GEOLOGICAL & GEOCHEMICAL REPORT

TYON CLAIM

LILLOOET MINING DIVISION

920/3E

51° 06'N 123° 01'W

Owned & Operated by:

PRISM RESOURCES LIMITED

Bernard Dewonck

October, 1981

B.Sc. geology, U.B.C., 1974.

63

TABLE of CONTENTS

.

PAGE

(1)	LOCA	TION and ACCESS	1
(2)	CLAI	M INFORMATION	1
(3)	SUMM	ARY of 1981 FIELDWORK	1
(4)	GEOL	JOGY:	
	(a)	General	4
	(b)	Local	4
(5)	GEOC	HEMISTRY:	
	(a)	General	9
	(b)	Soils	10
	(c)	Rocks	11
(6)	CONC	LUSIONS and RECOMMENDATIONS	12

LIST of FIGURES

Figure	1	-	Location Map	2	
Figure	2	-	Claim Map	3	
Figure	3	-	Geology	Pock	et
Figure	4	_	Soil Geochemistry - Mo	11	11
Figure	5	-	Soil Geochemistry - Cu	11	11
Figure	6		Soil Geochemistry - Ag	n	11
Figure	7	-	Soil Geochemistry - As	11	11
Figure	8	-	Soil Geochemistry - Au	n	n
Figure	9	-	Rock Geochemistry - All Elements	11	11

LIST OF APPENDICES

Appendix	I -	Exploration Costs	13
Appendix	II -	Analytical Procedures	15
Appendix	III -	Certificates of Geochemical Analyses	22

TYON CLAIMS

(1) Location and Access

The property is situated on the north side of Tyaughton Creek (NTS reference 920/3E). It is most easily reached by helicopter from Gold Bridge, 33 km. to the southeast or from Pemberton, 90 km. to the south (Figure 1.)

(2) Claim Information

The TYON claim, record number 1377(6), consists of 20 Modified Grid System units in a 4W 5S configuration and is owned outright by Prism Resources Limited. It was staked June 12, 1981 and recorded June 30, 1981 at Lillooet, B.C., recording office for the Lillooet Mining District. Figure 2, taken from government mineral claim map NTS 920/3E, indicates location of the claim with respect to local features and other claims in the area.

Topographic relief is quite severe except for the southern third of the block which is also the area below treeline. Elevations range from 5,900' to greater than 8,000'. The current areas of interest straddle two NE-SW trending ridges, the tops of which exceed 7,200'. There appear to be no previously known showings on the claims.

(3) Summary of 1981 Fieldwork

A four man camp was established on the property June 9 and demobilized June 26, with associated travel time, expediting etc. on June 8 and 27. A 2,700m long baseline, picketed every 50m, runs diagonally across the claim from northwest to southeast, bearing 135°. The

baseline is designated 10,000 N with the centre of the grid marked L 10,000 E, \triangle 10,000 N (B.L.). Cross lines exist at 100m intervals from 8,600 E (northwest corner of claim) to 11,000 E (southeast corner) and stations are flagged every 50m along these lines. Soil samples were collected at each station whenever possible however some scree slope rock chips were substituted where soil was insufficiently developed and some stations were unsampled due to deep snow cover. Geological mapping was done on a scale of 1:5000 (1 cm. = 50m) in conjunction with the sampling program. Several rock chip samples from outcrop were collected in addition to the grid samples.

(4) Geology

(a) General

Regional mapping of the Taseko Lakes mapsheet (920) by the Geological Survey of Canada is presented in Open File 534 (1978). The claim area is shown to be dominated by sedimentary units of the Tyaughton group upper Triassic massive limestone, red conglomerate, grit and shale and lower to middle Jurassic dark grey to black shale and argillite and grey greywacke. Intrusions are mapped as Eocene felsite, feldspar porphyry and biotite feldspar porphyry. Northwest trending faults of undetermined movement are frequently indicated, both at contacts and within units, parallelling major right laterial transcurrent and thrust faults which dominate structural features in the southern half of the mapsheet.

(b) Local

Mapping of the claim was carried out primarily in conjunction with sampling along grid lines. Ridge-top traverses were also done and most of the major outcrops occurring between lines were mapped independently of the grid traverses. Very little outcrop is found below treeline (6,600-6,900' elevation). Most exposures occur along or near ridge crests and intermittently on steep scree-covered slopes.

The rock types observed on the claim generally appear to correlate with regional geology. Several variations of the basic regional units, particularly the intrusions, are noted on the claim geology map (Figure 3). Contact locations and relationships are largely undetermined and therefore are open to change where indicated.

Unit 1 is probably the oldest on the claim (the upper Triassic unit in the Tyaughton Group) and also the most barren in terms of significant mineralization. Repeated sequences of red pebble conglomerates succeeded by coarse greywackes and sandstones ("grits") occupy the southeastern side of the claim (1a). Included in this unit is a massive grey limestone (1b) which together with the grits, appears to be folded, overturned and tilted so that the (overturned) northern limb dips steeply south and the fold axis plunges steeply W-NW. The northern limb is truncated by intrusions while the southern limb may be truncated by faulting of undetermined nature. A few outcrop of grits occur south of this assumed fault line where north-northeast bedding with moderate to steep southeast dips are at odds with the folded structure.

Although the Jurassic unit of the Tyaughton Group is indicated to be comprised of shale and argillite it is thought that Unit 2 on the Tyon claim is its equivalent. Except for a small exposure along the south claim boundary where the rock is a silty argillite the rest of the unit appears as a fine grained metasediment

- 5 -

or hornfels, varying on a fresh surface from a light whitish grey (siliceous) to a maroon-brown (biotite rich). It generally weathers a colorful rust brown due to the common occurence of pyrite both as very thin erractic stringers of fracture fillings and as fine disseminations. Intense multi-directional fracturing is common throughout with the most prominent orientation being northerly or slightly east of north with varying dips.

It is along fractures of this orientation that narrow quartz veins up to 10 cm. wide, bearing arsenopyrite and lesser amounts of galena and sphalerite, were found in three locations. Two veins are exposed over lengths of 1 to 3m while the third (see Figure 9 for location of assay site near L 10600E, south of baseline) is seen intermittently over about 20m. Assays of two of these veins indicate that this type of mineralization is a major contributor to the gold and arsenic anomalies defined over the ridge in the southeast portion of the claim.

Also observed within Unit 2 are bands and zones of garnetiferous limy skarn which are indicated as dark dashed lines on the geology map. The lines indicate narrow bands 1 to 2m wide which, because of their siliceous nature stand in higher relief compared to surrounding hornfels or less siliceous skarn. The rock between L 10200E and 10400E north of the baseline to about 10200N appears to be mostly skarn. Erratically occurring lenses and blobs of massive pyrite are more evident here than anywhere else on the property and a float train of arsenopyrite-bearing quartz vein material stretches down the hillside right across this area. Although never found in place it is presumed that the vein material is very close to its original location. The highest rock chip gold geochemical value (1,350 ppb.) comes from pyritic skarn

- 6 -

material collected from both talus and outcrop in a 50 to 75m square area centered on the sample location plotted on Figure 9.

Where L 10300E crosses a long skarn band a 1/2m thick vertically dipping lens of fosseliferous carbonate was noted along which an easterly strike was determined. This however, has not been substantiated as the attitutde of the enclosing hornfels. Other "bedding" attitudes recorded within Unit 2 are based on features considered to be compositional layering however they may be metamorphic in origin rather than primary.

Unit 3 has been subdivided into eight sub-units (3a to 3h) - the first five determined by petrographic analyses and the remainder by field observations only. On a regional scale the intrusives are mapped as sizeable Eocene massive bodies of felsites or biotite feldspar porphyries; the sub-units mapped locally appear to belong to this broad category however textures are quite varied.

The most distinctive intrusive is a coarse-grained hornblende-feldspar porphyry which forms the steep cliffs across the northern portion of the claim. Plagioclase crystals 6mm in length are common while hornblende crystals are up to 3-4mm in length. Portions of this sub-unit can be intensely saussuritzied to the point where only pseudsmorphs of the plagioclase and hornblende phenocrysts remain. Pyrite occurs occasionally as disseminations.

Unit 3b, a feldspar porphyry, appears to be closely related genetically to 3a except for the absence of hornblende and presence of biotite. Its porphyritic texture is more evident on the weathered surface than the fresh; there is less contrast between phenocrysts and groundmass in this unit. Both 3a and 3b lie in the diorite range, based on plagioclase compositions.

- 7 -

Copper mineralization occurs in this unit where it outcrops between L 9300E and 9800E, from the baseline north approximately 200m. Pyrite, chalcopyrite, bornite and variable amounts of magnetite occupy thin fractures or quartz stringers and veinlets varying in width from less that .5cm to 2cm. Most of the mineralization in sub-unit 3b is situated between L 9500E and 9600E near the baseline where a shear zone has been indicated.

Also mineralized is sub-unit 3c, where it occurs in conjunction with sub-unit 3b in the central portion of the claim. Here it is an equigranular biotite granodiorite where as rocks mapped as the same in the southeast are biotite hornblende granodiorite and carry little or no copper. Again, mineralized fractures and veinlets are most common where shear zones exist, between L 9500E and 9700E and 150 to 450m north of the baseline. The unit as a whole commonly has disseminated pyrite. The biotite granodiorite is buff colored (both fresh and weathered surface) while the biotite hornblende granodiorite is greyish green on fresh surfaces and varies from greyish brown to light rust brown on weathered surfaces, depending on the absence or presence of pyrite.

The last five sub-units are less important in terms of both mineralization and extent. Sub-unit 3d is a light brown to cream colored quartz hornblende plagioclase porphyry with fairly intense sericite-carbonate alteration occurring primarily in the northwest corner of the property. It is closely associated with a white microporphyritic quartz feldspar rock (3e) also intensely altered. Petrographic analysis of the latter determines that it has similar mineralogy and textures to 3d and no flow banding, however field observations suggested a volcanic origin because of indications of flow banding. Sub-unit 3e is perhaps a late stage dyke emanating from

- 8 -

the same source as 3d but after the porphyry had solidified and fractured. Similar dyke material was noted within hornfels and in the east central portion of the claim where it may also intrude Unit 1 - true extent of the latter in this area is unknown.

Sub-units 3f, g and h - felsite, rhyodacite and dacite sills or dykes respectively - represent a small portion only of the igneous rocks on the claim and do not appear to have any economic significance. The felsite between L 10200 and 300E, 10250N is medium equigranular quartz and feldspar porphyry. It occurrence near L 10500E, 250m south of the baseline is more massive looking with some feldspar phenocrysts visible but not prominent. The rhyodacite is greyish green, dense, with scattered clear quartz amygdules up to 2mm in diameter and smaller pink feldspar phenocrysts. The dacite is medium grey and fine grained except for fresh biotite phenocrysts that are partially aligned parallel to an apparent contact with rocks from Unit 1. Petrographic analysis of these three sub-units might result in their being assimilated into the other sub-units of Unit 3 or into fewer additional units.

Unit 4, an olivine basalt, appears to be the only igneous rock that is not genetically related to the members of Unit 3. Its age is undetermined but it may be related to the Miocene/Pliocene plateau basalts of the Chilcotin Group.

(5) Geochemistry

(a) General

Soil sampling in 1980 was carried out by contouring hillsides throughout the claim, mostly above treeline, and collecting samples every 100m. This year

- 9 -

sampling was grid-controlled to define more precisely the areas of interest and expand coverage systematically to all parts of the claim amenable to such sampling. Only the southeasternmost portion was not sampled as it is underlain totally by barren Unit 1 rocks. Sample lines 100m apart are flagged with sample stations marked every 50m. Where sufficient good soil was not obtainable rock chips from talus or outcrop were collected. The soil results for molybdenum, copper, silver, arsenic and gold are plotted and contoured on Figures 4, 5, 6, 7 and 8 respectively. Note that gold values are reported in parts per billion (ppb) while all others are in parts per million (mag). All rock geochemistry from both talus and outcrop is plotted separately on Figure 9. Lead and zinc soil results were not plotted however all certificates of geochemical analyses are reproduced in Appendix III. Analytical procedures, as detailed by Vangeochem Labs of North Vancouver where samples were analysed, appear in Appendix II.

I. 722 soils either from Bhorizon about 15cm deep or talus soils

(b) <u>Soils</u>

Contoured values for all elements plotted revealed only one definite area where mineralization or favourable environments had not been previously identified. A copper molybdenum anomaly is located between L 8900E and 9200E, 9500N to 9800N, where no outcrop is reported. There are no gold or arsenic values there and silver is very weak.

Gold and arsenic anomalies are essentially limited to the ridge area in the southeast where samples collected in 1980 had originally indicated promising gold values. It is also within this anomalous area that the arsenopyrite bearing quartz veins have been found. Copper and molybdenum anomalies are evident in both the southeast and central portions of the claim, the highest copper encompassing the ridge area where mineralization was first known to occur. Copper values in the southeast are highest in the skarn area while molybdenum reaches maximum values in an area underlain primarily by hornfels intruded by several intrusive bodies. Some of these are too small to appear on the geology map at its present scale.

Silver values were contoured at quite low levels and the results indicate only very weak "anomalies" wherever copper, molybdenum, and/or gold anomalies are already known to exist. Lead and zinc values were not plotted because results do not appear to provide any additional information of note.

(c) <u>Rocks</u> 126 samples.

Rock geochemistry produced generally low values in all rock types in both talus and outcrop. Results are plotted on Figure 9, with talus and outcrop samples indicated by solid triangles and circles respectively. The only significant copper values were obtained in samples collected in the sheared area of Unit 3c (L 9500E to 9700E north of the baseline). The sample located at 9530E 100m south of the baseline consisted of selected mineralized quartz vein material hence the 3350 ppm copper value. Molybdenum is low in all samples except one - a talus sample on L 8700E and 10200N which ran 110 ppm. The only gold value of note (1350 ppb) comes from a previously mentioned sample of sulphide-bearing skarn material collected from a 50 to 75m square area between L 10300E and L 10400E, 100 to 150m north of the baseline.

(6) Conclusions and Recommendations

In spite of mediocre rock geochemistry it is felt the claim warrants further work, particularly where copper mineralization and/or geochemical anomalies are strongest. It would be useful to map the copper ridge area on a scale of 1:2500 (approximately 1" = 200') to record more accurately the style of mineralization, vein distribution and density, and to provide tighter control for sampling. Sampling should be done after enough trenching has been done to provide the best continuous exposure across mineralized outcrop or presently covered source areas. Trenching will probably have to be carried out by hand using a Cobra drill (or similar equipment) and explosives. The steepness of the terran precludes the use of bulldozers without incurring great expense which is not warranted at this stage.

The few intrusive rock samples analysed petrographically commonly display quartz-sericite-carbonate alteration assemblages, to varying degrees, with chlorite alteration of minor biotite noted in sub-unit 3c in the southeast portion of the claim. The detailed work proposed and further study of the claim as a whole should be carried out with porphyry copper alteration and mineralization zones in mind. To this end several rock specimens, particularly of the intrusive units, should be collected for petrographic analysis. This would help determine what part of the porphyry system is exposed, what its potential is and provide a basis on which to plan further development.

- 12 -

Appendix I

Exploration Costs

~

TYON EXPENSES: JUNE 1981

Min-En Labs - Invoice #8296 - \$117.50	\$ 117.50
Vancouver Petrographics - Invoice #2708 - \$461.50	461.50
Pemberton Helicopters - Invoices #1854, 1833 1834, 1862 - \$1,907	
Invoices #1820, 1824 - \$1,394	3,301.00
Vangeochem Labs - Invoices #6340 - \$1,591.15 6325 - 3,870.90 6314 - 1,257.30 6313 - 672.10 6299 - 235.80 6262 - 3,057.45 6248 - 71.50	10,756.20
Wages & Payroll Costs:	
T. Barr - 20 days @ \$70.82 = \$1,416.40	
B. Dewonck - 19 days $@$ \$124.23 = 2,360.37	
D. McGregor - 20 days @ \$70.82 = 1,416.40	
J. Pardy - 20 days @ \$80.49 = 1,609.80	6,802.97

. بى

TOTAL \$21,439.17

•

.

.

Appendix II

Analytical Procedures

· · · · · · ·

.

.

986-5211

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-**xxxxxx**

V7P 2S3

Oct. 28, 1981

To: Prism Resources Ltd. 3rd Floor, 744 W. Hastings St. Vancouver, B C V6C 1A5

From: Vangeochem Lab Ltd. 1521 Pemberton Avunue North Vancouver, B.C. V7P 2S3

Subject: Analytical procedure used to determine hot acid soluble Mo, ^{Cu} in geochemical silt, soil and rock samples.

1. Sample Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 3½ x 6½ Kraft paper bags and rock samples in 4" x 6" Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted by hands using a 8" diameter 80-mesh stainless steel sieves. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (d) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Methods of Digestion

- (a) 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a top-loading balance.
- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).

....2

(C) The digested samples were diluted with demineralized water to a fixed volume and shaken.

3. Method of Analysis

Mo, Cu analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 or Model AA5 with their respective hollow cathode lamps. The digested samples were aspirated directly into an air and acetylene flame, but Mo digestion were aspirated into an acetylene and nitrous flame. The results, in parts per million, were calculated by comparing a set of standards to calibrate the atomic absorption unit and displayed in a strip chart recorder.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and the labroatory staff.

Eddie Tang

VANGEOCHEM LAB LTD.

4.

ET:jl

986-5211

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-XXXXXXXX

V7P 2S3

Oct. 28, 1981

- To: Prism Resources Ltd. 3rd Floor, 744 W. Hastings St. Vancouver, B C V6C 1A5
- From: Vangeochem Lab Ltd. 1521 Pemberton Avenue North Vancouver, B.C. V7P 2S3
- Subject: Analytical procedure used to determine hot acid soluble Pb, Zn. Ag in geochemical silt, soil, and rock samples.

1. Sample Preparation

- (a) Geochemical rock, silt, and soil samples were shipped to the lab by the above client. The rock samples were either stored in 8" x 13" plastic bags or in 4" x 9" cotton mailing bags. The silt and soil samples were stored in the wet-strength 3½" x 6½" Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven over-night.
- (c) The dried soil or silt samples were sifted by hands, using a 8" diameter 80-mesh stainless steel sieve. The plus 80mesh fraction materials were rejected and the minus 80mesh fraction materials were transferred into coin envelopes for analyses later.
- (d) The dried rock samples were crushed by a jaw crusher and pulverized by using a disc mill to minus 100-mesh. The pulverized samples were stored in the 4" x 6" paper bags for later analysis.

2. Method of Digestion

- (a) 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a top-loading balance.
- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively.)
- (c) The digested samples were diluted with demineralized water to a fixed volume and shaken.

3. Method of Analysis

Pb, Zn Ag analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 with their respective hollow cathode lamps. The digested samples were aspirated directly into an air and acetylene mixture flame. The results, in parts per million, were calculated by camparing a set of standards to calibrate the atomic absorption units.

4. Back Ground Correction

A Hydrogen continuum lamp is used to correct the Silver background interferences.

Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and the laboratory staff.

Eddie Tang / VANGEOCHEM LAB LTD.

ET:jl

986-5211

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-9XXXXXXX

Oct. 18, 1981

V7P-2S3

To: Prism Resources Ltd. 3rd Floor, 744 W. Hastings St. Vancouver, B C V6C 1A5

From: Vangeochem Lab Ltd. 1521 Pemberton Avenue North Vancouver, B.C. V7P 2S3

Subject: Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt ot rock samples were received in the laboratory in wet-strength 4 x 6 Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hands using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100 - mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Method of Digestion

- (a) 5.00 10.00 grams of the minus 80-mesh samples were used.
 Samples were weighed out by using a top-loading balance into beakers.
- (b) 20 ml of Aqua Regia (3:1 HCL : HNO₃) were used to digest the samples over a hot plate vigorously.
- (c) The digested samples were filtered and the washed pulps were discarded and the filtrate was reduced to about 5 ml.
- (d) The Au comples ions were extracted into diisobutyl ketone and thiourea medium. (Anion exchange liquids "Aliquot 336").

... 2

ANGEOCHEM LAB LTD.

(e) Separate Funnels were used to separate the organic layer.

3. Method of Detection

The gold analyses were detected by using a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode Lamp. The results were read out on a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

4.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and his laboratory staff.

Eddie Tang / VANGEOCHEM LAB LTD.

ET: jl

Appendix III

Certificates of Geochemical Analyses

1 I F -CANADA V7P 283

51--- RE2 COLE (614

Claims

Specialising in Trace Elements Analyses

EL- TYON

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd. 3rd Floor, 744 W.Hastings St. Vancouver, B.C. V6C 1A5 Attention:

Report No: 81-79-014 Page 1 of 7 Samples Arrived: June 18, 1981 Report Completed: July 6, 1981 For Project: Tascko Analyst: E.T. & Staff Invoice: 6262 Job $\neq 81-134$

	Sample Marking	Mo	Cu	Pb	Zn	Ag*	As	Au	
		ppm_	ppm		maa	מכס	mqq t	daa	
~ -	19600E 9050N	1	31	16	129	0.3	2-	nd-	
	NOOE	1 1	32	=14	153	and 🗐	10	nđ	
	150		39	- 18-2	186	Sea and an		and 😤	
- 1	200 E 200	11	234	11	-44	_0.4 -	1 - 4	.nd	-13-11 Å
			25	-13	94	- nd	4	-nd	7a]
	₹300	2 -	23 -	= =12		20.1	10	nd	
	-350	-1-	25	9-	56	-0.1	25	nd	
	400 ,	37187	316.5	a 10 -	5353	nd	10	and See	
	450	nd	14	10	=65	0.1		bn	
	500	nd	19	12	46	nd	15	nd	T. 1
l	550	.2	67	16	.138	nd		nd	
	600	1	64	21	74	0.3	300	-10	
	650		20	13	76	5 - na	55600	30 33	1997
	700	1	16	8		br	300	f for	
	750	nd	179	4	15	0.3	2	40	
Ī	800	nd	126	7	66	0.2	2	nd	
	850	nd	103	8	20	0.2	- ク	nd	.
	900		200	7	20 				- Tease
	00500	a state of the second	173	. monimum A. Ballet			15		
	LOCODE JOOON	1	324	24 £	21	0.2	10	40 ~70	
ł	19700E 8950N		324	17	20	0.2	10	- 30	
	L97002 8950N	2 1	31		80	. 0.1	4	<u>na</u>	
	9000	4	29	11	64	no	The second s	nd	
			74						-
	100	.S 1	- 34	14	43	nd	- 4	nd	
ł	-200	1	20	11	111	na	15	10	<u> </u>
	200	4	12	.9	76	nd	10	nd	1
Ì	250	1	20	10	49	nd	.20	nd	
		1	14	8	-50	nd	15	and	
	350	1	23	8	-41	0.3	- 4	10	
┢	400		.59	19	214	nd	25	10	·
	450	-2	59	16	157	0.2	40	10	I
	500	1	54	14	81	0.1	35	10	
		4	47	14	152	- 0.2	— 15	10 R	10 19 2340
	600	1	58	17	-55	0.2	16	100 🔶	Will Rentword
	650	3	92	19	99	nd	50	10	
	700	1	114	14	49	0.2	60	nd	
	750	nd	110	9	27	nd	2	10 R	
	800N	nd	66	14	14	0.2	10	20	
	L9700E 9830N	1,	11/	4,	6,	0.1,	20 /	10 R	

REMARKS: Ag* = Ag background corrected.

R = Rock

% Mo x 1.6683 = % McSz

1 Troy oz./ton = 34.28 ppm

Signed: nd = none detected

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

VANGEGOHEM LABILTD. 1823 FEMBERTON AVE. NORTH MAINCOUVER(E.C.) CANADA V7P 2S3

TELER 0. 0. 900 5211 AREA DOD E: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd.

Report No:	81-79-014	Page	2	of	7
Samples Arri	ved:				
Report Comp	pleted:				
For Project:					
Analyst:					

Attention:

		1			<u></u>			-
-Sample Marking	Мо	Cu	Pb	Zn	Ag*	As	Au 🗍 🏹	·
	<u>maa</u>	ррп		שממ	mad	mag.	daa	· · ·
19700E_9850N	1	_208	26	-58	1.0	. 50	200	
900N	1	- 69 -	15 🚌	39	0.3 -	10		
9950N -		98 -	· 17.	66-	220.4	<u>a 194</u>	20 20	
-19700E 10000N			12	-74	0.2	10	_ 30	
L9800E 8900N		31	14	176	£ 0.4 =	2.	- nd	
=9000N	2.	25	10	138	0.1	2	nd -	*
9050		±=_23 ै	10	7120	0.1		and 🔭 🐔	
100	and set		10	26	0.1	2. 2. 15	and 👯	
-150	2		14	133	0.1	14	ind	•
200	2	35	-15	162	nd	10 -	- md	
250	nd	14	_9	77	0.1	2	. nd	~~~
300	1	_20	8	84	0.3	: .10	-10	
350	2	-47	- 11	132	0.3	2.35	10 2	
-400	1	- 51	-14	- 87	0.2	30	nd	
450	nd	40	15	146	0.2	<u> </u>	30	
.500	1	54	13	256	0.1	40	.10	
550	1	51	. 15	151	nd	20	20-	
600	2	57	14	146	ind	- 60	10 👬 -	
650	3	.17.9	_19	109	nd	60	50	
700	7	86	19	176	0.1	100	20	
750	2	39	13	86	0.2	150	nd	
800	3	121	-21	64	0.1	=150	.20	
850	4	144	42	79	0.2	- 600	50	
_900	9	192	20	.109	0.2	. 30	10	
9950N	. 5	199	25	126	nd	30	20	
L9800E 10000N	8	:356	12	63	0.3	10	.10	
L9800E 11250N	3	54	14	103	0.3	2	10	
L9800E 11300N	4	53	14	_101	0.1	,10	20	بر 2 - مذخد
L9900E 8750N	2	.39	13	172	0.4	2	nd	ı
800N	1	11	4	65	0.7	4	nd	
	1	19	· 9	71	0.2	2	nd	-
	. 1	15	11	122	0.2	.2	nd	
8950	1	19	12	177	0.2	2	10	
9000	.2		11	144	nd	4	10	
9050	1		10	169	nd	4	nd	
100	2	34	15	163	0.1	4	10	
150	2	34	14	136	0.2	-4	40	
200N	2	_31	15	104	0.1		nd	-
L9900E 9250N,	6,	102,	15.	81,	0.3	15,	nd	
s								

REMARKS: Ag = Ag background corrected.

1 Troy oz./ton = 34.28 ppm

% Mo x 1.6683 = % MoS₂

Signed:

nd = none detected

ppm = parts per million

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

1 ppm = 0.0001%

NANGESOHEMILAELTS MEI PEMEERTS - E CRTHINANSDONER E.S. CANADA M77 283

4FE4 CLIE EL4

3 of 7

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Frism Resources Ltd.

Report No: 81-79-014	Page
Samples Arrived:	
Report Completed:	
For Project:	
Analyst:	

Attention:

	Mo	- Cu	Pb	Zn	Ag*	As -	Au
Sample Marking	. חמת	חתת	maa	וותכס	שמס	mqq	ppb 👘 👘
1 9900E 9300N	.5	- 58	15		- nd	2	10
35002350N	.3	69	- 15	134	0.1	25	nd
400	333	56 25	221	2125	20.3	80	30
450	- 4		15	.111	0.1	2	10
500	- 4 -	-54	17	- 124	-nd	20	10
550	12		16		nd	4	10
600	2	_ 37	22	ic 131	0.2	15	20
650	2 8	139	14	96	i ind	15	nd
700	1	76	10	_34	nd	.20	.20
750	1	40	16	44	0.1	:300	30
800	3	93	43	152	0.2	800	20 -
850	5	99	25	133	nd	100	20
900		224	21	132	0.1	-40	10
950	9	760	22	109	0.2	10	20
9980	8	155	21	75	0.1	25	10
10050	12	144	24	74	nd	35	20
100	7	206	15	71	nd	40	10-
150		660	11		0.4	. 10	30
200	10	125	13	.23	0.1	4	20
	<u> </u>	101	7	13	0.3	2	
300	nd	81	.8	. 29	nd	.2	20 R
- 350	11	130	21	55	0.1	80	30
-400	. 14	128	19	-48	na	80	40
-450	18		14	37	0.2	-20	20
500	- 1	-35	6	68	0.1	60	na R
550	6	104	21	14	0.2	50	20
600	12	89	19	217	0.2	80	20
7.50	na	26	10	ی 22 شیرینی ا مو		1	
850	na	20	.⊃ -1 ⊑	.20		4.	nu
10900	<u>1</u>	55	10	-116		50	nd
11000		35	19	136	0.1 nd	50	nd
11000 11050N	· · · · · · · · · · · · · · · · · · ·	40 59	11	304	5 - 5 cm	10	ba
10000F 11100N	10	A6	17	146	nd	2	br
1 10000F 8550N	nd	50	12	63	0.3	A	nd
600N	nd	27	10	61	0.2	Δ	nd
650	nd	19	9	59	0.2	10	nd
700N	nd	13		36	0.1	2	nđ
1 10000F 8750N	nd .	5	8	6	nd	2.	nd .
LICCOL BIOMY		, ,					

REMARKS: $Ag^* = Ag$ background corrected. R = Rock

Signed:

% Mo x 1.6683 = % MoS₂

parts per million nd = none detected ppm

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used

NANGÉOLHEM LA BUITE 1511 FEN BERTIOUR E 10FTAURILOGUEFUEIC CANADAUN7F 283

AREA CIDE ROA

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd.

Report No:	81-79-014	Page	4	of	7
Samples Arriv	red:				
Report Comp	letec:				
For Project:					
Anaiyst:					

Attention:

Sample Marking	MO .	··· Cu	Pb	Zn	Ag*	_AS	Au
						יייני ו	nph
10000E8800N	- "nd	14	. 7 -		and and	· 4:	nd
<u> </u>	1	39	12	119	0.3	4	nd
	232	28		151	nd 🚬	4	nd 🚽 😽
-8950	-2	-34		163	0.72	10	nd
=9000	~ 3 *	- 33	14	- 142	0.7	-2 '	br
	-3	49	16	.132	ind T	-4	े nd 🖓 🗋 了
100	5	78	16	- 84	- nd	20	10
150 💼 🚊	3. 5	- 74 -	18	140	, and se	5110	30 - 🖂 🖄
200	5.	:51	18	134	.0.3	10	nđ
250	4	59	19	106	0.1	25	nd
300	2	40	16 -	62	0.1	30	nd
350	4	43	13	111	. 0.1	20	nd
400 - 2	-5	32	14	111	nd	4	10
450	5	40	15	119	nd -	4	nd
500	r r	41	17	116	0.1	10	nd
~ 550	19	۸7	14	194	nđ	4	10
550	1		15	120	-nd	10	nd
£50		50	10	204	30 - T 33		nd
700		EE	20	-124	bre Street	80	
- 700	3	50	10	116	0.2	80	200 / nd
		70	17	-75	n	20	
.800	<u>ح</u>	39	- 10	115	bre.	20	
800		45	-10	177		715	nd 🗍 🚟
	ີ ເພື່ອງ ເ	50°	17	116	0.1	25	but the second
9950N	- 16	270	11	110	2.0 nd	20	20
10000		00	-17	40 60	ind	25	10
100	3 0	00	17	02	nd	40	
150		90	10	-15.4	.∵n-1	- 35	
		5	2.5		and the second second	AD	
200	2	44	10	AE	brt _	30	. – 4
250			10	45			
300	1 ·	30	10	30	0.2	30	na
		30	1 1	30	U.1	30	10
1. AL 10 MERICA -400 - 474.		18	10	101	U.1	40	
450	4	64	18	121	i na	10	20
<u> </u>	4	89	16	65	0.2		nd
550	3	84	18	92	0.2	40	10
600 · · ·	2	88	17	90	0.1	35	10
- 650N	·· nd	6	. 7	20	nd 📋		nd R
110000F 10750N .	nd	5.	12	27	nd	2	nd

Signed: __

-EM 148 170 ○ Ξ - E. 12570 Ξ NE COLLER EL 04NAD4 N7F 283

TELEVED : ALLES 4.F.E4 00.0 E (614

Page

5 of 7

Specialising in Trace Element: Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd.

	Report No:	81-79-014					
	Samples Arrived:						
s in the 🕈 the factory	Report Completed:						
	For Project:						
	Analyst:						

Attention:

	.Mo	-Cu	Po	Zn	, Ao ±	As	Au	
Sample Marking	בתכד	וומכר		DDM		בתכוד	daa	
_ L10000E _ 10800N	27	= 59	20	163	0.1	25	-710:	
850N	22	6 3	16	114	nd	.4	Ind	یڈ کر در معند رامانی همچنا
900	8	- 51	15.5	F=136	sand z	S and s	and 🗧	
10950 -	13	=50	_15	176-	-nd	4	nd	
11000N		-56	16	132	- nd	-10	nd	
L10000E 11050N =		78		163	- 0.72	60 ;	nd	
L10100E 8550N-	1 1	-65	18 -	- 115	nd	2	nd	
600N	27-1-2-2	26	* 15	104	0.1	2 5	nd-	
-650 -	nd	13	10	- 55	0.1	-4	nd	
700	1	24	13	111	nđ	2	nd	
750	and -	.32	14	129	nd	4	nd	
800	лd	.39	:14	100	nd	-4	nd	
850		-44	-16	113	nd	4	nd	ىيو مەنچەمىيە بايلۇر بەرچەم ب
900	6	9 5	.18	-142	.nd	10	10	
<u> </u>	2	63	.15	145	nđ	nđ	nć	
.9000	6	100	.16	.138	na	10	nd	
50	8	166	. 15	123	nd	. 2	nd -	
100	7	49	20	125	0.1	30	nđ	
	. 5	46	_17	124	0.2	4	nd	C.C. T. Mallow Pallace
- 200	3 ·	35	17	133	0.3	20	nd	
.250	3	.66	18	147	0.2	10	nd	
300	1	43	14	111	0.4	2	nã	
-350	2	34	16	143	0.2	20	nđ -	
400	2	. 44	.18	166	0.1		nd	
450	1	<u> </u>	4	-119	0.1	10		· · · · · · · · · · · · · · · · · · ·
500	-1	42	318	.114 '	0.4	25	nd	
550	ا د. این در ومت ۲۰۰۰ ۲۰	81 ·				00	10	
650	4	-28 	17	······································				1
700	ວ ດ	40	ο τ.	1/1	0.4	. 15	10	
750	<u> </u>	50	-20	110	0.1		nd	
150	4	71	22	111	0.0	40 50		
000	- Marine Control	11	12 26 - 20	111 	Less md m	150	0T	ومعتبين ورواق المراجع
000 N		00	20	122				
900 IN 0050N	7	50 50	17	146			10. 	
10000N	A	50	15	175	nd	<u> </u>	nd	
	4	54 AA	10	100	nd	20 15	10	·
	4	44		120			10	
LIGIOOF 10150N	- <u>-</u>	43	-24	~ .94	U. 2	50 °°	20	
LTOTOOF TOTOON	۲	02	та -	98		, 00	nd	-
				-				

REMARKS: Ag* = Ag background corrected.

1 Troy oz./ton = 34.28 ppm

% Mo x 1.6683 = % MoS₂

Signed: nd = none detected

ppm = parts per million

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

1 ppm = 0.0001%

> Lf GEDOHEM LAE LTD >EL DE BEFTQ AVE _____FTHUL VEDUEF ECU OANADA _____7F 282

TELESSON CONTEN AFEN CILE EN

7

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITE-Prism Resources Ltd.

Attention:

Report No: 81-79-014 Page 6 of Samples Arrived: Report Completed: For Project: Analyst:

	•	Mo	Lu	<u></u> PD	Zn	Ag*	° ∵ As	Au	تب م در ا ال
Sample Mark	king -	שמת	गावत	שממ	שמס	_ תכס	שמס	למס) ~ .
L10100E 11	200N	<u>5</u>	61	16	119	0.1	.25	nd	د بیوند هد از
	_250N	-1	24	-13	.36	nd	4	nd	
	300	2.2	-73	24	154	nd		30	
and and the second s		4	-79	20	149 -	nd	20	20	
	400		-72	- 19	83	0.3	- 30	· 30 ·	
	450	3	104	18	81	nd ~	35	20	
	500	5	46	21	108	nd -	2	nd	
	-550	7	69	18	203	0.1	110	nd	
	600	- 2	63	.21	218	0.2	25	nđ	
	650	5	54	17	172 -	0.1	10	10	
	700	11	70	16	.241	nd	15.	10	
	750	4	48	15	115	nd	4	nd	
and the second sec	800	1	34	-15	76	тлд	-4		
	850	5	37	14	134	nd	10	nď	
	900	11	<u>51</u>	15	163	nà	10	<u>nd</u>	····
	10950	20	55	15	109	0.1	2	nđ	
-	11000N	8	44	14	147	0.1	10	10	
L10100E =	11050N	13	71	16	304	-D.2	40	nd	a de la serie de la serie de
L10200E 8	8650N	nd	25	13	63	0.3	2	nd	
	700N	1	18	11	46	nd	4	10	
1	750	.nã	24	14	75	nd	nd	nđ	
	800	nd	.20	14	73	nđ	4	10	
	850	3	171	13	.74	0.3	4	20	
	900	3	60	18	130	0.4	.25	nd	
	8950	· 4	66	14	116	0.1	4	20	
	9000	5	34	18	101	nd	15	20	
	50	3	56	19	104	0.3	35	20	
and the second	100	8	52	14	149	0.1	4	nd	i and
	150	1	21	12	64	nd	nd	nd	2 7 ,
	200	nd	28	13	76	0.2	4	nd	
	250	1	29	14	53	0.4	_2	10	- -
	300	1	30	19	127	0.2	2	10	
	350	2	29	16	138	0.1	2	nd	n ann ann ann ann ann ann ann ann ann a
	400	1	25	14	.96	0.3	10	nd	
	450	2	39	18	110	0.3	20	_10	
	500	2	37	18	76	0.3	40	10	
	550	1	39	19	93	nd	25	20	
	600N	1	51	64	148	0.2	80	10	. • • •
L10200E	9650N	2	31	15	74	nd	-50	nd	
LICCOD		-			-),		
	As booker	and oon	nented				/		

REMARKS: Ag* = Ag background corrected

1 Troy oz./ton = 34.28 ppm

% Mo x 1.6683 = % MoS₂

nd = none detected

ppm = parts per million

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

i ppm = 0.0001%

. <u>-</u> .⁺.	350	(-E'	l'E u	
· : :	: 5	:::-		1
. 5 7		:	1. 27	1
C41.	4,2,4	. 75	255	

TELE (* 1000-00107) 1994-0002-004

• Specialising in Trace Element: Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd.

Report No:	81-79-014	Page	7	ta.	7
Samples Arrive	d:				
Report Comple	eted:				
For Project:					
Analyst:					

Attention:

% Mo x 1.6683 = % MoS2

Sample Marking	Mo	Cu	Pb	Zn	Ag*	- AS	Au -
	דעם	שמס	DDI	•ppm	ppm		ppb
L10200E _9700N	1 1	43	16	126	na	- 30 -	. 10
-750N-	3	49	19	145	nd	20	20
800	4	57		102	nd	280	
	_5	144	-43	114	0.1	- 150	30
9900 N	5	183	45	91	0.3	- 300	110
L10200E 10000N	7	181 -	49	. 74	0.8	600	80 ~ ~ 3
			-		-		
			8.2		Station and Station		
		-	-1 -				
	1		· · · · · · · · · · · · · · · · · · ·				.
in an							
		ورور الله المراجع ومن المراجع المراجع المراجع المراجع	an a second a second and a second a se Second a second a sec	المارين المارين مارين المارين ال			
	Service with a state	and the second	anti strainne a th	مشيفين مند مدينهم	الله بن ولغته المليس	Car man contraction and the	inter a subset for
1997 - 21							
					-2-	•	
			-			·	
	1		~ .	ور هوری در منافقتان در از از مناطقه		مىسى بىلىرى بولە ۋەر ىيۇن بىلەرد دۇلىكە بايا تېرىن	
	a survey a stal	the second to	Nag i san	i - e e home e constato	See - on the state of the second s	and the state of the second	an a
and the second sec							
	<u>.</u>	}					
		1 	-				
مسجوع می از میکند. مسجوع می از میکند میکند از می آمریک میکند از میکند ا			Anna I.			میں الیے کا جات ایک الیے ا	
n an	an a	ی ہے کہ مشتر افرادی	الديني المستم يده الر	··· *·· ·	, 3 sasan		::: •: :™ •••• •
- 41 - 11 - 11 - 11 - 11 - 11 - 11 - 11							
						-	
* .	2	5 1		2 - -			
میلام میں اور			1	· "		k, samana s ja	
n an	ang ter a strand get ta angan a strang gang gang gang gang gang gang gang		a an ann ann an Star an Star an Star		a na an an ann an an an an an an an an a	en la company de la constitución de	
				_			
		and the second					······································
					······································		
				-			
"		- 1					
	-				· · · · · · · · · · ·	· · · · · · · · ·	
		-	-			transferingen	b

nd = none detected ppm = parts per million

All values are believed to be correct to the best knowledge of the analys; based on the method and instruments used.

1 ppm = 0.0001%

1 Troy oz./ton = 34.28 ppm

WANGEOOHEM LABILTD RECORDINE ERTICIAL (B CAMADIAN COLLER EL CAMADIAN CTRI 283

TELE (* 1973) UTEL CICE (* 1974)

• Денеска по порит. Пласе Енетнептор Алтенизер •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-		Reportatio 81-7	9-016 Page 1 of 1
Prism Resources Ltd. 3rd Floor, 744 W. Hastings Vancouver. B.C. V6C 1A5	St	Samples Arrived: Report Completed: For Project:	June 24, 1981 July 15, 1981 Taseko
Attention:		Analyst: Invoice: 6299	E.T. & VGC Staff Job = 81-150-1

Sample Marking	No.	Cu	Pb	Zn	Ag*	As	Au
				ppm	תכם	nda	לקק
0925	18	51	19	135	0.3	2	nd
26	4	72	31	187	0.6	25.	nd
27	4		24	103 -	- 0.4-	-4	10
28	2	.106	21	.55	0.5	10	10
29	-2	175	25	930	0.7	50	20
	.2	.39	22	57	0.1	4	nd
31	3	18 · 18	23	72	-0.2	25	nd
32	3	92	14	49	nd	60	10
33	4	32	22	100	nõ	4	nd
0934	5	63	10	45	0.1	10	<u>nd</u>
0951	90 -	3350	19	- 66	0.4	. 4	30
52	380 -	229	18	28	0.2	2	nd
53	3	52	12	43	0.1	4	nd
54	2	33	23	66	nd	4	nd
55	<u> </u>	<u>. 50</u>	. 25	590	0.4	300	<u> </u>
56	nd	27	17	52	0.3	10	10
	1	34	19	56	0.2	15	10
58	11	80	16	25	0.4	4	10
59	6	80	18	33	0.1	4	nd
60	<u> 19</u>	124	16	54	0.1	2	
61	38	140	22	110	0.7	10	nd
62	10	1460	8	-40	0.8	4	60
63	4	230	14	22	0.2	4	nd
64	7	334	12	45	0.3	4	- 10
65	3	510	10	45	0.2	4	10
66	4	670	13	24	0.4	4	20
69	3	24	10	15	nd	2	nd
73	3	43	15	46	0.1	15	nd
74	12	28	22	550	0.3	20	nd
0975		27	14	121	0.2	15	10
		-		•	•	•	~
						1	
с		:		•	· · · · ·		
4 9 9	Ni	W	Sn		1		
L	m	ppm	ppm				· · · · · · · · · · · · · · · · · · ·
0925	30	0.1	5	14 July 1			
0930	94				- 9 2 7		
0929		10	10			t `	
0325		10	10				
	<u> </u>	<u> </u>				l	
REMARKS: Ao + = Ao had	karound c	orrected					
							(Marea

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

nd = none perecied

Signed:

ppm = parts per miliion

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

	A	\	ANGEOCH	EV 148 17							
	AUTOR -	-					<u>=</u> = :	2.21.11			
			·	in the second	-		e e e e e e e e e e e e e e e e e e e				
		5	ATEDT	<u>4</u> 253					;		
ا اد	Specialising in Trace Elements Anelyses										
/	Certificate of Ge	eochem	ical An	alyses					1		
	-IN ACCOUNT WITH-	1	× 1	- 199 Bep	ort No. 81	-79-017	Page	to £	2		
				Sam	pies Arrived:	June 3	D, 1981				
	3rd Floor 744 W H	·		Rep	ort Complete	d: July 2	0, 1981				
	Vancouver, B.C. V6C 1A5 - For Project: Taseko 1YON										
	Attention:			Ana	ivst:	E.T. &	VGC Sta	ff			
				Inv	010e: 63	13	JOD	= 81-	157		
į	· · · · · · · · · · · · · · · · · · ·	L No	· • •	t Die	7.	1 1-+	-	A			
	Sample Marking	- MO	Cu	PD		Ag	AS	Au			
	034				<u>рош</u> 66		10				
	35	4		12	3]	0.7		nd	- 25		
	36	6	70	<u> </u>	197	30.3	S30* 7	nd 🐨			
	-37	_ 6	-44	- 21	91	-0.2	20	10			
	- 38	2	55	23	68 -	0.2	- 15	nd			
	39	2	.35		.7.8	- nd -	15	nd			
	40	4	10 - 1	= <u> </u>	78	- nd 🔤	40	.30			
	-41	- 5	-44	39	225		10				
	42	3	15	20	58	0.5	15	10			
	43	6	182	20	26	0.1	.10				
	46	21	104	23	60	0.4	4	10			
		18	1/8	14	44	0.6	10	10	- C		
	50	 	-40	24	90		150	20	alar dar		
,	67	ב ר	53	15		0.4	10	-20 nđ			
	3.0	3	297	10	29	0.2		nd	· · · · ·		
	70	32,	291	12	44	0.2	10	nd			
	71	10	620	9	.25	0.5	4		ि से प्राप्त के सम्बद्ध के बिल्क् सिंह के बिल्क्		
	72	9	183	_16	22	0.3	2	10	to the in content		
	76	2	115	11	24	0.1	. 4	20			
;	77	2	184	13	44	nd	4	nd	-		
•	78	1	16	16	248	0.2	60	nd	- ritigerer v		
	79	2 1	20		78	nd	01.	nd			
	8U 01	⊥ ۲	י.ס אר	_14]6	30 100	nd	100 75	nd			
1 i	<u>82</u>	1	3	4]	100	0.7	50	10			
:	83	1	2	70	116	0.5	15	nd			
	84	3	26	21	73	nd	10	20			
	85	1	25 ´	12	28	nd	4	nd			
	86	2	19	17	410	nd	40	nd			
1	87	1	.31	.14	100	nd	4	nd			
	88	1	24	12	157	nd	4	10			
	89	2	72	12	83	0.2	10	10	riana internet		
E	90	3	295	17	40	nd	10	10			
- i vzl	0.5 D.5	<u>΄΄΄</u>	<u>590</u> 07	<u>22</u> 19	41	na	<u>4</u> רב	-40 nd			
1111	92 03	- 4 - 7	31 176	12	714 25	nd	LO LO	20			
10	90 QA	8	54	12	22	nd	-* _A	nd	1.		
1	995	17	600.	9	26	0.2	20 -	10,			
			/								

REMARKS:

ç

Ag* = Ag background corrected.

1 Troy oz./ton = 34.28 ppm

Signed: _

ppm ≈

V

nd = none detecteo

All values are believed to be correct to the best knowledge of the analyst based on the methoc and inse

1 ppm = 0.0001%

· · · · ·

VANGEODHEM LABILTD. 1611 PETTERTTO VILLE 100 FTH VANOCUNER BICL DANADA: V7P 283

TELES 41 E SECEDIT AREA CODE 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Report No:	81-79-017	Page	2	DŤ	2
Samples Arrive	d:				
Report Comple	ted:				
For Project:					
Anaiyst:					

Attention:

Sample Marking	Мо	Cu	Pb	Zn	Ag*	As Au	ı b
.996		<u> </u>				4 20	
97 - 	4	24	- <u>1</u> 2		2-0.1		
<u> </u>		10	<u> </u>	30	nd	50 nc 60 150	ار میں اور
1411 UI 02 DTV 03		.96 94	<u></u> 	2		200 60 1000 1350	
	a sheriftiga fe samanini fe senera i s				and the second		
ου του το		a standard a series				t tu san an	
						· · · · · · · · ·	
			-	- - -		· · ·	
							: • • •
							•
							**** *********************************
			1	<u> </u>		1	
EMARKS: Ag* = Ag bac	kground c	orrected.			Cionad	Ala	N
% Mo x 1.6683 = % MoS₂ 1 T	roy oz./ton = 34	4.28 ppm	1 ppm = 0.0	0001%	nc = none dete	cted ppm = p	// arts per miilio

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used. ()

VANGEOCHEM LABITE Ξ: ` CANADA N7P 283

AREA CODE 6.4

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Report No: 81-79-D18 Page 1 of 3 June 30, 1981 Samples Arrived: Prism Resources Ltd. Report Completed: July 20, 1981 3rd Floor, 744 W. Hastings St. Yor For Project: Taseko Vancouver, B.C. V6C 1A5 E.T. & VGC Staff Analyst: Attention: Invoice: 6314 Job $\neq 81-162$

Sample Marking	Mo	Cu	Pb	Zn	Ag*	As	Au	
Sample Marking	חכם		ם מסקי	1 ppm	I mag		dqq	
L 9300E 10000N	20	1140	21	82	D.6	⊸4 ⊸	30	
050	19	1060	.23	88	0.3	-1 -10 ·	-40	
100	30-30	1410	195	386	0.7	210	40	
200	-46 -	1890	_20	73	-0.4	-4	40	
300	-11	520	20 -	- 58	- 0.1 -	40 🚎	20	
350	-15			[™] 664 , -*	0.9	- 25		
-400	16	236	18		- 0.2		<u></u> 10	
450	7.	45	15	235	0.3	23		Rock
500	9	81	37	.57	0.1	.25	0E	
550	16	228	44	75	0.1	80	- 30	
L 9300E 10600N	.12	136	42	157	0.2	2	10	
L 9500E 9150N	1 1	23	17	123	0.1	4	nd	-
200		41	21	282	0.2	25	br	
250	8	72	29	310	0.1	15	nd	
300	2	31	20	326	nd	35	ಗ್ರ	
350	4	51	21	270	0.2	50	nđ	
400	2	30	18	161	nd	15	nd	-
450	3	44	17	161	0.2		nd	
500	2	45	19	207	0.1	60	nd	or ant≉ 117 a 1
550	1	49	18	170	0.1	50	nd	
600	3	90	23	148	0.1	150	nd	
õ 50	-3	92	19	34	nd	50	nd	Rock
700	4	22	15	.33	0.1	50	nd	Rock
750	10	189	26	71	0.4	300	80_	
850	24	770	<u> </u>	163	1.0	10	40	
L 9500E 9900N	21	870	19	102	0.3	-4	20	
L10400E 10400N	1	63	15	74	0.9	400	60	
450	2	55	21	93	0.2	80	-nd	
500	2	36	24	58	nd	30	nd	
550	<u> </u>	38	12	67	0.2	25	nd	
600	1	39	14	72	nd.	.15	nd	
650	1	43	17	90	0.1	15	nd	
700	1	36	18	93	nd	15	nd	
750		40	18 .		0.1	10	nd	
800	<u> </u>	59	21	82	nd	10	nd	
850	5	44	20	145	0.1	10	10	
L10400E 10900N	3	45	19	110	nd	15	nd	
L10500E 10000N	. 3	106	90	203	0.4	500	40	:
L10500E 10050N	7.	140	94,	150	0.5,	500	110,	,
2	ļ	-		-				

REMARKS: Ag* = Ag background corrected.

% Mo x 1.6683 = % MoS₂

Signed:

ppm = parts per miluor. nc = none detected

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

VANGEDOHEM LABITTD. 1011 FEMBERTON AVE. 110 FTH VANODUL EFIELD. CANADA V7P 283

TELER-1 E 116 5211 AREA 11 DE, 604 • Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd.

FILSE RESources Leu.

Attention:

Report No:	81-7 <u>9</u> -D18	Page	2 of 3
Samples Arri	ved:		
Report Comp	pieted:		
For Project:			
Analyst:			

_										
Ī	Femalo	Morking	.∭to	Cu	Pb	Zn	Ag*	As	Au	
1	- Sambie	Warking	שמק	חסס	MGQ	שממ	תככ	שמכ	daa	
ī	L10500E	10100N -	- 3	76	60	124	1.0	500	140.	
2		150	-3	44	51	.203	1.4	_500	240-	್ಷ-೧೦-೧೯೯ ಕ್ರೀ: ಮೂಲ್ ಮೂಲ್ ಮೂಲ್ ಮೂಲ್ ಮೂಲ್ ಮೂಲ್ ಮೂಲ್ ಮಾಡಿದ್ದಾರೆ.
		200	3	3151	51	460	0.7	5.500	150	
	alanda (lateralar) dalar da dilanda (lateralar)	-250	1	82	86	262	0.8	-500	80	
	المحجود والمستحد المستحد	.300 -	* 3	- 24	47 -	-52	0.7	150	70,	
- [···· -4 ···	- 77	- 32	104	- I.I	150	20	
•		400	3.	45	20	-54	~ 0.1	760	ъđ	
		450		58	15	71	0.1	60	10	
ł		-300	ב	45	13	61	nd	10	nd	
		550	1	36	11	75	nd	50	nd	
		600	1	45	19	76	nđ	30	nd	
	·	650	2	45	14	76	nd	15	lo	ĺ
- [مېرون كولومېرون دو مېر د مېر د رومور يې د . د د دې د د د وې د د د د د د د د د د د د د د د د	700	-2	- 38	20	76	nd	35	nd	
		.750	1	46	13	97	0.1	.25	nd	
, 1	L10500E	10800N	2	40	26	142	0.4	150	10	نن
1	L10600E	10450N	2	46	17	72	0.3	40	nđ	
		500	1	56	12 -	72	nd	25	20	1
		550	2	39	15	86	0.5	30	nd	· · · · · ·
		600	3	38	18	106	0.1	20	nd	
	L10600E	1065 0 N	3	50	21	106	0.2	35	10	:
÷	L10700E	10000N	6	132	80	242	0.5	500	9 0	
		050	2	76	45	250	0.3	-500	70	
1		100	- 2	.86	54	242	0.6	- 400	130	-
I		150	1	69	50	263	0.6	500	110	1
Ì		200	11	50	38	191	0.4	500	240,	
4		250	· 1	55	32	204	nd	400	50	
		300	2	49	23	202	0.2	300	40	
•		350	2	56	47	230	0.2	500	520	
		400	3	58	20	.112	0.1	100	10	
		450	1	53	.8	72	0.2	25	10	!
		500	2	33	14	103	0.3	30	· nd	
		550	1	39	16	122	nd	60	10	
Ì	L10700E	10600N	1	46	.16	94	0:3	300	20	
2	L10800E	10000N	2	51	34	215	nd	300	nd	1
5	·	050	1	75	37	161	0.1	400	30	
ž		100	2	67	43	176	0.2	400	60	\$;
1211		150	2	64	24	209	0.3	400	140,	3
		200	2	64	28	181	0.1	500	70	i
115	L10800E	10250N.	2,	73,	31	213,	0.2	400,	10,	Í
۲¥ [•	l	1	!	·	

REMARKS: Ag* = Ag background corrected.

% Mo x 1.6683 = % MoS₂

Signed:

na = none detected

ppm = parts per million

1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001%

VANGÈOCHÈMILAE UTD 161 PE EERITO - E 110FTHILANDOULER E.C. CANADA V7P 283

TELER - 012 - 80 - 8017 4 F.E. - 0012 - 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

Report No: 81-79-018 Page 3 of 3 Samples Arrived: Report Completed: For Project: Analyst:

Sample	Marking		.Mo IIII	-Cu שמת	ם <u>ר.</u> תכת	Zn ppm	Ag*	.As pp∎	Au ppb	
1]08005	103000		2	56	32	1 148	1 nd	200	- 10	
1103001	250		3.1 7	60	35	- 242 -	_D.4	400	20	'
	.330			10	200	50	Send Sta	200	50	
	400	Sec.		49	15	80	nd	40	10	H
			- السبب - السبب	-41		- 107	0.2	50	20	
LIOSODE	10500N				19			+ 80-		
L10900E	10000N			Test 2	- 18 -	- 112		200		· . ·
ىلىلىمىيەتىكىنىكىزى م ىيەر ، مەر ت	5 050	294.7.22 ⁴	-2	-44	24	42		200	.10	
الاردى بىرىكى ئەركىيەت بىر بىر بىلارى بېرى يېرىقچە خاتىرى بىر بىرلارم	_100		2-2-3	0	39	210	and	500	10	
	150		1	.57	-24	-131	na	500	.10	
	200		1	_55	.22	86	nd	300	30	
	_250		- 2	36	_20	125	nd	100	10	-
i to available to find the set	- 300		1	64	_29	410	nd	- 150	20	-
	350	12.	2	79		228	0.1	200	nd	
L10900E	10400N		1	-43	_14	.70	0.1	100	nd	
LIIODOE	10000N		4	68	22	134	0.1	200	20	
	050		3	51	25	220	0.1	350	10	
	100		2	-40	19	151	0.1	60	10	
-	150		1	44	21	124	nd	80	10	ي ښې و
	200		2	48	21	189	nd	00L	20 °	
	250		1	45	22	153	0.1	60	10	
111000E	10300N,		2 .	41,	.21 ,	132,	0.1,	60,	10	
					1 	-	• • • • •			
	and and	- 1			ر چېر ا	a serie and a	ار د محمد میں ان میں ان	1. THE	× (4	- 2
					2	1 2 2		•	•	
						- - -				
				1		a.				
	-				-	· 	*		,	
		1			-		1 1			
							i			
				-	1	1				
	ی۔ میں میں		ang the state			· · · · · · · · · · · · · · · · · · ·				
								1 da	•	
					· · · ·					
			-						-	
				ر	i 1	2 2 2	3 ·			·.
						:	1 1			
					-			-		
	a* - Aa h	acko	round cor	rected					/	
MANAS: A	g – Ag D	acng	, ound cor					The 1	1	
									NI	

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

VANGEOCHEM LAB LTD ETH MANODULER E.C.,

CANADA V7P 2S3

• Specialising in Trace Elements Analyses •

- Chiponeral

71.2----

ARE4 CODE 604

5.5 S.C. E2

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd. 2: 1981 3rd Floor, 744-W- Hastings-St. Attention: B:C. VEC 145

81-79-019 Page 1 of 8 Report No: Samples Arrived: June 25, 1981 Report Completed: July 23, 1981 For Project: Taseko Analyst: E.T. & VGC Staff 6325 Invoice: Job # 81-150

ſ	Sample Marking	Mo	Cu	Pb	Zn	Ag*	As	Au	· · · · · · · · · · · · · · · · · · ·
L		ррш		mqq	ppm		mqq 1	dqq	
	19200E 9350N	4	20	15	-56	nd	-10	nd	Rock
	-400	4	-28	2 14 1		and T	2 -	nđ	Rock
	450	7	213	35 -22	1030	2.30.4	100	2 -20 2	
		_244		179	0.2	- 100 -	_20	
	- L9200E 9550N	- 8	850	24 ~=		and series		·	
	L9300E : 9250N	4		20	244		200	- 10	
1	*** 300		2.5 0	18 -	133	-0.2	20	10	الله و ال ا
		5	270:22	- 16 -	305	0.3	20	OE	
	-400	6	78	25	.339	0.5	200	20	· . ·
L	450	6	122	-29	376	-0.2	400	50	
	500	5	79	19	141	nd	40	nd	
	-550	11-	125	21	135	-0.1	60	10	
	-600	7.	119.		-\$118	±0.1 -	220	ີວ	
	650	4	90	20	141	.0.1	30	10	
L	700	5	88	35	130	0.4	30	nd	
	850	21-	76 0	-25	133	D.5	-1	30	
1.	L9300E 9900N	.12	330	41	84	D.2	4	30	
	19400E 9150N	2	44	24	207	nd	20	nd	
	200	2	. 42	.22	.275	0.1	20	nd	
Ļ	250	3	46	20	226	0.1	10	nd	
÷	300	2	39	20	174	nd	20	20	
1	350	7	70	29	610	0.2	200	nd	
1	400	5	71	.26	203	0.2	100	10	
	450	.1	14	10	47	0.3	10	лd	
-	500		45	19	180	0.1	30		
1	550	3	50	20	142	0.1	40	nđ	· .
1	600	4	76	20	133	0.1	20	nd	
	650	7.	174	22	126	nd		10	
ł	700	6	177	25	110	0.3	20	10	
-	750	9	286	20	116	0.4	10	40	ł
	800	2	_25	2 10	58	nd	4	nd	Rock
1	836	13	370	26	166	0.3	.10	60	;
	900	_ 1 9 - 1	∴ .690	27	160	0.2	-4	.10	•
	9950	17	840	19	.114	0.6	. 4	40	ſ
- (10000	29 -	1750	24		0.6	4	60	
Ē	50	11	2190	25	105	1.2	10	100 🖌	
Ē	100	5	127	9	36	nd	4	nd	Rock
	150	5	1280	19	97	0.4	10	20	
164	L9400E 10200N	20	1900	22	100	0.9	10	90	
⁼∟			- 1		- !		-		

REMARKS: $Ag^* = Ag$ background corrected.

Signed

VANGEOCHEM LAB LTD red fereertowale ANDOUR EFRIE C... CANADA V7P 253

TELEPHONE BBE 5211 AF.E.4. CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

Report No:	81-79-019	Fage	2	of	8
Samples Arriv	ed:				
Report Comp	ieted:				
For Project:					
Analyst:					

· · Samr	ne Marking	Мо	Cu _	- Pb	Zn	Ag*	As	Au	
		1 ppm	l ppm	מקק	שממ	בכס ו		daa	
L9400E	10270N	31-	1470	17	.87 ***	- 1.2 -			
÷.	400 -	16	550	21	2. 80	. 0.5	40	740	
	430 🛀 🔅	5	2-5-19	10	- 44 3	2.0.0	2	nd	Rock
	500	-11 - 3	331	_40	169		- 20 -	_10 -	
	550	13	195	41 4	99	.0.6	20	~20	
19400E	10000N	14	_259	88	31	0.4	40		
L9500 E	10000N	12	1580	-23	100 C	-0.5	רב <u>ר</u>	40	
and the second secon	150:2	315	2090	-* 45 - *	128	1.2		80	1.07
	.200	3	-460	9	~46	0.3	_2	50	Rock
	250	10	.1180	26	114	0.6	10	~50	ar ann
	.300	10 .	1990	19	80	1.0	20	50 —	ينتخذ المنتخا
	450	17	7 6 20	- 20	- 64	0.2	20	10	-
	500	.14	- 600	-28		0.4	60	50	
	550	14	. 294	26	48	0.6	4	10	
	10600N	10	27.2	31	48	0.2	20	40	
L9500E	11150N	.1	74	.63	237	nd	- 30 -	nd	• • • • • • • • • • • • • • • • • • •
	200	. l	66	38	175	0.2	10	20	
	250	-1	75	38	171	0.1	10	nd	
	300	2	49	24	1 16	0.1	lo	nd	
	450	1	72	19	107	0.1	10	nd	
	400	3	69	25	124	0.1	2	nd	-
	450	4	72	28	120	nd	20	nd	<u>.</u>
L9500E	11600N	- 3	49	24	166	nd	.20	-20	
L9600E	10050N	24	1280	23	131	0.6	10	90	
	100	4	1610	41	130	0.9	10	50	
	150	16	2020	.56	126	1.4	10	40	
	200	13	1540	.20	75	0.8	4	70	
	250	12	1390		118	0.7	20	50	• •
	330	-47 -	61	20	39	5 0.1	2	nd	Rock
	350	5	218	8	46	nd	2	20	Rock
	400	21	1140	17	76	0.3	20	40 -	
	450	10	770	.21	. 87	0.3	.200	120	
	5 0 C	13	690	1 6	.58	0.2	60	.50	÷ •
	11050	2	17	20	80	0.1	10	nd	Rock
· · · · · · · · · · · · · · · · · · ·	100	1	53	32	159	nd	20	nd	
	150	1	102	21	174	0.1	10	nd	
	200	3	57	.13	- 62	nd	4	10	Rock
	250	2	25	16	70	0.3	4	nd	Rock
1.9600F	11300N	ĩ	64	17	98	nd	10	nd	
100001	21000M	-	57		. .		10		

REMARKS: $Ag^* = AG$ background corrected.

Signed:

% Mo x 1.6623 = % MoS₂

VANGEDOHEM LAB LTD. 1621 PEMBERITON 4 VE NORTH VANGOUVER E.C. CANADA V7P 283

TELERA DE 616-6201 ARE4 CIDE 614

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

Report No: 81-79-019 Page 3 of 8 Samples Arrived: Report Completed: For Project: Analyst:

Frank Markins	Мо	Cu	Pb	Zn	Ag*	As	Au	
		שמכר	mag	Indd	ppm	חכק	<u>dqq</u>	
_19600E-11350N		6 1		.154	0.4	10	. 20 -	ţ.,
400		==52	20	118	0.1	-10	. 10	
L9700E 0022N	2135	3176	–18 –	57	20.2	2 -	310	Rock
050	29	690	-22	156	0.3	7 .2	30	
00 E		7.50	21	118	0.4	-30	20	
150	12	660	- 16	65	0.4	20	40	
:200	16	890	פב	81	-1.0	10	-40	
250	333	152***	- 8 - C	31	~0.2		_20	Rock
_300	80	540	8	31	0.3	2	50	Rock
350	17	910	19	100	0.2	30	10	
	. 8	97	. 14	.34	nd	_2	nd	Rock
NOOOL	1	-63 -	37	172	0.2	20	10	
D50			16	- 109 -	0.1	10	nd	
100	1		15	103	nd	10 .	nd	
200	2	28	13	8]	0.2	4	10	Rock
250	4	70	.24	142	nd	10	nd	
350	-2	31	18	69	0.2	4	10	
19700 11450N	3	50	20	112	0.2	10	nd	
L9800E 10050N	11	1060	27	96	0.4	20	nd	
150	23	630	19	84	0.4	10	20	
200	19	1320	16	102	0.6	10	30	
250	21	730	19	85	0.5	' 10	10	
	15	790	14	54	0.3		nd	
.350	26	204	20	.39	0.1	30	40	
400	31	231	25	28	0.3	40	30	
500	10	138	19		nd	4	10	
550	2	.39	12	47	0.1	- 4	nd	Rock
600	41	147	39	45	0.3	20	60	
650	5	-99	30	123	nd	10	30	
700	2	44	11.	61	nd	10	nd	_Rock_
750	2	20	18	44	0.4	10	nd	Rock
850	-2	21	14	78	0.1	10	10	Rock
900	1	23	21	110	0.2	10	nd	
10950	2	-46	20	109	0.1	10	nd	
	2	44	22	131	0.7	10	10	
50	3	63	24	146	nd	10	10	
100	1 1	50	25	110	nd	4	nd	
150	6	50	24	134	0.1	10	nd	
1.9800E 11200N	5	53	24	143	0.2	10	nd	
	1			1		!		

REMARKS: Ag* = Ag background corrected.

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

Signed: ______ nd = none getected

ppm = parts per million

MANGEDOHEM LAE LTD 1811 FERRER TIT - E. 100F TH MANCOLINEF E.C. CANADA V7F 283

TELERHO VEL GER ED11 AREA COLE, 60-

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

% Mo x 1.6683 = % MoS₁

Report No: 81-79-019 Page 4 of 8 Samples Arrived: Report Completed: For Project: Analyst:

Comple Marking	₩o	Cu	Pb	Zn	Ag*	As	Au	· · · · · · · · · · · · · · · · · · ·
	שכס	מקס	חכר	שממ	חמס	שמס	daa	·
L10200EA: 10050N	∴ 5	_298	71	109	0.9	-400		
	- 4		- 70		· 1.0	300	150	
150 2	33333	184	126 3	228	52172	400	380	
- 200			- 49	=146	- 0.7	- 300	140	
	=2	- 97	-53	104	D.8	100	60	
	22	-153	-55	104	0.6	_100	-40,-	
350	-1	- 39	- <u>1</u> 6	103	-0.1	= 50	0L-	
400	1ª so		221	299	0.1	5 760	* 20	
450	1	- 48	_24	169	0.2	100	30	ar e yandi dhirta hanan daga da e t
500	1	-37	18	135	0.1	20	20	
5 50	.1	= 38	16	121	0.1	40	10	
600	. 1 -	-44	16	124	0.2		10	
650	1	49	16	113	nd		nd	
750	2	47	25	84	0.2	10	nd	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
800	7	50	25	129	0.3	10	nð	
850	12	51	26	191	0.1	10	nd	
. 90 0]4	55	29	208	nd	- 4	nd	
	14		26	205	0.2	0 1 0	- nd	
L10200E & 11000N	19	61	24	257	0.1	10	.20	
L10300E 🛆 8750N	3	39	20	175	nd	10 .	10	
800	5	46	22	206	nd	40	10	
850	3	.79	23	138	0.4	-4	10	
	. 6	56	26	150	0.1	20	סנ	
8950	8	41 ·	26	156	nd	.10	nd	.
9000	5	44	27	114	0.1	4	10	
050	5	50	23	181	0.3	10	10	
100	3	38	24	149	0.2	4	30	
.150	2	45	21	220	0.4		10.	
200	3	30	20	314	0.2	4	10	
250	3	32	23	215	0.6	4	10	
300	3	44	24	228	0.4	20	10	
350	3	44	22	286	0.3	20	10	
400	.6	72	25	209	nd	20	10	÷
450	6	69	24	166	nd	40	10	
500	6	-50	23	217	0.2	40	nd	
550	3	39	21	211	nd	20	nd	
600	4	48	21	180	0.1	20	nd	
650	7	57	22	248	0.3	60	10	
L10300E 🛆 9700N	25	182	42	128	0.5	200	10	
					-		-	~
$\frac{1}{3} = A \sigma b a c$	kground c	orrected.			·····			

ppm = parts per miliion

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

1 Troy pz./ton = 34.28 ppm

VANGEDOHEM LABILTD 1621 FEMBERTON AUE NORTH MANODULEF ELC., CANADA, M7P 283

TELSTHING SCTE251 AREALODDER 504

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Prism Resources Ltd.

Attention:

Report No:	81-79-019	Page	5	đ	\$
Samples Arriv	ed:				
Report Compl	leted:				
For Project:					
Analyst:					

l	1		1		1			
Sample Marking	Mo	Cu	PD	Zn	Ag*	AS	Au	
					ַ ַ מכק	שממ	<u>למם</u>	-
L10300E A -9750N	28	183 -	7.6	140	0.1	-400	. 70	در بر از روم به ۲۰۳
-800	12 -	134 -	50		0.4	_300	20	الجير سر آ
	31000	148	361 3	<u>72133</u>	-0.5			
00		209	78		0.7	600	2.60	
09950	-10-	- 267 -	55	76	0.7	400	80_	1
10000	17 🥐 👘	344	81 - 31	124	5.7 ·	1000	160	
050	17-	590	206	265	-1.6	600 -	230	
00E::::		296	135	268	1.2	800	240-	
200	1	121.	111	165	0.8	600	40	
250	2	105	76	244	0.3	600	100	
300	5.	580	34	98	0.9	10		
- 350	-4	79	38	116	0.8	-60	20	
400 -	2		29	=108	0.3	20		ार्ग अस्ति क् संस्थित
450	2	44	32	87	0.6	50	10	· · · · · · · · · · · · · · · · · · ·
500	7	53	23	66	0.4	35	nd	
.550	Ĺ	50	20	94	nd	25	nd	
600	2	37	16	90	0.1	35	nd	
÷:650	1	- 42	19	115	0.2	40	nd	wax
700	1	41	18	.110	0.1	50	30	
750	7	42	19	104	nd	10	nd	
800	9	47	22	86	0.2	10	nd	
850	5	63	29	158	0.1	15	nđ	
L10300E 🛆 10900N	6	52		129	0.1	15	nd	
L10400E A 18850N	3	25	19	116	nd	10	 nd	
900	7	49	30	149	nd	10	nd	
08950	3	66	26	170	0.1	10	nd	······································
00000	4	44	2]	221	0.2	10	nđ	
050	2	34	16	234	0.2		nd	
- 100	3	28	18	155	nd	10	nđ	•
150	4	20 47	21	23]	0.4	15	nd	
200	4	82	2]	195	0.9	_10		-
250	5	36	20	248	0.1	20	10	
300	4	45	25	241	0.6	15	nd	
350	5	40	23	283	0.2	.15	nd	* ×.
400	4	54	21	166	nd	50	10	
450	Δ	<u></u>	22	228	01	50		
- 500	-	57	25	977	0.1	00 60	nd	
500		33		201	0.2		nd	
	5	40	23 27	220	0.2	40	nd	
L10400E 41 09600N .	× ,	01 -	, ^۲	230,	0.2	40	110	<i></i>
	·		· '					

REMARKS: $Ag^* = Ag$ background corrected.

% Mo x 1.6683 = % MoS₂

Signed: _____

nd = none detected

ppm = parts per million

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

NANGEDOHEM LAÈ L'IU 150 PEMBERITO - E NORTH VANCOUVER EM CANADA V7P 253

mail is in the second sec AREA CLOE ELA

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

Report No:	81-79-019	Fage	6	D.	8	
Samples Arrive	ed:					
Report Compl	eted:					
For Project:						
Anaiyst:						

	,		· · · · · · · · · · · · · · · · · · ·		·			
Sample Marking	Mo	Cu	Pb	Zn.	_Ag≠	As	_Au	
		mqq	שקקי	ppm	DDE	תקס ו	<u>ɗag</u>	
110400E 4 9650N				7216	10.3	.300	- 30	-
700	29	- = 32 -	44	246	.0.3	400	30	
7505	60 - SU	164	321D5	<u></u> 100	-0- 5	500	£230	
800	- 24	228		191		600	.230	* .
850	- 4	167	-94	- 3113	0.E	<u> </u>	- 90	· · ·
900	2 4 - 1	18 2	76	- 120		800	70	11-1-3
L10400E 09950N		181	67		~. 0.4	600	-80	
0000	4	252	2120	214	20.9	600		1999 B.
050.	21	.2235	389	-74	0.7	800	130	
100	-9	248	207	.139	1.2	1000	320	
_150	2	157		228	1.7	1000	340	
_200	_3	1-110	7.5	257	1.0	1000	.10	
250	E	93		391	1.5	1000	450	
300	5	16	.55	29	nd	15	10	
110400E \$10350N -	3	44	45	206	0.7		10	
L10500E 8950N	- 5	. 45	25	147	0.1	10	10	
9000	.3	£3	21	162	0.1	20	nd	
9050	3	43		138	.0.1	10	10	
100	6	42	22	.196	0.3	50	10	
150	6	39	<u>י די</u>	198	0.3	15	10	
200	7	64	25	206	1.0	15	nd	
250	-6.	-42	.32	205	0.1	20	nð	
300	7		28	287	0.3	.35	nd	
250	lo	- 74	32	228	0.1	60	nd -	
400	12		39	239	0.2	300	10	
450	-9	74	-24	331	0.1	60	nd	
500	8	84	29	269	0.1	100	10	
550	. 14		30	327	0.2	100	20	
600	6	- 783	-34	220	0.3	300	30	
650	-19	121	56	420	0.2	1000	70	
700	_28	247		131	0.2	400	100	1
750	23	_308	74	.102	0.2	800	220	
800		::203	72	151	0.9	800	140	
850	17	296	930	540	2;3	1000	410	
900	10	256	132	156	1.0	1000	200	
L10500E 9950N	5	165	.96	161	0.5	600	70	
L10600E 9050N	-3	51	-25	221	0.3	10	nd	
100	_3	55	22	214	nd	10	nd	
L10600E 9150N	3	34	21	153	0.1	10	10	
LIGGOOD STOOM	~ .	~ /				-	-	

REMARKS: Ag* = Ag background corrected.

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

nd = none detected ppm = parts per million

VANCEOONEN LABITE NORTH V ANGULVER E.C., CANADA N7P 2S3

TELERIC E SSS 5211 AREA CODE. 804

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

81-79-019 Page 7 of 8 Report No: Samples Arrived: **Report Completed:** For Project: Anaiyst:

		Mo	Cu	Pb	Zn	Ag*	As	Au	
Samp	le Marking	חמם	ndd	נומס	שמס	ב שממ	שממ	daa	
L10600E	9200N	4	43	24	189 -	0.4	.25	nđ	-
		-7	55.	22	_178	0.4	- 80 -	20	
	300	226	47	26	152	0.2	2 80	10	
	-350		= 512 -	- 22 -	178	==0.3		10	
the second states of the	-400	6	75-	22	3-151	0.4	- 4	br	
n na ser	450	27	86 -	25	-3.365	≥0.1	25	10 ·	
المسافق التبري فالم	500	- 13	95		296	-0.1	100	20	1999 - 1999 -
	.550	12	814		540	-20.3	100	20	
	600	7	.99	36	-263	0.72	i 300	90	······································
	650	6	1113	56	214	0.4	800	140_	·
	700	6	159	145	120	1.4	1000	440 -	•
-	750		247	71	<u> </u>	0.8	008	200	
	800	15	162	82	124	0_5	600	110	
	850	12	231	178	116	0-8	1000	.230	
· ·	900	9	279	95	144	0.7	<u> </u>	110	
	9950	10	232	106	205	0.6	1000	80	
	10000	3	135	93	306	0.7	800	160	and the second of
	.150	1	.26	21	-78	0.6	150	nd	
	100	2	91	69	.288	0.8	600	290	
3 	150	2	95	80	510	0.4	800	190	·····
;	200	3	115	71	480	1.0	800	330	
:		2	76	128	396	0.8	800	230	···· .
	,350	10	72	40	115	.0.1	100	20	د. د بورد مصور در ا
L10600E	10400N	3		31	81	0.3	40	nd	
L10700E	9150N	<u>j 3</u>	44	24	2]4	0.3	10	nd	
	200	4	49	32	298	0.1	30	nd	
1	250	7	24	23	187	0.3	10	nd	ar
	.300	5.	.37	25	155	0.1	4	nd	··· · · · · · · · · · · · · · · · · ·
	350	. 9	66	31	530	0.4	50	10	То., н
	400	18	91	29.	620	0.3	50	10	
	450	16	68	32	358	0.1	400	20	
	500	10	59	32	291	0.1	100	. na	<i>.</i> .
	550	4	74	34	321	nd	150	na	. من المواجعة ال
	600	5	82	43	203	0.1	100	40	
2	650	16	133	53	249	0.2	500	120	
	700	24	261	118	266	0.5	100	90	
	750	35	319	84	89	0.1	500	120	
	800	20	311	61	96	0.4	400	120	
L10700E	9850N	20	207	64	133	0.5	500	100	
EEMARKS:	$Ag^* = Ag ba$	ckground	corrected	•	τ Γ	1			

% Mo x 1.6683 = % McS,

Ag background corrected. Ag

Signed:

1 Troy oz./ton = 34.28 ppm

```
ppm = parts per miliion
nc = none detected
```

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

VANGEDOHEM LABILTE (EDOPENDERNTON ANE (EDPTHINACKODUNEF, E.C.) CANADAN V7P 283

TELEVEL CONSECT AFEA CODELECA

• Specialising Ir. Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Report No: 81-79-019 Page 8 of 8 Samples Arrived: Report Completed: For Project: Analyst:

Attention:

\$

Sample Marking	Мо	Cu	Pb	Zn	_ Ag*	As	Au	
	DDE	mag	מכס	מכס ו		שמת	daa	
L10700E 239900N	50	258	90	.162	0.3	300	70	-3.22 - L
L10700E #9950N	i ∵⊴6	116 .	67	119 🤉	- 0.2	~400	30	-TE
L10800E 9250N	33	45	-21	262	30.2	335-10	nd 😴	
300	- 26	49	20	19 8	ng	= 25	10	
5350	= 9	66	22	- 610 👘	0:2	-15 -	nd 🗢	ः
i	- 16	- 27.5	= 26	-450	md -	- 60	nd -	
7-500	₹8	155		580	-0.1	-4	10 -	
5,550 € 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 6	569	3360	250	0.8	400	170	
- 600	5	.56	23	112	.nd	150	.70 -	
650	- 9	86	28	164	nd	150	10	
-700	26	244	114	103	0.6	500	100	
750	21	- 225	43	106	nd	400	60	
*800	22	26	12	39	nd	- 20	10 7	ock
* 850	18	274	56	123	nd	500	70	· ·····
900	8	73	30	139	nd	80	23	-
1.10800E 9950N	1 11	130	1 34	124	nd	<u> </u>	30	
1.10900E 9350N	4	55	22	267	nd	50	20	
400		41		370	<u></u>	60	้ วิถั-ร่	·
450	i .4	62	23	247	nd	80	10	
500		7/	10	742	nd	00 100	10	
550	<u> </u>	60	21	122	0.5	<u> </u>	220 /	
600	1 - 5	- 55 - 55		161	- 010 - 73	150	10	
650	5	25	77	-74		300	70	
700		45	 10	17	0.0	200	20 1	
750	2	45	10 10	אין רסי	0.1	150	- 20 n - 30	
7.50	4	<u></u>	29	710	0.1	100	30	
850	- 4 - c			310	0.1	100	50	
000	0 - 2	77	70	-200 ·	0.1 ad	300	20	
	0		.30	220		100	20	
L10900E 9950N	. <u>∠</u>		31 75	140	0.1	200	ີ	
<u>L 9300E 9730N</u> .		- 3 5	15			10	10 ~ 1	OCK
							• •	
and the second secon					en de la composition	•		. 1
the shear and an in the second sec		and the state of the	an a the set and	State and an	لمناد المسجعيدات	ر. بې رۇن بېلىرىچە -	محمد بر داد معم	-
	a da an					•	1.	-
					1		·	<u> </u>
	•					•	÷ _	
				-			-	, ļ
			į		a (j. 1	•		
			:	3	- 4	,		ĺ
		!						

REMARKS: Ag* = Ag background corrected.

% Mo x 1.6653 = % MoS₂

Signed: _____

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

VANGEOCHEM LAB LTDT fer persentorula sel TH VANCOUVER, E.C. CANADA V7PU252

TELER-CIKEY BES EZTS AREA DODE 604

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-	Beport No: 81-	79-021 Page 1 of 4
Prism Resources Ltd.	Samples Arrived:	June 30, 1981
3rd Floor, 744 W. Hastings	St. Report Completed:	July 30, 1981
Vancouver, B.C. V6C 1A5	For Project:	Taseko
Attention:	Anaiyst:	E.T. & VGC Staff
	Invoice: 6340	Job = 81-160

	Sample Marking	Mo	Cu	[–] Pb	Zn	Ag*	As	LUA	بر فرد مرد
		<u>ा</u> वव्	mqq	maa		שממ	תמס	daa	-
	L8600E9900N	8	88	32	249	0.9		\sim nd	552
	<u></u>	- 5	120	- 40	.262 •	· 0.5 - ·		nd	
	10000	3352	86 7.	-40	223	0.4	200	1 0	
j	50		- 39	33	550		60	nd	
	100	*+.4	50		170	~0.1	300	nd	
	150	3	44.	26	263	+0.2	==100	-nd .	
	L8600E 10200N	4	47-		236	-0.1	200	10	
	LB700E 9800N		135		367	- D: 5 35	150	20	
	850	6	121	29	170	0.4	100	30	
1	900	6	9 8	31	188	0.1	150	nd	
	.9950	б	9 0	30	193	nd	150	.10	
j	10000	4	44	25.	345	0.4	300	-nd	
		2	40	27	.241	0.2	- 80	10	
	100	.2	40	31	370	0.3	100	nd	··· ···
د 4	150	4	58	36	301	0.3	200	nd	
ł	··· 200	110 -	4 2 ·	17	840	0.4	4	1004	Rock
-	250	9	52	31	255	0.2	80	.10	1
	300	-4	28	14	76	0.1	30	nd	Rock
	350	1	57	34	297	0.2	500	40	1
	400	9	56	29	236	0.3	60	nd	1
	-450	9	52	.25	179	0.1	60	nd	•
ŗ	L8700E 10500N	3	26	8	62	D.2	4	10	Rock
	L8800E 9700N	15	169	19	119	nd	:35	nd	
Ì	.750	9	125	21	144	0.2	.30	nd	-
	800	7	49	20	199	0.2	15	nd	
-	850	8	44	30	305	0.2	25	10	
	900	4	57	19	192	0.2	10	nd	. 1
	9950	4	46	.17	152	0.2	10	nd	
ł	10000	5	46	39	181	0.5	20	nd	
ļ	50	11	41	31	278	0.1	30	nd	1
ł	100	8	60	33	307	0.4	35	20	
ţ	150	6	62	30	304	0.3	30	nd	
-	200	10	68	27	314	0.4	35	nd	
z İ	250	22	74	28	820	0.5	30	nd	
-		13	100	26	490	nd	50	20	
ž	350	15	165	38	970	0.3	. 35	nd	
Z	400	23	102	33.	315	0.2	80	10	Ĩ
4 2	450	9	89	32	.510	0.2	100	nd	
11	L8800E 10500N	9	109	57	690	0.3	80	20	Ì
1		1				ł			•

REMARKS: Ag* = Ag background corrected.

Signed:

ppm = parts per million

VANGEOCHEN LAE LTD TECHPERIDEERTC : 2 E NURTH NAMODINEF, B.C. . CANADA V7P 283

AREA CODELEGA

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

برعيد بمنبود بالواهدي

Attention:

Report No:	81-79-021	Page	2	DI	4
Samples Arri	ved:				
Report Com	pleted:				
For Project:					
Anaivst:					-
					•

1			1	4		;		
Sample	Marking	Mo	Сш-	- Pb	·Zn	Ag*	- As	- Au
		m		l ppm		שקק	שכת	למכ
18800E	10550N	- 2	64		258	0.4	35	10
a contra a company a company a company	600	12	.78	26	690	0.6		10
L8800E	10650N		83		297	0.6	2220	nd
18900E	9600N	10	71 -	19	-226	-0.4	2 -	10
	650	22	660	-21	142	06	- 30	nd
	700	22	1030-1					- 10
	750	-38	1040	29	124	-0.7	-72	nd
		23	345		190	0.4	15	10
	850	7	223	22	128	0.6	10	nđ
	900	10	200	22	108	0.3	4	no
	9950	5	181	29	92	0.5	30	nâ
2	10000	18	660	15	70	0.3	4	10
n 45 %	50	14	278	18	92	0.4	2	nd
	100	10	136	27	225	0.2	80	nd
	150	5	88	26	281	0.3	80	nd
	200	10	142	26	220	D.1	2	nd
	250	9	133	29	191	0.2	35	nd
	300	19	218	.32	202	0.6	35	10
	350	5	194	32	373	0.3	20	nd
	400	3	234	26	335	0.3	30	nd
•	450	.3	119	30	275	0.2	100	nd
	500	4	204	43	490	0.5	200	10
l.	550	6	152	54	233	0.6	80	J0
•	600	9	103	30	224	0.3	50	nd
;	650	6 r	<u>98</u>	37	2470	0.7	15	nd
L8900E	10700N	10	76	33	293	0.5	60	nd
L9000E	9500N	19	215	34	117	0.4	300	30
	550	90	5.20	31	100	0.3	10	10
	600	110 🗸	960	26	106	0.8	10	10
Į	650	70	930	27	114	0.8	200	nd
	700	12	319	18	141	0.7	20	nd
	7.50	11	480	21	105	1:2	35	nd
	800	8	122	20 -	105	0.3	30	nd
	850	9	236	.22	123	0.2	20	10
. .		12	270	23	139	0.7	35	nd
	9950	10	203	25	89	0.3	25	nd
	10000	9	198	29	96	0.2	15	10
	50	7	288	26 -	88	1.2	30	30
L9000E	loloon	12	275	34	101	0.3	20	10
ſ <u></u>	,	/			1		· /	<i>·</i>

REMARKS:

Ag* = Ag background corrected.

Signed:

nd = none detected

ppm = parts per million

VANGEOCHEMILAÈ LTD. I 1621 PEMBERTO - A IEU NORTH MANCOLIVER, E.C., CANADA - V7P-283

TELEPHONIC 989-5231 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism Resources Ltd.

Attention:

Report No:	81-79-021	Page	-3 of	4
Samples Arriv	ed:			
Report Compl	lered:			
For Project:				
Analyst:				

Sample	Marking	Мо ррш	Cu ppm	Pb ppm	Zn ppm	Ag★ ppm	As ncq	Au ppb	· · ·
19000E	10150N	.7 -	163	20	146	0.3	1 15	nd	
	200	7	240	19	- 119 -	-0.3	-10	-10 ·	-
	250	8	159	26	214	₹0.2°	333	and T	
 A subset of the second distance /li>	300	4	135	.32	27.9	0_2	.35	nd	
412.	350	2	- 133	27	-237	- 0.1	35	nd	منده، منابع
يەر قىمەر . مۇرىي بە	400	3	191	- 31	264	0.5		10	್ಷ ಬ್ ಶಿಂತ್
	450	· .4	二68一	. 35	5D0	0.6	50	nd	~
_1.9000E	10500N	33	220		510	0.4	60	210	-
19100E	9450N	15	124	33	195	0.3	300	nd	
	500	21	~ 207	34	93	0.2	150	nd	
	550	22	219	33	90	- 0.2	200	10	
	600	9	246	29	107	0.5	15	10	
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	650	17	550	29	160	0.2	35	nd	The state of the
	700	11	720	29	101	D.9	10	nd	many statistic
	750	5	145	21	138	0.5	15	nđ	
	800	34	53	18	46	0.2	15	nd	Rock
	9900	16	238	24	34	0.3	15	10	
	10050	11	_265	25	- 77	0.4	10 -	nd	- mar age stary
	100	19	336	23	6 6	0.3	10	nd	
	150	11	830	27	79	1.7	10	50	
	200	47	790	.16	75	0.5	4	10	
	250	.14	191	25	.162	0.2	35	nd	
	300	8	147	28	212	0.3	35	nd	
	350	6	140	33	288	0.4	35	nd	
	400	7	198	32	260	0.2	30	10	
<i>.</i>	450	5	182	41	341	0.4	60	nd	
L9100E	10500N	11	139	35	233	0.6	50	nd	
19200E	9600N	22	204	.25	100	0.4	100	nd	
	650	8	85	18	124	0.1	30	nd	
	700	7	100	21	165	0.3	10	nd	
	750	10	294	38	97	0.6	- 15	10	
	800	13	196	26	80	0.3	10	10	
	.850	2	23	.9	24	0.2	2	nd	Rock
	900	17	222	34	160	0.3	80	10	
	9950	13	270	25	134	0.3	2	nd	
	10000	12	640	31	30	0.6	4	10	
	50	17	313	27	117	0.2	20	nd	
	100	44	650	21	92	0.2	.4	10	
L9200E	10150N	7	288	10	75	0.3	2	nd	Rock
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					م``		~ /		/

% Mo x 1.6683 = % MoS₂

S₂ 1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

Signed: ____

nd = none detected

ppm = parts per million

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

VANGEDOHEM LAE LTD. SEIT PEMBERTITTE - Stor NORTH NAMOOL VER. E.C. CANADA - V7F 283

TELEPHOLE LUBERT AREA ODDE 504

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Prism REsources Ltd.

Attention:

Report No:	81-79-021	Page	4	of	-4
Samples Arriv	ed:				
Report Compl	eted:				
For Project:					
Analyst:					

Sample Marking	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag* ppm	As ncg	Au daa
L9200E 10200N 1300	.39 V 	_1040 _106 =	15 -43	71 .221	0.8 0.6	-4 	_10 _nd
-400 450		-118 -	29 27	103 133 205	0.2 0.3	80 <i>-</i> 100	and and
. 5 00 .550	11	- 90	- 31 33	231 219	10.4 10.3	150 80	10 .nd
19200E 10600N	10 -	- 64		181	1 ,4	100	
		= 2 ·			- 11 (1) (1) (1)	ر. معرف سروف	and the second
and a start of the second start The second start of the second st			and the second s	al (" al (" de la constante	5.00 m	n e san an a	in the second
		- - 	· · · · · · · · · · · · · · · · · · ·				a
					 A state of the sta		
		<u>.</u>	; -				-
		4	1	* * * * * *		- · · · · ·	
۰ ۱۹۰۰ - ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ - ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰						р. 2014ра – Г.	
						a a constante da con	ارا با هرمینی باز اینین این اینم می

LEGEND

gridline station, geochemical value in ppm geochemical contour

topographic contours, 200' intervals

corner claim post creeks

PRISM RESOURCES LIMITED TYON CLAIM SOIL GEOCHEMISTRY - As(ppm) MTS 920/3 SCALE (metres) 0 100 200 300 400 Figure 7

LEGEND

gridline station, geochemical value in ppb
geochemical contour
topographic contours, 200' intervals
corner claim post
creeks

PRISM RESOURCES LIMITED TYON CLAIM SOIL GEOCHEMISTRY - Au(ppb) Of Div. SCALE (metres) 0 100 200 300 400

Figure 8

·		
LEG	END	
plagioclase porphyry		geological contact(defined, approximate)
orphyry	Y	bedding(inclined, vertical, overturned)
nodiorite	21 AZ 22 Milt.	fractures(inclined, vertical, sulphide bearing)
nblende plagioclase	mm	shear zone
dspar microporphyry	<u>+</u>	anticline, direction of plunge
	?nnnn?	fault (assumed)
		outcrop boundary
		area of mixed talus and outcrop, primarily hornfels
alt	•	gridline station
karn zones		corner claim post
	6300	topographic contours, 200' intervals
sandstoñe, conglomerate	K	creeks
		-
	en en esta en e	

.

PRISM RESOURCES LIMITED TYON CLAIM GEOLOGY Div. Div. SCALE (metres) 0 00 200 300 400 Figure 3

•

NTS 920/3

.

.

LEGEND

gridline station, geochemical value in ppm

geochemical contour

topographic contours, 200' intervals

corner claim post

creeks

PRISM RESOURCES LIMITED

TYON CLAIM

SOIL GEOCHEMISTRY - Cu(ppm)

Div.	SCALE	(metres)		NTS	920/3
	100	200 300	400	Fig	jure 5

LEGEND

geochemical contour

co**rner** claim post

creeks

gridline station, geochemical value in ppm

topographic contours, 200' intervals

PRISM RESOURCES LIMITED TYON CLAIM SOIL GEOCHEMISTRY - Ag(ppm) ng Div. NTS 920/3 SCALE (metres) 0 100 200 300 400 Figure 6

•

13 81 0.2 4 10	talus chip sample, geochemical values for Mo,Cu,Pb,Zn,Ag,As(all ppm) & Au(ppb)
1 29 12 28 nd 15 10	outcrop chip sample, geochemical values as above
. 001 . 017 1.83 1.32 2.28 . 182	assay sample, values for Mo,Cu,Pb,Zn (%),Ag & Au(oz/ton)
	gridline station
	corner claim post
	creeks
000	topographic contours, 200' intervals
PRI S	M RESOURCES LIMITED
	TYON CLAIM 9753
ROCK	GEOCHEMISTRY (all elements)
Div.	NTS 920/3 SCALE (metres)
	Figure 9