, LONY ONE, TWO \& THREE CLAIMS

$$
\text { NTS } 104 K-7 W 81-268
$$

58 Deg. 24 Min N.
132 Deg. 48.Min W.
ATLIN MINING DIVISION

$$
\underline{I} \underline{N} \underline{D} \underline{x}
$$

Page
Location Map 2
Index of Claim Unit Numbers 3
Recommendations 5
Conclusions 6
Summary $7 \& 8$
Introduction 9
Location and Access 9
Trails 9
History of Exploration 9
Climate 9
Vegetation 10
Geology$11 \& 12$
Mineralization 13
Assay Results 17
Geophysical Report Summary $19 \& 20$
Geophysical Report Conclusions 21
Geophysical Report Recommendations 22
Diamond Drilling 24
Drill Platform 28
Daily Work Log 29
Distribution of Exploration Costs31 \& 32
Time Distribution From Daily Work Logs 33 \& 34
Distribution of Exploration Time35, 35A, 35B
Government Regulations 36
Ownership of Jony One, Two and Three Claims 37
Mafeking Minerals - Limited Partners 38, 39, 40
Certificate - E. M. Estabrooks, P. Geol. 41
Certificate - F. Dalidowicz, P. Eng. 50
Geophysical Report in Total 42 through 67
Summary 42
Conclusions 59
Recommendations 60
Certificate - W.H. Tisdal, P. Eng. 68
Original Assay Sheets

I N D EX

Map or	ustration	Page
Number		
1	Index Map - Jony Claims	2
2	Index of Claim Unit Numbers	3
3	Location Map - To Jony Lake, Claims Cut Line	4
4	Attitude of Vein - Jony \#l Claim Units 10 and 15	14
5	Vein, Sample Locations and Numbers	15
6	Jony \#2 Claim, Unit 18 Sample Locations	16
7	Jony \#1 Claim, Units 10 and 15 Drill Rig, Anomaly and Hole Locations	18
8	J-l Diamond Drill Hole	25
9	J-2 Diamond Drill Hole	26
10	J-3 Diamond Drill Hole	27
11	Grid Survey Location Map for Geophysical Surveys	46
12	Max.-Min. II Profiles 1777 H2	Back Pocket
13	Max.-Min. II Profiles 444 H2	Back Pocket
14	Total Field Magnetometer Survey	Back Pocket
15	Geology Map	Back Pocket

MAFEKING MINERALS LTD.
 1980 PARTNERSHIP

JONY 1-2-3 CLAIMS
TUNJONY LAKE AREA
ATLIN MINING DSHEICA

JONY 1-2-3 CLAIMS
INDEX OF UNIT NUMBERS

JONY 3
JONY 1

36	25	24	13	12	1
35	26	23	14	11	2
34	27	22	15	10	3
43	28	21	16	9	4
32	29	20	17	8	5
31	30	19	18	7	6

$$
\begin{gathered}
104 \mathrm{~K}-7 \mathrm{w} \\
58^{2} 24 \mathrm{~N}-132^{\circ} \mathrm{wn} .
\end{gathered}
$$

1) Hold the 36 units encompassed in the three claim blocks for 10 years by the submission of the following assessment work requirements. The cost for submitting same, would amount to $\$ 2,925.00$ in recording fees.

Jony \#l - 9 units - 10 years - work valued at $\$ 14,400$
Jony \#3 - 9 units - 10 years - work valued at $\$ 15,300$
Jony \#2 - 18 units - 10 years - work valued at $\$ 28,800$
2) Submit difference between actual cost of the completed exploration and the proposed assessment requirement for acceptance as, "Portable Assessment Credit".
3) Option the prospect to a third party who may have need of or who could utilize the, "Portable Assessment Credit", on other work commitments at a negotiated purchase price, of so much on the dollar.
4) Explore contact zones of Rhyolite dykes in granitic country rock striking southward from Jony \#2 claim for silver, lead, zinc, copper and molybdenum occurrances.
5) Calculate final cost and distribute cost figures, a copy of geological report and assessment submissions for determination of partnership members income tax details for the 1980 tax year.

CONCLUSIONS

1) No economic deposit of mineralization, be it silver, lead, zinc, copper or cadmium were discovered during the course of exploration.
2) The principal vein in the area did not widen with length or depth.
3)

The mineralization on the surface in the vein is apparently a local occurrance.
4) The shear zone that contained the vein in question, and the surface mineralization, was intersected at vertical depths of 33.7 and 30.5 metres respectively, no signifigant mineralization was encountered in either case.
5) The geophysical anomaly investigated by diamond drill hole J-l appears to be a local occurrance of mineralization, with very little lateral and/or vertical substance.
6) The massive pyrite seen on Jony \#2 and \#3 claims in and associated with Rhyolite dykes carried little, to no gold values.
7) The disseminated pyrite, seen throughout various areas of monzonitic and granitic rocks, is not accompanied by signifigant gold values.
8) All visible mineralization is invariably associated with fractures, shear zones and/or contact zones, between Rhyolite dykes, monzonitic and/or granitic country rock.
9) The drill core contained scattered, disseminated pyrite mineralization occasionally visible via hand lense. Assav results on drill core were unfavourable, the only mineral shown was a trace of gold.
10) The drill core, essentially monzonitic and granitic rocks with occasional rhyolitic dyke intersections, displayed fractures and jointing. The fracture faces were occasionally coated with hematite staining. The complete core was studied under ultra-violet light for evidence of tungsten mineralization, of which there was none.
ll) The glacial till and moraine was thoroughly prospected, occasional occurrances of chalcopyrite, sphalerite, galena, pyrite, calcite and hematite were observed, however, no mineralization was found in the bedrock source of the colluvium.

SUMMARY

Geological Evaluation
Cost $=\$ 38,959.88$
Cost $=\$: 21,062.31$
cost $=\$ 76,604.22$
cost $=\frac{\$ 9,138,39,6123,3}{\$ 145,764.80}$
(A) Geological Evaluation
a) Mapping
b) Prospecting
c) Personnel

1) E.M. Estabrooks, Professional Geologist
2) V. O Hara, Field Assistant
3) P.G. Estabrooks, Fj.eld Assistant
4) J.A. Estabrooks, Cook
5) S. Olsen, Cook
6) S.B. Estabrooks, Field Assistant

Field

Personnel

E.M. Estabrooks
V. O Hara
P. Estabrooks
J. Estabrooks
S. Olsen
S. Estabrooks

Time
June 13-Aug 25/80 inclusive @ $\$ 300 /$ day June 13: June 18-Aug 3/80 " @ \$100/day June 13: June 1.8 - Aug 3/80 " @ \$100/day June 24 - Aug 3/80 Aug 2 - Aug 15/80 July 18 - July $22 / 80$

Cost per Day
" @ \$ 50/day
" @ $\$ 80 /$ day
" @ $\$ 60 /$ day
(B) Geophysical Surveys - MPH Consulting Limited
Toronto - Calgary

Horizontal loop electro magnetic and magnetic surveys

$$
\text { June } 25 \text { - July } 8 / 80 \text { - Cost }=\$ 21,062.31
$$

(C) Diamond Drilling
by "Automated Diamond Drilling Ltd.", Yellowknj.fe, N.W.T.

$$
\text { July 21 - Aug } 10 / 80-\text { Cost }=\$ 76,604.22
$$

(D) Post Field Report Preparation

INTRODUCTION

A) Location and Accessabiljty

Jony 1,2 and 3 mineral claims containing 9,18 and 9 units respectively are located southwest of Tunjony Lake situate on claim map $304 \mathrm{~K}-7 \mathrm{~W}$, approximately 138 kilometers by air, east southeast of Atlin, British Columbia.

Access to the claims area is by aircraft from Atlin, B.C.; Whitehorse, Yukon and/or; Juneau, Alaska, to Tunjony Lake, thence 3 klm . west and l klm . south via cut line.
B)

Tunjony Lake trending generally east-west, is the largest lake in the immediate area, the topography covered by claims Jony 1 and 3 constitute the headwaters of the streams running northward and eastward into Tunjony Lake. They are all essentially glacier fed streams.
C) Trails

The only trails in the area are those cut for access into the claim group from Tunjony Lake, a distance of approximately 4 kilometres. This trail runs approximately 3 kilometres west from Tunjony Lake thence l kilometre south along an old claim line, until the glacial moraine, consisting of huge granitic boulders, is encountered at the north end of the valley.
D) History of Exploration

The area under investigation via geological
exploration was located in 1968 by the author whilst conducting geochemical stream sediment sampling.

The complete valley was covered by a group of claims called LC-2 staked in 1968. Geological exploration, geophysics and minor trenching were conducted in 1969, resulting in the discovery of the vein containing copper, lead, zinc, silver and cadmium mineralization. Sufficient work was conducted to satisfy assessment requirements for four years. Sun Oil Ltd. were the owners of the LC-2 claims and no further work was conducted by Sun or their agents to the knowledge of the author.
E) Climate

The Taku district extends from the heart of the Coast Mountains, a wet belt, to the Stikine Plateau, a dry belt, so that all gradations of climate are found in it. Precipitation
along the Alaskan coast, ranges from 75 to 1.50 inches yearly. The most favourable working month is usually August. July is an uncertain month usually with much cloudy, wet weather, as witnessed by the daily work Log.
F) Vegetation

The area west of Trapper and Tunjony Lakes is a veritable jungle in which large cottonwoods at lower elevations and evergreens rise above a tangle of devil's club, alders, willows, cranberry, huckleberry and other bushes.

The lower slopes where conditions are favourable are clothed with a mature mixture of spruce, hemlock and fir.

Timberline is rarely above an elevation of 3,000 feet, though in a few favoured places it extends to 4,500 feet.

The large glaciated valley which contains the eastern portion of the claims has no timber above 3,500 feet, while the remainder of the claims are also above timberline.

GEOLOGY

The claims area of 36 units encompassing approximately nine square kilometres is underlain by the following rock types:

1. Mesozoic, Lower of Middle Triassic rocks consisting of fine to medium grained, strongly foliated diorite, quartz diorite and minor granodiorite.
2. rocks, consisting of a white to buff coloured rhyolite, pyroclastic rocks and derived sediments.
3.

Late Cretaceous and Tertiary Sloko group rocks, most notably medium to coarse grained pine biotite-hornblende quartz monzonite.
4. Late Tertiary and Pleistoncene basalt, are possibly intruded into the monzonites, along with Olivine basalt and related pyroclastic rocks.
5. Quaternary, Pleistoncene and Recent. Glacial outwash, alpine moraine and undifferentiated colluvium.

The Jony claim group contains 36 units, the eastern portion of the complete block, units $1,2,3$, and 4 are underlain by fine to medium grained, strongly foliated quartz diorite, intruded in units l and 2 by buff rhyolite dykes, striking essentially north eastward and dipping generally eastward.

The quartz diorite is fractured with the fracture faces trending with the general north east strike. The fractures contain malachite staining.

Unit number four is underlain by a quartz diorite containing a younger quartz unit carrying disseminated pyrite.

Units five and six are underlain by colluvium and quactz diorite, intruded by buff coloured rhyolite dykes, striking north eastward.

The central map portion encompassing units $9,10,11$, 14, 15, 16, 17, 20, 21, 22, 23, 27, and 28, consists of a quartz monzonite rock in a graben like structure, controlled by large north south trending faults.

The monzonite contains veins and pods of buff coloured rhyolite and dark bluish basic dykes, striking generally north east and east, with vertical dips.

A quartz carbonate vein in unit ten, is the principal source of mineralization on the property, the vein is approximately 80 metres long and strikes north 29 degrees east, dips 85 degrees west and plunges 55 degrees east. It is in the contact zone between a basic dyke and the monzonite country rock. Immediately to the west, of the veins western source, the monzonite envelopes a buff coloured rhyolite pod. The basic dyke, monzonite and rhyolite all contain disseminated pyrite.

Units 27 and 28 on the west side, appear to contain a major north south trending falult, the western twin to the fault in units $9,10,11$, and 12 . The down thrown sides of these major faults appear to be in units $9,10,11$, and 12 on the east and in units 27 and 28 on the west, giving the down thrown area, the appearance of a graben.

Unit 18 on the south is comprised of a quartz diorite country rock intruded by buff coloured fhyolite and bluish basic dykes, the rhyolite, basic dykes and diorite are fractured, these fractures contain quartz veining striking generally north and east, with dips to the south, ranging from 68 to 80 degrees.

The quartz veins contain sulphide mineralization in the form of pyrite, galena, chalcopyrite and sphalerite.

Mineralization was found through out the colluvium produced by the various glaciers, however no mineralization was found in the dioritic and monzonitic bed rocks, source of the colluvium.

MINERALIZATION

Sulphide mineralization in the form of pyrite, chalcopyrite, galena, sphalerite and hematite was found occasionally throughout the essentially monzonitic country rock.

This mineralization was invariably associated with fractures, shear zones and faulting within the monzonite and granitic.

Contact zones, parallel to rhyolite and basic dykes cutting through the monzonitic and granitic country rock, usually carry disseminated and vein occurrances of pyrite, galena and hematite.

The most impressive occurrance of sulphide minerals occurred in the main vein area on Jony \#l claim, this occurrance was explored via sampling, geophysics and diamond drilling with negative results.

VEIN - JONY ONE CLAIM

SAMPLE LOCATIONS \& NUMBERS

-
SAMPLE \#1
SAMPLE \#1A
SAMPLE \#18
SAMPLE \#1C
SAMPLE \#10
SAMPLE \#1E
SAMPLE V2
SAMPLE V3
SAMPLE V6

Ag- 0.06 OZ./TON Au-TRACE
$73.0 \mathrm{OZ} / \mathrm{TON} \mathrm{Pb}-3-10 \%$
Cu -3.10%
Au-0.010 OZ./TON
Au-0.010 OZ./TON
$\mathrm{Cu}-3 \cdot 10 \%$
Zn-MAJOR
11.7 OZ./TON
2.7 OZ./TON
5.2 OZ ITON
7.8 OZ./TON
3.5 OZ./TON
3.8 OZ./TON

SCALE:

JONY 2 CLAIM - UNIT 18 OF REPORT SAMPLE LOCATIONS ON SOUTH END OF PROPERTY

(P) PYRITE

OTZ QUARTZ
(Ag) COMBINED $\begin{array}{r}\mathrm{J}-3-1 \\ \\ \\ \\ \\ \\ J-3-3\end{array}$
$\begin{array}{ll}\text { (4) } \\ \text { (6) } & \text { J-3-4 } \\ \end{array}$

ASSAY RESULTS

Assay results from Bondar-Clegg \& Company Ltd. - Whitehorse, Yukon Loving Laboratories - Calgary, Alberta

ORIGINAL ASSAY NESULTS ARE CONTAINCD IN Pocket in BaCK OF Report.

GEOPHYSICAL REPORT

ON

JONY CLAIM GROUP

ATLIN DISTRICT BRITISH COLUMBIA

1. SUMMARY

During the period from June 25 to July 8, 1980, a programme of ground electromagnetic and magnetic surveying was carried out over a portion of the Jony Claim Group located in the Atlin District of Northern British Columbia.

The purpose of these investigations was to locate a possible subsurface extension of an exposed silver-copper vein.

As a result of these investigations, two good quality bedrock conductors were outlined; one of which correlated with the known mineralization and has a coincident magnetic low. The second conductor is off strike from the known trend of the vein and flanks a local magnetic high. The magnetics suggest the possibility of two different hosts for mineralization.

Both anomalies will be evaluated by drilling during the course of the summer exploration programme.

10. CONCLUSIONS .

Abstract

Two good quality bedrock conductors were outlined as a result of the ground geophysical investigations. Both are extremely good quality conductors that could be representative of massive sulphide sources.

One conductor is directly associated with the mineralized vein and correlates with a 200 gamma magnetic low.

The second conductor as best outlined on Line $0+00$ at Station $0+37 E$ flanks a positive magnetic anomaly.

The magnetics outlined a complex geological environment within which there are several linear mafic bodies and fault systems. Two of the interpreted faults may mark the boundary between a horst-graben block.

The HEM survey has successfully indicated the presence of two good bedrock conductors. Both should be evaluated by drilling during the course of the exploration season.

11. RECOMMENDATIONS

The two bedrock conductors outlined by the geophysics should be tested by diamond drilling. The conductor centred at StaLion $0+37 \mathrm{E}$ on Line $39+00 \mathrm{~S}$ should be drill tested below the 25 metre depth estimate.

A second hole should be drilled to evaluate the vein below surface and to test the HEM anomaly centred at Station $0+00$ on Line $12+00 \mathrm{~N}$.

Both conductors are interpreted to have near vertical dips. Exact positioning of the hole collars will have to be determined taking into account the immediate local terrain conditions.

FD: 9

Respectfully submitted,

F. Dalidowicz, M.Sc.(A), P.Eng.

B Q Core $=$ J-1 - Depth 67.3 metres

$$
0 \text { - } 53.3 \text { metres - essentially monzonitic rock }
$$ 53.3 - 67.3 metres granitic rock Mineralization, disseminated pyrite carrying trace to no gold values

$=J-2$ - Depth 44.3 metres
0 - 44.3 metres essentially monzonitic rock Mineralization - disseminated pyrite carrying trace to no gold values. Calcite mineralization and Hematite staining in shear zone.
= J-3 - Depth 27 metres
0 - 16 metres - essentially monzonite rock
16 - 17.3 metres - basic dyke
17.3-17.8 - monzonite
17.8-21.2 - rhyolite 21.1 - 27.0 - monzonite Mineralization - Calcite mineralization and hematite staining in shear zone, dissiminated pyrite carrying trace to no gold values.

Diamond drilling was curtailed upon the completion of the third hole with negative results, in that, the mineralization seen on surface did not extend to the depths intersected by drill holes $J-2$ and $J-3$, the vertical depths in question being 28 and 13 metres respectively.

JONY - 1 CLAIM - UNITS 10 \& 15:
 J-1 DIAMOND DRILL HOLE

ANOMALY AT THIS DEPTH BELOW surface.

NO SIGNIFICANT SULPHIDE MINERALIZATION ENCOUNTERED IN THE SHEAR CORE CONTAINS OCCASSIONAL BLEBS OF PYRITE AND A SILVER-GREY COLOURED MINERAL. (GALENA) ASSAYED TRACE FOR GOLD (AU)

Twelve six foot deep Cohra drill holes were drilled and blasted to construct a twelve foot by twenty foot drill platform into the side hill from whence three $B Q$ diamond drill holes were completed.

The base of the platform was constructed of fifteen foot long, 6×6 inch planks. The platform was anchored by the use of one half inch, preformed wire rope and six foot eye bolts placed in the mountainside.

This anchorage gave the required stability and safety factors necessary for successful drilling.

```
DAILY WORK LOG - 1980 - EXPLORATION
```

June
13 Logistics - Camp Accumulation - Calgary

17
1.8

19
20
21
22
23
24
25
26

July
1
2
3
4
5
6
7

Geophysics - prospecting
Rain - camp work
Prospecting - geophysics

- logistics arranging for air-
craft for geophysical move out
Geophysics - prospecting
Packed geophysical gear - samples and camp gear back
to Tunjony Lake camp from claims area
Rain - camp work - new radio works
Propect - moved plugger - steel - tent - stove up to
old trench area - measured distance for water for
diamond drilling. Drilled and blasted four holes for
drill platform
Drill and blasted eight holes for drill platform
Prospect - prepare drill platform
" - geojogical mapping
Rain - prospect p.m.
Prospect - geological mapping
Rain - camp work
Rain - "
Prospect - geological mapping
Prospecting
Rain - camp work
" " /logistics for diamond drill move in
" " $"$ /drill move - Whitehorse - Atlin, B.C.
Prospecting/drill move -

23	ony Lake
24	Prospect/drill move completed - Atlin - Tunjony Lake
25	Geological mapping - organize drill gear for move by helicopter from Tunjony Lake to claim area
26	Helicopter move - camp and drill rig \& equipment
27	Set up new camp - set up drill rig - drill six eye bolt holes for safety anchor or drill platform
28	Complete camp and drill set up
29	Diamond drilling - rain
30	Diamond drilliling - geologicial mapping

August

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15
17
18
19
20
21
22
23
24
25
26

```
" " " "
" " " "
" " - rain - camp work
" " - geological mapping
" " - report compilation
" " - logistics camp & drill move on 8th
Moved camp and drill back to Tunjony Lake
Set up camp - move drill gear to Atlin
    " " " - move drill gear, Atlin to Whitehorse
    Split core - drill gear move completed
    Split core
    Prospect and geological mapping
    Rain a.m. - prepare for camp move out
    Prospect - partial camp move
    Complete camp move to Atlin, B.C.
    Trucking camp gear - Atlin, Whitehorse (220 mile round
    trip)
    Truckjng camp gear - Atlin, Whitehorse
    Packed camp gear for temporary storage - Whitehorse
    Completed camp gear and field gear logistics
    Travel - 3/4 "ton full of gear to Calgary
    " " " " " (Cassiar)
    " " " " " (Smithers)
    " " " " - arrive Calgary - 9 p.m.
    Logistics - camp and field gear - Calgary
This completes the field portion of the exploration program
```


DISTRIBUTION OF EXPLORATION COSTS

COST CENTERS
Bema Industries
Geological.
Geophysical
Diamond Drilling
Field Wages
Subsistance
Communications
Equipment
Supplies
Fuel, Oil, Lubricants
Office Supplies
Insurance
Travel Expense
Transportation Air
Legal
Admin-Overhead
Camp Supplies \& Expense
Transportation (Truck)
Assays

Interest Income (Net)
$\$ \quad 1,445.84$
21,649.50
10,836. 15
43,477.94 Diamond Drilling
14,187.57
3,208.75
115.88

7,530.32
331.39

3,785.71
698.92

1,150.00
4,508.79
22,157.28
397.07

2,500.00
2,688. 37
896.44
409.20

Geology
-5.6939

EXPENSE

DAI LY

73 days 19.8060
Geology
Geophysics
194.3503
43.9555
1.5874
103.1551
4.5396
51. 8590
9.5742
15.7535

Logistics
303.5244
5.4393
20.5479.
36.8269

Logistics

- 415.66
$\$ 140,559.46$

DAY RATE OF 805.2252	x 73 Days $=$	$58,781.44$
	Geology	$21,649.50$
	Geophysics	$10,836.15$
	Diamond Drilling	$43,477.94$
	Logistics	$4,508.79$
	Logistics	896.44
	Geology	-409.20

$\$ 140,559.46$

Field cost to date October 8th, 1980 equals $\$ 140,559.00$

TIME DISTRIBUTION FROM DAILY WORK LOGS
A) LOGISTICS (All costs not directly chargeable to any one specific section). Will constitute a support cost and wi. 11 be pro-rated between the three sections of Geology, Geophysics and Diamond Drilling) $=19$ days
B) GEOLOGY $=27.5^{\prime \prime}$
C) GEOPHYSICS = 9 "
D) DIAMOND DRILLING
17.5 "
A) Logistics

19.0 Days x Day Rate $\$ 805.23$	$=\$ 15,299.37$
Travel Expense	$=4,508.79$
Transportation (Auto)	$=896.44$

$$
\text { Total } \quad=\$ 20,704.60
$$

B) Geology \& Prospecting
27.5 Days $x \$ 805.23$ Daily support rate $=\$ 22,143.83$

Geology $\quad=21.649 .50$
Assays
$=\quad 409.20$

Total $=\$ 44,202.53$
C) Geophysics

$$
\begin{aligned}
& 9 \text { Days } x \$ 805.23 \text { Daily support.rate }=\$ 7,247.07 \\
& \text { Gcophysics }
\end{aligned}
$$

$$
\text { Total } \quad=\$ 18,083.22
$$

D) Diamond Drilling
17.5 Days x \$805.23 Daily support rate $=\$ 14,091.53$

Diamond Drilling
$=43,777.94$

Total
$=\$ 57,569.47$

LOGISTICS	$20,704.00$
GEOLOGY	$44,203.00$
GEOPHYSICS	$18,083.00$
DIAMOND DRILLING	$57,569.00$

TOTAL
$\$ 140,559.00$

Prorating of Logistics costs as follows
$\$ 44,202.00+(37.14 \%$ of $20,704.00) \$ 7,690.47=\$ 51,892.47$
$18,083,00+(14.39 \%$ of $20,704.00) \$ 2,979.31=21,062.31$.
$57,569.00+(48.43 \%$ of $20,704.00) 10,035.22=67,604.22$

Hence for assessment submission the following figures are appropriate.
A) Geology (includes
)
$=\$ 51,892.47$
B) Geophysics
$=21,062.31$
C) Diamond Drilling
$=76,604.22$

Page 35-a

Geopirgses Cellocy
Coll

A "Notice of Work on a Mineral Property", was submitted by the author to the appropriate authorities on April 30, 1980 .

On May 12, 1980, "Proposed Mineral Exploration Permit L7X-1-10 was issued to Mafeking Minerals Ltd., giving authority to Mafeking to implement her proposed exploration program on the Jony one, two and three claims.

A bond of $\$ 500$ was requested by the department and posted by Mafeking Minerals Ltत. on behalf of the Mafeking Mineral.s Ltd., 1980 partnership on June 17, 1980.

The required, "Notice of Work on a Mineral Property", due upon completion of an exploration program was completed and submitted to the Minister of Energy, Mines and Petroleum Resources on August $24 \mathrm{th}, 1980$.

Ownership of Jony One, Two and Three Mineral Claim

Mafeking Minerals Ltd., the owner of the claims in question assigned a 55 per cent interest in Jony one, two and three mineral clajms for an exploration fund of 190,000 dollars generated by the partners of the, "Mafeking Minerals 1980 Partnership".

The exploration fund provided the capital to explore the clajms via geological and geophysical surveys, plus diamond drilling.

As of the report date, the ownership of the Jony one, two and three mineral claims is as follows:

Mafeking Minerals Ltd. 1980 Partnership 55%
Mafeking Minerals Lta. 40%
D. Poon $-\quad 5 \%$

TOTAL $\quad 100 \%$

Mafeking Minerals Ltd. is in turn held by the following.
E.M. Estabrooks - President and Chief Geologist 50\%
M. O'Hara - Secretary-Treasurer and Comptroller 45%
J.D. Salmon - Legal Adviser $\quad 5 \%$

fitafeking fintrals Zimiteo

550~Sixtl Gurnue Sly (algary, Alberta
 く27052
 $261-9810$

Re: MAFEKING MINERALS (1980) PARTNERSHIP LIST OF LIMITED PARTNERS

NAME AND ADDRESS

1. Fred T. Boyle

1012 Kildonan Place S.W. Calgary, Alberta T2V 4A9
Phone: 252-4751
2. Dieter Cosandier

4211 Villa Crescent N.W. Calgary, Alberta
T2L 2K2
Phone: 288-4314
3. J. Everett Hodgson

39, 1901 Varsity Estates Dr. N.W.
Calgary, Alberta
T3B 4T7
Phone: 247-0611
4. Keefer Wholesale Florist Ltd. "N"

Norman Chin
310 Prior Street
Vancouver, B.C.
V6A 2E8
Phone: (604) 687-4421 Office
5. Keefer Wholesale Elorist Ltd. "R"

Ronald Chin
310 Prior Street
Vancouver, B.C.
V6A 2E8
Phone: (604) 687-4421 Office
6. Henry Kwong

Holiday Cleaners (Haysboro) Ltd. 8415 Elbow Drive S.W.
Calgary, Alberta
Phone: 255-5432

NAME AND ADDRESS

7. George K.H. Lee

1304 Northcote Rd. N.W.
Calgary, Alberta
T2K 2 K 7
Phone: 282-2461
8. Leprechaun Agencies Ltd.

Murray Dea
2001, 500 - 4th Ave. S.W.
Calgary, Alberta
T2P 2V6
Phone: 281-4475
9. Charles Y. Nakamura

432 - 88th Avenue S.E.
Calgary, Alberta
T2H lVI
Phone: 252-0724
10. Mori J. Ohara

4435 Vandergrift Cr. N.W.
Calgary, Alberta
T3A OJI
Phone: 288-5709
11. David Foon

Moss Lawson \& Co. Ltd.
200, 330 - 5th Ave. S.W.
Calgaiy, Alberta
Phone: 252-0480
12. Robert Poon

56 Thorncliffe Park Drive
Apt. 209
Toronto, Ontario
M4H IK7
Phone: (416) 423-6996

550－5ixtl Aurmur 玉．2）Calgary，Alberta

NAME AND ADDPESS

13．Sumio Setoguchi
2613 －loth Ave．North
Lethbridge，Alberta
Fhone：328－5181
14．Albert Snimbashi
711 Rideau Rd．S．W．
Calgary，Alberta
T2S OR9
Phone：243－9583
15．Richard Wai－Ming Siu
187 Maidstone Way N．E．
Calgary，Alberta
－T2A 3z4
Phone：273－3281
16．David Tak
9623－52nd Street
Edmonton，Alberta
T6B 2K7
Phone：466－7474
17．Jack Wong
1175 Lake placid Dr．S．E．
Calgary，Aiberta
Phone：278－5887
18．Georgina Lee
1304 Northcote Road N．W．
Calgary，Alberta
Fhone：278－5887

19．Yuk Har Wong
1175 Lake Placid Dr．S．E．
Calgary，Alberta
Phone：278－5887

CERTIFICATE

I, E.M. Estabrooks, of the City of Calgary, in the Province of Alberta do certify that:

1) I hold a, "Bachelor of Science", degree, "Geology Major", from Brigham Young University, in Provo, Utah, U.S.A.
2) I am a member of the Association of Professional Engineers, Geologists and Geophysicists of the Province of Alberta, as a Professional Geologist, and have practiced my Geological profession since 1958.
3) I have based my conclusions and recommendations contained in this report on my experience and knowledge of exploration geology.
4) I am President and Chief Geologist for Mafeking Minerals Ltd. operating partner for the Mafeking Minerals Ltd. 1980 Partnership and as such, have a financial interest in the property, as outlined by the Mafeking ownership

GEOPHYSICAL REPORT
 ON
 JONY CLAIM GROUP

ATLIN DISTRICT . BRITISH COLUMBIA

$104 \mathrm{k} / 7 \mathrm{~W}$
$58^{\circ} 24 N \quad 132^{\circ} 48 W$
for

MAFEKING MINERALS LIMITED

Calgary, Alberta September, 1980
F. Dalidowicz, P.Eng.

TABLE OF CONTENTS

1. SUMMARY 1
2. INTRODUCTION 2
3. LOCATION AND ACCESS 3
4. PERSONNEL 4
5. GRID SELECTION 6
6. INSTRUMENTATION 7
6.1 MaxMin II Horizontal Loop 7

Electromagnetic System
6.2 Magnetometer 7
7. SURVEY PROCEDURES 9
7.1 MaxMin II Horizontal Loop 9

Electromagnetic Survey
7.2 Secant Chaining 9
7.3 Magnetometer Survey 10
8. PRESENTATION OF RESULTS 11
9. INTERPRETATION OF RESULTS 12
9.1 General Comments 12
9.2 MaxMin II HEM Interpretation 13
9.3 Magnetic Interpretation 14
10.

CONCLUSIONS
16
11.

RECOMMENDATIONS 17
CERTIFICATE 18

LIST OF FIGURES:
Figure 1 Grid Location Map 5

APPENDICES:
I MaxMin II HEM Specifications
II Geometrics G-816 Total Field Magnetometer Specifications
III Secant Chaining Data Reduction (MaxMin II HEM Systems Operations Manual)

TO ACCOMPANY THIS REPORT:

Map	1777 Hz HEM Profile Data	(In Pocket	
Map	2	444 Hz HEM Profile Data	(in back
Map 3	Magnetic Contour Data	(of Report	

1. SUMMARY

During the period from June 25 to July 8, 1980, a programme of ground electromagnetic and magnetic surveying was carried out over a portion of the Jon Claim Group located in the At lin District of Northern British Columbia.

The purpose of these investigations was to locate a possible subsurface extension of an exposed silver-copper vein.

As a result of these investigations, two good quality bedrock conductors were outlined; one of which correlated with the known mineralization and has a coincident magnetic low. The second conductor is off strike from the known trend of the vein and flanks a local magnetic high. The magnetics suggest the possibility of two different hosts for minerallization.

Both anomalies will be evaluated by drilling during the course of the summer exploration programme.

2. INTRODUCTION

During the period of June 25 to July 8, 1980 MP H Consuiting Limited completed a programme of horizontal loop electromagnetic and magnetic surveys over a portion of the Jon Claim Group in the Atlin District of northern British Columbia.

The purpose of the ground geophysical surveys was to investigate a possible subsurface extension along strike of a mineralized silver-copper vein. This vein had been greviously exposed over a 37 meter length.

The field geophysical programme was carried out by MP H Consulting under the direct supervision of F. Dalidowicz, P. Eng. Overall direction was provided by E. M. Estabrooks, P. Geol., of Mafeking Minerals Ltd.

This report discusses the results of the geophysical surveys.

3. LOCATION AND ACCESS

Figure 1 shows the location of the Jon Claim Group and the outline of the geophysical grid.

The claim group is located within the Topographic Map Sheet M 10/7W (Atlin Mining Division) and is situated between Latitudes $58^{\circ} 00^{\prime}$ to $58^{\circ} 26^{\prime}$ and Longitudes $132^{\circ} 44^{\prime}$ to $132^{\circ} 50^{\prime}$.

Access to the area is by fixed wing aircraft based either in Whitehorse, Yukon (270 km), Atlin, British Columbia (125 km) or Juneau, Alaska (90 km).

4. $\overline{\text { PERSONNEL }}$

The survey was conducted by F. Dalidowicz, M.Sc., P.Eng. and R. Hyland, B.Sc., both of M P H Consulting Limited.

5. GRID SELECTION

Due to the rugged relief in the local area of investigation, and the poor accessibility to the mineralize vein, two base lines were established.

The mineralize vein strikes in a northeast-southwest direction, the main base line (Grid A) was positioned in the flatter southwest portion of this survey area and oriented at an azimuth of 40 degrees. Cross-lines of 400 metre lengths were established at 25 metre intervals. Stations were flagged at 25 metre intervals (see Figure 1). A totall of 4.8 km of line was surveyed on Grid A.

In the steeper portion of the area where the mineralized vein is exposed, a second base line was established at an azimuth of 24 degrees (Grid B). Station $0+00$ on Line 12+ 00N was positioned over the known mineralized vein. The position of the cross-lines is variable for this grid. They were established only were traversing was possible (see Figure I).

Stations along lines were established at 25 metre intervale.

A total of 700 metres of line was surveyed on Grid B.

6. INSTRUMENTATION

6.1 MaxMin II Horizontal Loop Electromagnetic System

 A MaxMin II horizontal loop electromagnetic system was used to explore for the presence of subsurface conductors within this survey area.This system makes use of a moving transmitter and receiver coils (at a fixed separation aligned in a horizontal coplanor position and connected by a reference cable. The measurements made at the receiver coils are the inphase and quadrature compoents of the secondary field (expressed in percent of the primary field).

This system has five frequencies varying from 222 Hz to 3555 Hz and a complementary set of cable lengths from 25 to 250 metres. The specifications of the MaxMin II unit are given in Appendix I.

6.2 Magnetometer

A proton precession G-816 Geometrics portable magnetometer was used to record the variations in the earth's magnetic field. This system utilizes the

Abstract

precession of spinning protons of a hydrogen atom within a hydrocarbon fluid. These spinning magnetic dipoles (protons) are polarized by applying a magnetic field using a current within a coil of wire. When the current is discontinued, the protons precess about the earth's magnetic field and in turn generate a small current in the wire. This frequency of prepcession is proportional to the earth's total magnetic field.

The instrument is read in gammas which is the absolute value of the earth's total field for that stalion.

The specifications for the G-816 total field manetometer are given in Appendix II.

7. SURVEY PROCEDURES

> 7.1 MaxMin II Horizontal Loop Electromagnetic Survey Initially a 150 metre cable length was to be used for the reconnaissance phase of the survey for both Grids A and B. Due to the local rugged relief bound within Grid B, the crosslines established were of short length (under 200 m) and hence to cover these crosslines a 50 metre cable was used.

For all survey stations, readings were taken at 25 metre intervals at frequencies of 1777 and 444 Hz .

7.2 Secant Chaining

Secant chaining was carried out on all survey lines as the topographic relief was severe enough to effect the inphase instrument readings. The purpose of secant chaining the lines is to take into account the variations of slopes and distances encountered between the transmitter and receiver coils.

Details of this technique and data reduction are given in Appendix III.
7.3 Magnetometer SurveyThe magnetic data taken was corrected for diurnal va-riations in the earth's magnetic field. For control,a magnetic base station was set up on Grid A on Line$0+00$, Station $0+00$.

All magnetic data taken along the crosslines is tied into this main base station using a looping technique. For this type of correction drift is assumed to be linear with time.
8. PRESENTATION OF RESULTS

All field data is presented at a horizontal scale of 1:1250.

The inphase and quadrature components of the HEM data are plotted in profile form at a vertical scale of $1 \mathrm{~cm}=$ 10 percent. For each conductor interpreted, the location of the conductor axis, an estimate of the conductor width and where possible a corresponding interpreted depth (m) to the current axis, conductivity-thickness (mhos) and the dip of the conductor is given.

The magnetic data is presented as equal intensity contours superimposed upon a plot of corrected magnetic values observed at each station. The contour interval is variable and is dependent upon the local magnetic gradients.

Faults are interpreted where there are strong distortions and truncations of the magnetic trend.

There are three maps accompanying this report. All three maps are enclosed in a map pocket at the back.

9. INTERPRETATION OF RESULTS

9.1 General Comments

The classical phasor interpretation curves used for the HEM geophysical data are based on thin dyke modelling. The models used have an infinite length and depth extent relative to their width. Although these conditions can be met in the field, there are variations in the modelled parameters that can lead to errors in interpretations.

Phenomenon described in literature as 'thickness effect' and 'current gathering effects', results in a decrease in the inphase-quadrature ratio. When using these phasor diagrams, the interpreted conduc-tivity-thickness product and the depth to the conductor axis can be significantly lower than the true estimate.

Errors in interpretation can also occur if the conductor has a very short strike length or has a finite depth extent. In these cases the conductor will appear deeper.

MaxMin II HEM Interpretation
No electromagnetic conductors were outlined on Grid A. There are 2 to 3 percent variations in the inphase data on both frequencies. Although the crosslines were secant chained, there still may be some influences to the readings from the topographic relief in the area.

In the Grid B area, two good quality bedrock conducetors were outlined. On Line $12+00 \mathrm{~N}$ a conductor is centred over Station $0+00$ and is directly over the mineralized vein. (see Maps 1 and 2).

This is a good-quality bedrock conductor that has an interpreted conductivity-thickness product ranging from 150 to 600 mhos 11777 Hz and 444 Hz data base respectively). The interpreted depth to the top of the conductive axis is approximately 30 metres. This depth is obviously too deep in that the vein is observed to be on surface. The reason for this is most likely that the short strike length of the vein causes the conductor depth as interpreted from classical curves to be deeper than in reality.

The lower shoulder of the EM profile observed on both frequencies outlined on the southeast side

Abstract

of the EM anomaly trough is probably due to the influence of gossanous material found to the southeast of the mineralized vein.

The second conductor is best outlined on Line $0+00$ at Station 0+37E. This EM anomaly also displays a good quality characteristic that is representative of a semi-massive to massive sulphide source. It is a wide (25 metre) body that is at least 25 metres from surface and appears to be dipping nearby vertically. This conductor appears to continue southward. On Line $39+005$ there is a partial outline of a conductor centred at station $87+00$. The survey line could not be extended eastward due to the local unstable snow conditions.

9.3 Magnetic Interpretation

The magnetic pattern as outlined on Grid's A and B (see Map No. 3) is characterized by steep magnetic gradients that are due to near-surface magnetic sources.

There are two orthoginal positive magnetic linears outlined within Grid A centred along the base line between Lines $0+00$ and $0+25 N$. They reflect the presence of two basic dykes. Both have short strike
lengths that may have been truncated or displaced by faults.

There are several fault systems interpreted as shown on the Magnetic Contour Map No. 3. The northwestern and southwestern portions of the Grid A are bounded by the presence of two orthoginal faults.that may mark the boundary between a horst-graben block. The down faulted block is outlined by the presence of gentler magnetic gradients within the northwest and southwest of Grid A as contrasted with the steeper magnetic gradients within the remainder of Grid A and B. A third fault is sub-parallel to Line $0+00$ on Grid B.

There is some magnetic correlation with the two HEM conductors outlined within Grid B. The conductor centred over the mineralized vein is locally within a 200 gamma trough. On surface there is evidence of shearing along the strike of the vein. This shear is likely the cause of this localized magnetic expression.

The second HEM conductor (on Line $0+00$, Station $0+37 E$) flanks a local magnetic positive anomaly. Here the conductive source may be within a mafic host rather than a shear system.

10. CONCLUSIONS

Two good quality bedrock conductors were outlined as a result of the ground geophysical investigations. Both are extremely good quality conductors that could be representative of massive sulphide sources.

One conductor is directly associated with the mineralized vein and correlates with a 200 gamma magnetic low.

The second conductor as best outlined on Line $0+00$ at Station $0+37 \mathrm{E}$ flanks a positive magnetic anomaly.

The magnetics outlined a complex geological environment within which there are several linear mafic bodies and fault systems. Two of the interpreted faults may mark the boundary between a horst-graben block.

The HEM survey has successfully indicated the presence of two good bedrock conductors. Both should be evaluated by drilling during the course of the exploration season.
11. RECOMMENDATIONS

The two bedrock conductors outlined by the geophysics should be tested by diamond drilling. The conductor centred at Statron $0+37 \mathrm{E}$ on Line $39+00 \mathrm{~S}$ should be drill tested below the 25 metre depth estimate.

A second hole should be drilled to evaluate the vein below surface and to test the HEM anomaly centred at Station $0+00$ on Line $12+00 \mathrm{~N}$.

Both conductors are interpreted to have near vertical dips. Exact positioning of the hole collars will have to be determined taking into account the immediate local terrain conditions.

FD: g

Respectfully submitted,

F. Dalidowicz, M.Sc.(A), P.Eng.

CERTIFICATE

I, F. Dalidowicz of Calgary, Alberta certify that

1) I hold a Bachelor of Applied Science degree from Queen's University in Kingston, Ontario and a Master of Science (Applied) degree in Mineral Exploration from McGill University in Montreal, Quebec.
2. I am a Member of the Association of Professional Engineers of the Province of Ontario and have practised my profession continuously since graduation.
3) I have based my conclusions and recommendations containe in this report on my experience and knowledge of interpretation and application of geophysical methods and on my previous experience in similar geological environments.
4) I hold no interest, directly or indirectly in this property, other than professional fees, nor do I expect to receive any interest in the property or in Mafeking Minerals Limited.

Calgary, Alberta
September, 1980°
Frank Dalidowicz, P. Eng.

APPENDIX I

SPECIFICATIONS ：

Frsquencies：
2ออ，444，888， 1777 and 3555 Hz
Mivdes of Operation：MAX：Transmitter coil plane and re－ ceiver coil plane horizontal （Max－coupled；Horizontal－loop model．Used with refer cable．

MIN：Transmitter coil plane horizon－ tal and receiver coil plane ver－ tical（Min－coupled mode）． Used with reference cable．
V．L．：Transmitter coilplane verti－ cal and receiver coil plane hori－ zontal（Vertical－loop mode）． Used without reference cable，in parallel lines．

Cail Separations：
25，50，100，150，200 E 250m［MMI） or $100,200,300,400,600$ and 800 ft ．（MMIIF）．
Coil separations in V．L．mode not re－ stricted to fixed values．

Parameters Read： In－Phase and Quadrature compo－ nents of the secondary field in MAX and MIN modes．
－Tilt－angle of the total field in V．L． mode．
－Automatic．direct readout on 90 mm （ 3.5 ＂）edgewise meters in MAX and MIN modes．No null－ ing or compensation necessary．
－Tilt angle and null in 90 mm edge－ wise meters in V．L．mode

Scale Ranges：
NOW ALSO $\pm 4 \%$ QUADRATURE
FULL SCALE．

Peartability：

In－Phase： $\pm 20 \%, \pm 100 \%$ by push－ button switch．
Quadrature： $\pm 20 \%, \pm 100 \%$ by push－ button switch．
Tilt：$\pm 75 \%$ slope．
Null（V．L）：Sensitivity adjustable by separation switch．

In－Phase and Quadrature： 0.25% to 0.5% ；Tilt： 1% ．

Repeatability：
$\pm 0.25 \%$ to $\pm 1 \%$ normally，depending on conditions，frequencies and coil separation used

Transmitter Dutput：－2e2Hz：2eロAtm²
－ $444 \mathrm{~Hz}: 200 \mathrm{Atm}{ }^{2}$
－ 888 Hz ：12ロAtm²
－17フ7Hz：6OAtm²
$-3555 \mathrm{~Hz}: 30 \mathrm{Atm}^{2}$
Receivar Batteries： $9 \vee$ trans．radio type batteries（4） Life：approx． 35 hrs．continuous du－ ty（alkaline， 0.5 Ah ），less in cold weather

Transmitter

Batteries：

Peference Cable：

Voice Link：

Indicator Lights：
uilt－in signal and reference warm－ ing lights to indicate erroneous readings．

Temperature Range：$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left\{-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right\}$ ．
Peceiver Weight：6kg（13 tbs．）
Transmitter Weight： 13 kg （29 lbs.$)$
Shipping Weight：Typically 60kg（135lbs．），depend－ ing on quantities of reference cable and batteries included． Shipped in two field／shipping cases．

Specificetions subject to enange without notification．

APPENDIX II

GEOMETRICS MODEL G-816 TOTAL FIELD MAGNETOMETER

PORTABLE PROTON MAGNETOMETER MODEL G-816

1 gamma sensitivity and repeatability

* Very small size and weight: less than 12 lbs complete with batteries and sensor
\star Over 10,000 readings per set of alkaline "D" cell (flashlight) batteries

Provision to attach sensor to carrying harness for use without staff

* Pushbutton operationnumeric display directly in gammas

Total field measurements independent of orientation-no calibration-no leveling

The Model G-816 is a complete portable magnetometer for all man-carry field applications. As an accurate yet simple to operate instrument, it features an outstanding combination of one gamma sensitivity and repeatability, compact size and weight, operation on standard universally available flashlight batteries, ruggedized packaging and very low price.

The G-816 magnetometer allows precise mapping of very small or large amplitude anomalies for ground geophysical surveys, or for detail follow-up to aeromagnetic reconnaissance surveys. It is a rugged, lightweight, and versatile instrument, equally well suited for field studies in geophysics, research programs or other magnetic mapping application where low cost, dependable operation and accurate measurements are required.

For marine, airborne or ground recording systems consider GeoMetrics Models G-801, G-803, and G-826A.

"Hands-free" Back Pack Sensor
Based upon the principle of nuclear precession (proton) the $\mathrm{G}-3: 6$ offers absolute drift-free measurements of the total fieid directly in gammas. (The proton precession method is the officially recognized standard for measurement of the earth's magnetic field.) Operation is worldwide with one gamma sensitivity and repeatability maintained throughout the range. There is no temperature drift, no set-up or leveling required, and no adjustment for orientation, field polarity, or arbitrary reference levels. Operation is very simple with no prior training required. Only 6 seconds are reguired to obtain a measurement which is always correct to one gamma, regardless of operator experience. Only the Proton Magnetometer offers such repeatability-an important consideration even for 10 gamma survey resolution.

Complete Field Portable System
The Model G-816 comes complete, ready for portable field operation and consists of:

1. Electronics console with internally mounted and easily replaced "D" cell battery pack.
2. Proton sensor and signal cable for attachment to carrying harness or staff.
3. Adjustable carrying harness.
4. 8 foot collapsible aluminum staff.
5. Instruction manual, complete set of spare batteries, applications manual, and rugged field suitcase.

Price and lease rates on the G-816 magnetometer are available upon request.

SPECIFICATIONS

Sensitivity:	± 1 gamma throughout range
Range:	20,000 to 100,000 gammas (woridwide)
Tuning:	Multi-position switch with signal ampltude indi- cator light on display
Gradient Tolerance: Exceeds 800 gammas/ ft	

Sampling Rate: Manual push-button, one reading each 6 seconds

5 digit numeric display with readout directly in gammas

Power Requiraments:	Twelve self-contained 1.5 volt " D " cell, universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.		
	Battery Type	Numb	eadings
	Alkaline	over	10,000
	Premium Carbon Zinc	over	4,000
	Standard Rashlight	over	1,500

NOTE: Battery life decreases with low temperature operation.

All magnetometers and parts are covered by a one year warranty beginning with the date of receipt but not to exceed fifteen months from the shipping date.
 SUNNYVALE. CA 94086 U.S.A.
 TEL: (408) 734-4616 CAELE "GEOMETRICS"
TELEX NO: 357.435 TELEX NO: 357-435 AUSTAALIA
TEE 929.9942 TEL:929.9942
TELEX NO: $790-22624$

APPENDIX III

SECANT CHAINING DATA REDUCTION
(MaxMin II EM System Operations Manual)
5.1.

The secant method of chaining has been devised for acquiring-clean in-, phase data in choppy and mountainous terrain, i.e. in terrain where marks on a taut cable will no longer serve as a guide to an accurate coil spacing. Secant chaining is done with a Suunto PMS/SPC inclinometer, which has a "\%grade" and a 'Modified Secant" scale (secant $\times 100$) -- hereafter called the "Secant" scale. The latter scale states the number of units along a slope per 100 umits of horizontal distance. The "\%grade" scale is visible simultaneously with the "Secant", and it states the number of units along the vertical per 100 units of horizontal distance. Other features of this inclinometer are that it is very small, single-hand-held, self-levelling, and oil-darped, with an optically magnified scale.
5.2. The Sunnto inclinometer is not a precision instrment in the sense of a surveyor's level. The true "zero" position is usually within $\frac{1}{4} \%$ grade of "zero" on the scale, but each operator introduces his own bias to the instrument. This bias relates to superimposing the horizontal reading line, seen with one eye, onto an object seen with the other eye. Even with both eyes on the same horizantal plane, superimposition errors still occur. These errors vary from person to person. .

It has been found that the cumulative error is generally in the positive direction at 'he rate of $\frac{1}{2}$ to 1 unit per 100. In the light of this, any inclinometer operator sing one of these inclinometers for the first time should make a reversed - position shot on his chaining partner over the distance of a station interval. With this, the inclinometer operator will know whether or not he should be aiming above or below the equi height mark on his chaining partner.
5.3. The specific procedure in the secant method of chaining depends upon the desired end result. For an accurate MaxMin II survey, it is only necessary to secant chain along the traverse lines. If an accurate plan of the grid with topa contours is desired, then it is necessary to secant chain between the ends of the lines. No specifics will be given here on making topographic contour maps from chaining data, other than to say that the chaining must be done in closed loops and accumulated errors corrected back through the loops. Infact, the procedure is akin to that for a controlled magnetic or gravimetric survey, except that corrections are pro rated by distance rather than time.
5.4. The accuracy of the Maxin in-phase results depend upon the accuracy of the chaining along the traverse lines; whereas, the accuracy of the grid plan depends also on the accuracy of the chaining between the ends of the lines. A random chaining error of a percent of two will have a perceptible effect on the MaxMin II in-phase results, whereas it will not on the grid picture. So, the chaining along the traverse lines must be quite accurate while the chaining between them can be less accurate. In fact, cut lines are not required for chaining between traverse lines. With a good compass tourse, it is easy to keep the chain reasonably straight. However, the inclinometer operator does require a line of sight to his helper on the chain.
5.5. A good compass course between the ends of the traverse lines will permit backchaining without large misclosures at the other end of the line. In fact, misclosures of greater than one meter will not be due to deficiencies in the secant chaining method but to errors in the course followed between the lines. Nonetheless, misclosures at the end of a line -- or in the center, if the baseline is located there -- need not be a cause for subsequent mapping problems if shown in plan as they occur in the field. As far as accurate MaxMin II data is concerned, it is only necessary to know the horizontal-plane position and the elevation of each station along the traverse line.
5.6. A practical example of using the Sunnto PM5/SPC inclinometer follows: The inclinometer operator sighting on his helper up a slope reads " 105 " on the "Secant" scale. This means that he should pay out 1.05 times the desired chaining interval. If this interval is 100 feet, he should simply pay out 105 feet of chain. He holds the ' 105 ' mark vertically above the bottom of the picket at which he is standing, while the helper puts in his picket vertically below the " 0 " mark on the chain. The picket should be driven well or there's little point to this type of chaining. While the helper is writing co-ordinate information on the picket, the inclinometer operator records in his notebook both the secant reading and the corresponding \% grade reading (+32).

In this way there is no "dead" time and the chaining goes quickly. Recording each secant reading may appear redundant after it has been applied to the chain. However, a quick visual check of the two recorded readings in the book, against a reference "secant-\%grade" table clipped into the book, will alert the operator to the inevitable reading error. An example of this type of table is shown below:

Secant:	\%Grade:	Secant:	\%Grade:
100	0	118	63
$1001 / \frac{1}{2}$	10	119	641/2
101	14	120	661
102	20	122	69
103	2415	124	73
104	281/2	126	77
105	32	128	80
106	35	130	83
107	38	132	86
108	41	134	89
109	431/2	136	92
110	46	138	95
111	$48 \frac{1}{2}$	140	98
112	501/2	142	101
113	521/2	144	104
114	55	146	107
115	57	148	109
116	59	150	112
117	61		

During the distance measurement, the chain is always held parallel to the slope, e.g. head-to-head, waist-to-waist, hip-to-hip, at a constant tension. On steep slopes, a piece of talus dropped from the mark on the chain will improve the precision of the measurement on the ground.
5.8. Where obstructions in the line impede a full 100 ft measurement with the chain, then only a fraction of the secant value seen on the inclinometer scale should be given on the chain. Suppose for instance, that the operator at the ' 0 ' end of the chain can only get $3 / 4$ of the way to his next position before passing out of sight, and at this time the secant scale reads ' 105 '; then, the trailing operator should hold the chain at ' 105 x $0.75=78.8^{\prime \prime}$, making for an exact 75 ft (horizontal) shot. The corresponding \%grade value (i.e. +32) seen on the inclinometer scale is recorded directly into the book, as well as the horizontal distance of the shot. Then an additional 25 ft horizontal must be chained from the 75 ft mark to reach the next station. If for this step the secant reading is " 108 " for instance, then the trailing operator should hold the chain at " $108 \times 0.25=27$ ', making for an exact 25 ft horizontal shot. The corresponding \%grade value (-41) is recorded together with the distance in the note book.
5.9. If when backchaining to the base line, the final shot from picket $1+00$ ($\mathrm{N}, \mathrm{S}, \mathrm{E}$ or I) to the base line picket is on a slope, then an inverse calculation is required to get the horizontal distance to the base line. For example, if the distance on the chain is 128.5 ft , and the inclinometer shows secant and \%grade values of 107 and -38 respectively, then the true horizontal distance is given by the expression $128.5 / 1.07=120 \mathrm{ft}$, and the elevation difference is given by the expression $-38 \times 1.2=-46 \mathrm{ft}$. Of course, the foregoing calculations are only necessary when closing a chaining loop at the base line.

When chaining past the base line, it is best to continue the chaining from the " 0 " picket and not the base line picket, so that all stations are 100 ft apart. Although the base line picket would not be used during EM coverage in a situation like this, it is a good practice to note its location on the way by. With this, the stations on the line can be accurately plotted with respect to the base line.
6.10. In the metric system, there are usually 25 meters horizontally between stations, which means that an extra calculation must be made on the inclinometer data. One way around this is to subdivide 25 meters of distance on the chain into 100 equal parts numbered 1 to 100 . So, a 50 meter chain would be subdivided into 200 equal parts numbered 1 to 200. With this, the inclinometer is used directly, and the operator turns grey less rapidly.
5.11. The most efficient way to reduce the chaining notes is to calculate first the topographic elevations from the $\%$ grade values. To start with, a quick perusal should first be made through the notes for all chaining intervals of other than 100 feet before any other calculations are made. For instance, the +32 \& -41% grade figures of sub-section 5.8. would convert to +24 \& -10 feet over the 75 feet and the 25 feet horizontal distances of the two shots. Of course, when the shots are a full 100 ft , the \% grade figure is the vertical distance between stations in feet, and the \%grade can be used without conversion.
5.12. It is an easy matter to derive the mean slope between the coils from the topo elevations. If a nominal coil spacing of 600 ft is to be used then the elevation difference between stations 600 ft apart is divided by " 6 ". For instance if the leading coil in the procession is at station $6+00 \mathrm{~N}$ on a line while the trailing coil is at the base line station, and the elevation of station $6+00 \mathrm{~N}$ is 54 ft while that of the base line station is 100 ft , then the mean slope between the coils is given by the expression (54-100)/6=-8\% grade.
5.13. If due to aback chaining error, the distance between the base line and station ${ }^{1}+00(\mathrm{~N}, \mathrm{~S}, \mathrm{E}$ or W$)$ is $120 \mathrm{ft}--$ and the chaining has been continued to the other side of the base ine from the base line picket rather than the " 0 " picket---then the distance between the coils will be 620 ft when they are straddling the chain error. This distance will have to be taken into account when calculating the mean slope between coils, and also in correcting for the large-coil-spacing error. The calculation for the mean slope in the above becomes (54-100)/6.2=-7\% grade
5.14. The initial corrections to the in-phase reading, for the slope of -7% grade and the 620 ft horizontal distance between the coils, are +0.5 and $+9.5 \%$, respectively. These values are taken from the correction table on the following page.
5.15. An additional correction is required for the in-phase and out-of-phase readings, but it is only of consequence if an anomaly is present. This correction is in the form of a multiplication factor, which can be found in the table on the next page. The multiplication factors, for the slope of -7% grade and the 620 ft horizontal distance between the coils, are $x 1.007$ and x 1.103, respectively.
5.16 The widely varying in-phase readings, associated with a widely varying secant chained slope, will reflect in the out-of-phase reading if there is appreciable phase mixing in the system. This of course can be corrected arithmetically. But, it's much less time consuming to open the receiver can and remove the problem as per subsection 2.4.3, than to correct the phase mixing errors.

Phone:
(416) 495-1612

Cables:
APEXPARA TORONTO

Telex:
O8日E D6-966775 APEXPARA MKHM

OPRRECTION TABLES
Rough Terrain Table:
Mean Grade In-Phase (only) In-Phase \& Mean Grade In-Phase (only) In-Phaseq Between Coils. Carrection for Out-of-Phase Between Coils Correction for Out-of-Phase Coplanar Coils: Correction:

In-Phase Correction $=\left[1-\left\{\operatorname{Cos} \tan ^{-1}\left(\frac{1 \text { Grade }}{100}\right)\right\}^{3}\right] \times 100=$ always positive, no matter the slope sign.
In-Phase out-of-Phase Correction $=x\left\{1 / \operatorname{Cos}\left(\tan ^{\left.-1-\frac{1 G r a d e}{100}\right)}\right\}^{3}\right.$
Short and Long Coil Spacing Table:

In-Phase (only)
Correction:
In-Phase E
Out-of-Phase Correction:
Nominal Coil Spacing: 600-400-300-200

Actual Coil Spacing:	$580 \quad 290$. -10.5	$\times 0.906$
"	582-388-291-194	- 9.5	$\times 0.915$
"	584292	8.5	$\times 0.924$
"	586 293	- 7.5	$\times 0.933$
"	588-392-294-196.	- 6	$\times 0.942$
"	590295	- 5	$\times 0.952$
"	592296	4	$\times 0.961$
"	594-396-297-198.	- 3	$\times 0.971$
"	596298	. $=2$	$\times 0.980$
"	$598 \quad 299$	- 1	$\times 0.990$
"	600-400-300-200.	. ± 0	$\times 1.000$
"	602301	. 1	$\times 1.010$
"	604302	+ 2	$\times 1.020$
"	606-404-303-202	+ 3	$\times 1.030$
"	608304	+ 4	$\times 1.041$
"	$610 \quad 305$	+ 5	$\times 1.051$
"	612-408-306-204	+ 6	$x 1.061$
"	$614 \quad 307$	$\ldots \cdot 6.5$	$\times 1.072$
"	616308	$\ldots+7.5$. $\times 1.082$
" ${ }^{\prime}$	618-412-309-206	.. 8.5	.. $\times 1.093$
11	620310	... 9.5 $\times 1.103$

In-Phase Correction $=+\left[1-\left(\frac{\text { Nominal Coil Spacing }}{\text { Actual Coil Spacing }}{ }^{3}\right] \times 100\right.$
In-Phase \& Out-of-Phase Correction $=x$ (Actual Coil Spacing ${ }^{\text {Nominal Coil Spacing }}$)

CERTIFICATE

I, W. H. TISDALL, P. Eng. of Calgary, Alberta, certify that:
(1) I am a graduate of the University of British Columbia and hold a Bachelor of Applied Science degree in Geological Engineering (1951).
(2) I am a Registered Professional Engineer in the Province of British Columbia (\#2902).
(3) I have worked as an exploration geologist and project evaluation engineer for 30 years.
(4) I have worked with Mr. E. M. Estabrooks, P. Geol. both as a partner and as an employer in the period 1970-1976.
(5) In the summer of 1970 I prospected with Mr. Estabrooks in the valley and surrounding mountains of the area in which the Jony 1,2 and 3 claims are located.
(6) From my personal knowledge of Mr. Estabrooks' field work, I am satisfied that the geology on and around the Jony 1, 2 and 3 claims is as reported by Mr. Estabrooks.
(7) I have no financial interest, directly or indirectly, nor do I expect to receive any interest, directly or indirectly in any of the properties or securities of Mafeking Minerals Ltd.

CALGARY, ALBERTA
11 January, 1982

$$
\frac{\text { Q. N. } 7 \text {. }}{\text { W. H. Tidal }} \text { p. Eng. }
$$

Loring Laboratories Ltd.
629 Beaverdam Road, N.E. \qquad
Calgary, Alberta \qquad
T2K 4W2

SEMI QUANTITATIVE SPECTROGRAPHIC ANALYSES CERTIFICATE

File No. $7470 \mathrm{D}-1$
Date
SEPT. 9/80

FILE \#19795
 samples submilted.

File No. ... 19795
DateAugust Eth, 1980
Samples Rock \& Core

TEN 3Z?
P. ESTABROOKS

 Loring Laboratories Lid.

Rejects Retained one month.

[^0] made in advance.
$\rightarrow 2 \times 2$ are
Licensed Assayer of British Columbia

Certificate of Analysis

REPORT NO.
DATE

I hereby certify that the following are the results of analyses made by us upon the herein described.
...... sumples

BONDAR-CLEEGG \& COMPANY LTD.

Mefoking Minerrale

136B INDUSTRIAL RD, WHITEHORSE, YUKON Y1A 4X1
PHONE: (403) 667-6523 TELEX: 036-8-460

Certificate of Analysis

REPORT NO.
DATE \qquad

I hereby certify that the following are the results of analyses made by us upon the herein described....... .r.

Pulos retainet three menth

Sample No. 1
Method: XRF

No. of Elements: 32

From: Mafeking Minerele
Date: September $9 \quad 1980$
Analyst:

MAJOR ELEMENTS (\%)	<. 003	. 003.01	. 01.03	.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	3.0-10.0	>10.0	REMARK
SiO_{2}									χ	
$\mathrm{Al}_{2} \mathrm{O}_{3}$							x			
$\bigcirc \mathrm{otal} \mathrm{Fe}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$							x			
MgO				X						
CaO					χ					
$\mathrm{Na}_{2} \mathrm{O}$						χ				
$\mathrm{K}_{2} \mathrm{O}$					X					
TiO_{2}					X					
RACE ELEMENTS (\%)										
\checkmark		X								
Cr		X								
Mn							X			
Co	X									
Ni	x									
Cu		X								
Zn					x					
As				X						
Sr	χ									
Y	X									
Zr		X								
Nb	X									
Mo	x									
Ag	X									
Sn	X									
Sb	X									
Ba			x							
La	X									
Ce	X									
W	X									
Pb					x					
Bi	$\boldsymbol{\chi}$									
Th	X									
U	X									

136 Industrial Road治itehorse, Yukon Y1A 2V1

PHoNe 667-6523 telex:
SEMI-QUANTITATIVE ANALYSIS

036-8-460
No: $\dot{4}-40-7$

Sample No._ $1[$
Method: \qquad DC Arc Emission Jpectrograph
No. of Elements: \qquad 32

IAJOR ELEMENTS (\%)	<. 003	.003.01	.01.03	.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	3.0-10.0	> 10.0	REMAR
SiO_{2}									\therefore	
$\mathrm{Al}_{2} \mathrm{O}_{3}$							-			
otal $\mathrm{Fe}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$									\because	
MgO						2				
CaO							\therefore			
$\mathrm{Na}_{2} \mathrm{O}$						\because				
$\mathrm{K}_{2} \mathrm{O}$	\therefore									
TiO_{2}			天							
RACE ELEMENTS (\%)					-					
V		\because								
Cr			\because							
Mn			\because							
Co	\because									
Ni	\therefore									
Cu								(x)		
Zn					(x)					
As	\therefore									
Sr		\cdots								
Y.	\therefore									
Zr	\because									
Nb	\because									
Mo	\cdots									
Ag		\because								
Sn	$\ddot{\square}$									
Sb	$\ddot{ }$									
Ba			\because							
La	\because									
$\mathrm{dex}^{\text {X Cci }}$	\therefore									
w	\because									
Pb					(x)					
Bi		\therefore								
WX - c	\because									
u	\because									

Sample No. \qquad 10

Method: \qquad DC Arc Emission Spcctrograph \qquad
No. of Elements: 32

From: Mafcking Mincrals
Date: riveust 11 1920

IAJOR ELEMENTS (\%)	<. 003	.003.01	.01.03	.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	3.0-10.0	> 10.0	REMAR
SiO_{2}									\because	
$\mathrm{Al}_{2} \mathrm{O}_{3}$							\because			
otal $\mathrm{Fe}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$								"		
MgO					\because					
CaO				\because						
$\mathrm{Na}_{2} \mathrm{O}$						i				
$\mathrm{K}_{2} \mathrm{O}$	\%									
TiO_{2}			X							
RACE ELEMENTS (\%)										
V		\because								
Cr				\because						
Mn				\because						
Co	\because									
Ni	\therefore									
Cu								(x)		
Zn				\therefore						
As	\therefore									
Sr	-									
Y	\cdots									
Zr	\because									
Nb	\therefore									
Mo	\therefore									
Ag		\because								
Sn	i									
Sb	\therefore									
Ba			\because							
La	\therefore									
don Cd	天									
w	\therefore									
Pb			(x)							
Bi	\therefore									
$\lambda \chi^{\top}$	\therefore									
u	\because									

Sample No. \qquad 16 DC Arc Emission Spectograph
Method: \qquad
From: Mafeking Mincrals
Date:___ iucust 11 1930

No. of Elements: 22

Analyst:

IAJOR ELEMENTS (\%)	< 003	.003-.01	. 01.03	.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	3.0-10.0	> 10.0	REMARI
SiO_{2}									\because	
$\mathrm{Al}_{2} \mathrm{O}_{3}$								\because		
otal $\mathrm{Fe}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$									\therefore	
MgO						\because				
CaO						\because				
$\mathrm{Na}_{2} \mathrm{O}$						\therefore				
$\mathrm{K}_{2} \mathrm{O}$	\because									
TiO_{2}				\therefore						
RACE ELEMENTS (\%)										
V		χ								
Cr			\%							
Mn				\because						
Co	\because									
Ni	\therefore									
Cu								(${ }^{\text {a }}$		
Zn							(\times			
As	\therefore									
Sr		\because								
Y.	\because									
Zr	\because									
Nb	\therefore									
Mo	\because									
Ag			\because							
Sn	i									
Sb	\because									
Ba			\because							
La	\because									
CoX Ca			\therefore							
w	\because									
Pb						(4)				
Bi			\therefore							
*X 3 c	\because									
U	i									

shanch office
jample No. 18
Vethod: DC irc Emission Spectrograph vo. of Elements:

Abstract

\qquad

\qquad 32

From: llafeking Minerals
Date:__ugust 11 ــ88 19

Analyst:

JOR ELEMENTS (\%)	< 0003	.003.01	.01.03	.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	3.0-10.0	> 10.0	REMARKS
SiO_{2}									\because	
$\mathrm{Al}_{2} \mathrm{O}_{3}$								\therefore		
al $\mathrm{Fe}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$									\because	
MgO						\therefore				
CaO						\therefore				,
$\mathrm{Na}_{2} \mathrm{O}$	\because									
$\mathrm{K}_{2} \mathrm{O}$						\because				
TiO_{2}				\because						
ACE ELEMENTS (\%)										
V		x								
Cr		\therefore								
Mn					\because					
Co		\therefore								
Ni	x									
Cu								(8)		
Zn								(x)		
As	\therefore									
Sr			\therefore							
Y	2									
Zr			\therefore							
Nb	\therefore									
Mo	\because									
Ag				\therefore						
Sn	\because									
Sb	\because									
Ba				\therefore						
La	\therefore									
ade Ca				\because						
w	\therefore									
Pb							(X)			
Bi				\therefore						
取 Oc	\therefore									
U	\because									

0 :
Loring Laboratories Ltd. \qquad
629 Beaverdam Road, N.E.
Calgary, Alberta \qquad
T2K 4W2

SEMI QUANTITATIVE SPECTROGRAPHIC
analyses certificate
1650 PANDORA STREET, VANCOUVER, B.C. V5L $1 L 6$ - TELEPHONE $254-7278$
Tolex 04.507737
ile No. 7470D-
Date SEPT. 9/80
FILE \#19795

File No. ... 197.95
DateAugust Eth, 1980
Samples Rock \& Core

$$
\begin{aligned}
& \text { boring Laboratories Ltd. }
\end{aligned}
$$

$\left.\begin{array}{|c|ccc}\hline \text { SAMPLE No. } & \begin{array}{c}\text { OZ./TON } \\ \text { COLD }\end{array} & & \text { OZ./TON } \\ \text { SILVER }\end{array}\right]$

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

то | Mafaking Minerals |
| :--- |
| c/o BEMA Industries | Whitehorse. Yukon

```
REPORT NO. . . .A-40-A6
DATE ...Saptember. 9. . 1280
```

I hereby certify that the following are the results of analyses made by us upon the herein described

BONDAR-CLEGG \& COMPANY LTD.

w
Pb
Bi
Th
U

Certificate of Analysis

$$
\begin{aligned}
& \text { SEMI-QUANTITATIVE ANALYSIS }
\end{aligned}
$$

Sample No. \qquad
Method:
XRF
No. of Elements: \qquad
32

IAJOR ELEMENTS (\%)	<. 003	.003.01	.01.03	.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	3.0-10.0	> 10.0	REMARKS
SiO_{2}									X	
$\mathrm{Al}_{2} \mathrm{O}_{3}$						X				
otal $\mathrm{Fe}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$							X			
MgO				X						
CaO				,	X					
$\mathrm{Na}_{2} \mathrm{O}$			X							
$\mathrm{K}_{2} \mathrm{O}$				χ						
TiO_{2}		x								
RACE ELEMENTS (\%)										
\checkmark		X								
Cr		χ								
Mn				X						
Co		X								
Ni	X									
Cu							X			
2 n								X		
As				X						
Sr		X								
Y	X									
Zr	X									
Nb	X									
Mo	x									
Ag				X						
Sn	X									
Sb	\boldsymbol{X}									
Ba		χ								
La	X									
Ce	X									
W	X									
Pb								X		
Bi					X					
Th	X									
U	x									

[^0]: Pulps Retained one month unless specific arrangements

