
COMINCO LTD.

EXPLORATION

NTS: 92P-16

WESTERN DISTRICT

GEOPHYSICAL REPORT ON AN

INDUCED POLARIZATION SURVEY

ON THE

PATRICIA LAKE PROPERTY

Clearwater Area; Kamloops Mining Division, B.C.

LATITUDE: 51⁰45'N LONGITUDE: 120⁰15'W

Field Work Performed: August 7-18, 1981

On Claims: PL1, PL3

1 OCTOBER 1981

ALAN R. SCOTT

TABLE OF CONTENTS

											Pa	age
INTRODUCTION	•	•	•	•	•	•	•	•	•	•	•	1
INDUCED POLARIZATION SURVEY	•	•	•	•	•	• ·		•	•	•	•	1
DISCUSSION OF RESULTS	•	•	•	•	•	•	•	•	•	•	•	2
CONCLUSIONS	•	•	•	•	•	•	•	•	•	•	•	2

APPENDIX I Statement APPENDIX II Statement of Expenditures APPENDIX III Certification

* * * * *

ATTACHMENTS

Plate	214-81-1	General Location Map
Plate	214-81-2	Claim and Grid Map
Plate	214-81-3	Chargeability contour plan (n=1)
Plate	214-81-4	Apparent Resistivity contour plan (n=1)
Plate	214-81-5 to 8	Chargeability/Apparent Resistivity Pseudosections

COMINCO LTD.

EXPLORATION NTS: 92P-16 WESTERN DISTRICT 1 October 1981

GEOPHYSICAL REPORT ON AN

INDUCED POLARIZATION SURVEY

ON THE

PATRICIA LAKE PROPERTY

Clearwater Area; Kamloops Mining Division, B.C.

INTRODUCTION

During the period August 7-18, 1981, a Cominco geophysical crew completed an induced polarization survey on portions of the Patricia Lake property. A total of 24 line kilometers on 8 lines 200 meters apart were surveyed using the pole dipole electrode array, with an electrode spacing of 50 meters and separations of 1, 2, and 3.

The Patricia Lake property is located some 18 kilometers northwest of Clearwater, B.C. Plate 1 shows the general location of the property, and plate 2 the location of the surveyed lines with respect to the claims.

This report describes the methodology of the surveys, presents the data, and discusses the geophysical results.

INDUCED POLARIZATION SURVEY

A Huntec 7.5 kw transmitter in combination with a Scintrex IPR-8 receiver were deployed on the Patricia Lake survey. Readings were taken in the time domain using a 2 second current on/2 second current off alternating square wave signal. The plotted value is the M_{232} value of from 650-1170 milliseconds following cessation of the current pulse. Units of chargeability (IP) response for the IPR-8 receiver are millivolts/volt.

The pole dipole electrode array was used on the survey with an "a" spacing of 50 meters and "n" separations of 1, 2, and 3. The current electrode was kept to the south on all survey lines.

The apparent resistivity was calculated from the relation:-

apparent resistivity = $(V/I) \cdot K$

where V is the voltage across the measuring dipole during the current (I) on pulse, and K is a geometric factor dependent on the "a" spacing and "n" separation.

DISCUSSION OF RESULTS

2.

The chargeability and apparent resistivity results are presented in pseudo section format on plates 5 to 8, and the near separation (n=1) values in contour plan forms on plates 3 and 4. Chargeability anomalies have been categorized on the pseudosections as follows:

and the main factor	strong IP high	$(>40 \frac{mv}{v})$	at near	separations)
	moderate IP hig	h(20-40 $\frac{mv}{v}$	at near	separations)
	weak IP high	$(10-20 \frac{mv}{v})$	at near	separations)
	IP high at furt	her separat	tion (n=	3, >10 mv)

Additionally, zones of low resistivity (< 100 ohm meters) are indicated by a light dashed line.

Most of the survey area gave only background chargeability response (<10 mv/v). One weak anomaly was defined at about 2150 N on line 1400 E. However, the southwest portion of the grid gave above background chargeability response. A strong IP high within this anomalous area strikes from 220 N on line 1400 E north westerly to 600 N on line 800 E. This strongly anomalous zone is coincident with low apparent resistivity. A second strong IP high within the generally anomalous area lies in the southwest portion of the anomalous area. This strong IP high is coincident with very low resistivity (less than 10 ohm meters) on line 200 E (baseline \rightarrow 225N), line 400 E (50 S \rightarrow 50 N) and on line 600 E (baseline \rightarrow 100 N). The high chargeability/very low resistivity of this anomaly suggests electrically interconnected graphite and/or sulphide minerals as a causative source. Further work to determine the causative source is recommended.

CONCLUSIONS

Portions of the Patricia Lake property were surveyed with multiseparation time domain IP in the summer of 1981. A weak anomaly was detected on line 1400 E some 2150 meters north of the baseline, and a large area of from weak to strong chargeability response in the southwest portion of the grid. This anomalous area is open to the west and to the south.

Two zones of coincident strong chargeability low apparent resistivity lie within the generally anomalous SW area. One zone strikes north westerly from 220 N on line 1400 E to 600 N on line 800 E. The second strong chargeability zone lies in the extreme southwest portion of the anomalous area. A very low resistivity zone (as low as 2 ohm meters) strikes west north west at the south end of lines 200 E to 600 E and is coincident with strongly high chargeability. Geophysically, electronically interconnected graphite and/or sulphide minerals is the most probable causative source of this anomaly. Further work to determine its source would appear warranted. A horizontal loop EM and magnetometer survey would provide a more accurate quantitative interpretation of the geometry. Respectfully submitted by: Alan R. Scott Geophysicist

Approved for Release by: <u>W.J. Wolfe</u> G. Harden for

Manager, Exploration Western District

ARS/skg Distribution

3.

. .

(2) **/** (1) Mining Recorder Western District Geophysics File (1)

APPENDIX I

IN THE MATTER OF THE B.C. MINERAL ACT

AND IN THE MATTER OF A GEOPHYSICAL PROGRAMME

CARRIED OUT ON PORTIONS OF THE PL MINERAL CLAIMS

ON THE PATRICIA LAKE PROPERTY

LOCATED IN THE CLEARWATER AREA, KAMLOOPS MINING DIVISION, B.C.

OF THE PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY

N.T.S.: 92P-16

<u>STATEMENT</u>

I, Alan R. Scott, of the City of Vancouver, in the Province of British Columbia, make oath and say:-

- THAT I am employed as a geophysicist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I hereinafter depose;
- 2) THAT the annexed hereto and marked as "Appendix II" to this statement is a true copy of expenditures incurred on geophysical survey on the PATRICIA LAKE Property;
- 3) THAT the said expenditures were incurred for the purpose of mineral exploration of the above noted claims between the 7th day and 18th day of August, 1981.

Signed: Alan R. Scott, Geophysicist

1 October 1981

APPENDIX II

STATEMENT OF EXPENDITURES

(Induced Polarization Survey, Linecutting)

1. Salaries

I. Jackisch, geoph	ysicist,	Aug.	7-18,	12	days	0	135.00	=	\$1,620.00	
K. MacKinnon, geop	hysicist-in-training,	Aug.	7-18,	12	days	0	110.00	=	1,320.00	
C. Frechette, help	er,	Aug.	7-18,	12	days	0	93.30	=	1,119.60	
M. Crosby, helper		Aug.	7-18,	12	days	9	93.30	=	1,119.60	
P. Evans, helper		Aug.	7-18,	12	days	0	93.30	=	1,119.60	
						,				\$6,298.80

2. Equipment Rentals	,	
7.5 kw IP survey system, 1 4 x 4 suburban,	0 survey days @ 245.00 12 days @ 50.00	= 2,450.00 = 600.00 \$3,050.00

3. Charges per survey day (towards drafting, report, supervision)	
10 survey days @ 225.00	= 2,250.00
	\$2,250.00

4. Miscellaneous expenses

Meals, accommodations,	travel expenses,	survey consumables	= 3,277.00
	,	-	\$3,277.00

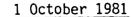
5. Linecutting

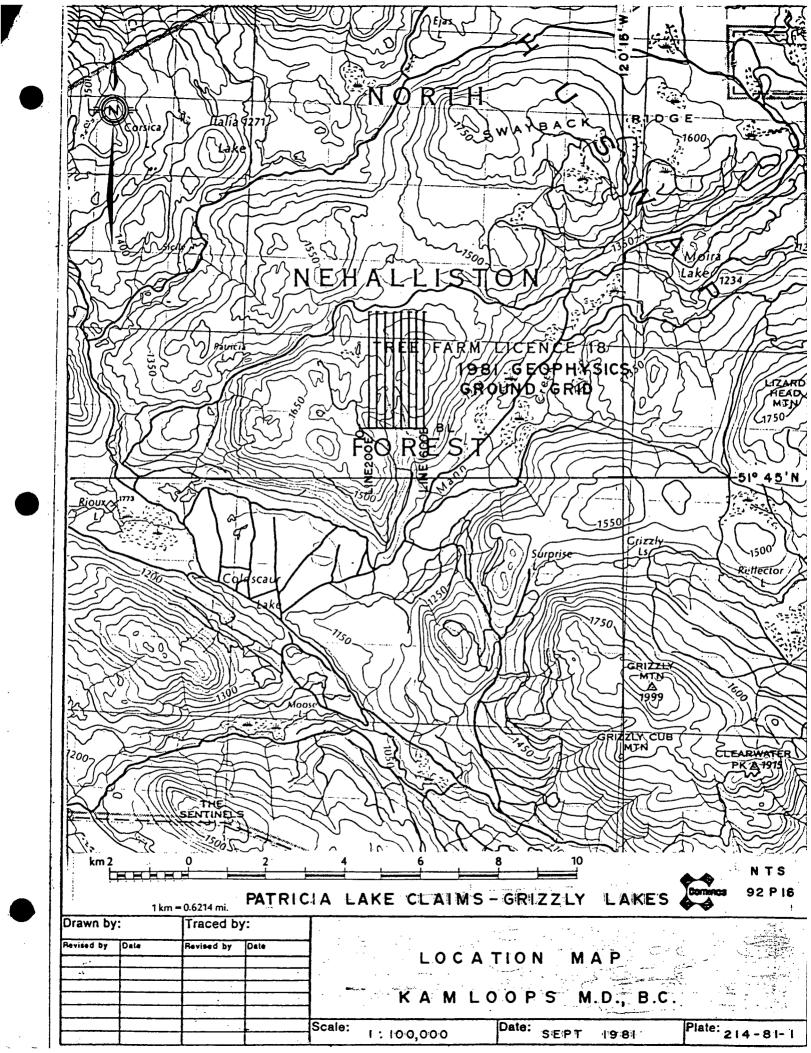
26	kilometers	0	548.00		
				Total	Expenditures:

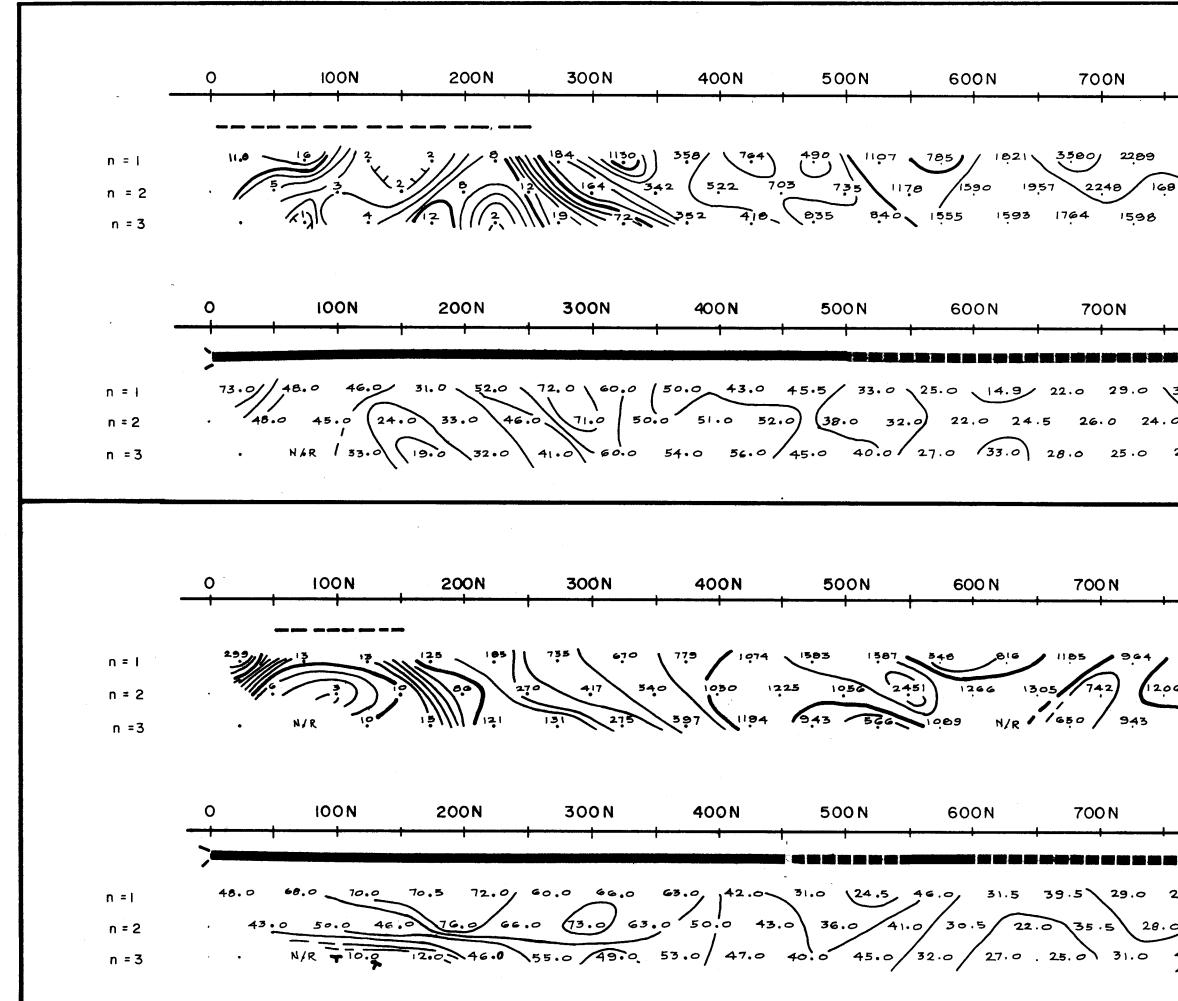
\$14,248.00 \$29,123.80

and

APPENDIX III

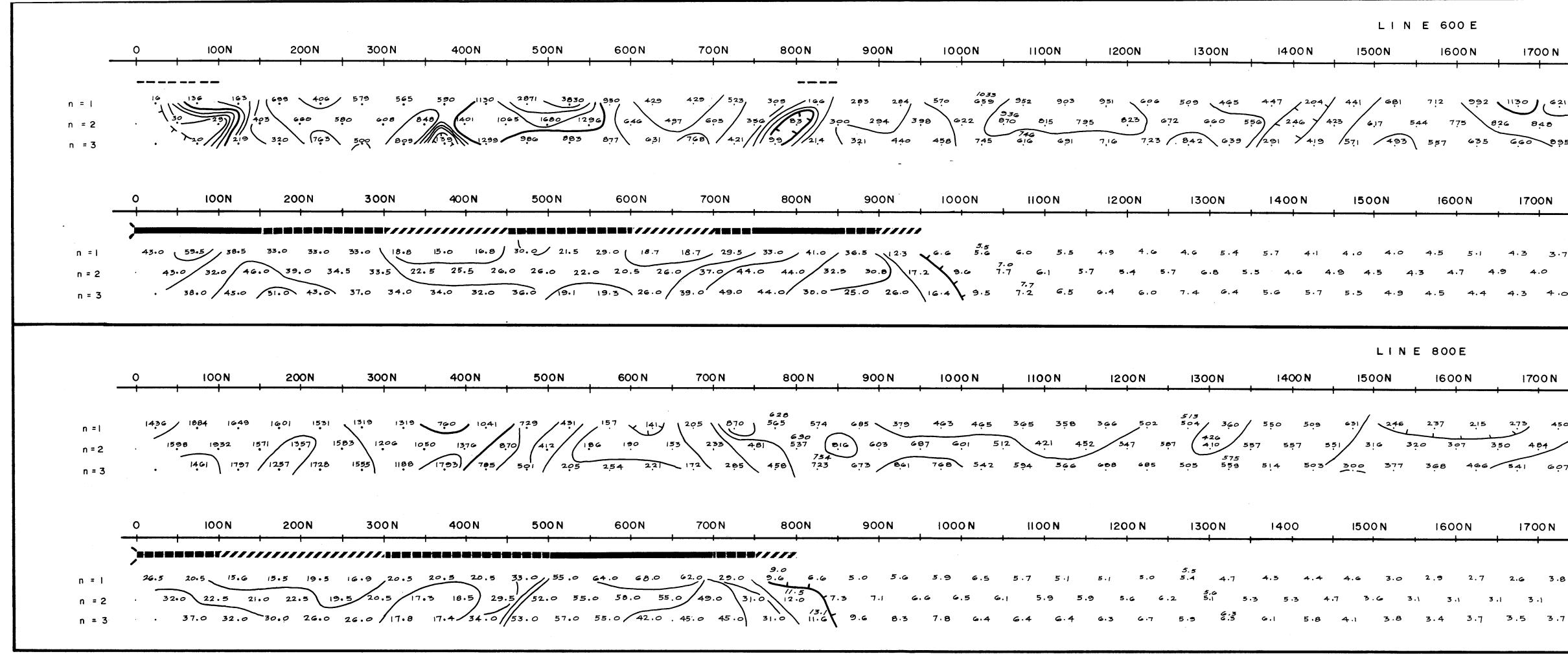

CERTIFICATION

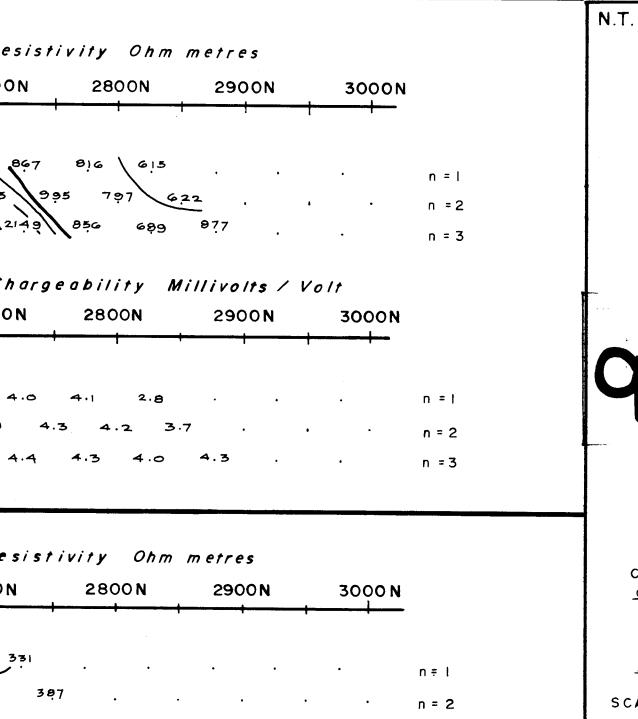

I, Alan R. Scott, of 4013 West 14th Avenue, in the City of Vancouver, in the Province of British Columbia, do hereby certify:-

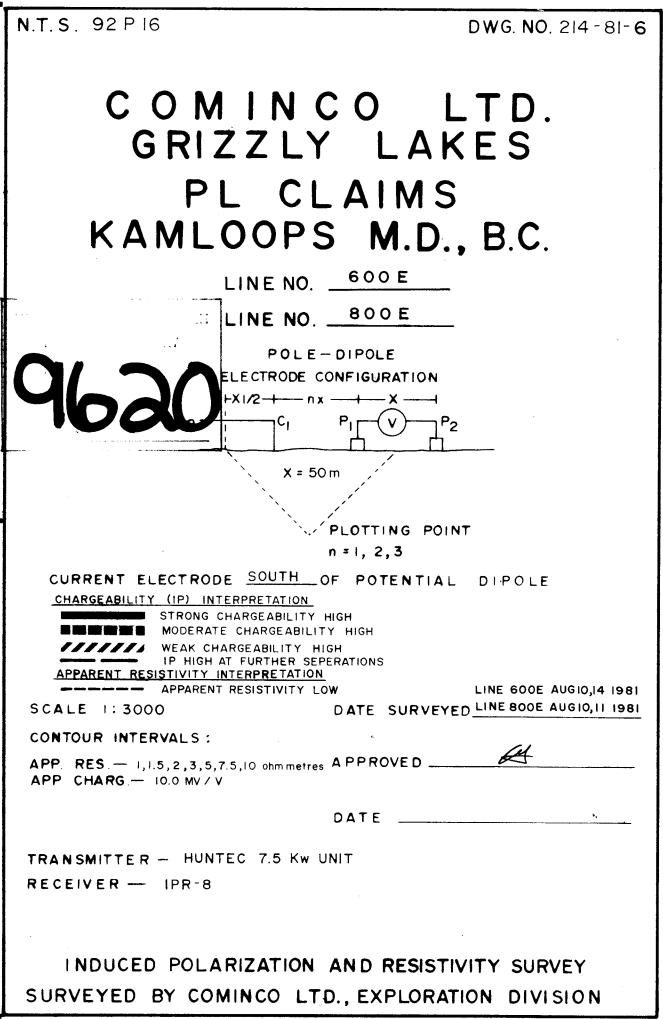

 THAT I graduated from the University of British Columbia in 1970 with a B.Sc. in Geophysics;

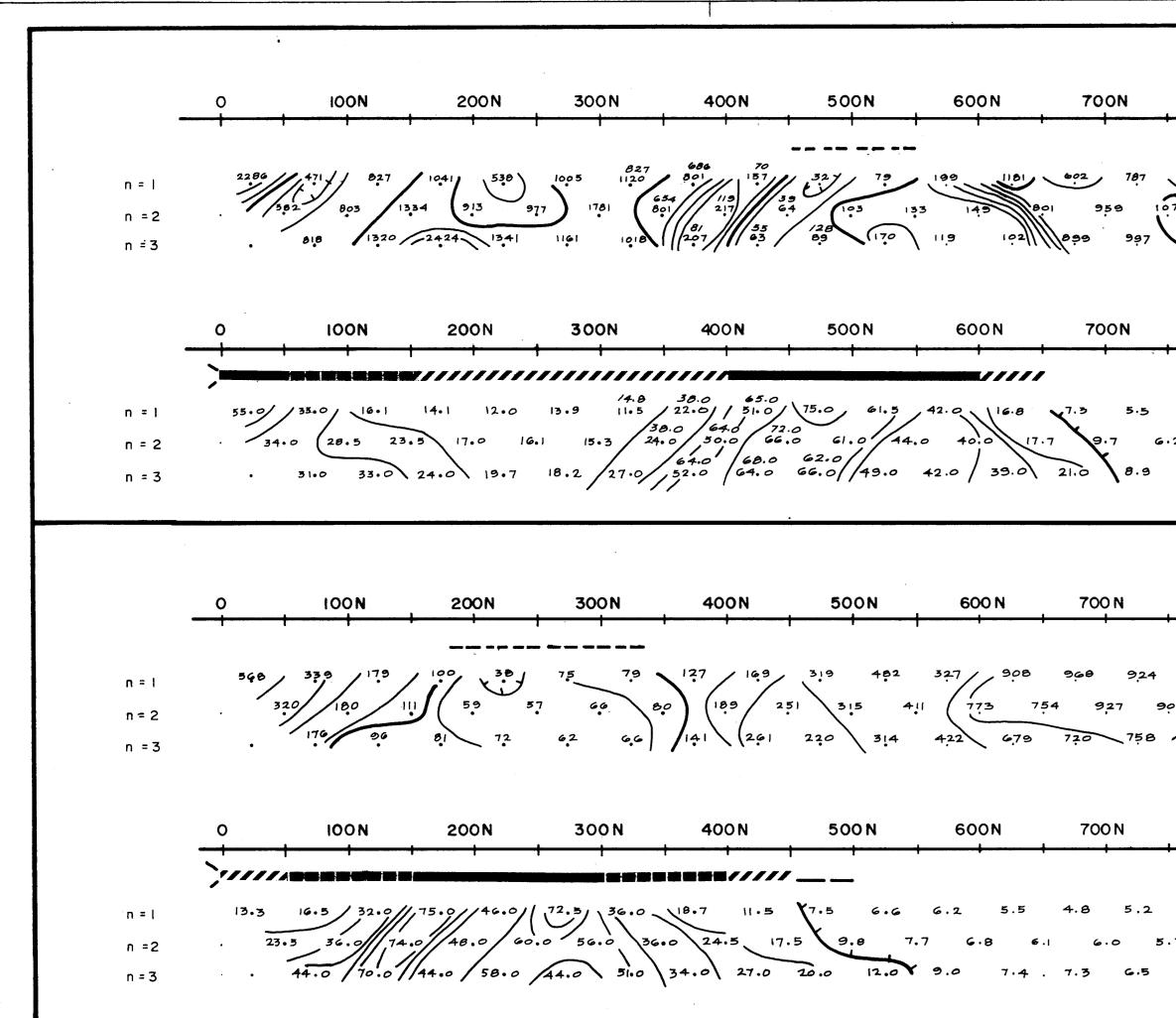
- 2) THAT I am a member of the Association of Professional Engineers of the Province of Saskatchewan, the Society of Exploration Geophysicists of America, and the British Columbia Geophysical Society;
- 3) THAT I have been practising my profession for the past eleven years.

Signed: Geophysicist Alan R.



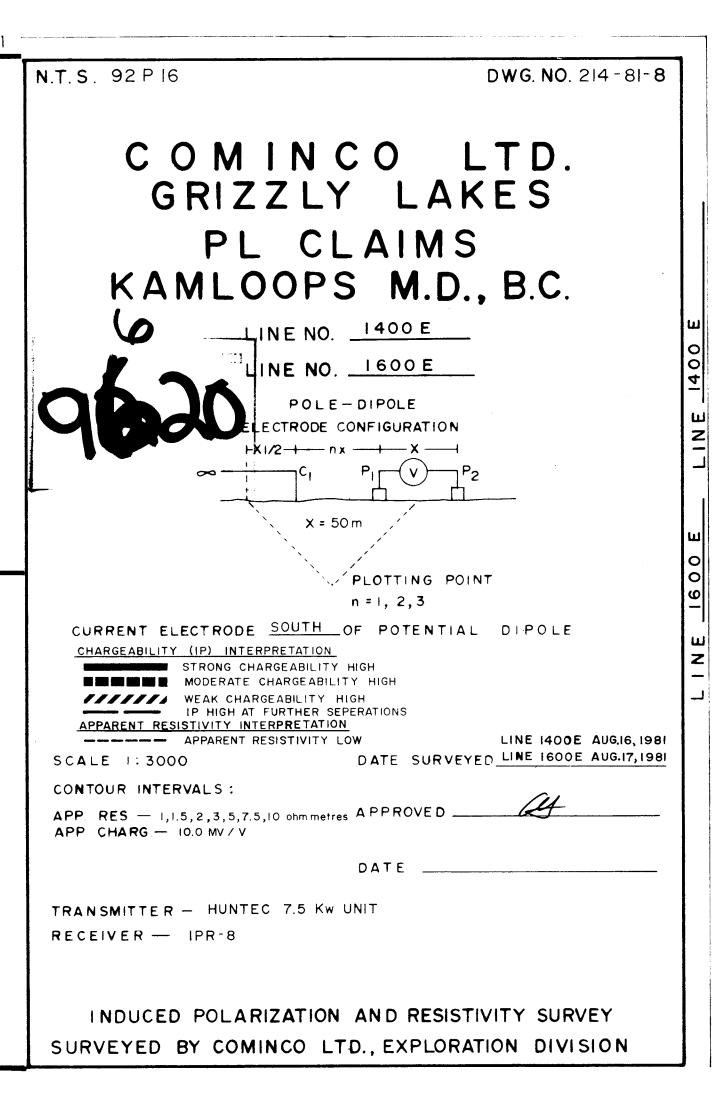



							LIN	E 200 E										Арра	rent Resis	tivity Ohm	metres	
800 N	900N	1000N	1100N	1200N	1300N	1400 N	1500N	1600N	1700 N	1800N	1900N	2000N	2100 N	2200 N	2300 N	2400N	2500N		2700N		2900N	3000N
2289 2575 2045 1686 2413 9 598 1830 1175	648 9¢1 05 654 738 514	641 352 471 633 754	612 529 31 520 (1 449 672	7°2 6°6 326 655 2 679 386	445 1432 042 797 1 754 716	550 350 4+2) 405 G	5.13 4.33 N/R N/R	292 345 402 440 3 562 471	413 501 390 445 5 431 434	4.77 087 03 657 691 57,7	7 (382 1978) 702 596 471 672	821 680 951 822 1697 769	5 91 8,54 716 601	840 855 999 814 560 1078	1455 1320 771	1737 763 75 2573 516 530		· · · · · · · · · · · · · · · · · · ·		1 1	28	· n = 1 · . n = 2 · . n = 3
	900N	1000N	1100 N	1200N	1300 N	1400 N	1500N	1600 N	1700N	1800 N	1900 N	2000 N	2100 N	2200N	2300N	2400N	2500N	Арра 2600 N	2700N	2800N	1 <i>illivolts /</i> 1 2900N	3000N
			5.8 5.3 0.0 5.9 5 9.0 6.6	4.6 4.6 5.4 5.5 4 6.1 6.0	3.8 5.3 .7 5.8 6 7.5 7.5	5.4 6.0 .3 5.5 6 N/R N/R	5,5 5,0 .6 5,4 5 N/R N/R	4.9 4.8 5.3 5.3 5 6.0 5.5	4.7 5.2 5.4 4.9 4 2.4 ⁵ .5	4.5 4.6 .6 4.5 5.0 5.1	5.4 5.0 4.9 4.5 4.6 4.9	4.3 3.6 4.6 3.7 4.4 4.3	3.7 4.3 3.6 4.5 4.9 4.6	4.6 5.1 4.2 5.0 3.0 5.4	5,9 5.4 5,6 5.6 4 5,0 4.8	5.9 4.4 1.8 4.6 4 4.6 4.5	4.0 4.6 4.6 4 5.6 2.3	3.8 3.5 1.2 3.3 3 4.0 4.1	3.0 2.7 3.3 3.0 3 3.5 3.7	3,3 3,0 5,0 3,4 3 3,5 3,8	· 2 4.0 .	• n= 1 • n = 2 • n = 3
							LIN	E 400 E										Арра	rent Resis	tivity Ohm	metres	
800 N	900 N	1000 N	1100 N	1200 N	1300N	1400 N			1700 N	1800 N	1900 N	2000N	2100 N	2200N	2300 N	2400 N	2500N			tivity Ohm 2800N		3000 N
· · · · · · · · · · · · · · · · · · ·	900 N 162 260 19 4/2 436 334		1100 N 2.62 3.72 90 556 6 727 733	1200 N 4.37 378 19 438 3 503 377	1300N 380 3.81 69 418 3 393 4.65	}	1500N	1600 N							1		•	2600 N	2700N	2800N	2900 N	3000 N . n = l . n = 2 . n = 3
9.64 1539 1229 1206 1725 2 9.43 955 263		271 283 288 290 377				328 215 74 381 3 458 496	1500N 274 362 67 452 482 434	1600 N 455 565 477 663 8 603 74	663 1140 055 1216 15 1219 1194	1115 1178 008 1746 1697 1885	791 898 1661 1989 1 5 2615 2262	763 769 713 1065 1044 901	719 6.32 933 8.48	893 964 788 628 6 646 804	1417 2.93) 256 2076 1- 1326 1346	2567 1923 7.06 14.92 93 1.0.68 895	943 1196	2600 N 1256 733 142 1159 10 1195 1282	2700N 942 794 079 1203 10 1100 1363	2800 N 773 693 258 1144 12 1346 1488	2900N	• n = l • n = 2 • n = 3
800N	900 N	271 293 288 290 377 1000 N	11 OO N	1200 N	1300 N	328 2!5 74 381 3 458 406	1500N 274 362 67 452 482 434 1500 N	1600 N 455 565 477 663 8 603 74	663 1140 055 1216 15 1219 1194 1700 N	11,15 1178 908 1746 16,97 1885 1800 N	1661 1989 1 1661 1989 1 5 2615 2262 1900 N	763 769 713 10,65 10,44 901 2000 N	719 6.32 933 8.48 1025 9.19 2100N	893 964 788 628 646 804 2200 N	2300 N	2567 1923 706 1492 95 1068 895 2400 N	2500 N	2600 N 1256 733 142 1159 10 1195 1282 Apparen 2600 N	2700 N 942 794 079 1203 10 1100 1363 nt Chargeat 2700 N	2800 N 773 643 958 1144 12 1346 1488 911111 Milliv 2800N	2900N 22 924 01ts / Volt 2900N	• n = l • n = 2 • n = 3


N.T.S. 92 P 16	DWG. NO. 214-81-5
COMINCO	LTD.
GRIZZLY LA	
PL CLAIMS	-
KAMLOOPS M.D	., B.C.
LINE NO. 200E	
LINE NO. 400 E	
POLE-DIPOLE	
CI PICT	P2
	1
X = 50 m	
n = 1, 2,3)INT
CURRENT ELECTRODE SOUTH OF POTENTIA	L DIPOLE
CHARGEABILITY (IP) INTERPRETATION STRONG CHARGEABILITY HIGH	
MODERATE CHARGEABILITY HIGH	
APPARENT RESISTIVITY INTERPRETATION APPARENT RESISTIVITY INTERPRETATION	LINE 200E AUG 8,13 1981
	YED LINE 400E AUG 9,13 1981
CONTOUR INTERVALS :	14
APP RES - 1,1.5,2,3,5,7.5,10 ohm metres APPROVED _ APP CHARG - 10.0 MV / V	
DATE	`
TRANSMITTER - HUNTEC 7.5 KW UNIT	
RECEIVER - IPR-8	
INDUCED POLARIZATION AND RESIST	
SURVEYED BY COMINCO LTD., EXPLOR	ATION DIVISION

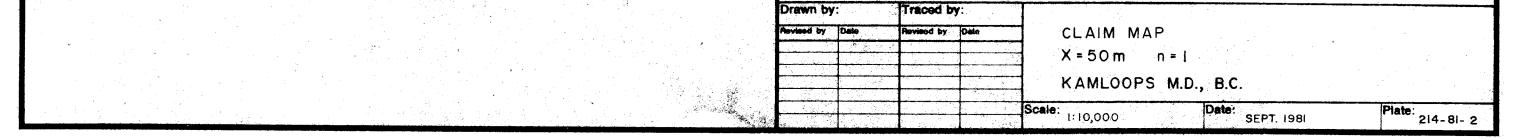
									Appar	ent Resist	ivity Ohm	metres		
N	1800N	1900N	2000N	2100 N	2200N	2300 N	2400N	2500N	2600 N	2700N	2800N	2900N	3000N	l
						• •		. ,				1	1	
621	653 743	696 550	735 584	692 493	497 735	5,50 8,62		15.70 30.41			816 615	· ·		n = 1
9 7 995		1144 924		14 361 51		28 650 70			- /				۰ ·	n = 2
272			873 978/	441 500	737 541	7 <u>0</u> 0 599/	´ 850 839	1910 1470	1276 72,8	947 \2149\	856 689	977 .	•	n = 3
									Арра	rent Charg	eability M	1illivolts /	Volt	
1	1800 N	1900 N	2000 N	2100N	2200N	2300N	2400N	2500N	2600 N	2700N	2800N	2900 n	3000N	
			•	•			1		†	 	ł	<u>+</u>	+	
3.7	3.5 3.6	3., 3.5	3.8 4.3	3.8 4.0	4.2 4.8	4.2 5.0	4.2 4.0	3.8 5.0	5.4 4.6	3.2 4.0	4.1 2.8	· ·	•	n = 1
3	•7 3.3 3	·I 3.G 4	.1 3.9 3.	8 3.2 4	.0 4.9 3	.6 4.1 4	.1 4.0 3	8 4.0 4	.9 4,8 3	.5 3.9 4	.3 4.2 3	.7 .	• •	n = 2
0	3.9 3.9	3.7 4.6	3.5 3.9	3.5 4.4	5.0 4.0	4.1 3.6	4.1 4.1	4.5 4.3	4.4 3.6	4.3 4.4	4.3 4.0	4.3.	•	n = 3
														II - U
				<u> </u>							<u> </u>			
<u> </u>				<u></u>					Appar	ent Resist	ivity Ohm	metres		
N	1800 N	1900 N	2000 N	2100 N	2200N	2300 N	2400 N	2500N	<i>Appar</i> 2600 N	ent Resist 2700N	ivity Ohm 2800N	metres 2900N	3000 N	
N	1800 N	1900 N	2000 N	2100 N	2200N	2300 N	2400 N	2500N						
) 5 <u>9</u> 4 5 <u>9</u> 2	³³⁰ ²⁸⁵	3,28 712	641 589	17.02 27.85	17,58 1008	1112 1046	12.33 1758	2600 N	2700N				
N 450) 584 582 92 456 3	72 30G 3	328 712 46 381 6	641 589 28 692 52	25 943 19	17,58 1008 17,58 1008	1112 1046	12.33 1758	2600 N 1586 1256 72 924 55	2700N	2800 N		3000 N +	
) 584 582 92 456 3	³³⁰ ²⁸⁵	328 712 46 381 6	641 589 28 692 52	25 943 19	17,58 1008	1112 1046	12.33 1758	2600 N 1586 1256 72 924 55	2700N	2800 N	2900 N	3000 N +	n ; 1
) 584 582 92 456 3	72 30G 3	328 712 46 381 6	641 589 28 692 52	25 943 19	17,58 1008 17,58 1008	1112 1046	12.33 1758	2600 N 1586 1256 72 924 55 745 509	2700N 1036 331 390 485	2800 N	2900 N	3000 N +	n = 1 n = 2
N 450 50 50 7) 584 582 92 456 3	72 30G 3	328 712 46 381 6	641 589 28 692 52	25 943 19	17,58 1008 933 12	1112 1046	12.33 1758	2600 N 1586 1256 72 924 55 745 509	2700N	2800 N	2900 N	3000 N 	n = 1 n = 2
	501 502 02 456 3 4.81 420	72 396 3 457 408	328 7!2 46 381 6 406 498	641 589 28 692 52 675 452	1702 2785 25 943 19 636 1150	1758 1008 933 12 1088 1206	1112 1046 25 945 60 1087 (636	1233 1758 1296 12 729 953	2600 N 1586 1256 72 924 55 745 509 Apporen	2700N 1036 331 34 431 38 390 485 t Chargeab	2800 N 445 <i>ility Milliv</i>	2900N	3000 N +	n = 1 n = 2
5. 5.07	501 502 02 456 3 4.81 420	72 396 3 457 408	328 7!2 46 381 6 406 498	641 589 28 692 52 675 452	1702 2785 25 943 19 636 1150	1758 1008 933 12 1088 1206	1112 1046 25 945 60 1087 (636	1233 1758 1296 12 729 953	2600 N 1586 1256 72 924 55 745 509 Apporen	2700N 1036 331 34 431 38 390 485 t Chargeab	2800 N 445 <i>ility Milliv</i>	2900N	3000 N	n = 1 n = 2 n = 3
5. 5.07	584 582 2 456 3 4.81 420 1800N 3.7 4.6	285 72 386 3 457 498 1900 N 3.6 3.6	328 712 46 381 406 498 2000 N 4.0 3.5	641 599 28 692 52 675 452 2100N 3.3 5.5	4.3 6.5	2300 N	1112 1046 25 945 60 1087 (636 2400 N 4.1 4.1	1233 1758 1296 12 953 2500 N 3.8 4.2	2600 N 1586 1256 72 924 55 745 509 Apparen 2600N 5.5 6.0	2700N 1036 331 34 431 38 390 485 t Chargeab	2800 N 445 <i>ility Milliv</i>	2900N	3000 N	n = 1 n = 2

							LIN	IE 1000	E									Appar	ent Resis	tivity Ohm	metres	
800N	900N	1000 N	1100N	1200N	1300N	1400 N	1500N	1600 N	1700 N	1800 N	1900N	2000N	2100 N	2200N	2300 N	2400N	2500N	2600 N	2700N	2800N	2900N	3000N
637 958	775 2973	2339 / 1159	729 724	890 7!3	16 ⁸⁹ 958	21.98 21.20	1 1217 605	4.91 3.99	د <u>ب</u> ع (۲۵۶	904 761	867 1151	1680 1779	524 / 3140	0/ 1686 2010	,,211 / 349	349 622	785 644	1486				
79 9,05	15 928	725 1070	7.40 11.07	778 1	93 1142 13	225 2092	11.59 641 0	491 309 697 506 3 N/R N/R	हा द्वा द	62 679 7	93 945 S	0.43 825	5,36 17,30 1	15.96 9.05 3	ē5 571 4	- <u>3</u> 0 452 G	a 707 13	38 (1921		• •		• •
3.66 8.07	9,27 6,85	836 786	10,11 14,00	077 1257	8.92 1154	1156 1965	5 // 687 8!5	N/R N/R	N/R 728	540 671	745 679	8,86 12,54	1602 1041	950/ 283	851 603	594 520	592 //1348	1401 1087		· .	•••••	
																		Αρρα	rent Char	geability	Millivolts /	Volt
800N	900N	1000N	1100 N	1200N	1300N	1400 N	1500N	1600 N	1700N	1800 N	1900N	2000 N	2100 N	2200N	2300N	2400N	2500 N	2600 N	2700N	2800N	2900N	3000N
<i>.</i>										1		F										
								3.7 3.3 4.0 3.7 3														
								N/R N/R														
6.7 6.4	6.4 6.3																					
6.7 6.4	6.4 6. <u>3</u>									· · · · · · · · · · · · · · · · · · ·												
6.7 6.4	6.4 6. <u>3</u>							E 1200 E												tivity Ohn	n metres	
800 N		<u></u>	<u> </u>				LIN	E 1200 E 1600 N		1800 N	1900 N	2000N	2100 N	2200N	2300 N	2400 N	2500 N			tivity Ohn 2800 N	<i>metres</i> 2900 N	30001
800 N	900 N	1000 N	1100 N	1200 N	1300 N	1400 N	L I N 1500N	1600 N	1700 N	r r	├ ──── ├ ────	+	* *	+	†	2400 N + + +	2500 N	<i>Appar</i> 2600 N	ent Resis 2700 N	2800 N	2900 N	3000
800 N	900 N	1000 N	1100 N	1200 N	1300 N	1400 N	L I N 1500N	1600 N	1700 N	r r	├ ──── ├ ────	+	* *	+	†	2400 N + + +	2500 N	<i>Appar</i> 2600 N	ent Resis 2700 N	2800 N	2900 N	3000
800 N	900 N	1000 N	1100 N	1200 N	1300 N	1400 N	L I N 1500N		1700 N	r r	├ ──── ├ ────	+	* *	+	†	2400 N + + +	2500 N	<i>Appar</i> 2600 N	ent Resis 2700 N	2800 N	2900 N	3000
800 N	900 N	1000 N	1100 N	1200 N	1300 N	1400 N	L I N 1500N	1600 N	1700 N	r r	├ ──── ├ ────	+	* *	+	†	2400 N + + +	2500 N	Appar 2600 N 2857 1434 49 1819 10 1493 1320	2700N 2700N 1 1 1 1 1 1 1 1 1 1 207	2800 N	2900 N	3000
800 N	900 N	1000 N	1100 N	1200 N	1300 N	1400 N	LIN 1500N 240 226 307 276 343 343	1600 N 1600 N 1600 N 300 342 310 495	1700 N 1142 1159 76 833 1 491 905	2185 1277 183 1538 2 853 2443	2,026 1519 212 21.90 2 1759 25.70	128 1942 1385 1784	21,26 2,173 1512 2084 1602 1616	+	†	2400 N + + +	2500 N	Appar 2600 N 2857 1434 49 1819 10 1493 1320	2700N 2700N 1 1 1 1 1 1 1 1 1 1 207	2800 N	2900 N	3000
800 N	900 N	1000 N	1100 N	1200 N	1300 N	1400 N	LIN 1500N 240 226 307 276 343 343	1600 N 1600 N 1600 N 300 342 310 495	1700 N 1142 1159 76 833 1 491 905	r r	2,026 1519 212 21.90 2 1759 25.70	128 1942 1385 1784	21,26 2,173 1512 2084 1602 1616	+	†	2400 N + + +	2500 N	Appar 2600 N 2857 1434 49 1819 10 1493 1320	2700N 2700N 1 1 1 1 1 1 1 1 1 1 207	2800 N	2900 N	3000
800 N 950 990 864 27 628 800N	900 N 650 922 63 761 754 504 900 N	1000 N 7 ! 2 761 53 603 5 564 440	1100N 628 754 500 601 7 603 462 1100N	1200N 4,86 425 4,37 350 3 3,82 4,22 1200 N	1300N	1400 N 21.9 196 196 196 3 3 3 3 3 3 4 02 1400 1400	LIN 1500N 240 226 307 276 3 343 343 1500N	1600 N 1600 N 1600 N 300 342 310 495	1700 N 1142 1159 76 833 1 995 1700 N	2185 1277 183 1538 2443 1800N	2626 1519 212 2190 2 1759 2570 1900 N	128 1942 1385 1784 2000 N	21,26 2,173 1512 2084 1602 1616 2100 N	14,65 197 12,57 12,92 2200 N	/ 1425 1121 937 (1523) 1) 1326 1479 2300 N	2400 N 1234 1633 276 1008 17 1086 1009 2400 N	2500N 2055 2089 87 1563 21 1335 1594 2500N	<i>Appar</i> 2600 N 2857 1434 49 1819 10 1493 1320 <i>Apparer</i> 2600 N	2700 N 2700 N 2700 N 1 1 2700 N 1 2700 N	2800 N <i>bility Milli</i> 2800N	2900N 	3000

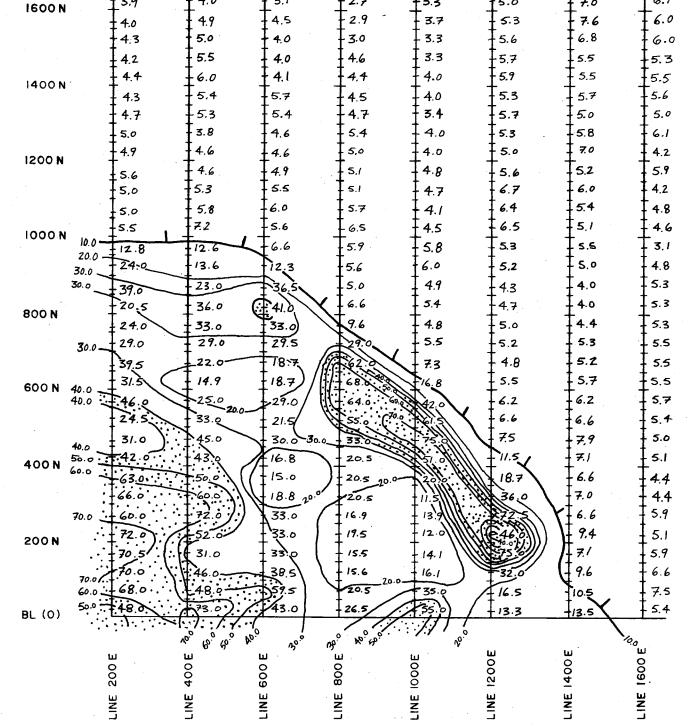

DWG. NO. 214-81-7 N.T.S. 92 P 16 COMINCO LTD. GRIZZLY LAKES PL CLAIMS KAMLOOPS M.D., B.C. LINE NO. 1000 E LINE NO. 1200 E POLE-DIPOLE ECTRODE CONFIGURATION X1/2-+----X-----X _____ **X =** 50 m PLOTTING POINT n = 1, 2,3 CURRENT ELECTRODE SOUTH OF POTENTIAL DIPOLE CHARGEABILITY (IP) INTERPRETATION STRONG CHARGEABILITY HIGH MODERATE CHARGEABILITY HIGH WEAK CHARGEABILITY HIGH APPARENT RESISTIVITY INTERPRETATION ----- APPARENT RESISTIVITY LOW LINE 1000 E AUG 11,12 1981 DATE SURVEYED LINE 1200 E AUG 15 1981 SCALE 1: 3000 CONTOUR INTERVALS : APP. RES. - 1,1.5,2,3,5,7.5,10 ohm metres APPROVED ______ DATE _____ TRANSMITTER - HUNTEC 7.5 KW UNIT RECEIVER - IPR-8 INDUCED POLARIZATION AND RESISTIVITY SURVEY SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

1 ** ______

n = 3


300 N 400N 500N 600 N 700N 200 N 100N 533 788 628 336 342 293 362 462 ³53 353 307 n = 1 235 269 (305 668 591 302 425 321 380 349 n = 2 424 559 497 661 254 190 280 283 n = 3 600N 700N 500 N 300N 400 N 100N 200N 13.5 10.5 3.6 7.1 9.4 6.6 7.0 6.6 7.1 7.9 6.6 6.2 5.7 5.2 5.3 n = I 21.0 13.8 16.7 13.8 11.9 10.4 9.9 9.0 10.2 8.2 8.2 8.0 6.0 5.5 n = 2 · 24.0 20.0 22.0 17.0 17.0 14.8 13.0 13.2 10.8 10.1 3.8 8.4 7.1 6.4 n = 3 600 N 700 N 400N 500N 300 N 200N 100 N 1208 1432 598 913 1426 2418 2019 2098 1965 1382 872 1469 n = I (1549 (924 674 (1110 (2023 2780 / 1462) 2084 1193 n =2 1616 204 n = 3 700 N 300 N 400 N 500 N 600N 100 N 200N 5.4 7.5 6.6 5.9 5.1 5.9 4.4 4.4 5.1 5.0 5.4 5.7 5.5 5.5 5.4 n = 1 8.4 7.1 6.5 7.0 6.8 6.8 4.3 6.3 6.1 5.7 6.5 6.6 6.1 5.2 n = 2

							<u>.</u>														
	<u> </u>	LINE 1400E								Apparent Resistivity Ohm metres											
0 100N 200N	300N 400N	500N 600N	700N	800N 900N	1000N	1100N 12	200N 1300N	1400 N	1500N	1600N 1700N	1800N	1900N 2000	N 2100 N	2200N	2300 N	2400 N	2500N	2600N	2700N 28	00N 2900N	3000N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342 293 362 462 305 310 302 393 344 200 255 354 324	3,53 3,53 3,07 9 3,21 3,00 4,25 3,39 3,52 4,24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	856 760 1515 16 1058 666 1152 867 797 758 115	09 11.93 1390 12.67 10.74 78 50 10.78 673	744 4 710 679 861 817	6.37 6.84 7.97 7.94 7.92 12.9	10,10 1334 10,78 11,27 12 2 12,21 10,93	1696 1346 179 274 886 2230 754 1508 19	999 1522 10 1760 1178 1531 39 1772 1029 18	19 1884 1814 1649 1772 219 10 14.70 2086	1963 1599 1968 1781 1882 1387 2008 1555 1186	2,62 1209 845 18,85 12,02 7,29 15,72 1955	1319 785 385 1516 7 1276 1116	678 992 30 852 1137 726 920	964 926 9 943 1025 785 1196 11	16,43 21,68 192 2930 1	2348 1107 14 B 1244 1414 1056 1288 12	44 1352 1319 1687 1784 14 49 1841 1598	1274 29 1462 1419 NJR	
	300N 400N	500N 600N	700N	- 800N 900N	IOOON	1100 N 12	200N 1300N	1400 N	1500N	1600N 1700N	1800 N	1900N 20001	I 2100 N	2200N	2300N	2400N	2500N	Apparen 2600 N	<i>t Chargeabil</i> 2700N 280	<i>ity Millivolts /</i> DON 2900N	<i>Volt</i> 3000N
						+ +	+++	····++	-++++				·/////////////////////////////////////	+		<u> </u>	·····			•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6 7.0 6.6 7.1 11.9 10.4 9.9 9.0 10.5 17.0 14.8 13.0 13.2	7.9 6.6 6.2 2 8.2 8.2 8.0 10.8 10.1 3.8 8	5.7 5.2 5.3 4 6.0 5.5 6.2 9.4 7.1 6.4 7	4.4 4.0 4.0 5. 5.5 4.9 4.7 7.0 6.5 6.7 7.	6 5.5 5.1 6.2 5.0 6.0	5.4 6.0 5.2 0 7.1 6.1 7.5 6.6 7.7	7.0 5.8 5.0 7.2 7.1 5.7 6.9 6.6 6.9	5.7 5.5 6.0 7.2 6 7.6 8.2	5,5 6.8 7. 6.6 6.5 8.3 7.4 8.6 8.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5 5.7 8.3 6.3 7.0 6.2 .3 8.6 7.8	6.3 7.9 8.0 7.5 6.6 6.0 6.6 7.8 8.0	6.5 G.5 6.2 6.7 9.6	19.5 7.6 8.1 4 10.6 10.4	4,6 5.2 5 4.4 5.0 9.9 10.0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 6.5 5.9 6.8 9.8 11.1 1	7.6 5.6 5 5.6 5.7 10.6 11.0 12	·3 5.5 6.2 5·2 6.1 5 ·8 13·1 13·5	5.4 · · · ·8 5·8 · N/R N/R ·	, .
									LINE	1600 E								Apparen	t Resistivity	Ohm metres	
0 100N 200N	300N 400N	500N 600N	1 700 N	800 N 900 N	1000 N		200N 1300N	1400 N	1500N	1600N 1700N	1800N	1900 N 2000	N 2100 N	2200 N	2300 N	2400 N	2500N	2600 N	2700N 28	00N 2900N	3000 N
										·····	····			+	+++		+	****		₹	
1375 1375 038 1469 1208 1381 1093 763 1175 1131 814 652 1740	8 1432 598 913 1426 1549 924 674 1110 202 1143 822 763 1516	2418 2019 2098 1 23 2780 1462 2319 2300 1615 1767 2	965 1382 872 1 2084 1193 1948 2262 1616 2047 5	328 1075 1047 8 328 1075 1047 8 308 1018 308 1018 308 1018 309 10018 309 10018 300 100018 300 10000000000000000000000000000000000	76 12,87 2010 1574 1451 70 09 1458 804	1077 966 158 7 1091 1343 814 1379 1620	8 1859 1482 193 1697 1493 1821 6 1395 1742 217	7 25.39 25.55 2915 27.87 3 2 2854 3088	5 3313 2721 24 5511 4100 2385 3440 2884 25	24 2303 2087 14 2352 2409 1929 513 2443 N/R 14	49 1225 1093 1349 1484 175 79 1636 1979	10,27 11,57 17,37 12,87 17,29 14,77 20,36 1800 1465 1	7.84 1256 126 16,46 1449 508 1910 1555	8 12,46 13,94 14,14 12,63 (15 12,82 1329	14.80 1400 49 530 1050 19.57 13.73	12,95 918 (E 11,73 891 13,57 1178 1	590 1096 5 1108 1238 428 1399	986 506 8 8 460 930 633 900 11	60 918 1193 1154 1131 10 50 1365 1046	681 025 1046 1385 1122	• • •
1375 1375 038 1469 1208 1381 1093 763 1175 1131 814 652 1740 0 100N 200N	B 14.32 5.98 9.13 14.26 15.49 9.24 6.74 11.10 2.05 11.43 8.22 7.63 15.16 300N 400N	2418 2019 2098 1 23 2780 1462 2319 2300 1615 1767 2 500N 600N	965 13.02 872 1 20.84 1193 1948 22.62 1616 2047 5 700 N	328 1075 1047 8 1034 968 1018 2111 1346 872 17 800N 900N	1574 1451 70 1574 1451 70 1458 804	1077 966 158 7 1091 1343 814 1379 1620 1100 N 12	8 1859 1482 193 1697 1493 1821 1395 1742 217 200 N 1300 N	17 2539 2555 2915 2787 3 2 2854 3088 1400	5 3313 2721 24 3511 4100 2305 3440 2084 23 1500 N	24 2303 2087 14 2352 2409 1929 513 2443 N/R 14	49 1225 1093 1349 1484 175 79 1636 1979 1800N	10,27 11,57 17,37 3 12,87 17,29 14,77 20,36 1800 14,65 1 1900N 2000	7.84 12.56 126 16.46 1449 508 1910 1555 N 2100N	 12,46 13,94 14,14 12,63 (15) 12,82 1329 2200 N 	14.80 14.00 49 590 10.50 19.57 13.73 2300 N	2400N	590 1096 5 1108 1238 428 1399			681 1385 1122 Millivolts / Volt 00N 2900N	



j.						
					A Contraction of the second	
		•				
		•				
					•	$+$ \downarrow
	×.					NI Å
			•			LICY
				•		MAQUETIC N.
					•	
					· · · · · · · · · · · · · · · · · · ·	
					*	
	PL5					
		·		- <u></u>	T	
		$\frac{1}{4}$	$\frac{1}{1}$	₽ ₽	+	
	2800N -					
		+	+ $+$	+ +		
	2600N -				♣ . ♣	
		ł ł	+ +	+ +	t si i i i i i i i i i i i i i i i i i i	
		Į į	† †	Ţ Į	Ŧ	
	2400N -	t t	± ±	<u>†</u> . <u>†</u>		
		}		∔ Į		
	2200N	t t			+	
		ł		+	÷,	
		t t	‡ ‡	‡ ‡	†	
	2000N -	\mathbf{F}	+ +	+ +	+	
		F I	I I I I	1 1	† †	
		i	1 1	1 1	1	
		t t	T	T. T.		
	1800 N					

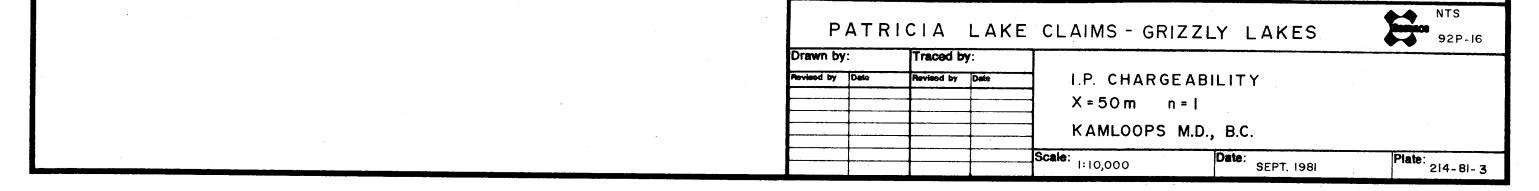
PLI 1 LCP PL3 PL 2 PL4 1400 N 1200N 100**0N** 800N 600N 400N 200N 1 BL(0) LINE 1600 E LINE 1000E LINE 1200E LINE 1400E LINE 200 E LINE 400 E LINE 600 E LINE 800E . ÷. 1981 GEOPHYSICS GROUND GRID INSTRUMENT TRANSMITTER - HUNTEC 7.5 KW. UNIT RECEIVER - IPR-8 MILLON, RED 3 LEGAL CORNER POST LCP CLAIM BOUNDARY (APPROXIMATE LOCATION) lenfros NTS 92P-16 PATRICIA LAKE CLAIMS - GRIZZLY LAKES

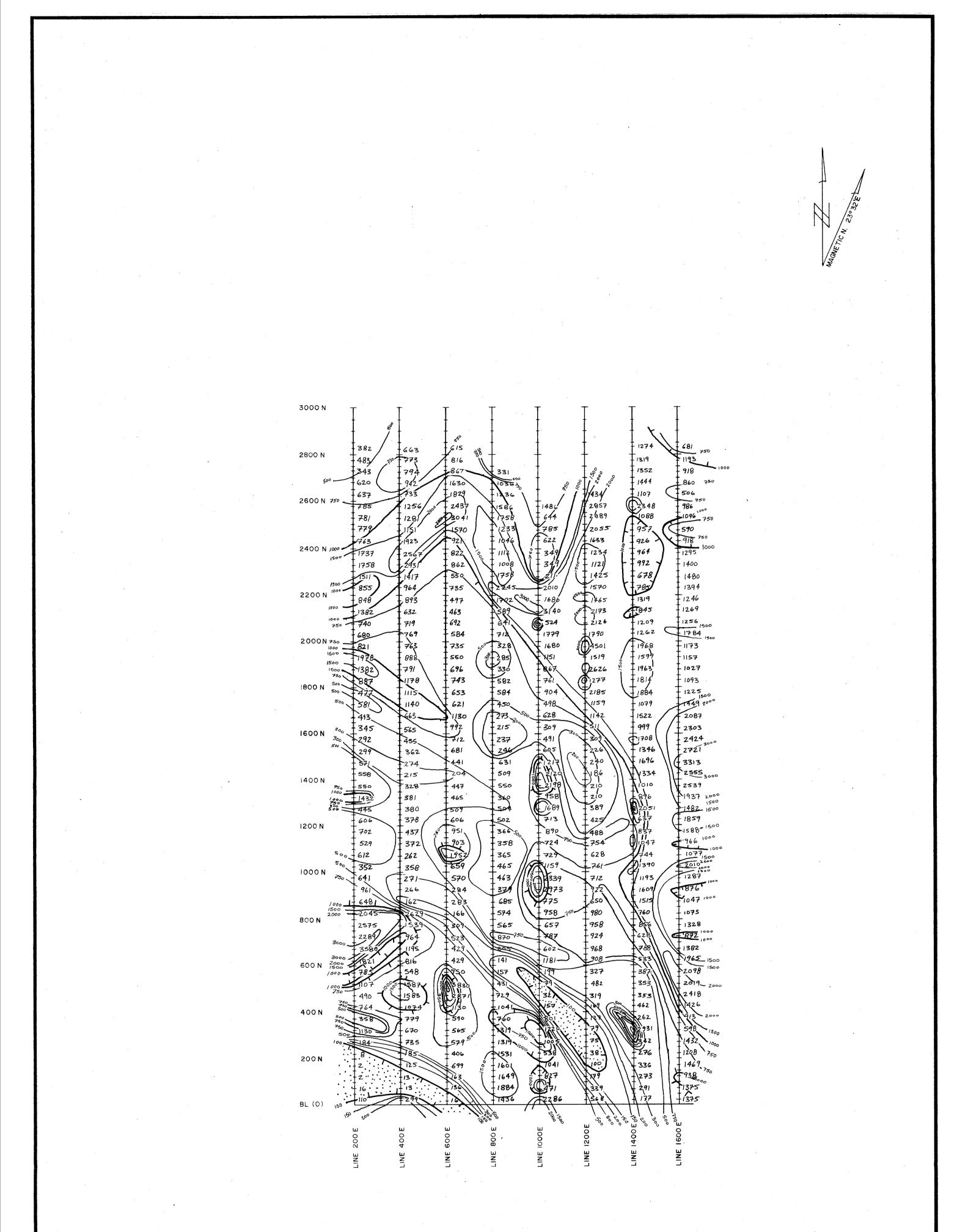
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	· · ·								
		• •			-		•		
				•					
	÷ .								
				·.					
								T A	
						• •		230 25 230 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
							• •		
								Lic V	
				e e	4			MAGNETICN.	
								15	
						.•			
				·					
							1 A.		
	•					-			
3000 N	Ŧ	т т	т		тана. Тапана.	г т			
	+	+ $+$	· +		ł	╉			·
	1	t 1	ţ	1		4./			
2800 N	- 3.3 - 3.1	+ +	2.8	+					
	3.3	[2.7].	4.0 - 4.	.0	+	6.2 - 4.0 5.5 - 4.1	• •		
	3.9	+ +	3.2 6.	+	8.0	5.3 3.8			
2600 N	3.7 - 4.5	+ +	4.6 6. 5.4 5.		- 5.2	5.6 5.0 7.0 5.1			
	3.8	‡ 4.6 ‡ :	5.0 2.	4 4.6	6.9	6.5 4.6			
	+ 3.9 + 4.9	+ +	3.8 3. 4.0 4.	+	- 6.2 - 5.9	8.0 5.8 6.6 4.8			
2400 N	4 .9	+ +	4.2	+	5.7	8.0 4.9			
	5,4	+ +	5.0 4,	1 2.8	÷ .	5.2 4.7			
			A						
	5.5 4.2	+ +	4.2 4. ⁻ 4.8 6,	+	+	4.6 5.0 9.5 5.6			
2200 N	4.2 4.5	4.6	4.8 6 , 4.2 4 ,	5 4.6 3 4.8	6.1	9.5 19.5 5.2			
2200 N	4.2 4.5 4.3	4.6 4.3	4.8 60 4.2 4.2 4.0 5.5	5 4.6 3 4.8 5 5-1	6.1 5.3 5.5	9.5 19.5 10.5 6.4	•		
	4.2 4.5	5./ 4.6 4.3 3.7	4.8 6 , 4.2 4 ,	5 4.6 3 4.8 5 5.1 3 4.1	6.1 5.3 5.5	9.5 19.5 5.2			
2200 N 2000N	4.2 4.5 4.3 3.9 4.0 5.6	5.1 4.6 4.3 3.7 3.6 4.3	4.8 6. 4.2 4. 4.0 5.5 3.8 3. 4.3 3. 3.8 4.	5 4.6 3 4.8 5 5.1 3 4.1 5 4.3 0 5.0	6.1 5.3 5.5 5.3 4.6 5.3	9.5 5.6 19.5 5.2 10.5 6.4 11.5 7.5 8.5 6.6 8.0 5.8	· · · · · · · · · · · · · · · · · · ·		
	4.2 4.5 4.3 3.9 4.0	5.1 4.6 4.3 3.7 3.6 4.3 5.0	4.8 6. 4.2 4.1 4.0 5.3 3.8 3.2 4.3 3.3 3.8 4. 5.5 3.	5 4.6 3 4.8 5 5.1 3 4.1 5 4.3 6 4.6	6.1 5.3 5.5 5.3 4.6 5.3	9.5 5.6 19.5 5.2 10.5 6.4 11.5 7.5 8.5 6.6 8.0 5.8 7.9 6.0			
2000N	4.2 4.5 4.3 3.9 4.0 5.6 3.9 3.0 3.3	5.1 4.6 4.3 3.7 3.6 4.3 5.0 5.4 4.6	4.8 6. 4.2 4.1 4.0 5.1 3.8 3.2 4.3 3.3 3.8 4. 5.5 3. 3.1 3. 3.6 4.	5 4.6 3 4.8 5 5.1 3 4.1 5 4.3 0 5.0 .6 4.6 .6 4.0 .6 3.9	6.1 5.3 5.5 4.6 5.3 5.0 5.0 5.6	9.5 5.6 19.5 5.2 10.5 6.4 11.5 7.5 8.5 6.6 8.0 5.8 7.9 6.0 6.3 6.5 8.3 6.1			
	4.2 4.5 4.3 3.9 4.0 5.6 3.9 3.0 3.3 3.2	5.1 4.6 4.3 3.7 3.6 4.3 5.0 5.4 4.6 4.5	4.8 6. 4.2 4.2 4.0 5.9 3.8 3.2 4.3 3.3 3.8 4. 5.5 3. 3.6 4. 3.6 4. 3.6 4. 3.7 3.6	5 4.6 3 4.8 5 5.1 3 4.1 5 4.3 .0 5.0 .6 4.6 .6 4.0 .6 3.9 .7 4.0	6.1 5.3 5.5 4.6 5.3 5.0 5.0 5.0 5.6 6.5	9.5 5.6 19.5 5.2 10.5 6.4 11.5 7.5 8.5 6.6 8.0 5.8 7.9 6.0 6.3 6.5 8.3 6.1 5.7 8.1			
2000N	4.2 4.5 4.3 3.9 4.0 5.6 3.9 3.0 3.3	5.1 4.6 4.3 3.7 3.6 4.3 5.0 5.4 4.5 5.2 4.7	4.8 6. 4.2 4.1 4.0 5.1 3.8 3.2 4.3 3.3 3.8 4. 5.5 3. 3.1 3. 3.6 4.	5 4.6 3 4.8 5 5.1 3 4.1 5 4.3 5 4.3 6 4.6 6 4.6 7 4.0 8 3.6 .6 4.3	6.1 5.3 5.5 5.3 4.6 5.3 5.0 5.0 5.0 5.6 6.5 5.3	9.5 5.6 19.5 5.2 10.5 6.4 11.5 7.5 8.5 6.6 8.0 5.8 7.9 6.0 6.3 6.5 8.3 6.1			

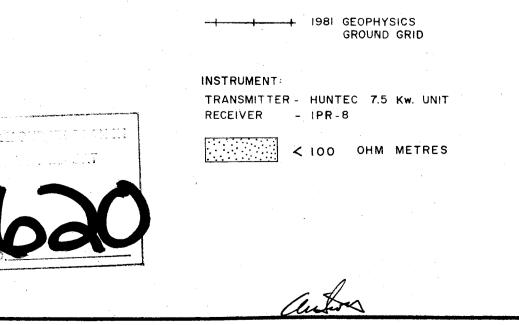
1981 GEOPHYSICS GROUND GRID INSTRUMENT: TRANSMITTER - HUNTEC 7.5 KW. UNIT

RECEIVER - IPR-8

lutes

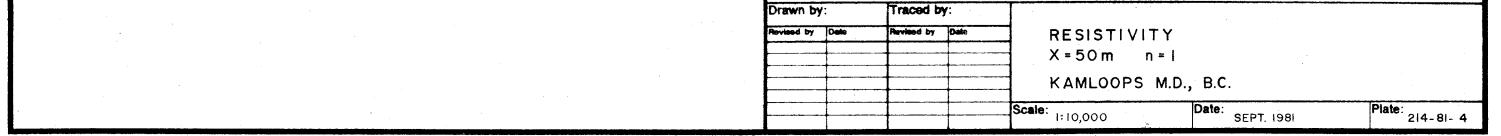

> 40 MILLIVOLTS / VOLTS


0.17


MINERAL RECOURCES ERANCH

ASSESSE

PATRICIA LAKE CLAIMS - GRIZZLY LAKES



NTS

92P-16

PATRICIA LAKE CLAIMS - GRIZZLY LAKES

..........