IGNA engineering & consulting ltd.

A REPORT ON THE GEOCHEMICAL SURVEY OF

THE ACE GROUP OF CLAIMS

CORNISH MOUNTAIN, WELLS, CARIBOO M.D., B.C.

MINERAL CLAIM MAP
NTS 93 H/4E

LAT 53° 8' LONG 123° 35'

FOR CANCAL MINES LTD.

By: I. Borovic, P.Eng.

Consulting Geologist

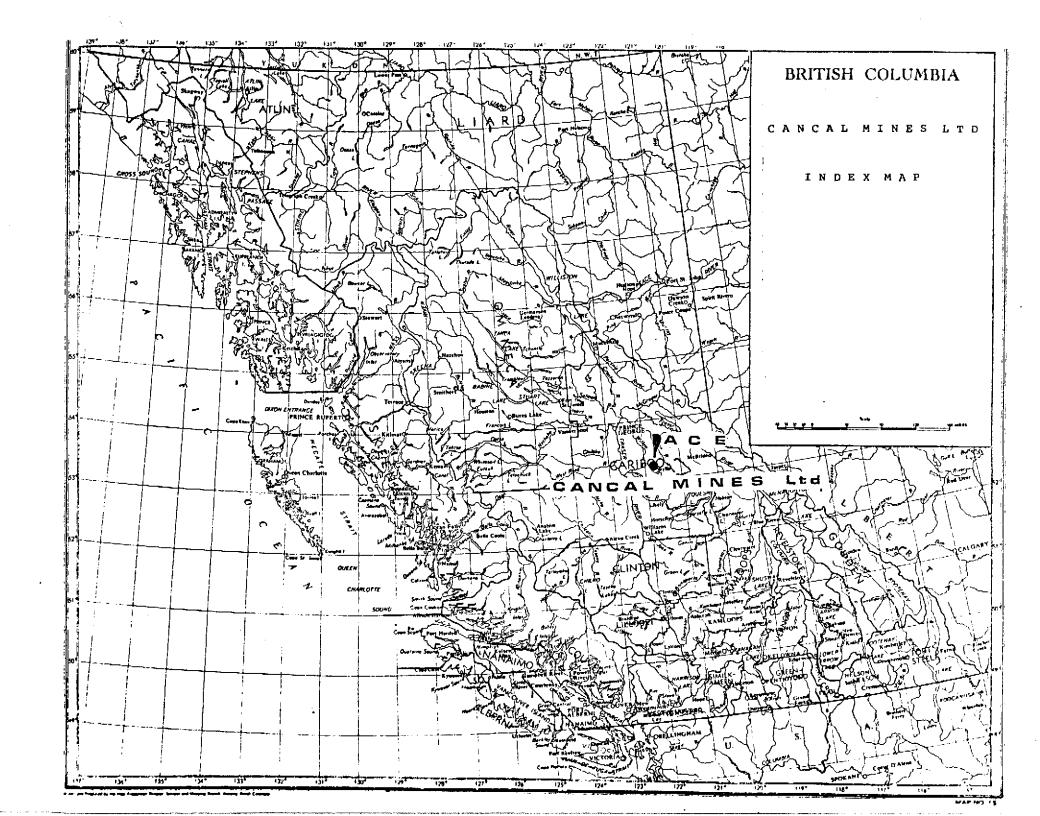
FIELD WORK: Aug.-Sept./1980

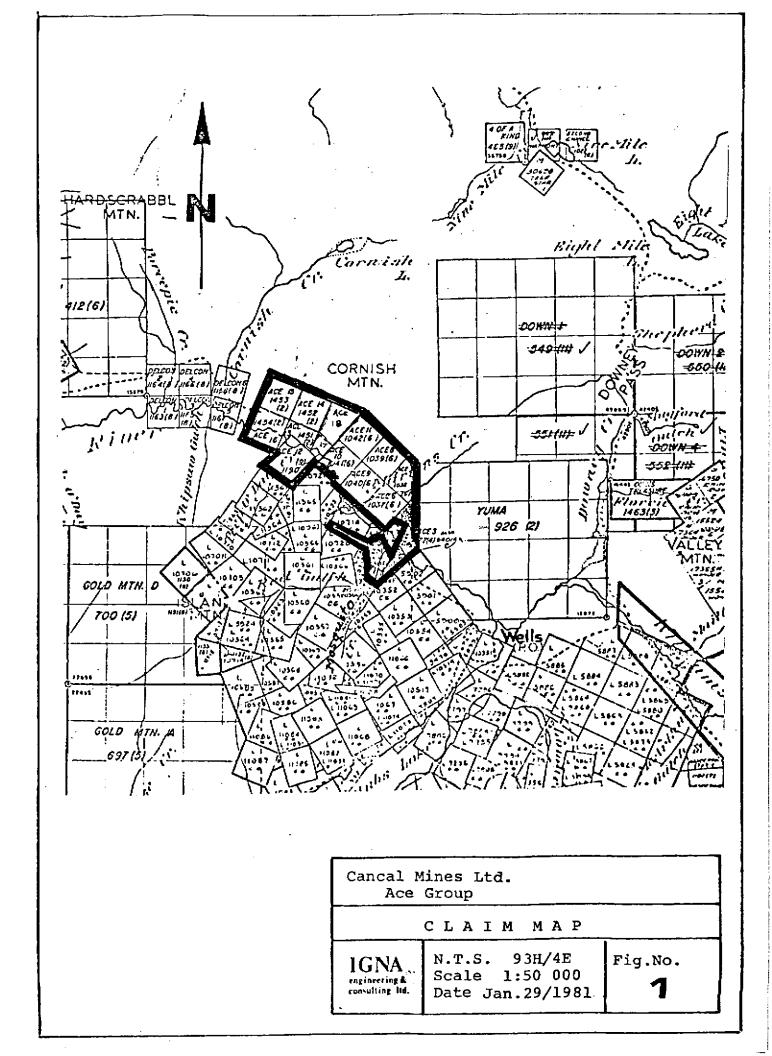
Report: January 1981

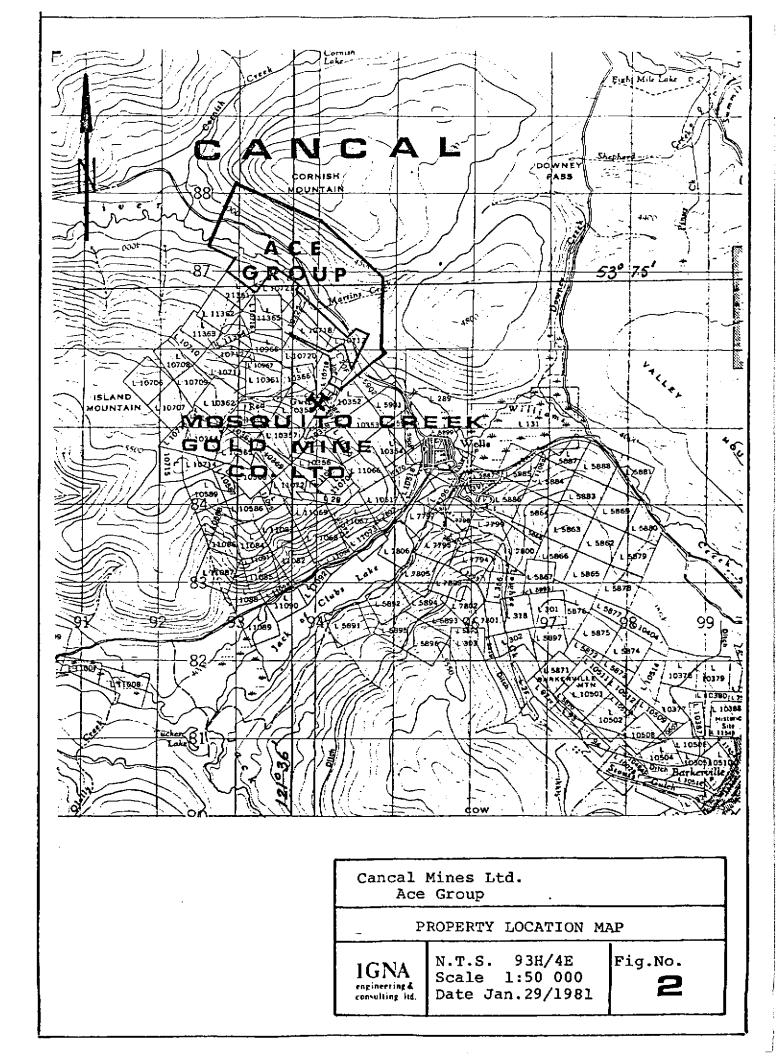
TABLE OF CONTENTS

				Page
Introduction				1
Property				1
History of Ex	<pre>«ploration</pre>			2
Geology				4
Structure				6
Mineralizatio	n		• • • • • • • • • • • • • • • • • • • •	7
Geochemical S	Soil Survey			9
Results	(gold, sil	lver, lead &	zinc)	9
Conclusion &	Recommenda	ation		10
References .		· · · · · · · · · · · · · · · · · · ·		12
Statement of	Expenses			13
Certificate			• • • • • • • • • • • • • • • • • • • •	14
List of Illus	trations:			
Index Map				
Claim Map			Fig l	
Property Loca	ation Map		Fig 2	
Regional Geol	logical Map			
Structural Se	ection A -	В		
Geochemical S	Soil Survey	(Au)	Fig 3	
II	n II	(Ag)	Fig 4	
II .	tt II	(Pb)	Fig 5	* •
11	tt II	(Zn)	_	
Soil Sampling	g Grid		Fig 7 🔸	
Certificate of	of Assay			

INTRODUCTION


The following report describes the exploration work done to date with special emphasize on the results of the geochemical survey of the Cancal Mines Ltd. "Ace" claims.


PROPERTY (Fig 1)


The property consists of following mineral claims and fractions:

			Rec. Dat	te	Date of I	Expiry
Wall	lac e	#1 FR M.C	.June 23,	1970	June 23,	1980
n	11	#4 FR	July 10,	1973		
Ace	#3	FR M.C	April 6,	1976	April 6,	1981
11	#5	M.C	June 22,	1979	June 22,	1980
н	#6	M.C	u		u	
и	#7	M.C	71		77	
ττ	#8	M.C	11		11	
11	#9	M.C	n		11	
11	#10	M.C	***		11	
ш	#11	M.C	tt		u	
rt	#12	M.C	Sept.10,	1979	Sept.10,	1980
77	#14	M.C	Feb. 29,	1980	Sept.29,	1981
ц	#15	M.C	п		91	
п	#16	M.C	17		It	
er	#17	M.C		1980		1981
77	#18	M.C		1980		1981

The claims were located as two post claims by Mr.Wally DeLynn of Quesnell, B.C., nad acquired by Cancal Mines Ltd. by "The 1980 Agreement" dated April 22, 1980. The agreement grants the company "the sole, exclusive and irrevocable option to purchase mineral claims Ace #5 - #18 and fractio-

nal M.C.Ace #3 and Wallace #1 & #4."

Location 53⁰8' & 123⁰35' (Fig 2)

The property is located on Cornish Mountain, 1 km northwest of the town of Wells, B.C.

Access

Access to the property is provided by a good logging and mine road originating in the town of Wells, passing along Willow River and crossing Marting Creek to the west. An old tote road turns toward the north from the mine road on the east side of the Creek and leads up Martin Creek about half-way to the top of Cornish Mountain.

Facilities, services and resources

The town of Wells has adequate accommodations for the exploration personnel and some services like gasoline supplies and mechanical repairs are available. There is a school and health care facility. Commercial machinery and engineering supplies and services are available at the town of Quesnel, 80 km to the west on a Cariboo Highway.

Water

Water for drilling is available from Martin Creek but adequate supplies for drilling on the higher elevations will have to be pumped up from the Creek.

HISTORY OF EXPLORATION

Area of the Ace claims was extensively explored in 19331934. At that time the Cariboo Coronado Mining Sindicate carried
on surface and underground exploration on its holdings (a group
of recorded claims) located on the Cornish Mtn. north north-

east of Willow River, opposite Island Mtn.

An adit was driven N 13° W for 1,150 feet (Aug.1934) into the mountain southeast of Martin Creek in order to cut veins which were exposed on the surface some 500-800 feet higher.

The second adit was driven N 14° W for 385 feet into the mountain NW of Martin Creek.

Both adits have cut through number of smaller quartz veins with sulphides (mainly pyrite) and some gold.

A number of trenches and a shaft were excavated on the top of the Cornish Mtn. They exposed several quartz veins a few inches to 8 feet wide with sulphide mineralization mainly composed of pyrite & galena. Grab samples have assayed more than half an ounce of gold per ton.

1934 - 1979

The property and the area of Cornish Mtn. did not receive specific attention by mining comunity.

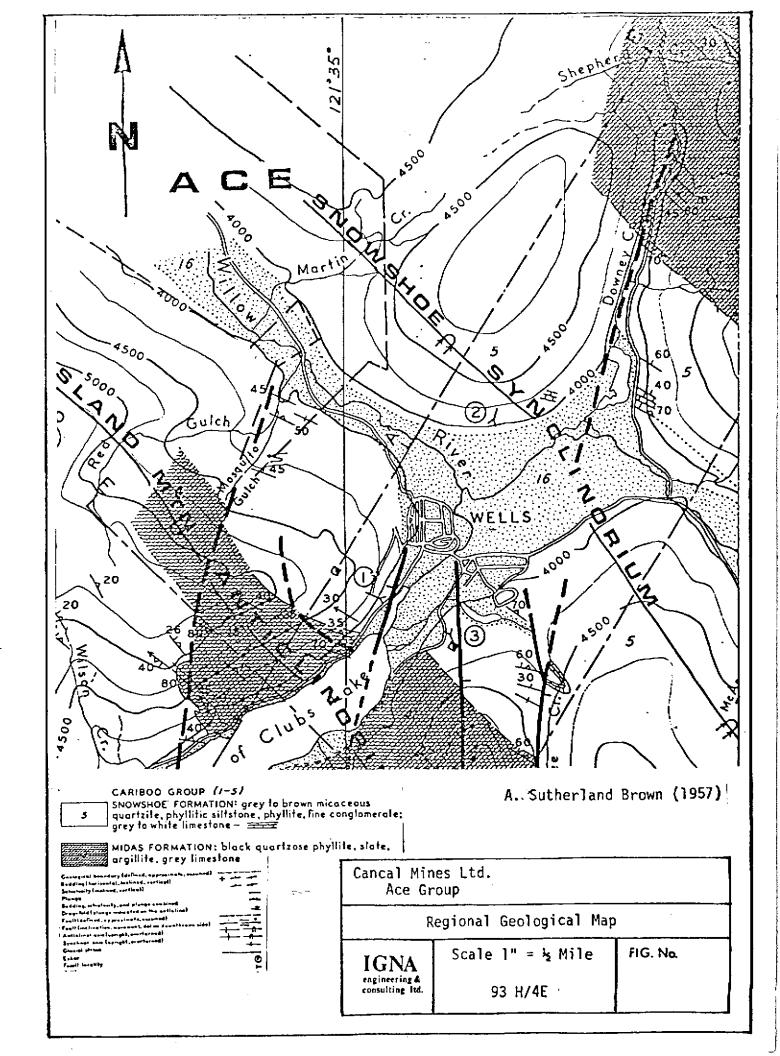
1980

The Ace group was acquired by Cancal Mines Ltd. Cancal accomplished the first phase of the exploration programme recommended by the author.

Igna's personnel carried out geochemical soil survey covering part of the favorable area of the Ace group of claims.

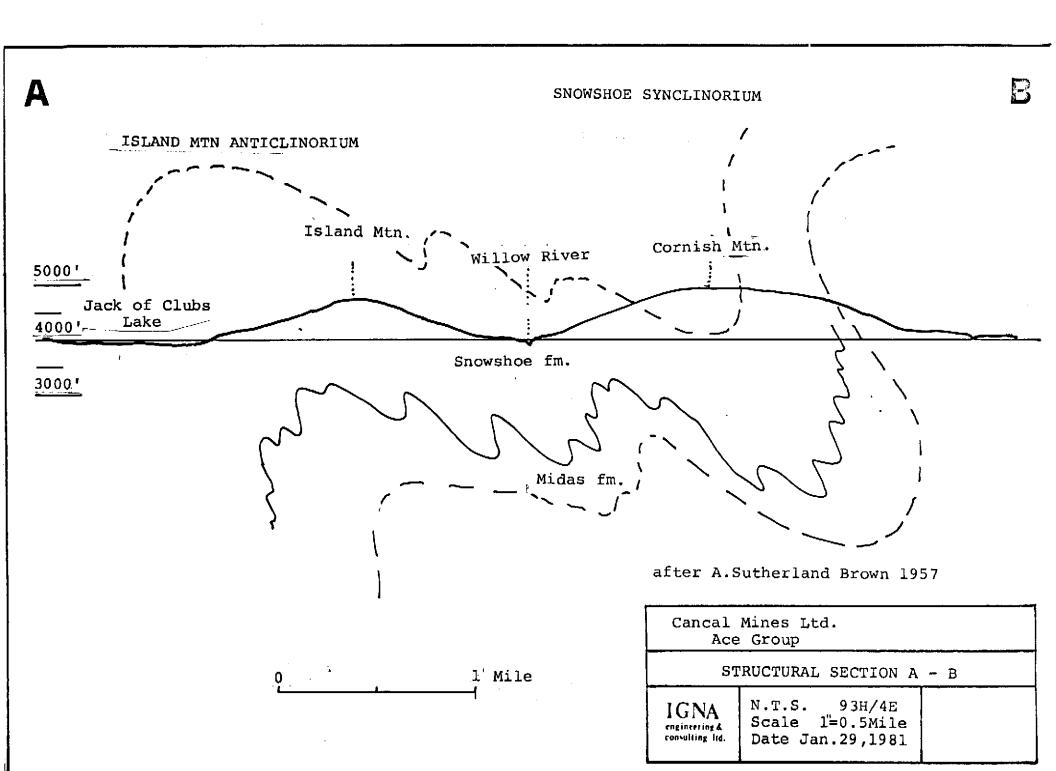
The sampling was performed on the flagged grid with base line extended in the direction of 310° for 1500 m, 900 m to the east and covering only small portion to the west. A large areas under swamps were avoided.

Total of 36.0 km·lines were flagged and soil samples taken every 50 m on the lines spaced at 50 m intervals.


GEOLOGY

Cariboo Group A. Sutherland Brown (1957)

The rocks of the Cariboo group underlie the area of the Ace group of claims.


The Cariboo group is composed predominantly of clastic rocks with lesser amounts of carbonate rocks. The rocks were subject to low-grade regional metamorphism and intense deformation. Metamorphism has developed large porphyroblasts out of muscovite and chlorite but amounts of biotite and chloritoid produced are small. Deformation has developed important secondary foliation on almost all clastic and some carbonate There is also a noticable development of "dimensional" orientation of mica, quartz, feldspar and carbonate minerals. The most deformed rocks show a "flaser" structure. Economically important is a local hydrothermal alteration superimposed on the products of regional metamorphism. hydrothermal products are bleached, silicified, chloritized, and ankeritized rocks.

Cariboo group is less than 4000 feet thick in the Wells area. It consists of five recognizable formations. (see Table of Formation). The age of the Cariboo group is Early Cambrian and younger and was determined on the basis of Archaeocyathid and Trilobite faunas found in thick limestones of Cunningham Limestone formation which is the basal formation

Table II .- Table of Formations

Era	Period or Epoch	'	Jult and Thickness (Feet)	Lithology			
	Pleistocene and Recent.		-	Glacial till; glacio-fluvial sand, gravel, sill; alluvium.			
Cenozoic.			Uni	conformable contact.			
	Tertiary(?).	T		Partly cemented limonitic river-bed gravels.			
			Unconform	nable contact.			
	Carboniferous(?) and (?)later.		ount Murray rusions.	Diabase and other basic sills and dykes; famprophytodykes.			
				Intrusive contact.			
Upper Palæozoic.		group.	Antler formation 3,000+.	Brown, grey, white, or green chert; grey argillite; basis volcanic flow and pyroclastic rocks.			
	Carboniferous.	Mountain		Conformable contact.			
		ilde Mou	Guyet formation 1,125–1,500,	Grey to brown conglomerate; grey greywacke to state basic volcanic flow and pyroclastic rocks; light grey to white, cherty crinoidal limestone.			
	· · · · · · · · · · · · · · · · · · ·		Unconfort	nable contact.			
		Pr	oserpine dykes.	Brown weathering acidic dykes.			
				Intrusive contact.			
			Snowshoe formation 1,000+.	Grey to brown, micaceous quantite; brown, grey, or green phyllite, metasilistone; black to while Emest ne, granule conglomerate.			
			Co	onformable or slightly unconformable contact.			
		-	Mides formation	Black to dark grey, quartzose phylilite, and metasilistine black to grey limestone.			
Lower Palmozoic,		ļ.		Conformable contact.			
	Lower Cambrian and later.	Cariboo group.	Yanks Peak quartzite 0-200.	Grey to white, massive medium-grained quartzite.			
		Š	Con	formable with Yanks Peak or Midas formation.			
			Yankee Belle formation 300-300.	Brown phyllite, metasiitstone, fine-grained quartzite.			
				Conformable contact.			
			Cunningham limestone 2,000+.	Thinly bedded to massive, grey finely crystalline limestone buff coarsely crystalline ferroan dolomate; miner limp phyllite.			
			Conform	able contact.			
Proterozoic.	Late Proterozoic.	Kı	za group 6,000+.	Green schist, schistose greywacke, micaceous quartzite.			

of the Cariboo group.

Snowshoe Formation

The Snowshoe Formation underlies the Ace Claim area. It is the youngest formation of the Cariboo group.

The exposures are scarce in lower areas of the Cornish Mountain but the higher elevatins, creeks and gulleys are places with a number of exposures of the Snowshoe rocks.

The formation is composed of clastic rocks and limestones. The clastic rocks are poorly sorted, schistose lenticular greywackes. The limestones are thin, lenticular and impure.

STRUCTURE

The rocks of Cariboo group are intensely deformed. They have been "compressed into northwesterly trending complex folds which are overturned toward the southwest" (A. Sutherland Brown (1957) in the Wells area.

"A regional secondary foliation is developed parallel to the axial planes of folts, striking northwest and dipping to the northeast." Fold axes plunge to the northwest at gentle angles.

A number of prominent faults cut through the Cariboo group striking nortward and dipping steeply to the east.

The major structure in the ACe group is the Snowshoe synclinorium.

The Ssynclinorium, comprised of the rocks of the Snowshoe Formation is compressed into many smaller scale very complex folds.

The section A - B shows Island Mtn. anticlinorium descending into Snowshoe synclinorium. Thus allowing for the same geological conditions which produced replacement pyrite-gold mineralization in the Island Mountain, Cariboo Gold Quartz and Mosquito Creek Gold Mines.

All secondary folds plunge to the northwest from 7 to 10 degrees but sometimes locally as great as 25 degrees.

The northerly striking normal faults are considered to be the cause of fold plunges.

Fold structures are asymmetrical and complex and are not easy to map without adding a great deal of interpretation. There are three major developments in structural interpretation starting with Hanson (1935), Benedict (1945) and A. Sutherland Brown (1957).

A. Sutherland Brown's interpretation is one showing a very complex Island Mountain anticlinorium descending to the Snowshoe synclinorium.

Mineralization

In the area of the Island Mountain, Mosquito Creek
Gold Mine, gold mineralization occurs associated with medium
to coarse grained pyrite, both in quartz veins and as replacement limestone lenses. The quartz veins are gash veins found
mainly in the Rainbow member while replacement limestone
lenses are found in softer calcareous Baker rocks.

The gold-bearing quartz veins fill fractures, many of

which belong to the regionally developed joint system.

These fractures cut across all the folds in the Cariboo series and represent part of the gold bearing rocks in the Martin creek area.

The association of high gold values with pyrite is shown in areas adjacent to the Ace claims but there is no direct relation between the amount of gold content and the amount of pyrite. Experience in Mosquito Creek and old Cariboo Gold Quartz and Island Mountain Mines shows that high gold values are associated with fine-grained rather than coarse-grained pyrite.

The pyrite-gold bearing limestone lenses plunge to the northwest paralleling the plunge of the main structures.

Mineralization is of the selective replacement type. (G.H. Klein (1980)).

GEOCHEMICAL SOIL SURVEY

Sampling and assaying (Fig 7)

A soil sampling geochemical program was carried out by the Cancal Mines Ltd. in order to define the mineralized areas on the southern slopes of the Cornish Mountain covered by the Ace group of claims. Samples were taken on 50 m lines spaced at 50 m intervals. Samples were obtained from the "B" horizon at a depth varying from 25 to 40 cm.

Complete pulverization of the soil samples followed by screaning to -80 mesh and subsequent AA analysis were done by General Testing Laboratories of Vancouver.

RESULTS

Gold (Fig 3)

Dispersion of gold over the surveyed area is homogenious but for a few higher anomalous readings of 0.24 ppm and 2.5 ppm on line 3+00E at the points 4E and 5E, and 0.43 ppm on line 4+00E point 3W.

Gold values range from the background of 0.03 ppm to the high of 2.5 ppm.

1 ppm of metal is equivalent to 1 g per metric ton.

At 600 dollars per ounce of gold the value of lppm gold is 19.35 dollars. Therefore, background value of 0.003 ppm is worth 58 cents/ton and the high anomalous value of 2.5 ppm is equal to 48.37 dollars/ton.

Silver (Fig 4)

Silver shows the same type of dispersion uniformity as

gold. The highest anomalous reading of 14.9 ppm silver corresponds to 0.43 ppm gold on line 4+00E, point 3W.

Silver values range from the background of 1.3 ppm to the high of 14.9 ppm. At 15 dollars per ounce of silver 1.3 ppm equals 62 cents and 14.9 ppm equals 7.15 dollars.

Lead (Fig 5)

Lead dispersion is uniform with two anomalous values above 100 ppm found on line 6+00E, point 1E and line 7+00E, point 7E.

Lead has a background of about 50 ppm and ranges to the highest anomalous readings of 184 ppm.

Zinc (Fig 6)

Zinc's mobility has not been demonstrated in the surveyed area. A background of 90 ppm and sporatic anomalous values of 221 and 244 ppm show the range.

In my opinion low zinc values are due to:

- a. lack of zinc-bearing mineralization and/or
- b. extensive development of swamps surrounding the surveyed area which helped draining very mobile zinc ions into the lower areas around Willow River.

CONCLUSION & RECOMMENDATION

The value of precious metals in the surveyed area range from 1.20 to 49.19 dollars per metric tonne. The lowest value of 1.20 dollars per metric tonne actually covers the whole surveyed area. Very high background value and high pinpointed values (from 15.47 dollars to 49.19 dollars for combined gold and silver) indicate existence of a larger & higher

grade source of those metals in the surveyed and surrounding areas.

Numerous placer operations in the Willow River-Wells area, yielding large amounts of gold that has been carried out for many years downstream from the Cornish Mountain, are also testifying to a source of gold and silver in the mountain.

In my opinion the results of the 1980 geochemical soil survey of the part of the Cancal's Ace claims strongly suggest a source of the precious metals veeing an the area of investigation.

Therefore I strongly recommend a follow up by the phase 2 of the proposed programme.

						•		
	L03 L03	د۵3	٤۵ _ا	L _{D3}	ſ	[:03	ſ	9E
	03 -03	.03	.02	203	.03	.03	}	8E
	D3 D3	.04	03	.03	.03	.04		7E
	.02 -03	εα	; 03	.04	02	.03	}	6E
102 103 103 1 ·	.03 .03	.04	.03	.25	.02	.02		5E
03 03 03	.04	03	.03	.24	.02	.03		4E
-04 -03 -03	.0303	.03	.03	-,02	.03	.03		3E
.03 .03 .04 03	.0302	.03	03	.02	.03	.03		2 E
.03 .02 .02 .19	.03 .03	.02	.03	.03	.03	.03	• ;	1E
.03 .04 .03 .03	.03 .04	.03	.03	.03	.03	.03		- Base Line
·		.03	.03	.02				ıw
		.03	.03	.03			;	2 W
			.43				;	3W
		.03	80.				á	4W ,
		.02	.02				5	5 W
		.02	.03	_				5 W
31+00 30+00 29+00 28+00	7+00	.03	4 - 0	00+8	7+00	0+0	•	J##
1								

Cancal Mines Ltd. Ace Group							
GEO	GEOCHEMICAL SOIL SURVEY						
IGNA engineering & consulting ltd.	N.T.S. Grid: 93 H/4E SCALE: 1:5 000 DATE: Jan.29,1981	FIG. No.					

	J ^{0.8} 1.8	ւ Լ ^{1,2} Լ ^{1,}	2 [17 [_г - г	9E
\	1.7 1.7	1.8 1.	8 1.7 1	1.2 1.3 -	8E
	20 1.8	17 1	5 1.5 1	L5 1 L3	7E
	1.8 2.0	1.8	5 1.7 1	L8 1.8	6E
10 12 18	1.8 2,0	1.5 1.	3 1.7 1	.7 1.8	5E
0.8 1.6 1.2	2.0	1.3 2.0	1.3	.5 1.7	4E
.1.2 0.8 0.8	2.2 1.8	1.0 1.2	2 1.8 1	.5 1.7	3 E
14 0.8 1.0 14	2.2 1.5	12 13	1.5	.3 10	2E
12 10 12 10	1.8 1.5	1.2 -1.8	1.5	.2 1.7	lE
0.8 1.4 1.2 08	1.8 1.5	1.3 1.5	1.0 1.	5 1.2	- Base Line
		1.5	1-2		lW
		15 12	l _{1.5}		2W
		15 14			3W
		1.3 1.2			4W .
		17 18			5 W
31+00 30+00 29+00 28+00	7+00	13 12 17 18 15 13	3+00	1+00	6 W

Cancal Mines Ltd. Ace Group							
GEO	GEOCHEMICAL SOIL SURVEY						
IGNA enginerring& consulting ltd.	N.T.S. Grid: 93 H/4E SCALE: 1:5 000 DATE: Jan.29,1981	FIG. No.					

K								
	[22 36	á 1 29	3 ⁵	r ³⁶	ſ	β 3	ſ	9E
	40 3		29	1	29	42	}	8E
	184 45	5 33	29	27	25	27	-	7E
	29 35	5 44	36	31	22	44	-	6E
35 22 25 5	40 55	5 40	31	22	18	25	}	5E
38 45 33	27	47	38	27	27	53	}	4E
27 27 25	49 51	35	31	44	29	45	}	3E
27 29 33 24	40 44	24	25	27	24	22	}	2E
.29 29 20 18 [:]	40 14	0 40	29	20	22	25	-	1E
27 40 31 20	31 35	33	25	25	40	29		- Base Line
·		40	27	31				lW
		40	29	l ₃₃				2 ₩
		36	29					ЗW
		27	29					4W
		29	35					5 W
		29	35	_	_	0	_	6 ₩
31+00 30+00 29+00 28+00	7+00	27 29 29 00+5	4+00	3+00	2+00	1+00	0+0	

Cancal Mines Ltd. Ace Group							
GEOCHEMICAL SOIL SURVEY							
IGNA engineering 4 consulting lid.	N.I.S. Grid: SCALE: 1: DATE: Jan	5 000	FIG. No.				

de la company de	1 78 1 89	(58	r 130	[119	r	81	F	9E
	104 61	66		130		1	}	8E
	98 93	80	164	108	110	69	-	7E
	75 70	88	±33	106	108	99	-	6E
88 90 95 .	99 94	83	119	106	98	76		5E
100 103 86	101	83	211	113	133	98		4E
78 71 76	121 95	83	114	145	103	116		3E
78 70 76 99	105 88	108	108	133	106	71		2E
101 99 98 89	81 60	100	<u> </u>	103		63		1E
109 98 98 90	85 89	78	106	109	94	244		- Base Line
		91	120	105				lW
•		90	118	115				2W
		89	131					3W
	i	90	115					4W
			123					5 W
0 0 0 0		90	84 00+7	0 0	0 0	00+0	3	6W
31+00	0+00	•	4+00	ب + ج	7+00	i d	•	

Cancal Mines Ltd. Ace Group							
GEOCHEMICAL SOIL SURVEY							
IGNA engineering& consulting 1td.	N.T.S. Grid: 93 H/4E SCALE: 1:5 000 DATE: Jan.29,1981	FIG. No.					

Base Line	#11 **	9E 8E 7E 6E 5E 4E 3E 2E 1E
31+00 30+00 29+00 28+00 27+00	25+00	9 + 300 8 + 00 9 + 00 1 + 00 2 + 00 3 + 00 3 + 00 3 + 00 3 + 00 1 + 0
9349		Cancal Mines Ltd. Ace Group SOIL SAMPLING GRID IGNA IGNA Consulting ltd. N.T.S. 93H/4E Scale 1:5 000 Date Jan.29/81 Fig.No. 7

REFERENCES

- BOROVIC, I. (June 6, 1980):
 Geological report on the Ace Group of
 Claims, Cornish Mtn, Wells, Cariboo
 M.D. N.T.S. 93 H/4E; report for
 Cancal Mines Ltd.
- BOWMAN, A. (1889):
 Report on the Geology of the Mining
 District of Cariboo, B.C.
 G. S. C. Ann. Rept. 1887-88, V.111
- CAMPBELL, R.B., MOUNTJOY, E.W. & YOUNG, F.G. (1973):
 Geology of McBride Map-Area B.C.
 G.S.C. Paper 72-35
- HANSON, G. (1934):
 Willow River Map-Area, General Geology
 and Lode Deposits
 G.S.C. Summary Report 1933
- JOHNSTON, W.W. & UGLOW, W.L. (1926):
 Placer and Gold Deposits of Barkerville
 G.S.C Memoir 1949
- SUTHERLAND-BROWN, A. (1957):
 Geology of the Antler Creek Area, Cariboo District, B.C.
 B.C. Department of Mines Bulletin 38
- UGLOW, W.C. (1922):

 Bedrock and Quartz Veins, Barkerville
 G.S.C. Summary Report 1922, Part A,
 pp 82-87

STATEMENT OF EXPENSES

The following is a breakdown	of expenses incurred in
carrying out the work on the Ace	group of claims in July,
August and September of 1980 and	l January of 1981.

FIELD WORK (July - Sept., 1980)

Personnel	
I. Borovic, P.Eng Project Supervisor	
10 days @ \$ 200.00\$	2,000.00
G.E. Alley, Field Assistant - July to Sept,1980	
40 days (grid line flagging included)\$	4,000.00
Room & Board	
40 man days @ \$ 50.00/man day\$	2,000.00
Transportation	
Airplanes: PWA Vancouver - Quesnel	
5 times @ \$ 140.00\$	700.00
4 x 4 Jeep (gas included)\$	1,450.00
FIELD WORK TOTAL\$	10,150.00
OFFICE WORK	
Personel .	
I. Borovic, 10 days @ \$ 200.00\$	2,000.00
Drafting, 40 hours @ \$ 20.00\$	80 0.00
Sample Assaying (General Testing Lab.)	
103 samples at \$ 10.00 per sample\$	1,030.00
OFFICE WORK TOTAL\$	3,830.00

TOTAL EXPENDITURES\$ 13,980.00

IGNA engineering & consulting ltd.

CERTIFICATE

- I, I. Borovic, with business address 4258 West 10thAve, Vancouver, B.C., do hereby certify:
 - 1. That I have personally studied, examined, and supervised the exploration work in the area of Ace group of claims, located at 53°8' latitude and 123°35' longitude in the Cariboo mining division, Province of British Columbia.
 - That the expenditures claimed for the performance of the work done are corect.

Respectfully submitted

I. Borovic, P. Eng.

General Testing Laboratories

A Division of SGS Supervision Services Inc.

CANCAL MINES LTD. 102B - 3350 Fraser Street Vancouver, B.C.

Soil SAMPLES "ACE CLAIMS

1001 EAST PENDER ST. VANGOUVER BIG. CANADA VOA 1W2 PHONE (604) 054-1647 | TELEX 04-507514 | CABLE | SUPERVISE

CERTIFICATE OF ASSAY

No.: 8009-0452

Oct. 1/80

We hereby certify that the following are the results of assays on:

MARKED	GOLD	SILVER	Lead	Zinc	XXXX	XXX) XXX	300X
MARKED	Au (ppm	Ag (ppm	Pb (ppm)	Zn (ppm)				
1 + 00E	0.03	1.2	29	2կկ				
1 E	0.03	1.7	25	63	ţ			
2E	0.03	1.0	22	71				
<u>ነ</u> ድ ነው	0.03	1.7	45 53 25	116				
ŀΕ	0.03	1.7	53	98 76			Í	
5E 6E	0.02	1.8	25	76			· ·	
	0.03	1.8	44	99 69				
7E	0.01	1.3	27	69				
8 E	0.03	1.3	42	93	j			
1 + 9E	0.03	1.5	33	81				
2 + OOE	0.03	1.5	40	94				
1E	0.03	1.2	22	98		į		
2 E	0.03	1.3	24	106				
	0.03	1.5	29	103				İ
3Е 4Е	0.02	1.5	27	133				
5 œ	0.02	1.7	18	98	i			
5 e 6 e	0.02	1.8	22	98 108		•		i
7E	0.03	1.5	25	110				
2 + 8E	0.03	1.2	29	119				
3 + 00E	0.03	1.0	25	109				
1E	0.03	1.5	20	103				
2E	0.02	1.5	27	133				
3 E	0.02	1.5 1.5 1.8	44	145				
3E 4E	0.24	1.3	27	113				
5₽	2.5	1.7	22	106				
6E	0.04	1.7	31	106	}			
7E	0.03	1.5	27	108				
8E	0.03	1.7	25	130				
3 + 9E	0.03	1.7	36	119				
3 + 1W	0.02	1.2	31	105				
3 + 2W	0.03	1.5	33	115				
					/ Continu	led on pa	ge 2	
	••							
REJECTS RETAINED ONE MO AND REJECTS WILL BE STO	NTH PULPS RETAIN	ED THREE MONTH	HS. ON REQUEST F	PULPS \	>,($\mathcal{H}.$	Nochan	

OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHANGED

General Testing Laboratories A Division of SGS Supervision Services Inc.

A Division of SGS Supervision Services Inc.

1.001 EAST PENDER ST., VANCOUVER, B.C., CANADA, VBA 1WP.

PHONE (504) 254-1647. TELEX 04-507514. CABLE. SUPERVISE

TO:

CANCAL MINES LTD. 102B - 3350 Fraser Street Vancouver, B.C. V5V AC1

(Continued) page 2 ...

CERTIFICATE OF ASSAY

No.: 8009-0452

DATE: Oct. 1/80

We hereby certify that the following are the results of assays on:

soil samples

	GOLD	SILVER	Lead	Zinc	XXX	XXXX	XXX	XXX
MARKED	Au (ppm) Ag (pr	n) _{Pb} (ppm) Zn (ppm)				
4 + OOE	0.03	1.5	25	106		Ì		
2 E	0.03	1.3	25 25	108]	
3.€	0.03	1.2	31	114				
ĻE	0.03	2.0	38	211				
5 e	0.03	1.3	31	119	i			
6 E	0.03	1.5	36	133		!	1	
7E	0.03	1.5	29	164				
8 E	0.02	1.8	29	110			ĺ	
9 E	0.03	1.2	29 35	130			į	
1W	0.03	1.5	27	120	1			
2W	0.03	1.2	29	118				
3W	0.43	14.9	29	131	i			
ĹŴ	0.08	1.2	29 29 35 35	115	i			
5W	0.02	1.8	35	123				
4 + 6W	0.03	1.3	35	84	į			
4 + 011	0.00	1.5	رر				:	
5 +0 0 E	0.03	1.3	33	78	}			
113	0.02	1.2	40	100				
2E	0.03	1.2	2կ	108				
3E	0.03	1.0	35	83				
ĹЕ	0.03	1.3	35 47	83				
5 <u>e</u>	0.04	1.5	140	หัว				
6 E	0.03	1.8	44	83 88		i		
7E	0.04	1.7	33	80				
8 E	0.03	1.8	31	80 66 58				
9 E	0.03	1.2	29	58	1		İ	
745 1W	0.03	1.5	40	91	İ			
2W	0.03	1.5	40	90				•
	0.03	1.5	36	89				
3₩ 1.w			36 27	90		1		
řΜ	0.03	1.3	29	90 90	j	ļ	1	
5W	0.02	1.7						
5 + 6W	0.02	1.5	29	90				
6 + 00E	0.04	1.5	35	89			į	
1E	0.03	1.5 1.5	140	60	!		į	
216	0.02	1.5).1.	88	į			
6 + 3E	0.02	1.8	<u>Щ</u> 51	95				

/TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL, ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

R. Nadeau, Chemist

PHUVINCIAL ASSAYER

General Testing Laboratories A Division of SGS Supervision Services Inc.

TOUT EAST FENDER ST. VANCOUVER BIOL CANADA, VEA 1W2 PHONE (604, 254-1647, TELEX (4-507514, CABLE SUPERVISE

to: Cancal mines ltd.

CERTIFICATE OF ASSAY

(Continued) ... page 3 ...

No.: 8009-0452 DATE: Oct. 1/80

We hereby certify that the following are the results of assays on:

Soil samples

Au (ppm) Ag 0.03 2.0 0.03 2.0 0.03 1.8 0.03 1.7 0.03 1.8	35 45 31	2n (ppm 94 70 93 61)			
0.03 2.0 0.03 1.8 0.03 1.7	' 31	70 93				
0.03 2.0 0.03 1.8 0.03 1.7	' 31	70 93				
0.03 1.8	' 31	93	1	!	!	
0.03 1.7	' 31	1 72 .				
	26	1 61 I	İ			
	٠ ا	89				
		0~				
0.03 1.8	31	85				
0.03 1.8	140	81				
		105				
			į		i	
		101		ļ		
0.03 1.8	40	99		Ė	,	
0.02 1.8	29	75			į	
0.03 2.0	184	98				
		101				
		78				
0.03	20	99	1			
		Ra				
0.05 1.4	. 24	30		}		
		98				
	: 20	98		1		
	· 33	76				
	25	76				
0.03 1.2	33	86				
0.03 1.8	25	95				•
0.0h 1.h	. 40	98				
	29	99				
0.03 0.8	, <u>2</u> 9	70				
0.03 0.8	27	71		-		
0.03 1.6	, <u>1</u> ,5			}		
				ĺ		
0.05	""					
			Continue	d on page	4	
	0.03	0.03	0.03 2.2 40 105 0.03 2.2 49 121 0.04 2.0 27 101 0.03 1.8 40 99 0.02 1.8 29 75 0.03 2.0 184 98 0.03 1.7 40 104 0.03 0.8 22 78 0.03 0.8 20 99 0.19 1.0 18 89 0.03 1.4 24 90 0.03 1.2 31 98 0.02 1.2 20 98 0.03 0.8 25 76 0.03 0.8 25 76 0.03 1.8 25 95 0.04 1.4 40 98 0.02 1.0 29 99 0.03 0.8 29 70 0.03 0.8 27 71 0.03 1.6 45 103	0.03	0.03 2.2 40 105 0.03 2.2 49 121 0.04 2.0 27 101 0.03 1.8 40 99 0.02 1.8 29 75 0.03 2.0 184 98 0.03 1.7 40 104 0.03 0.8 20 99 0.19 1.0 18 89 0.03 1.4 24 90 0.03 1.4 24 90 0.03 1.2 31 98 0.02 1.2 20 98 0.03 0.8 25 76 0.03 0.8 25 76 0.03 1.2 33 86 0.03 1.8 25 95 0.04 1.4 40 98 0.02 1.0 29 99 0.03 0.8 29 70 0.03 0.8 27 71 0.03 1.6 <	0.03 2.2 40 105 0.03 2.2 49 121 0.04 2.0 27 101 0.03 1.8 40 99 0.02 1.8 29 75 0.03 2.0 184 98 0.03 1.7 40 104 0.03 0.8 22 78 0.03 0.8 20 99 0.19 1.0 18 89 0.03 1.4 24 90 0.03 1.2 31 98 0.02 1.2 20 98 0.04 1.0 33 76 0.03 0.8 25 76 0.03 1.8 25 95 0.04 1.4 40 98 0.02 1.0 29 99 0.03 0.8 29 70 0.03 0.8 27 71 0.03 1.6 45 103

JTE: REJECTS RETAINED ONE MONTH, PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL, ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

R. NADEAU, Chemist

A PROMINGIAL ASSAULT

General Testing Laboratories

A Division of SGS Supervision Services Inc.

CANCAL MINES LTD.

1001 EAST PENDER ST. VANCOUVER BIG. CANADA VGA 1W2 PHONE (604) 254-1647. TELEX 04-507514. CARLE. SUPERVISE

CERTIFICATE OF ASSAY

(Continued)page 4

No.:8009-0452

DATE: Oct. 1/80

We hereby certify that the following are the results of assays on:

Soil samples

	GOLD	SILVER	Lead	Zinc	XXXX	XXX	xxx	XXX
MARKED	Au (pp	Ag (pp	pb (ppm)	Zn (ppm)		January 1	3242	
31 + OOE 1E 2E 3E 4E 31 + 5E	0.03 0.03 0.03 0.03 0.03 0.02	0.8 1.2 1.4 1.2 0.8 1.0	27 29 2•7 27 27 38 35	109 101 78 78 100 88				
4 + 1E	0.03	1.8	29	111				
		,					i	
							j	
·								
					į			
	_							
		-						
								•
	į							
		, -	·					

.JTE: REJECTS RETAINED ONE MONTH, PULPS RETAINED THREE MONTHS, ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

R. Nadeau, Chemist

PROVINCIAL ASSAYER