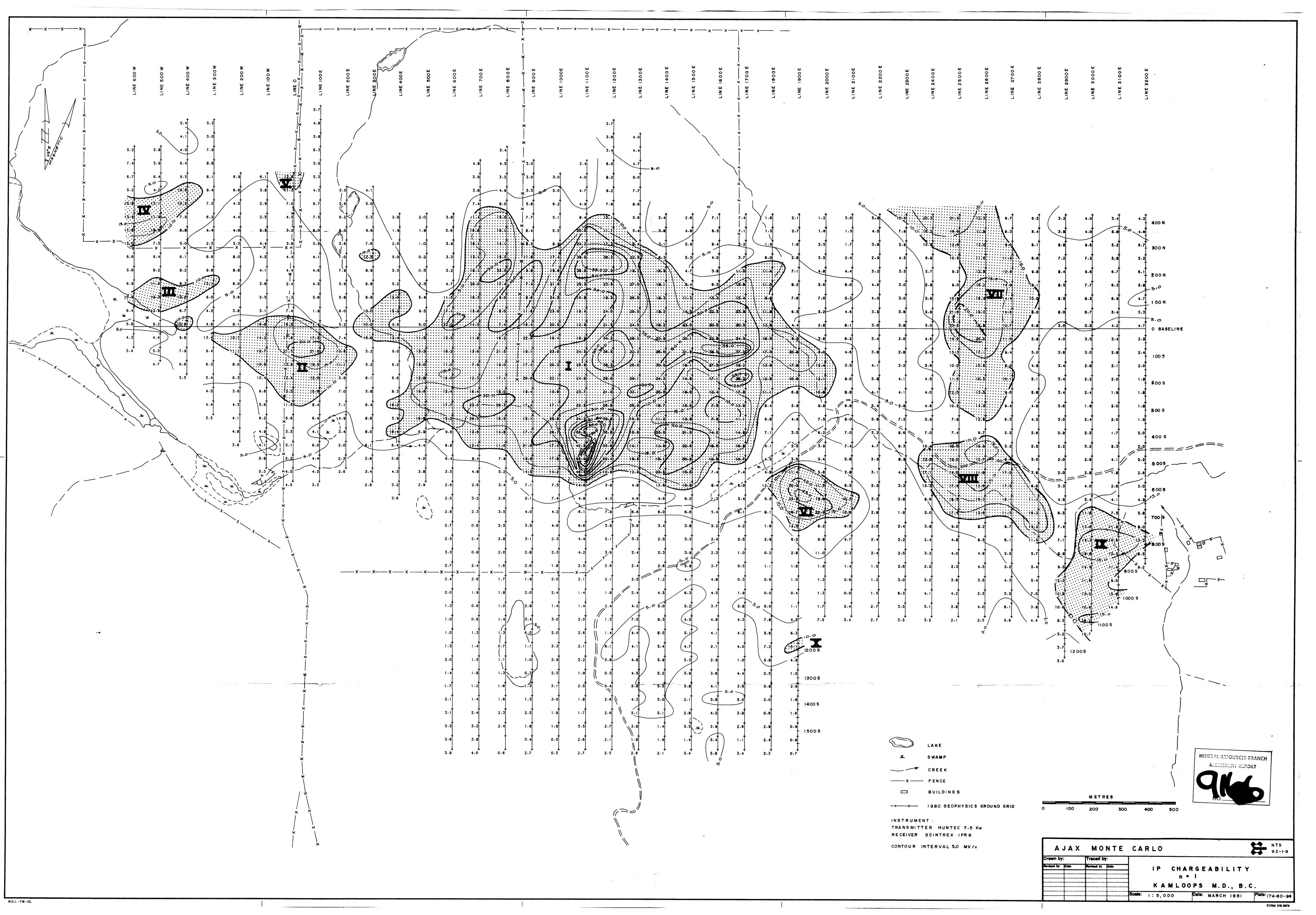
۲

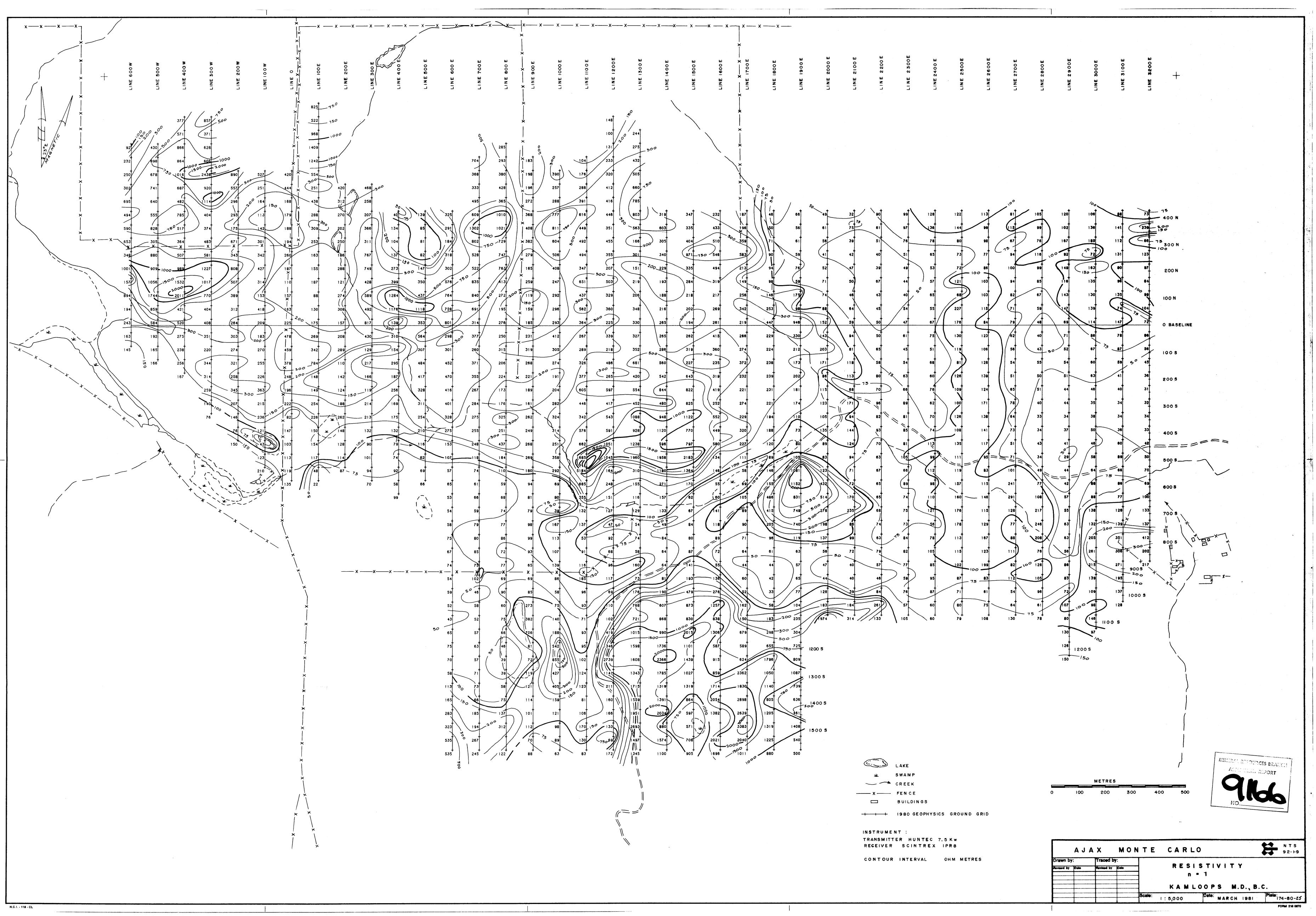
N.T.S. 921-9 DWG. NO. 174-80-21 COMINCO LTD. AJAX-MONTE CARLO PTY. KAMLOOPS M.D., B.C. LINE NO. 500 W LINE NO. 400 W CH POLE-DIPOLE ELECTRODE CONFIGURATION A Charles and the faith of the x = 50 m PLOTTING POINT n = 1, 2, 3, 4 CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE DATE SURVEYED JUNE 23,24,28, 1980 CONTOUR INTERVALS : APP CHARG - 5.0 MV/V DATE _____ TRANSMITTER - HUNTEC 7.5 Kw. CHARGEABILITY STRONG RECEIVER - SCINTREX IPR8 MODERATE I 1000000 WEAK INDUCED POLARIZATION AND RESISTIVITY SURVEY SURVEYED BY COMINCO LTD., EXPLORATION DIVISION ------




and the fact the device of the


N.T.S. 92 1 - 9 DWG. NO. 174-80-2 COMINCO LTD. AJAX-MONTE CARLO PTY. KAMLOOPS M.D., B.C. LINE NO. 600 W NCH POLE-DIPOLE ELECTRODE CONFIGURATION P, --(v)--x = 50 m PLOTTING POINT n = 1, 2, 3, 4 CURRENT ELECTRODE NORTH OF POTENTIAL DIPOLE DATE SURVEYED JUNE 23, 1980 CONTOUR INTERVALS : APP RES.—1,1.5,2,3,5,7.5,10 ohm metres APPROVED ____ APP CHARG.— 5.0 Mv/v DATE _____ TRANSMITTER - HUNTEC 7.5 KW CHARGEABILITY STRONG RECEIVER - SCINTREX IPR8 MODERATE WEAK INDUCED POLARIZATION AND RESISTIVITY SURVEY SURVEYED BY COMINCO LTD., EXPLORATION DIVISION







LINE 3200 E E E E E E E E E E E E E E E E E E
And with the second

