DIAMOND DRILLING REPORT

ON THE

CIRQUE GROUP

Paul River Area Omineca Mining Division

N.T.S. 94-F-6, 11

Latitude:

57⁰ 30' N

Longitude:

125⁰ 09' W

By:

W. J. Roberts CYPRUS ANVIL MINING CORPORATION

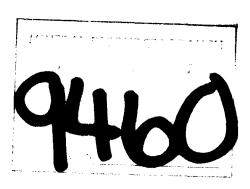
Field Work During Period July 31 to Augu

DIAMOND DRILLING REPORT

ON THE

CIRQUE GROUP

Paul River Area Omineca Mining Division


N.T.S. 94-F-6, 11

Latitude:

57⁰ 30' N

Longitude:

125⁰ 09' W

By:

W. J. Roberts
CYPRUS ANVIL MINING CORPORATION

Field Work During Period July 31 to August 17, 1981

TABLE OF CONTENTS

	Page	5
List of Claims	(ii)
INTRODUCTION .	1	
LOCATION and ACC	CESS 3	
REGIONAL GEOLOG	γ 3	
DIAMOND DRILLING	G 7	
CONCLUSIONS and	RECOMMENDATIONS	
	List of Illustrations	
FIGURE 1	Location Map 4	
FIGURE 2	Stratigraphic Column - Akie District 6	
APPENDIX I APPENDIX II	Diamond Drill Hole Logs for: 81-C-16 and 81-C-2 Statement of Qualifications	2
APPENDIX III	Summary of Costs	
APPENDIX IV	•	
MAP NO. 1	Claim Map - 1:50,000	
MAP NO. 2	Drill Hole Location Map - "R" Creek, 1:10,000	
MAP NO. 3	Cross Section 317+50, 1:2,000	
ΜΔΡ ΝΟ Δ	Cross Section 7 - 7' 1:2 000	

LIST OF CLAIMS

Claim No.	Record No.	No. of Units	Recording Date
1	685	20	July 20, 1977
2	679	20	July 25, 1977
3	680	20	July 25, 1977
4	686	18	July 20, 1977
5	681	12	July 25, 1977
6	682	18	July 25, 1977
7	683	12	July 25, 1977
8	684	20	July 25, 1977
11	791	4	Sept. 19, 1977
12	1246	9	July 18, 1978
13	1316	9	Aug. 10, 1978
14	1317	8	Aug. 10, 1978
15	2201	9	Oct. 24, 1979
16	2202	16	Oct. 24, 1979
17	2203	12	Oct. 24, 1979
18	2895	9	July 11, 1980
19	2896	20	July 11, 1980
20	2897	3	July 11, 1980
21	3827	18	June 17, 1981
22	3828	18	June 17, 1981
	TOTA	275 units	

300, 355 Burrard Street Vancouver, British Columbia V6C 2G8 Telephone (604) 687-2586

INTRODUCTION

The CIRQUE GROUP, totalling 275 units, was staked to cover two gossans containing stratiform barite-pyrite-galena-sphalerite float mineralization near the head waters of the Paul River. Preliminary soil and silt sampling, prospecting and geological mapping during the 1977 field season indicated that the two showings were connected by over two kilometers of discontinuous anomalous lead-zinc soil values.

Work in 1978 included:

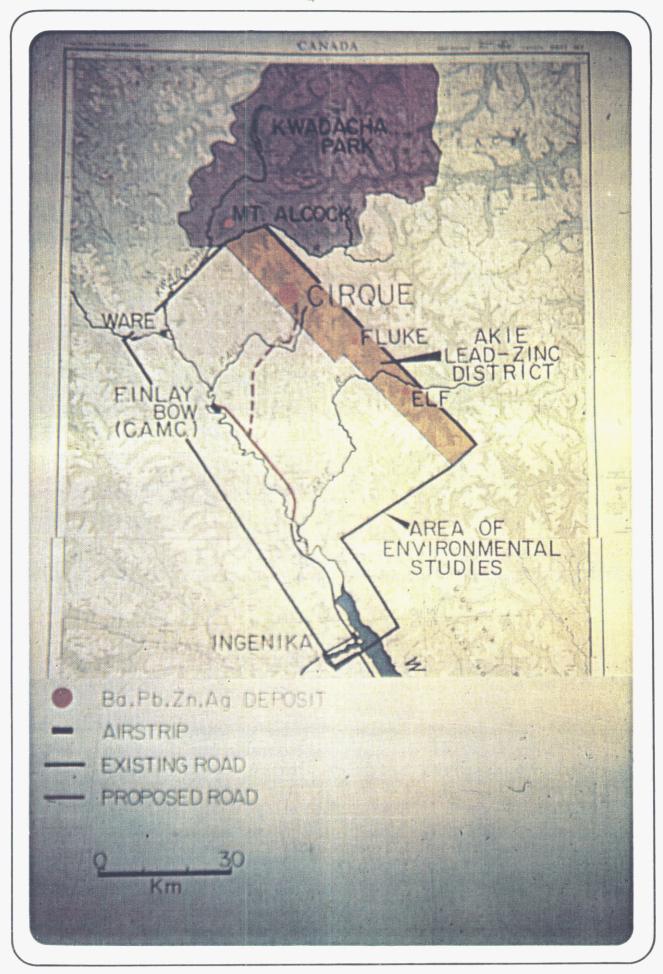
- 1) 1:5000 scale geological mapping of a preliminary nature
- 2) additional soil sampling
- 3) 41 kilometers of horizontal loop EM surveys
- 4) 882 meters of diamond drilling in six holes

Although electromagnetics was unsuccessful in distinguishing sulphide mineralization within the graphitic Gunsteel shales it did prove useful in distinguishing major lithologic units on the basis of electromagnetic signature. Three drill holes in the "R" showing area failed to intersect any mineralization (78-C-01, 02 and 03). Drill holes 78-C-04, 05 and 06 intersected stratiform barite-sulphide mineralization over widths of 3.6 to 5.1 meters with grades ranging from 6.0 to 8.7 percent combined lead and zinc with 25 to 37 grams per tonne silver in the K showing area. A 1500 m diamond drill program was proposed for 1979 to continue testing the barite sulphide horizon.

Results of the initial drill holes in 1979 led to expansion of the original program. During the period, June 1 to October 23, 1979, 24 diamond drill holes totalling 8,063 meters were completed. Sixteen of the twenty-four holes intersected stratiform mineralization over widths ranging from 1.0 m in 79-C to 70 m in 79-C-23. Approximately 18.0 million tonnes grading 2.25% lead, 7.93% zinc and 48.7 grams/tonne silver were drill indicated at the end of the 1979 field season. An additional 15.0 million tonnes of similar grade was calculated as geological reserve.

During 1980 the Cirque was geologically mapped at scales of 1:2000 and 1:5000. Twenty-seven (27) diamond drill holes totalling 10,055 meters were completed by October 23, 1980. By 1980, the drill indicated reserve was increased to 30,000,000 tonnes grading 2.2 percent lead, 7.8 percent zinc and 49 grams per tonne silver which contains a higher grade portion of 14.8 million tonnes grading 2.8 percent lead, 9.4 percent zinc and 55.4 grams per tonne silver. The drill indicated reserve is surrounded by a conservatively estimated geological reserve to the north and south along strike. The massive stratiform Cirque Deposit has been outlined over a 1,000 meter strike length, 300 meter width and 2 to 70 meter thickness.

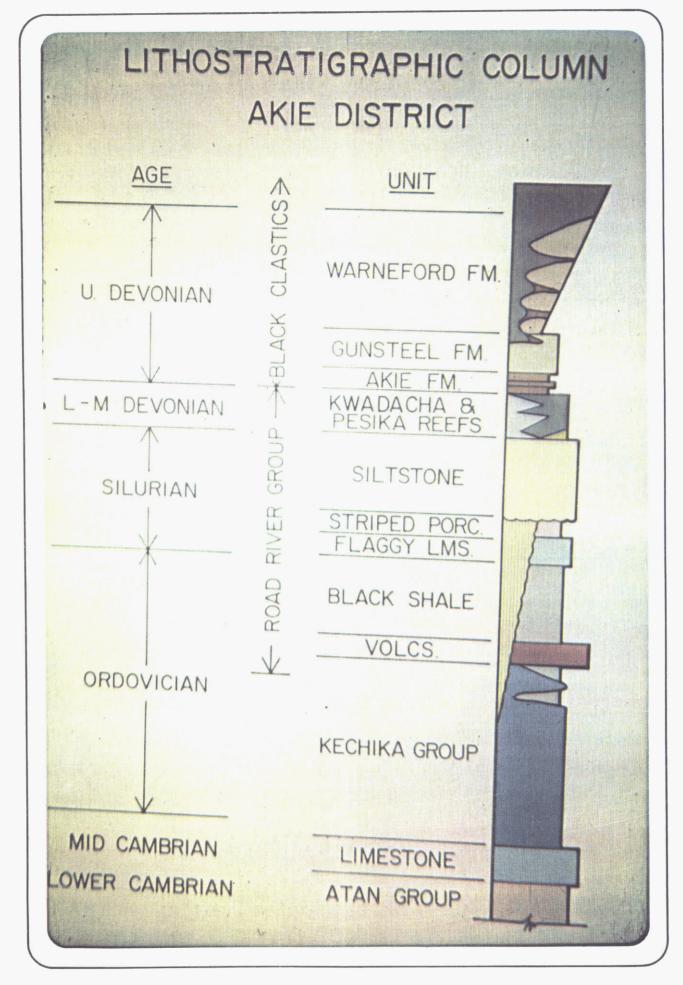
The two drill holes documented in this report occur in "R" Creek, roughly 1.5 kilometers northwest of the Cirque Deposit. The source of large mineralized float boulders in "R" Creek is presently being sought.


LOCATION and ACCESS

The CIRQUE GROUP is located near the head waters of the Paul River in northeastern British Columbia. The claims cover a northwest-trending ridge between the Paul River on the southeast and an unnamed creek informally called Cirque Creek on the northwest. The property is centered 30 km east of Ware, 27 km south of Chesterfield Lake and 27 km northeast of Grave Mountain at latitude 57° 30' N and longitude 125° 09' W.

Fieldwork and diamond drilling were supported by helicopters based at the Finbow airstrip constructed during the early spring and summer of 1980 (see Figure 1). Logistic support was provided by fixed wing aircraft based at Mackenzie, 250 km to the southeast. Fuel and bulk cargo were moved by barge from Mackenzie to the north end of Williston Lake and shuttled either by air or by river barge the remaining distance to Finbow.

REGIONAL GEOLOGY


Lower Devonian to Mississippian rocks are preserved in a series of synformal fold keels and thrust plates that form four sinuous, semicontinuous, northwest-trending belts. This package overlies and is overthrust by Upper Cambrian to Silurian strata belonging to the Kechika and Road River Groups. The Devonian to Lower Mississippian section can be split into four main subdivisions. The Lower to Middle Devonian limestones and shales are characterized by massive, grey, fossiliferous limestone (Kwadacha and Pesika Reefs), limestone debris flows and chert breccias that interfinger laterally with graptolitic shales, cherts and distal calcareous turbidites (Paul River Formation).

The Akie Formation comprises rusty brown and grey-weathering shale, silty shale and siliceous shale which unconformably overlie the Lower to Middle Devonian strata. Some shales which have been mapped as Akie Formation may be facies equivalents of the Lower to Middle Devonian units, or basal shales of the Gunsteel Formation. An unconformity between the top of the Silurian and the base of the Upper Devonian is indicated in drill core by the conglomeratic, reworked top of the Silurian Siltstone. The duration and regional nature of the unconformity are poorly understood. The problem is complicated by depositional thickness and facies changes in Lower to Middle Devonian strata and lack of paleontologic control.

The Gunsteel Formation consists of silvery-grey weathering, black, siliceous, carbonaceous shale and chert, and overlies the Lower to Middle Devonian package. The Gunsteel Formation is host for all known barite-sulphide mineralization and most of the known stratiform barite deposits in the region.

The Warneford Formation is Upper Devonian to lower Mississippian submarine fans of chert and shale conglomerates in the west interbedded to the east with silty distinctly laminated shales which have thin dolomitic siltstone interbeds. The Warneford Formation is interbedded with and overlies the Gunsteel Formation. It locally contains nodular and bedded barite that may be stratigraphically equivalent to the barite in the Gunsteel Formation.

DIAMOND DRILLING

A Longyear 44 drill was contracted by J.T. Thomas of Smithers, British Columbia for all drilling in "R" Creek. All coring was done using NQ equipment except where drilling problems required reduction to BQ. Drill holes were surveyed at 100 to 300 foot intervals using Sperry-Sun, down hole magnetic surveying equipment.

So far, drilling in "R" Creek has been unsuccessful in locating any significant, potentially economic stratiform mineralization in the Gunsteel Formation (Unit 8). Both drill holes were collared in soft, light grey, foliated phyllitic shale with indistinct siltstone interbeds (Unit 8U) that gradationally trends into underlying Silurian Siltstone. Minor disseminated subhedral pyrite occurs sporadically throughout siltstone interbeds. Major stratiform mineralization and associated siliceous black host facies were noteably absent in both drill holes. All core is presently stored in core racks on the property in a large alpine field in the northern portion of the claim group.

CONCLUSIONS AND RECOMMENDATIONS

The two drill holes collared in "R" Creek failed to locate any significant mineralization in the host Gunsteel Formation. Further drilling is recommended to the southwest to test for mineralization and associated facies structurally underlying a thrust slice of Silurian Siltstone.

Respectfully submitted,

W. J. Roberts Senior Geologist, Base Metal Projects

APPENDIX I

CYPRUS ANVIL MINING CORPORATION

Page 1 of $\frac{15}{}$

DIAMOND DRILL CORE LOG

Date: September 10, 1981

Hole Number:	81-C-16	Reference Fabric Orientation Diagram	n:
Project:	Gataga		
Location:	Cirque Group		
Claim:	Cirque No. 1		
UTM Co-ords.:	N		
(or Terr.Plane)	E		
Grid L3	20N, 297+50E "R" Cree	k	
Orientation:	-60° @ 000°	All symmetry determinations looking	
Elevation:		\overline{NW} with S_1 dipping	
Total Depth:	523.0 m	SW with dip azimuth 210 .	
Purpose: To te	est possible hanging wall	rocks on west side of "R" Creek.	
Reason hole Terminated: It	was proved that the sect	on was footwall.	
		Date(s) Logged: 81-08-04 81-08-08	3
Drilling Contra	actor: J.T. Thomas		
		CORE	
		Size From To Collar NW 0 12.8 and Cap	
Hole Cemented:		NQ 12.8 523.0	
Steel down		Started: July 31/81 Completed: Aug.	10/81

Page 2 of 15

Cyprus Anvil Mining Corp.

DDH <u>F.G.B.J.C.J.L.</u> 8

Diamond Drill Core Log Date: Aug 10, Bt Logged By: K500 checked by K00

Code	Drillhole	Elevation	Northing	Easting	Units (feet/metres) R.	FE
	2 8	10 16	17 24	25 32	34 39 41	42
T	E618115116	11111	1 1 1 1 1 1 1		MIEITIRIES S	

g Dril	Ihole	Depth		Zenith Angle		True Azimuth	Comments
12	1 1 1 8	10, 1,	14	22, , ,	26	28, 1,32	34
R EIGIE	3110116	ەر ر	0	151010	D	010101010	$A_1T_{i,j}C_1O_1L_1L_1A_1R_{i,j}$
REIGIE	3/15/16	1814	7	1141610	0	01/1/1010	
R EIGIE	3/10/16	1151	8		1 1	01/101-10	
R EIGIE	3/10/16	121413	2	1,4,3,0	0	0,18,0	
REGE	11/4/16	131314	Z	1,31910	٥	015.0	
R E1618	31,0,1,6	141216	1	1,3,71.	Ó	012101010	
REIGIE	3/14/16	151/17	6	1.3111.	0	013101.10	
						1 1 1 • 1	1.
						1 1.1.1	
				1 1 1 .		1 1 1 • 1 -	
				111.		1 1 1 • 1	
1				11.	Ŀ	1 1 1 • 1 .	
				111.		11.	1111111111111
				1110		111.1.	111111111111
					_		
				111.	_	1 1 1 • 1	
				111.	_	1 1 1 • 1	
-	1.1.1.				_	1 1 1 • 1 -	
1	111					1111	
	1111				L		
	1111			111	_		
	1111		_		\vdash	-1-1-1	
					_		
سلا		لحبيا			L		

•pos	Ī	D	ri	III	ol	е				C	on	nπ	ne	nt	s,	ŧ	Eri	C	nt	R	eı	no	ırl	(S	, (Sn	iv	el	lin	gs	5 (an	d ,	/ 0	or	L	ev	vd	1	Sı	ıg	ge	esi	iic	חכ	s					
I	2	1	ī	1		1	1	8	10	<u> </u>	1	1	1	1			f .		1	1	1	1	1				1	L		I	1	1	1	1	_1	\overline{a}				1	ı	二				ı	二	Ĩ.		ئــــــــــــــــــــــــــــــــــــــ	56
Γ	Γ	1	,	,	,	-	,			<u>. </u>	,	,	,	-	,		,		,	1	1	-	- 1		ı	ı	1	,	1	1.	1	t	ı	_1	1		1	1		1		_1			1	1	_1_	_1	_1	_1	
Γ	T	•	•		•			1	_												,	,								,						ı	1			1	_				•	1	_	1	1	1	
Г	t	. <u>.</u>		<u>.</u> .				1					<u>.</u>				<u>. </u>	L		<u>.</u>			ш.				•												_							ï					
+	t	_1_				L	_	1	_	<u> </u>	1				<u>ا</u> ــ		 -	L.	Щ.		ᆜ.	_L	1			L	ــــــــــــــــــــــــــــــــــــــ			<u>.</u>	L	_ <u></u>		_1_		ب ۔			<u>.</u>	<u>.</u>	_1_	L			<u>. </u>			<u> </u>			7

DDH <u>EG81 C1.6</u>

Cyprus Anvil Mining Corp. Lithologic Log

Page 3 of 15 Date: 81-08-04 Logged By: DBK TJA

Description From No. Unit Overburden casing to medium gray phillitic shale with minor gonge zones and Gouge Zons 190 5183 10,4 DGPF purite laurence and generally indistinctly 11064 my should broken shellite 1016 JOIT DGIPIFI 1018 DIGIPIFI 111514011 115169 1019 1110 DIGISIFI 111 1 1 F 112 DGIPIFIB 1/4 time a rebal benede as ton, 12121614 113 061P1F1 to live 34 + 1214136 1/14 PIGAFT thick and form 40% of inhard bouge @ 226.4-2265m, 228.5-228.6m, 2285m 231.8-231.9m, 235.0-235.1m, 235.6-236.3m, 240.1-240.5m, 241.2-241.3m

DDH <u>E.G.8.1.C.1.6.</u>

Cyprus Anvil Mining Corp. Lithologic Log

Page 4 of 15

Date: 8/08/8/ Logged By: 1/10 1000

9	From	То	Recov.	No.	Unit	Description Tectionic breccio consisting of quarte (+ calcik) with angular shale clasts. Claste an up to 2:m across Contain minor pyrik and trace of fine-ground sphalerite. Inscenset port of interval is gauge Some as Unit = 14 (226.4-243.6 m) = Dominanth some and
団	io <u>14</u>	16 20	22 24	26 28	30 34	35
4	1214136	1214145		1/15	1114	Tectionic breccia consisting of quarte (+ calcik) with angular shale
Ц	1.1.1.	`				clasts. Clast an up to 2 cm across Contain minor pyrike and trace of
Н			1			fine-grand sphalerite. Insermost gout of interval is gouge
H				11.		
씸		B1516/1		1/16	DGIPIFIF	Danie as Unit = 14 (226.4-243.6 m) " Dominantly gauge and
Н			1			broken cover Small intervals of quarte-calcide veins. Kecovery
Н			المسا			Same as Unit = 14 (226.4-243.6 m) - Dominantly gauge and broton core. Small intervals of quarter-calcide veins. Recovery about 70-80%.
Ш						
L		216161		1/17	DIGIGIFI Y	Black, normalicanous, medicately hard shale. Much broken with
Ц		111			1111	development of extensive gouge. Minor quarte calcile verying forming tectories breeze by
Ц		بالتا	المنا			tectories breccia. Shale contains thin lauriuse of pyrite enclosed by
Ц		111				while calcile. There are irregular and discontinuous. Rock becake
Н			1		1111	Sominantly along Sp. A good 50-60% of internal is suble and
Ц			سن			page. Otr-colcik veins @ 256.1-256.3 m, 258.0-258.1 m
Ц			111			while calcik. There are irregular and discontinuous. Rack breaks Sominantly along 5, A good 50-60% of interval is subtle and parge. Ote-calcik veins Q 256.1-256.3 m, 25800-258.1 m Dominantly gauge for lost part of interval (264.9-266.1 m)
						, , ,
4	1-1-1-	1217188	11	1/18	DIGIPIFIN	Medium lack gray, noncalcavours, coft shale. Just hard energh to
Ц						resist a fingernal scralch. Locally indistinsty laminated. Contains
Ц				11		differe roves of dissemental pyrite laminee. Here are up to 3 cm thick.
Ц						His contains irregular nodular pyrik regules partly to completely enclused
Ц						Ly while quarte. Nusular pycik is up to 3 cm across. Very minor
Ц						quarte-calcile veining Cone breaks along both So and Sp.
Ц						
1		21805		1119	III-E	Rubble and broken come in phyllitic shale. Also abundant calcile-gote vein makerial in the subble.
Ц		111				vein material in the rubble.
Ц						

DDH <u>E.68.1.C.1.6.</u>

Cyprus Anvil Mining Corp. Lithologic Log

Page 5 of 15

Date: 8/08/81 Logged By: 15P 700N

ě	From	То	Recov.	No.	Unit	Description 35 Same as Unit # 18 (266.1-278.8m) Lower confact arbitrary -
H	10 14	16 20	22 24	26 28	30 34	35
	121805	1218138	1	1210	DIGIPIFIN	Same as Unit # 18 (266.1- 278.80) Lower contact arbitrary -
Ц		111				in next unit core not as broken and no wolules pycik aggregates
Ц			1		111	in next unit core not as broken and no wolules pyrik aggregates noted. Care much broken- no gauge. Quanto-cakite veins presents
Ш						
4	- 	1218175	-1-1-	الكل	DIGPIFIY	Same as Unit = 13 (166.2-226.4m) hocally indistinctly
H				44		Imminated Common thin quarte-calcite reinlets.
-	┵┵┼┼┼┼					
M		1310157		1213	DIGIPIFIG	Similar to lost Unit # 21 (283.8-387.5m). Pyrik as
						sheaty discoutinuous laminae as well as the diffuse zones of pyeite
Ц			المال		1-1-1-1-	Jaminde Core much broken Becomes progressively more broken
Ц						with rubble and some garge as so towards bettom of intervale
						More broken care and subble them gauge. Probably about 90%
Ц						core recovery.
7	111	131212 1		1213	DIGIPIFIL	4 Medium to medium lank good, competent coming, saft shale.
Ц						y Medium to medium lank going, competent coming, soft shale. Sensteles with fingermail haminated webutinetting with shales of gray -
Ц			لنب	ــــــــــــــــــــــــــــــــــــــ		bed's range from Im to dem thick. Minor pyrite occurs as very avoid madeline apprepates of fine grained massive pyrite. Range from 2m to 3 cm in length with a much thinner width. Minor arms w/ broken core @ 318.5m 319.2-319.5m 320.8-320.9m
Ц	4 4 4					very avoid modules apprepates of fine grained massive pyrite. Range
					1111	how 2m to 3 cm in length with a much thinner width.
						Minor gauge uf broken core @ 318.5m, 319.2-319.5m, 320.8-320.9m
Ц						322.0 - 322.1 m
		<u> </u>			1111	
4		13.2.73		1214	ISISIHIL	Medium lark gray finely laminated shaly siltstone. Slightly colesuous
	<u> </u>			11	1111	Looks to be conformable contact with above unit. Disservinable pyrit,
						sheek, pyrite discontinuous laminae, small pyrite notales all occur locally.
						Abundant junte-calite veining, Some technic ineccia, Gauge @ 322.4m, 323.9m, 326.7m. Sillstone moderably hard to moderate, sopy C.A.M.C. 1981-E-3A
						326.7m " Silbfore molarthy hard to moderately soft C.A.M.C. 1981 - E-3A

DDH <u>E&B1C.1.6</u>

Cyprus Anvil Mining Corp. Lithologic Log

Page 6 of 15

Date: 8/08/81 Logged By: ACP

8	From	То	1	Recov.	No.	Unit	Description
団	0 14	16 20	o i	22 24	26 28	30 34	35
1	13,5,3 3	واهديها	ı		2.5		Dock on to black nancaleageness maderately safet shale. Corpains
Ц				<u> </u>		_1_1_1	Abundant steady modular purite - commonly partly enclosed by quarte. Abundant quarte - calcide veining. Veining usually associated with broken core and disrupted 5, and 50. Fault gauge and rubble in black state. Abandant quarte - calcide veining. Lower contact marks competent caring siltiture
Ц						1111	Abundant quanto-calcide veining. Veining usually associated with broken
Ц			1	<u> 1 î.</u>			core and disripted 5, and 50.
Ц			1	_ 			·
4		13130 3	3	1	1216	E	Fault gauge and rubble in black shake Abandant quarte-culiste
Ц						1111	reining. Lower contact marks competent caring siltitore
							, ,
							Suite 1 1/4 # 24 (3221-323 3m) /2 // marrier will #
Ц							the development of five laminations. Slightly colcanous Moderately
						1111	hand to moderately soft. Hinne no Jules prik up to Ican across
				11			the development of fine laminations. Slightly colcanous Moderately hand to moderately soft. Hinou no dular pyrik up to lear across Common quarto-calcite fractures up some declare brecein. Abun Cant
	111						facture w/ veining 333.3 - 336.1m.
							facture w/ ucining 333.3-336.1m.
1		131415	2	<u>i</u>	1218	ISISIHI4	Medium dank grey, slightly calculaus, shaly siltatione with laminae disrupted by bioturbation. Some as last unit only biotumbated.
L							disrupted by bioturbation. Some as last unit only biotunbated.
							Gange with broken care @ 336.3-336.5m, 337.7-337.8m, 342.5-
L							Gange with broken care @ 336.3-336.5 m, 337.7-337.8 m, 342.5- 342.9 m. Contain intervals of medium-group siltstone. There are up to 1.5 m thick. This unit could be considered Ssew + Ssen
L							1.5 m thick. This unit could be considered Sour + Sour
					4	<u></u>	
1		131419			1219	15151516	+w) Medium grey slightly colcanous to moderately colcanous siltertone
				نــــــــــــــــــــــــــــــــــــــ		1111	Intervals are massive. Look sast @ 348.0 m inclicates tops up DDH
		1-1-1-1			ــــــــــــــــــــــــــــــــــــــ	1111	Locally quarte- calcile filling fractures.
	111						, , , ,
L		131514	7	غا	310	15151514	Bioharbakel medium-grey to medium-clark grey Silmian silkstone
				أ			Monentarious Compactant coving Maderately hand with mail hood cast
							Lack Camc 1981 - E-3A

@ 352.0m indicates Tops up DDH. Locally contains discontinuis huminas of lighter 5.16 time in shaly matrix (disrupted) y worms)

At 343.0 ban have thin ban block dust of block dust in silkshower in silkshower amount thick DDH <u>EGGIC16</u>

Cyprus Anvil Mining Corp. Lithologic Log

Page ______ of ___15___

Date: 8/08/81 Logged By: 140

Code	From	То	Recov.	No.	Unit	Description 35 + h Medium - dark to dark grow shaly silk-tome. Community bioturbated. Locally finely laminated. Slightly calculates to noncalculates. Hinos quarte - calcita veining. + SSSH Medium lask to medium grow bioturbated Silverian silkstone Birly to the selicita of the selicity of the selection.
	0 14	16 20	22 24	26 28	30 34	35
7	131514 1	1315170		131/	15151H161	+ h Medium - dark to dark gray shaly siltetone. Communely bioturbates.
Ц			1			Locally finely laminated. Slightly colourous to noncalculares. Minor
Ц					1111	quarte - calcite veining.
Н			1	_1_1_		
4		1316144	11	1312	15151512	+ SSSH Medium lask- to medium- grey biotechales Silvian siltatore
Ц						Biohubatium delinated by disripted So. Slightly coleanous. Some medium gray intervals are very coleanous - these are still biotherbated. Thin intervals of medium-dark gray shally sellstone.
Ц	111					grey intervals are very calcourse these are shill biotrebated. Thin
Н						intervals of medium- Jank group shally selbstone
Ш					1111	
4		131616 1		1313	15151HIW	+ A Medium lask to last gary skaly siltstone Slightly colcareous
			1	1 1	1	Consciont priva, Moderately sold to noil. Combine thin light area
П						Competent wing Mederately soft to noil. Combine thin light gray collement siltstone faminas. Unit is bioturbated. horally finely
	1 1 1					laminated rather than biolustaka.
Ц						
4		1318102		1314	121212 H	+ SSH + SSSA Interbedded medium-guen siltstore and dark grey silty
$\vdash \vdash$			11			Shale. Siltstone bisturbated on finely faminated. Shale commande
Ц		111				has them molicen- gray siltstone liminar. Shele at 369, 2 m has
Ц			111		<u> </u>	this black chart notate. Unit slightly coloneous to noncoloneous.
Ц			1		1111	Individual beds varye from 0.5-1.5 on thick. Locally the silt home
Ц	111					is massive with minor pisalibia (conscretions) texture.
Ц			لبا		1111	<u>'</u>
1		13/1/0		315	الماكاكا	Light grey, massive limerone, Contains their discontinuous shaly
Ц			لنا		<u> </u>	partings. Upper and lower contact are sharp. Massive appearance
			نبا			, , , , , , , , , , , , , , , , , , , ,
		318125		1316	اگا\$اگا	Medium-duk gray, massive siltstone. Moderately hand. Moderately
			Щ			calcanowi.

DDH <u>E.6.8.1.C.1.6.</u>

Cyprus Anvil Mining Corp. Lithologic Log

Page 8 of 15

Date: 8/08/81 Logged By: 16

14		22 24	26 28	30 34	
325					
1	111			13 Jah 18	Tectoric breccion of Unit = 36 (-384.0m) Upper
	1 1 1 1 1 1		11		part consists of extensive fractures with fragments only usuing slightly
			11		along fractures howest 0.2 m consists of angular clart in a
					part consists of extensive fractures with fragments only moving slightly along fractures howest 0.2 an consists of angular clart in a shaly matrix. Trace of sphalecite in the matrix. Claste in bower part generally less than 1cm across.
	1111				prot generally less than Icm across.
			_1_L		
	131813 9		13 6	1515161	Same as Unit = 35 (380.2-381.0m)
	1411113	9	1 13 19	الاعتاكانا	+ SSSH Milium-Rank to Dank grey seltstone Entensively
			ــــــــــــــــــــــــــــــــــــــ		biohorbabal hocally sevelaps a mottled texture. Slightly calcareous
					Minor nodular purite. Interpeddel with dark gray sitter shales
				1111	Both shale and silts tone bocatly have diffuse somes of
					pyrite leminar. Shale community has meilium gray silts force
					Parninge. Minor them black chart nodules. Shales up to las thick
	141/160		1410	ISISIH	+ 5550 Same as last Unit (= 39: 383.9-406.3m) only
		لنا			shale is Sominant lithology. Gradational contact. Medium
					grey siltatore layers are locally highly culcareous. Minus quarte-
			ــــــــــــــــــــــــــــــــــــــ		alcike veining w/ tectonic precia.
			لنا.		J ,
			141		Jectonic bressia. Angular clasts of silts time in a quarte vein
					matrix. Some viers with suarts engetals growing inwards. Some
					rubble and goinge in lower part of the interval. Only minor
					calcik. Gouge @ 419.6-420.0 m.
				111	
		131813 9 141016 3	131813 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131813 9 1 13 8 141016 3 1 1319 1 1411 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131813 9 1 138 1515161 141016 3 1 1319 151515W

DDH EGBLC16

Cyprus Anvil Mining Corp. Lithologic Log

Page 9 of 15

Date: 8/08/21 Logged By: ACP

Code	From		То		Reco	•	No.	Unit	Description	
	10	_		_		_		30 34		
1	141211	1	141214	/3					+ U Medium lack grey slightly calcaveous, biotrophakel siltstone	
	111	Ц		Ц	لُـــــــــــــــــــــــــــــــــــــ				Competent coning. Contains extensive questo -calcile veins - fractions with	
			1 1 1		1.1				angular class of silk hone. This inknow is analahoural between ketonice	
									Competent coning. Costains extensive quarte-calcile veins - freehores with angulare class of silt time. This interval is gradational between tectonice breccion (ine mainly veins) and solid seltstone (only a few veins).	
			1-1-1-							
				1 1				اکاکا کاف	+ SSH+1 Medium to medium-dark gray, slightly extensive, brokerbate sitt fore	
									with dark going silly stack interbeds. Both siltstone and shale are	
			1						locally finely indistinctly prinated. So disrupted into consulations by	
	1 1 1								show development of C. close. Minor queste-calcile veining.	
			111						strong development of S, clone. Minor quanto-calibe veining. Shale intubels are less than I m thick and from a 30% of interval.	
	111				, , ,		1.1			
1									+ 5550 Dank gruy, narcalcareous shaly siltstone / silty shale with	
									inte bole of molium - Park gray, bistrobatel, calcarence sitts tone. Shole is	
									locally Taminated with light to medium grey ciltidore familiae. Minor	
	111				لللل	Ц			nodular pyrike. Silterone interbede constitute ~30% of interval and	
			111	L		Ц			are generally less than In thick.	
	1.1.1	L	111	L						
1			450	1			1415	ساکاک کا	Medium to medium-dark grey, biotuchated, calcaveous to slightly releaseous	
L				L		\sqcup	1.1		silts tone . horally lawinated.	
	1					ال				
	1 1 1								Se	top at
Γ										bux 79
			1.1.1			ì				
	1-1 (l .			_ 1				
		1		1		- 1				
			111				1.1	1111		
_									CAMC 1981 - F - 3A	

C21 -80 @ 0900

DDH EGBICIE

Cyprus Anvil Mining Corp.
Lithologic Log

Unit Description From 20 22 24 26 28 30 145,49 15151HW - med 14.7 ISISSIW 418 1531HL(W) - Oal 155151W(L) highly brotulated material DDH EGBL CIS

Cyprus Anvil Mining Corp. Lithologic Log Page 12 155

• 9 0 0	From	То	Recov.	No.	Unit	Description
_	10 14	16 20	22 24	26 28	30 34	35
	5052	51132		1512	SSISIL	- light gray, well lominatel conjetent excellentening
				_1_L		solling into short intered som I heary
Ц		111		11		biotassation
					_1_1_1_	
		5140		153	<u>5,5,5,</u>	- light gray hilly broken boted wassing well coming
Ц						sills line.
	1 1 1 5					
		5,1,62		<u>,</u> 5,4	SSHO	(w) - danh gray shafey siltature with other latter
Ц						grey bisturbated interiors & 8m (20m Fault gory
Ц			ابيا			at 515 mi)
		111	بــــــــــــــــــــــــــــــــــــــ		1111	
4		15,21 2	1	56	issiHw	- dayle quey shaly, biotenhotal, mossive, conjectual
H						exultest coming
\mathbb{H}						- Pt. 1 0 1 2 2 51 50 110
4		1255		1516	SSBIL	the few day - was something sciences
H						hiotophatel siltsher was top,
H						production of the state of the
H		-1-1-1-				A STATE OF THE STA
H	-1-1-1- - 			11	_1_1_1_1_	END OF HULE
H				-4-		END OF HICE
H		111			1 1-1-1-	
H		11:1-		11		
H				.11	-1-1-1-1	
H				1.1.		
Н						
Ц		لببل		لللا		

CYPRUS ANVIL MINING CORPORATION

DIAMOND DRILL CORE LOG

Date: September 10, 1981

Hole Number:	81-C-22	- ·	Reference Fabric Orientation Diagram:
Project:	Gataga	-	
Location:	Cirque Group	-	
Claim:	Cirque No. 1	-	
UTM Co-ords.: (or Terr.Plane)			
		_E	
	7+75N, 296+80E		
Orientation:	-70° @ 050°		All symmetry determinations looking
			NW with SW dipping
Total Depth:	372.8 m	-	$\frac{S_1}{1}$ with dip azimuth $\frac{210}{1}$.
Purpose: Comp	lete section through	''R	" Creek showing area.
	Hole terminated in fo		vall Silurian Siltstone.
		-	Date(s) Logged: August 15 and 17, 1981
Drilling Contra	actor: J.T. Thomas		 CORE
			Size From To Collar Cased NW 0 39.6 and Capped:
Hole Cemented:			_NQ39.6 372.8
Steel down			Started: Aug. 11/82 completed: Aug. 15/81

Cyprus Anvil Mining Corp.

Page 2 of ______

DDH <u>EG.8.1.C.2.2.</u>

Diamond Drill Core Log Date E1-08-17 Logged By: DS'N Ched By: DBK

Code	Drillhole	1	Elevation	Northi	ng	E	Easting		Units (feet/metres)	R.F.E	
1	2 8	10	16	17	24	25		32	34 39	41 42	
T	EG1811 C1212		. 1	1 1 1 1	1 1 1		1111	,	METRES	5,1	

Code	Drillhole	Depth	Zenith Angle	True Azimuth	Comments
	2 1 1 1 1 1 8	10 1			
R	EGB1,C12,2	100	1,6,0,00	0,5,0,00	A_1T_1 , $C_1O_1L_1A_1R_1$, I_1 ,
R	E.G.811.C.212	1960	1550	0,5,4,0,0	
R	EGIEII ICIZIZ		152.0		
R	EG.8,1 ,C,2,2	1278	149.0	0,5,2,.0	
R	EGEI CIZIZ	3,7,03	1,4,8,0	0.54.0	
		111		1 1 1 • 1	
	1 1 1 1 1 1			1 1 1 1 1	
	1 1 1 1 1 1		1110	11101	
				1 10	
			1110	110	
				1 1 1 • 1	<u> </u>
				1 1 1 1 1 1	11111111111
	1 1 1 1 1			1,,,,,	<u> </u>
	1 1 1 1			1 1 1 • 1	
	1 1 1 1 1			1 1 1 1 1	
	1 1 1 1 1 1			1 1 1 • 1	
				1 1 1 1 1 1	
				1 1 1 1 1	<u>, , , , , , , , , , , , , , , , , , , </u>
	1 1 1 1 1 1				<u> </u>
	11111				
	11111				
	11111				
	11111	1.1.1			
L					<u> </u>

Code	Drillhole Comments,						; ,	Errant Remarks,								Snivellings and / or Lewd										1 :	Suggestions																		
1	2	L	1	_1		1		8	10)	1	1	1	ſ		1	<u> </u>	1	1		L	ı	_(1	ī	1	1	ī	1	1	1	ı	1	L	1	ī	I	I	1		Ī		1	1_	56
		,				_					_		_													,	1		,		,		1		,					1		ı	1	1	,
	М	Ь	_					Ч																		 .										۰									
L	L	L	1	1	_1	1	1		1		1	ı		1	1	1			1	1		L	_1_	1		_1_	1	┸	1		1_	1	1_	1_	上	1	丄		1		_1			_1	
	١,	ı —	1	1	1			_	1	1		1	_	1		ŧ	1		1	1			1	_	ı	,	ı	1	1		i	1	1			1	ı	ı	1		_1	_1_	ı	1.	١
				1	_1					 !			1	1		1	1	1	1	1		1	1	,	-	_	!	,	1	1	1	1	L	1		ı_		1	ı		_1	ı	L	L	L

Cyprus Anvil Mining Corp. Lithologic Log

Page 3 of 7

Date: 8: 08-15 Loged By: DBK CSW.

98	From		Recov.		Unit	Description
回	0 14		22 24			35
4		1396		101		Casing - no core.
4		17.45		102	DGPF	Grey to med grey soft phyllitic shale - indistinctly laminated
		<u> </u>		_1_1_		with minor pyrite nodules, occasional diffuse pyrite laminae
	3			_1_1		and minor gtz carbonate veining
			1	1.1.	1111	Some intensely tractured zones but no gouge
L		11.49		₁ 0 ₁ 3	F	Grey gouge with gtz-carbonate reining
4		1833			DGIPF	
П			1 1	1.1	1 1 1 1	similar to unit #02 except slightly darker gray.
4		1 853		105	DIGIGIRIU	Heavily fraduced possibly sheared phyllitic shall with minor
					111	graphitic gouge
		11175		1016	DGIPIFI	Indistinctly laminated poorly laminatedgray phyllitic black shall
						with minor purite kaninations and gtz veining
						Competent reasonably good corning
L		1204	11	1017	DGPFU	
						breccia zuras and minor pyrite beds
L		11,2,66	1.1.	08	DIGIPIFI	Heavily fractured phyllitic shall with no brecein zone and minor
						rubble
		1-1-1		1.1.		* 30 cm thick colcavious sillstone bed @ 125.2
1		11313		199	OGIPIFIL	Heavily sheared and fracture of gray phyllitic shall with gray gouge and
Ц						rubble sections
Ц				11		some beds of coleaneous sillstone are preserved
4		11767		1110	DGPIFI	Guy phyllitic shale getting slightly more graphitic than previous sections - transition to possible graphitic phyllitic shale is so
Ш		111	11	11		sections - transition to possible quaphitic phyllitic shall is so
			1		1111	gradual That it is almost impossible to determine where it is
	_ _			_1_1		Note union invegularly shaped pyrile nodules
						Note some vubble zones at the base of the section

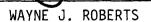
Date: £1-08-15 Logged By: 08K

9	From	То	Recov.	No.	Unit	Description
<u>'</u>	10 14	16 20	22 24	26 28	30 34	35
L	11767	1,7,96		ايار	DGIPIFILL	Breceided to strongly fractured section of phyllitic shale with
						interbeds of light gray colcavious sillstone
L			1	1:1		Note whole section is vuggy and has minor gauges and gtz
	, , , , , , , , , , , , , , , , , , ,				1111	veins.
L	1_1_1_	11965		112	DGIPIFI	Med grey good coring competent phyllitic shake with indistinct
	1 1 1					laminations and umor large irregular blobby shaped pyrite
L			ı i			nodules
L	1 1 1	1212165		113	DIGIGIR	Dark groy phyllitic shall with pyrite nodules as in unit # 12
						flyain a shall appears to get gradually less equiponacious towards
L		111				the base of the section
				1.1.		Very difficult to pin down transition
L	_1_1_1	121313 8	1 1	11.4	DIAISLI	Graphitic black shale with strongly silicitied gray siltstone interbeds
					.1.1.1.	and abundant gtz carbonate reining -
L		1 1 1				Note sacu rubble zones up to 30 cm wide
L		1214100		115	DGIPIFIB	Grey phyllitic shale with large barite-gtz-pyrite nodules - with
						irvegular blobby shapes - mega nodulis
L		121911 8		116	DIGIPIT	Gray to medium gray indistinctly laminated phyllitic shall with
			11	11	-4-1-1-	diffuse nodules and laminae of pyrite
L		30127	سنبن	111	DIAISILIO	Dark gray phyllitic shee (graphitic) with discontinuous pyrite laminae
					-1-1-1-	and beds of light gray calcareous siltstone up to zo cm thick
				11		Note some ate veining and minor diffuse parte nodules.
L	111	13,0,79		118	DIGIGIRIU	Same as unit # 17 only brecciated tectorically note tragments
L						of light grey calcaveous siltstone up to 10 cm in diameter
L		1311 0 5		118	111E	Graphilic to gray fault gouge with some brecciated phyllitic shale and abundant gtz reining.
L						phyllitic shale and abundant gtz veining.
				سلسا		contact @ 60° to cove axis

DDH <u>EG.E.1.C.2.2</u>

Cyprus Anvil Mining Corp.
Lithologic Log

Page <u>5</u> of <u>7</u>


Date: <u>81-08-17</u> Logged By: <u>OBK</u>

From Description No. Unit 20 22 24 26 28 30 Mod good coring brecciated phyllitic shall with large competent 13,1,05 ,3,1,61 1210 DGIPIFIU gtz-pyrite nodules - one 30 cm die light gray carbonate nodul and common gtz veining Med gray indistinctly laminated phyllitic shale - competent good coving with 12,1 DIGP F 3552 atz veining Zone Massive Sedded non laminated dulmitic siltstone not obviously 37,28 122 ISISISIM bioturb ated End of Hole.

Appendix II

STATEMENT OF QUALIFICATIONS

- I, WAYNE J. ROBERTS, geologist, with business address in Vancouver, British Columbia, and residential address in Coquitlam, British Columbia, hereby certify that:
- 1) I graduated from the University of British Columbia in 1968 with a BSc majoring in Geology.
- 2) From 1968 to the present I have been actively engaged as a geologist in mineral exploration in British Columbia and the Yukon Territory.
- 3) I am a Fellow of the Geological Association of Canada.
- 4) I personally supervised the field work on the CIRQUE GROUP and have interpreted all data resulting from this work.

SUMMARY OF COSTS

Salaries and Wages

Velma Sterenberg - Aug. 1 - 3, 15 - 17

6 days @ 89/day \$534.00

Lee Pigage - Aug. 1 - 3, 6 - 8, 13, 16, 17

9 days @ 100/day 900.00

Darlene O'Neill - Aug. 1 - 3, 15 - 17

6 days @ 50/day 300.00

5 1,734.00

Diamond Drilling

Drill Hole 81-C-16 (July 31 - August 10) - 1716 feet

Drill Hole 81-C-22 (Aug. 10 - Aug. 17) - 1223 feet

Total of 2939 feet @ \$30/foot

88,170.00

Camp Maintenance

4 men for 18 day each @ \$19.50/man/day - 1404.00

3 men for total of 21 man days @ \$19.50/man/day - 409.50

1,813.50

Rotary Wing

Viking Hughes 500D, Registration TZD - 27 hours @ 315/hour - 8505.00

Viking Hughes 500D, Registration SZU - 25 hours @ 315/hour - 7875.00

Shirley Bell 204B, Registration JME - 18.3 hours @ 660/hour 12078.00

28,458.00

Fixed Wing

August 13, two Beech trips Mackenzie to Finbow -

1320 miles @ \$1.85/mile 2,442.00

Fuel

500D helicopter, 52 hours @ 26 gallons/hour @ \$4.00/gallon 5408.00

204B helicopter, 18.3 hours @ 65 gallons/hour @ \$4.00/gallon - 4758.00

10,166

Supervision and Report Writing

W. J. Roberts, 4 days @ \$230/day

920.00

Drafting

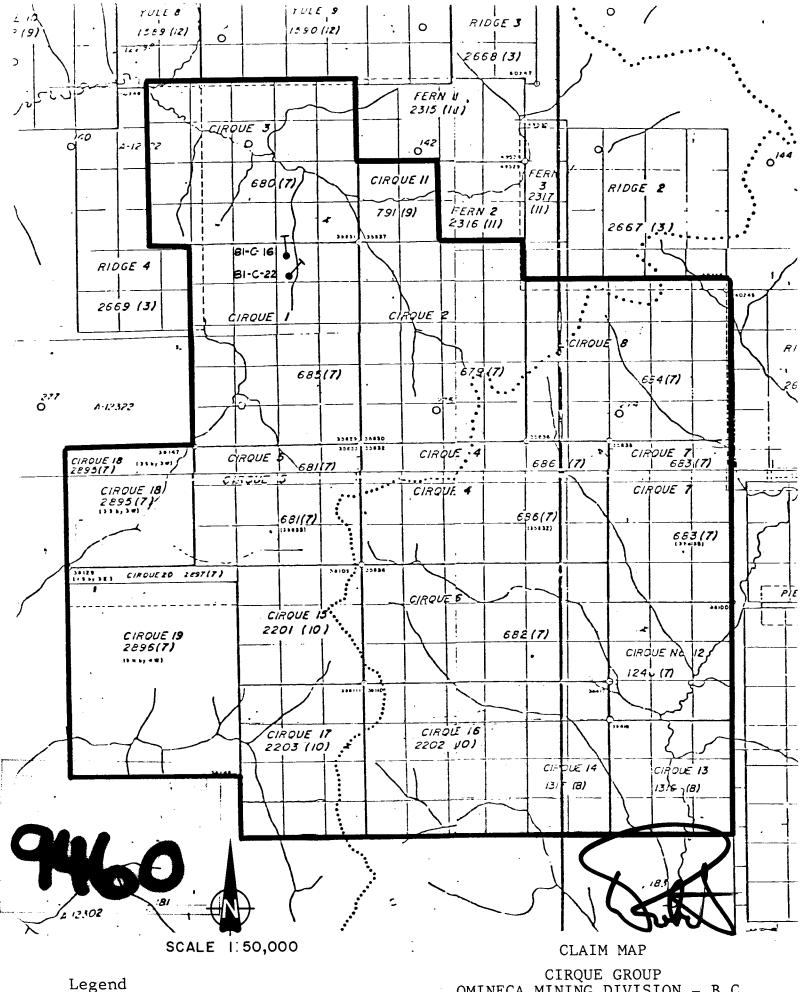
C.L. Cory, 16 hours @ \$15.00/hour

\$240.00

TOTAL DIRECT COST

\$133,943.50

300, 355 Burrard Street Vancouver, British Columbia V6C 2G8 Telephone (604) 687-2586 Telex 04508594

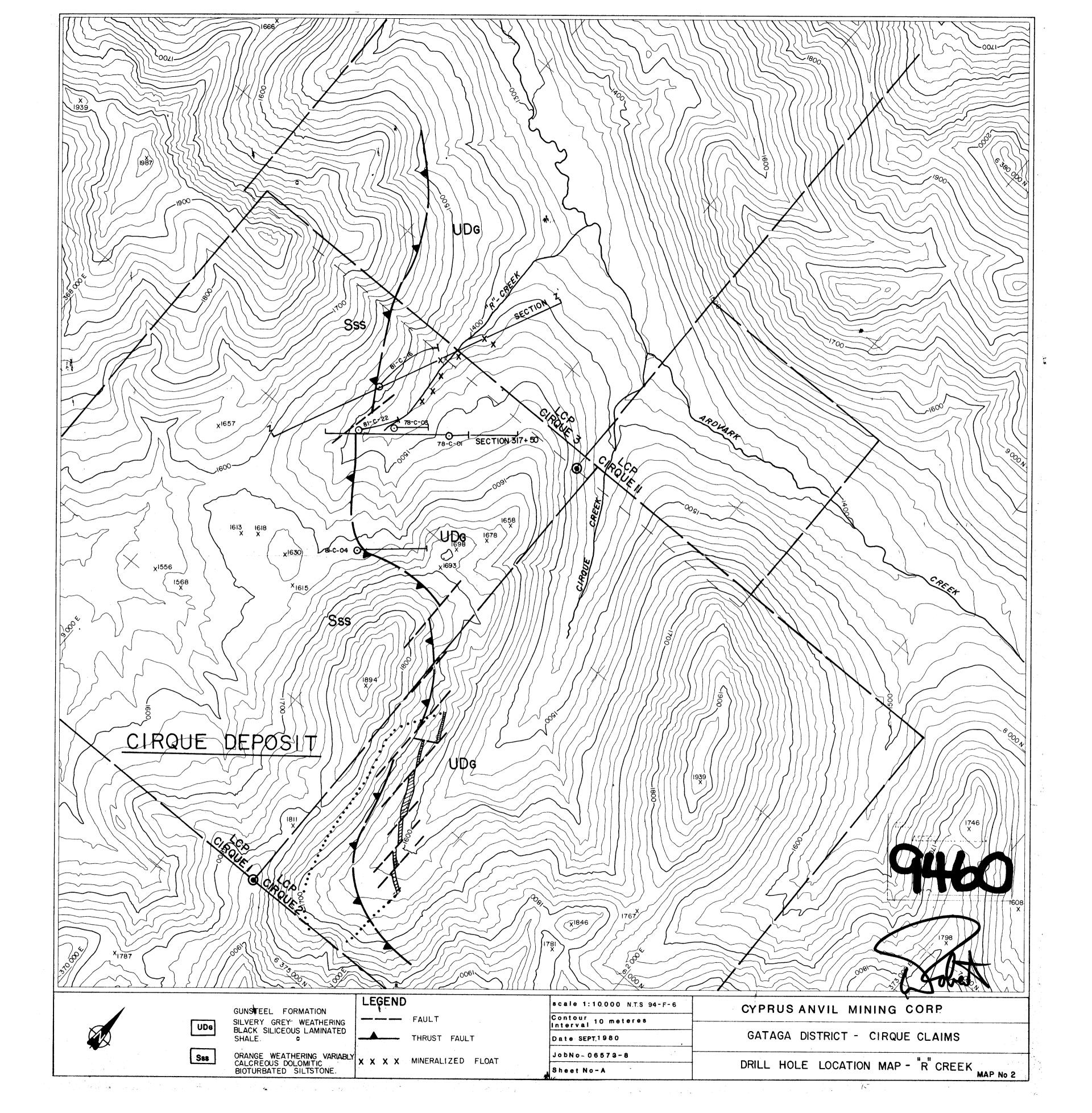

Appendix IV

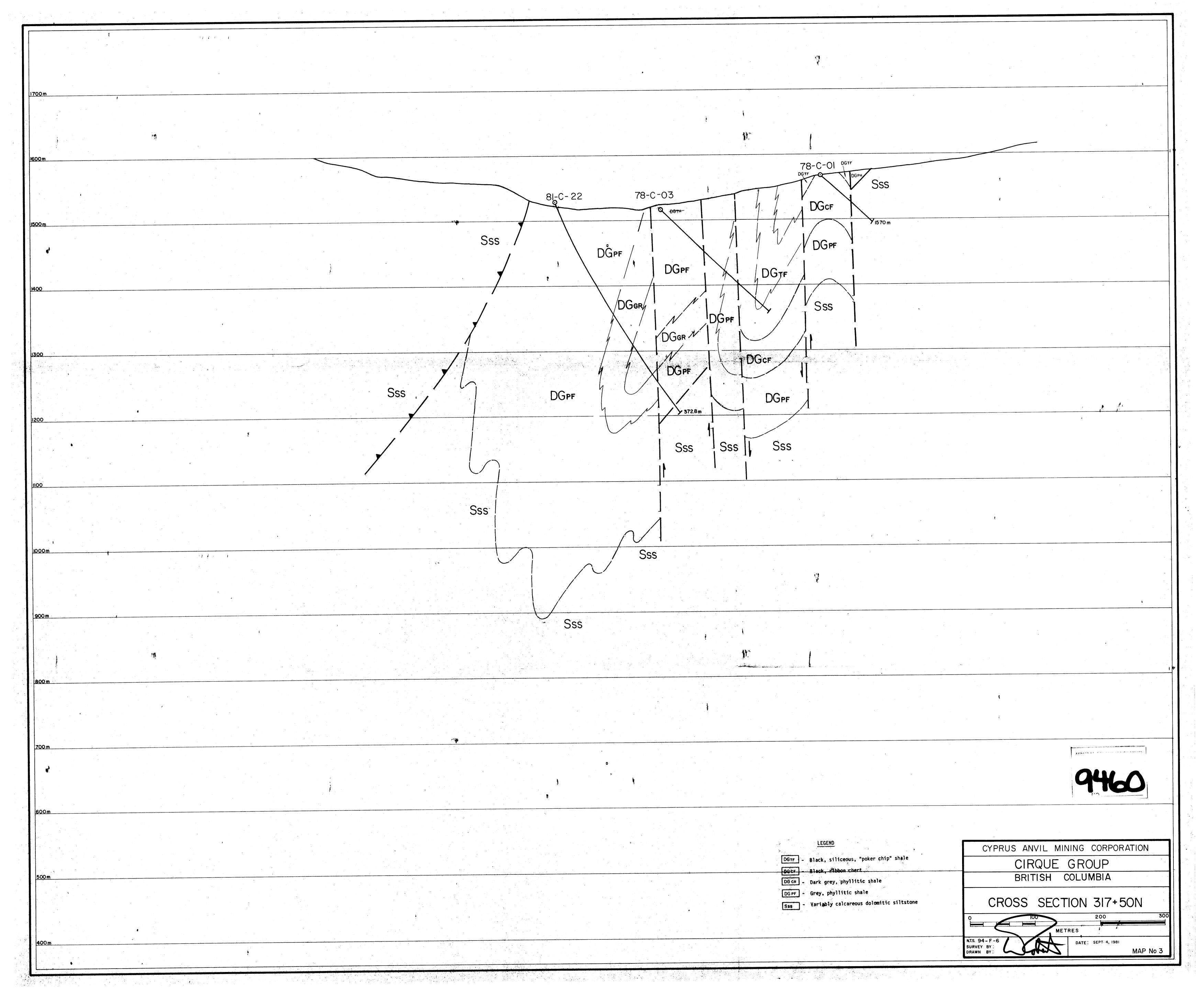
Affidavit Supporting Summary of Costs

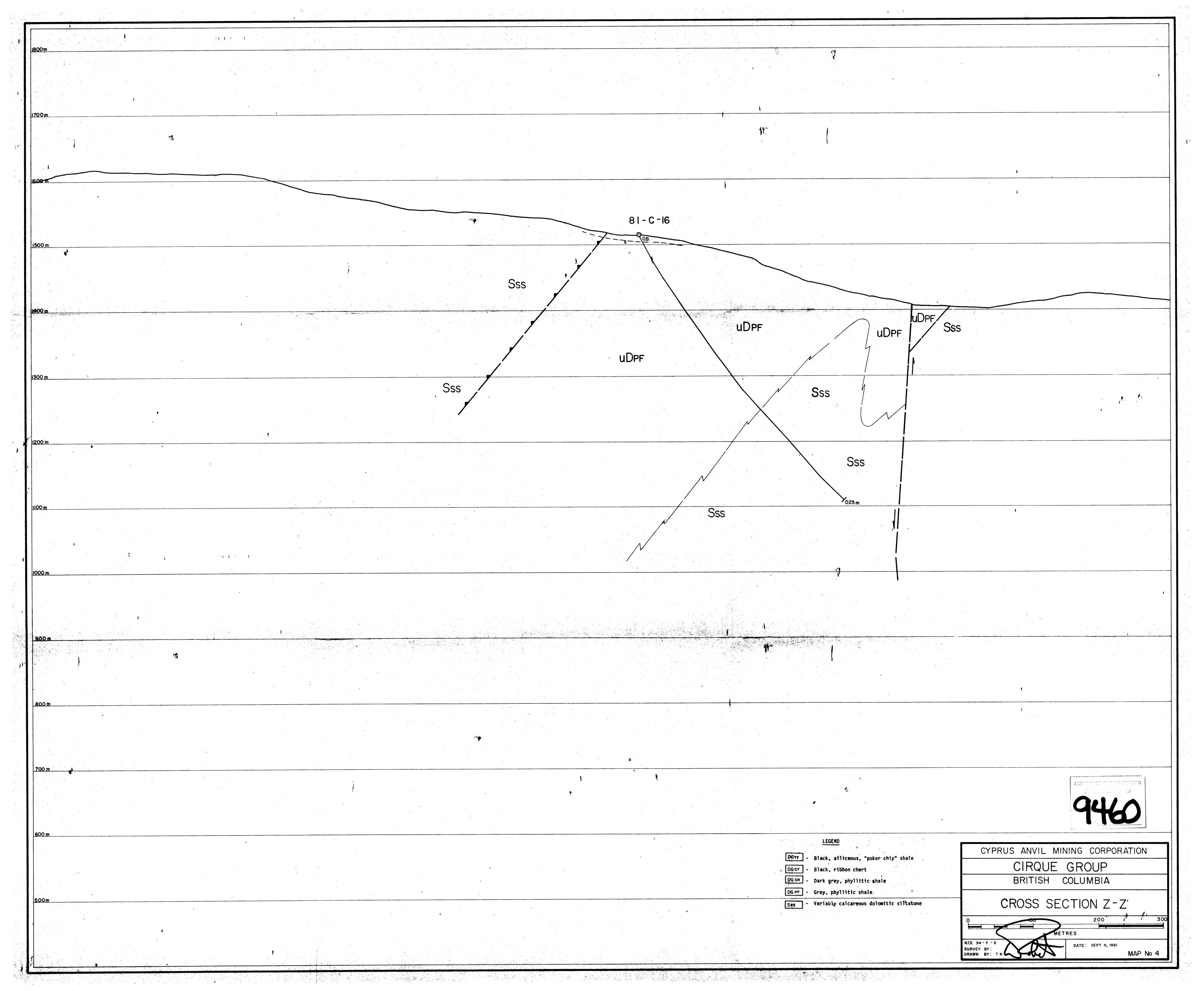
I, WAYNE J. ROBERTS, Geologist, Cyprus Anvil Mining Corporation, of Vancouver, British Columbia, do hereby state, that, to the best of my knowledge and belief the Statement of Costs in this report (Diamond Drilling Report on the CIRQUE GROUP) is a true account of expenditures incurred from exploration on the CIRQUE property.

WAYNE J. ROBERTS

DATE




1981 Drill Hole Location


OMINECA MINING DIVISION - B.C.

N.T.S. 94-F-6 September 8/81

MAP NO. 1

