81-#1001-9772

GEOLOGICAL & GEOCHEMICAL REPORT

ON THE

DUG CLAIMS

KAMLOOPS & LILLOOET MINING DIVISIONS

BRITISH COLUMBIA

FOR

DENISON MINES LTD., #2300 - 650 W. Georgia St., VANCOUVER, B. C.

FIELD WORK PERFORMED: JULY 8 - AUGUST 27, 1981

LOCATION:

1). 40 KM SOUTHWEST OF LILLOOET, B.C.

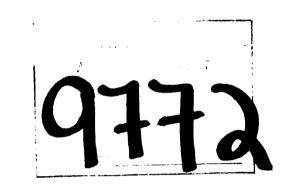
2). N.T.S. 92J/8

3). 50°20'N; 122°11'W

PREPARED BY

KERR, DAWSON & ASSOCIATES LTD.

#6 Nicola Place, 310 Nicola Street Kamloops, B.C.


JOHN R. KERR,

NOVEMBER 10, 1981

GEOLOGICAL & GEOCHEMICAL REPORT

- on the -

DUG CLAIMS KAMLOOPS & LILLOOET MINING DIVISIONS BRITISH COLUMBIA

- for -

DENISON MINES LTD., #2300 - 650 W. Georgia St., VANCOUVER, B. C.

FIELD WORK PERFORMED:

July 8 - August 27, 1981

LOCATION:

40 km. southwest of Lillooet, B. C.
 N.T.S. 92J/8
 50° 20' N; 122°11' W

Prepared by:

KERR, DAWSON & ASSOCIATES LTD., #206, 310 Nicola Street, Kamloops, B. C.

> John R. Kerr, November 10, 1981

INDEX

Page	No.
------	-----

																1.	
SUMMARY .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.	
INTRODUCTIO	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3.	
	Ge	ner	al S	Sta	teme	ent	•	•	•	•	•	•	•	•	•	3.	
	Lo	cat	ion	&	Acce	ess	•	•	•	•	•	•	•	•	•	3.	
	То	pog	rapl	hy	& Ve	eget	tat:	ion	•	•	•	•	٠	•	•	4.	
· ·	Ç1	aim	s	•	•	•	•	•	•	•	•	•	•	•	•	5.	
	Hi	sto	ry	•	•	•	•	•	•	•	•	•	•	•	•	6.	
GEOLOGY .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6.	
	Ro	ck	Des	cri	ptic	ons	•	. •	•	•	•	•		•	•	7.	
-	St	ruc	tura	al	Geo	logy	У	•	•	•	•	•	•	•	•	10.	
	Mi	ner	ali	zat	ion	& #	Alte	erat	tio	n	•	•	•	•	•	11.	
GEOCHEMISTR	Y	-	•	•	•	•	•	•	•	•	•	•	•	•	•	12.	
DISCUSSION	OF	RES	ULT	S	•	•	•	•	•	•	•	•	•	•	•	15.	
RECOMMENDAT	ION	iŚ	•	•	•	•	•	•	•	•	•	•	•	•	•	18.	

APPENDICES:

APPENDIX A	-	Cost Statements
APPENDIX B	-	Geochemical Date
APPENDIX C	-	Writer's Certificate

١

LIST OF MAPS

È.

1

-

1

Figure	233-1	Location Map
Figure	233–2	Index Map
Figure	233-81-3	Compilation Map with General Geology & Mo Geochemical Anomalies (1:20,000)
Figure	233-81-4	Detailed Geological Plan (1:5000)
Figure	233-81-5	Mo Distribution in Soil, Rock & Silt (1:5000)
Figure	233-81-6	Cu Distribution in Soil, Rock & Silt (1:5000)

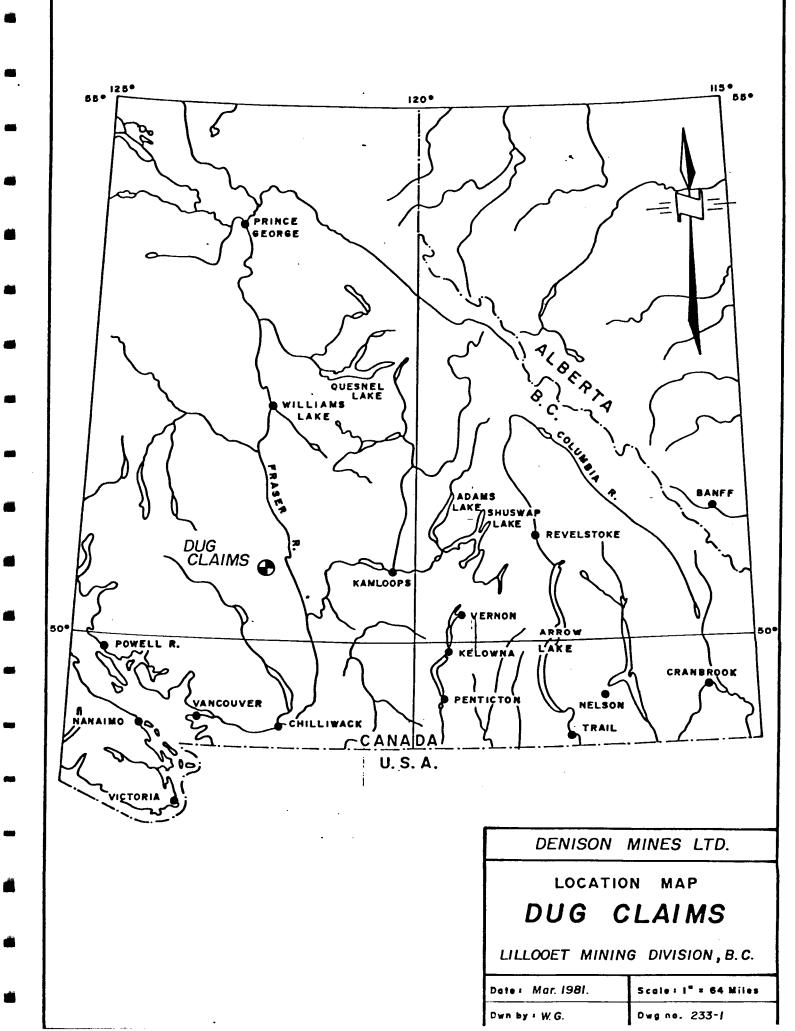
SUMMARY

- 1). The Dug claims were staked as the result of a regional exploration programme. The 7 claims (136 Units) are located approximately 40 km southwest of Lillooet. The claims occur within the rugged Coast Range Mountains at elevations greater than 6000 ft (a.s.l.). Showings on the claims are considered new discoveries.
- 2). Rocks within the claim block are dominantly a complex variety of intrusive rocks. Small roof pendants of metasedimentary rocks occur in the western portion of the property. At least 5 various intrusive rocks have been identified, ranging from large intrusive masses of quartz monzonite and granodiorite to dykes and small stocks of basalt. Phases of the main intrusive mass have been recognized, mainly textural variations, ranging from fine - medium grained to porphyritic.
- 3). An intrusive center has been identified, which apparently localizes three of the various intrusive rocks. This center has been subjected to intense fracturing, typical argillic alteration, and invasion of sulphides. Leaching and weathering of this zone has created an intense gossan.
- 4). Quartz veins carrying pyrite, chalcopyrite, bornite and molybdenite have been recognized in two zones in the western portion of the claim block. Alteration associated with these veins is typically argillic, however is localized to only the selvages of the veins, and a short distance into the wall-rock. The density of the veins, and content of sulphides is insufficient to consider any portion of these zones as economic.

- 5). Soil, silt and rock chip sampling was completed over the central portion of the claim area. Samples were collected at 50 meter intervals along preselected contours. In areas of precipitous terrane, mountain climbers (also geologists) were utilized to collect data. A total of 624 samples were collected, all being analyzed for copper and molybdenum. Statistical analyses were completed for each metal to derive various anomalous limits. Anomalies were subsequently interpreted on individual metal maps.
- 6). A weak to moderate copper anomaly is associated with the gossan zone. Rock chip samples collected from the gossan indicate only background copper content. The soil anomaly reflects the residual copper in the rock prior to leaching.
- 7). A strong molybdenum anomaly and a weak copper anomaly are associated with the two vein showings in the western portion of the property. These anomalies, although not coincident, are subparallel and form a semi-arcuate pattern within a 1.5 km radius from the intrusive center. The two anomalies also appear to be controlled by elevations; the copper anomaly confined to the 6800 to 7300 ft. contours, and the molybdenum confined to the 6500 to 7000 ft. contours. The vein showings and associated geochemical anomalies are therefore related to the intrusive center, and show a possible vertical zoning related to the textural zoning of the original batholith. The strongest Mo anomalies appear to be associated with the gradational contact of the porphyritic guartz monzonite, and the med - coarse grained granodiorite.
- 8). The complex, highly fractured, and altered intrusive center offers the potential for the discovery of a prophyritic Cu deposit, and a peripheral zone within 1.5 km of this zone offers potential for discovery of a porphyry Mo(Cu) deposit. Prior to drilling, a detailed surface evaluation programme is recommended to refine drill targets.

INTRODUCTION

General Statement


A regional exploration programme in a 640 square kilometer area southwest of Lillooet, completed by Denison Mines Ltd. during the summer of 1980, led to the staking of the DUG 1 – 8 claims. The claims cover a prominent gossan zone and widely disbursed anomalous silt samples (Mo, Cu, Zn & Ag). The potential of a major porphyry Mo, Cu deposit existing within this claim block is considered excellent.

Follow-up work completed during 1980 led to the discovery of copper and molybdenum bearing quartz veins in a weakly altered granodiorite in the western portion of the claims, and outlined a broad geochemical anomaly associated with this mineralization and with the gossan. Assessment work was filed on the DUG 1 - 7 claims. As DUG 8 is located within a mineral reserve area, this claim was permitted to lapse.

The 1981 programme consisted of detailed geochemical and geological mapping traverses in areas of known mineralization and over the gossan area. The skills of professional mountain climbers (also geologists) were used to sample and map areas of very precipitous terrane. This report documents the 1981 data.

Location and Access

The Dug claims are situated immediately south of Gott Peak at the headwaters of Blowdown, Rampart and South Rampart creeks, the former flowing into Cayoosh Creek, and the latter two flowing into the Stein River. By air, the claims are located approximately 40 km. southwest of Lillooet, B. C.

The approximate geographic coordinates at the center of the property are $50^{\circ}20'$ N and $122^{\circ}11'W$ (N.T.S. 92J/8). A road intersects the northern portion of the claim block. This road connects with the main Lillooet - Pemberton highway 11 km. to the north. It would not be difficult to construct a 4-wheel drive road to the central portion of the property, a distance of 4 - 5 kilometers.

Topography & Vegetation

The Dug claims are situated within the Coast Range Mountains and are therefore not without the typical rugged terrain found in this region of British Columbia. Topographic relief over the claims is in excess of 3,000' (900 m) ranging from a low of 5,100' in the southeast corner of the property to over 8,000' in the western portion of Dug #7 and #8.

Slopes vary from moderate to steep. Locally precipitous areas are found. The bottoms of the main creek valleys are often the broad, "U" shaped valleys typical of well glaciated areas. Numerous small lakes and ponds are found in the circues and amongst the morainal debris common to such areas.

Vegetation above the 6,000' (1,830 m) level consists primarily of alpine shrubs, grasses and stunted balsam trees. Relatively thick stands of spruce and balsam are found in the lower portions (below 6,000') of Blowdown, Rampart and South Rampart Creeks.

Claims

The DUG claim group consists of seven contiguous claims (136 units) staked under the Modified Grid System. Details of the claims are as follows:

Claim Name	Record No.	No. Units	Mining Division	Expiry Date*
DUG	2840	20	Kamloops	July 28, 1983
DUG 2	1492	20	Lillooet	August 1, 1982
DUG 3	1493	20	Lillooet	August 1, 1982
DUG 4	2852	18	Kamloops	July 31, 1983
DUG 5	2853	18	Kamloops	July 31, 1983
DUG 6	2854	20	Kamloops	- July 31, 1983
DUG 7	.2855	20	Kamloops	July 31, 1983

* Statement of work completed July 8 - 23, 1981 has previously been filed, and dates shown are subject to approval of this report. These dates are to be amended with filing of additional work completed after August 1, 1981.

All claims are recorded in the name of Denison Mines Ltd.

History

The region investigated during the July regional silting programme has a history of mining dating back to the late 1890's with such properties as the Grand Cache (Au) (1895 - 1910); Silver Queen (Ag, Au) (1930's); and the Index property (Mo) (early 1900's).

The nearest mining property to the Dug claims is the Silver Queen (Patrick) property located on Rampart Creek. Discovered in the 1930's, this property consists of lenses of massive galena and sphalerite carrying silver and gold values in shear zones in a granodiorite.

Old claim posts on the gossan zone in the Dug claim indicate that this area received some attention; however, no record or evidence of any work was found.

GEOLOGY

The geology of the area of the Dug claims is generalized in G.S.C. paper 73-17, Pemberton (East Half) Map-Area, by J. A. Roddick and W. W. Hutchison, and accompanying 1:250,000 scale map sheet.

In summary, the entire claim block is shown to be underlain by granodiorite, quartz diorite and quartz monzonite of two batholiths related to the Coast Range Intrusive Complex. Small roofpendants of metasedimentary rocks of the Triassic Bridge River Group exist to the west of the property. Concurrently with soil, rock and silt sampling, the DUG claims were geologically mapped on a scale of 1:5000 (See Figure 233-81-4). All outcrops encountered on each traverse were tied into the nearest sample station. Rock types were identified, noting alteration, veining and mineralization. Major fracture and fault zones were plotted where encountered. 'As four various geologists completed work on this property, some difficulty was encountered in compiling all data and interpreting the geology.

Rock Descriptions:

The oldest rocks encountered on the property are metasedimentary rocks, probably occurring as small roof-pendants, of the Bridge River Group. At least five various intrusive rocks have been identified within the mapped area. The following is a description of all rock types encountered on the property; numbered chronologically from oldest to youngest:

> ROCK UNIT 1 - Dark grey to black, thermally altered, phyllites, argillites and schists of the Triassic Bridge River Group. These rocks were mapped only as talus scree and boulders along the 7500[°] contour in the western portion of the property, and probably reflect small roof pendants of metasediments on ridges in the western border of the map sheet.

ROCK UNIT 2 - Med - coarse grained, generally massive and dense, occasionally porphyritic, mafic rich biotite/hornblende granodiorite or quartz diorite. This rock-type is located on a ridge top in the southwest corner of the map sheet, and is identified as being the oldest intrusive rock in the area. The rock is locally well fractured with quartz veins, aplite and basic dykes. Occasional quartz veins ' carry pyrite and traces of MoS₂.

ROCK UNIT 3 - The most common rock found in all areas of the property, has been subdivided in three distinct phases.

3A - Coarse grained, massive, dense, porphyritic, grey to white, biotite > muscovite rich quartz monzonite. Phenocrysts, up to 2 cm diameter, are dominantly orthoclase, however some quartz phenocrysts are noted. This rock phase has been identified in the northern portion of the property at the head of the east fork of Blowdown Creek. Minor veining and fracturing, with no associated mineralization appear characteristic of this rock.

3B - Pale grey/brown, medium to coarse grained, generally massive and dense quartz monzonite or granodiorite. This rock is located in all portions of the map area. Locally the rock is highly fractured, with a high density of quartz veins and dykes. Alteration of the rock is along selvages and as envelopes along quartz veins. Alteration can be quite intense and inclues sericite, muscovite, clays, minor chlorite and K-feldspar. Associated with the quartz veins are pyrite, chalcopyrite, bornite, molybdenite and malachite. Vein and mineralization intensity is dominant in the northwest and southwest portion of the map area.

In the east-central portion of the map area, near the contact with Rock Unit 4, general widespread weak to moderate alteration of the granodiorite occurs. This is apparently a gradational feature, becoming most intense at the contact zone.

3C - Creamy white/grey, fine - medium, massive, dense granodiorite. The rock occurs as a small capping on top of a steep high knoll in the west/central portion of the map area. Only minor veining, with traces of chalcopyrite and molybdenite were noted in this rock.

There appears to be a possible zoning feature of the three phases of Rock Unit 3. 3A is located in the Blowdown Creek valley at elevations below 6500 ft. 3B occupies most of the map area between elevations of 6500 - 7500 ft. 3C occurs as a small capping on a mountain peak over 7500 ft. elevation. A vertically zoned intrusion is hypothesized, phasing from finegrained at the top to coarse-grained (porphyritic) at depth.

ROCK UNIT 4 - Pale brown, yellow and brick red, medium grained, highly altered and well-fractured quartz monzonite or quartz [±] feldspar porphyry. Alteration includes intense sericite, quartz and clays, with minor K-feldspar. Fracture density is intense estimated to be up to 25 per square meter. The rock mass is in part totally altered showing no original textural features. The rock unit occupies the top and southern portion of a high mountain peak (**7** 8000 ft) in the east central portion of the claim area. The rock is inundated with small irregular stocks, dykes and plugs of Rock Units 5 and 6. Pyrite is by far the most common sulphide found in this rock. Occasional specks of chalcopyrite were noted.

The contact of Rock Unit 3 and 4 has not been observed. It was originally proposed that Rock Unit 4 may be only an altered and well fractured phase of Rock Unit 3. The textural variation, and abundance of quartz eyes (or phenocrysts) in Rock Unit 4 leads the writer to conclude that this Unit is a separate and later intrusion.

ROCK UNIT 5 - Green, fine to medium grained, rusty, altered and pyrite-rich quartz diorite, pyrite content locally up to 15%. Alteration includes moderate to high chlorite, minor sericite and clay.

Some traces of chalcopyrite are associated with pyrite.

This rock unit occurs as large dykes and plugs, showing a general N - S elongation, and appears to intrude only rocks of Unit 4. The rock in general is not as well fractured and as rusty as the rocks of Unit 4. The massive nature of this rock is probably why leaching is not as prevalent as in Unit 4.

ROCK UNIT 6 - The youngest rocks located on the property are dark grey, brown & black, fine grained, occasionally porphyritic basic dykes. At one location within the gossan zone, this rock occurs as a plug or small stock.

These dykes occur in all areas of the claim block, however the frequency appears most dense in areas of located mineralization. Dykes are associated with the N - S trending, steep dipping fractures, however in the gossan zone, basic dykes were mapped showing a N45E, and E - W trend.

Structural Geology:

Small scale structural features mapped on the property reflect general regional structural trends. A major fault zone transects the main gossan zone and Rock Unit 4 in a N3OW direction. Movement along this fault has displaced the large basalt dyke by as much as 30 meters. It is obvious that this fault happened after the emplacement of all rocks in the area, and as the basic dykes are associated with other major fracture trends, this fault must have been one of the last tectonic events in the area. This feature was recognized on the Snow claims.

The most dominant fracture trends on the property are the N - S, vertically dipping fractures hosting the majority of basic dykes. Occasional displacemnt along this fracture trend was mapped. The N - S fractures rarely contain quartz veins.

Quartz veins were mapped at orientations in many directions. The most common directions are associated with fractures trending in general E - W and N45W directions. Mineralization and alteration are most abundant in quartz veins of these directions. Generally these veins are steep dipping. A third quartz vein trend appears to be in a N45 - 60W direction.

Mineralization and Alteration:

The most common sulphide found on the property is pyrite, most abundant in Rock Unit 5. It is obvious that Rock Unit 4 probably contains as much pyrite at depth, however surface weathering has leached up to 100% of the sulphides. Occasional traces of chalcopyrite were found as disseminations in Rock Unit 5. Locally sulphide content in this Unit exceeded 15%. Sulphide mineralization is associated with strong chlorite and minor sericite and clay alteration. In Rock Unit 4, alteration includes strong sericite, clay, silica and minor secondary K-feldspar (typical argillic alteration).

Economic minerals are dominantly associated with quartz veins. These include chalcopyrite, bornite, molybdenite and malachite, and are generally accompanied by secondary muscovite and biotite, sericite, and clay alteration occurring along vein selvages and occasionally penetrating the wallrock.

GEOCHEMISTRY

During the period July 8 - August 27, 1981, detailed geochemical sampling was completed over the known mineralized zones and gossan area. Control of sampling were contour traverses along accessible 500 ft. contour intervals. Elevation control was accomplished with the aid of altimeters. Samples were collected mainly at 50 meter intervals, using either chain or topofil methods. In areas of inaccessible contours, sample traverses were completed at the crew's discretion. Location of all sample stations are shown on geochemical plans (Figures 233-81-5 & 6). A total of 624 rock, soil and silt samples were collected.

All samples were placed in kraft waterproof envelopes, and shipped to Bondar - Clegg & Co. Ltd. for geochemical analysis. All samples were analyzed for copper and molybdenum. Initially samples were analyzed for tungsten, based on some erratic high values obtained from the 1980 programme. This analysis was discontinued as results were negative. Selected traverses were analyzed for arsenic and zinc.

After drying, soil and silt samples were sieved to obtain an aliquot of minus 80 mesh material. Rock samples were pulverized to obtain a minus 100 mesh material. All samples were analyzed as follows:

Element	Digestion	Determination		
Copper) Molybdenum) Zinc)	HNO ₃ - HCl Hot Extract ⁿ /	Atomic Absorption		
Tungsten	Carbonate Sinter	Colourimetric		
Arsenic	Nitric Perchloric Digest ⁿ /	Colourimetric		

Statistical analyses were completed on the copper and molybdenum soil and silt samples only. A total of 211 rock chip samples were eliminated from statistical analyses as many samples were selected. Tungsten values are totally insignificant, and indicate no anomalous patterns. Zinc and arsenic data are insufficient for statistical analyses.

Results of these analyses are as follows:

Metal	No. Samples	Mean	Std. Deviation		
Cu	413	18.81 ppm	25.02 ppm		
Мо	413	7.14 ppm	8.13 ppm		

This provided the following geochemical categories:

	Copper (ppm)	Molybdenum (ppm)
Negative	0 - 18	0 - 7
Possibly Anomalous	19 - 43	8 - 15
Probably Anomalous	44 - 68	16 - 23
Definitely Amomalous	~ 68	23

All copper and molybdenum values were plotted on 1:5000 scale individual metal maps (Mo - Figure 233-81-5 & Cu - Figure 233-81-6). Anomalous sample stations were appropriately coded. Approximately 100 samples fall outside the boundary of the 1:5000 scale map. Location of these samples are shown on the 1:20,000 scale plan (Figure 233-81-3). Anomaly interpretation was provided by contouring the possibly and definitely anomalous samples. Discussion of these results are included in the next chapter.

DISCUSSION OF RESULTS

The DUG claims offer potential for development of a major porphyry Mo (Cu) deposit. Three areas within the claim block have been delineated as potential targets for exploration:

ZONE I -The main gossan zone is located on the DUG claim in the central portion of the claim block. The principal rock type is the highly altered, rusty, and weathered medium grained quartz monzonite (Rock Unit 4), intruded by qtz diorite dykes and small stocks (Rock Unit 5) and basic dykes (Rock Unit 6). Sulphide mineralization of economic content was not observed in any of the exposed rocks.
' Chalcopyrite was observed as trace content in the quartz diorite.

-The gossan zone appears to be geochemically inactive for molybdenum. Although weak, the entire gossan area is delineated by a possible copper anomaly. Definitely anomalous zones are located within the main zone, and show a weak to moderate correlation with the quartz diorite (Rock Unit 5) intrusions. It is interesting to note that rock geochemistry completed over the gossan indicated no copper response. The anomaly is interpreted only from copper content in soil.

-The fact that only background content of copper was found in rock can be explained by the fact that copper has been totally leached from surface exposures. The copper soil anomaly is a residual effect, reflecting the copper content in rock prior to leaching, or the copper content in rock below the leached capping. Depth of leaching cannot be estimated at this time. -Drill targets within Zone I have not been refined, and drilling at this time would be considered a high risk proposition. In order to upgrade the zone and delineate better drill targets, the following surface evaluation programme is suggested:

- i). Test pitting with hand drill to determine if copper content increases with depth.
- II). Fracture density counts, and gossan and texture interpretation to determine areas within the main gossan that offer the best potential.
- ZONE II -Copper and molybdenum geochemical anomalies are related to quartz veins carrying chalcopyrite, bornite and molybdenite on the DUG 4 claim in the northwest portion of the claim block. The quartz veins are located within the anomaly at elevations between 6800 - 7300 ft., and are at too low a density and contain insufficient content of sulphides to be considered of economic interest.

-Strong molybdenum anomalies in soil are located to the northeast of the sulphide bearing quartz veins in relatively flat-lying, overburden covered land. Outcrops in much of this area are scarce.

-This portion of Zone II offers the best potential for discovery of a porphyry deposit. Further detailed soil sampling and geological mapping on a grid are required to refine potential targets.

ZONE III -Quartz veins carrying molybdenite and a coincident Mo geochemical anomaly occur on DUG 4 in the southwest corner of the claim. Most of the geochemical anomaly can be explained by subeconomic contents of MoS₂ in guartz veins.

> -The geochemical expression of this zone bounds three sides of a small alpine lake. It is within this area, and possibly under the lake that offers most potential for discovery of a porphyry deposit. Further detailed sampling and geological mapping in this area are required to refine potential drill targets.

There is an apparent zoning and spatial relationship that may explain a correlation between all three zones. The gossan zone represents a multiphase intrusive center causing considerable fracturing, alteration and deposition of sulphides within the center of this zone.

The main molybdenum anomaly forms a semi arcuate pattern within a 1.5 km radius from this intrusive center. It is also interesting to note than with the exception of the extreme southern end of the molybdenum anomaly, anomaly boundaries approximate the 6500 ft. and 7000 ft. contours. Associated with the Mo anomaly, is a parallel copper anomaly, with boundaries approximating the 6800 ft. and 7300 ft. contours. This suggests a possible vertical zoning of the two metals, with copper overlying the molybdenum.

This vertical zoning of metals is coincident with the vertical textural and chemical zoning developed for the main batholith. The highest Mo geochemical anomalies appear to be associated with the base of the medium to coarse grained granodiorite (Unit 3B), or at the top of the porphyritic quartz monzonite.

RECOMMENDATIONS

Three targets have been delineated on the DUG claims that are worthy of further exploration. All three target areas require further surface exploration to refine possible drill targets. The following 2-Phase programme is recommended for the 1982 field programme.

PHASE I

- Trenching by drilling and blasting rock outcrop within the main gossan zone to investigate if copper content increases with depth.
- 2). Fracture density counts, and colour and texture interpretation to determine areas within the main gossan that offer the best potential for underlying mineralization.
- Detailed grid work over flat-lying area of Zone II consisting of geological mapping and geochemistry.
- 40. Detailed geological mapping and geochemistry around the lake area of Zone III.

PHASE II

Allow 350 meters (\sim 1150 ft.) to test the best two targets delineated in Phase I.

Respectfully Submitted By:

KERR, DAWSON & ASSOCIATES LTD., Kerr

APPENDIX A

COST STATEMENTS

.

1

-

COST STATEMENT

DUG CLAIMS

JULY 8 - 15, 1981

LABOUR

ſ

	John R. Kerr, P. Engineer 5 days @ \$250.00/day	\$1,250.00	
	Werner Gruenwald, Geologist 8 days @ \$180.00/day	1,440.00	
	Karen Davies, Assistant 8 days @ \$120.00/day	960.00	
	Brian Cross, Sr. Assistant 8 days @ \$130.00/day	1,040.00	
	Alan Lingor, Assistant 3 days @ \$120.00/day	360.00	\$5,050.00
TRANSPORT	ATION		
	Truck Rental 8 days @ \$35.00/day	280.00	
	Helicopter Charter 10.4 hrs @ \$350.00/hr. Fuel — 1100 litres @ 51.5¢/l	3,640.00 610.50	4,530.50
ASSAYS & (GEOCHEMICAL ANALYSIS		
	444 Samples @ \$5.35	2,375.40	2,375.40
ROOM & BOA	ARD		
	32 man days @ \$35.00/man/day	1,120.00	1,120.00
MISCELLANI	EOUS SUPPLIES & EQUIPMENT RENTAL		
		342.80	342.80
		TOTAL	\$13,428.30

at Lillooet and Kamloops during July, 1981.

COST STATEMENT

.

Ť.

.

۲

6

ø

ø

Ő

-

-

-

2

AUGUST 12 - NOVEMBER 10, 1981

LABOUR			
	John R. Kerr, P. Engineer 3 days @ \$250.00/day	\$750.00	
	W. Gruenwald, Sr. Geologist 6 days @ \$180.00/day	1,080.00	
	G. Radford, Geologist & Mtn. Climber 2 days @ \$300.00/day	600.00	
	Wm. Kitson, Geologist & Mtn. Climber 2 days @ \$300.00/day	600.00	
	K. Davies, Assistant 5 days @ \$120.00/day	600.00	\$3,630.0
HELICOPTER	CHARTER		
	7.2 hrs @ \$350.00/hr. Fuel - 745 litres @ 0.60/l	2,520.00 447.00	2,967.0
ASSAYS & G	EOCHEMICAL COSTS		
	180 samples @ \$2.80/sample	504.00	504.0
ROOM & BOAI	RD		
	10 man days @ \$35.00/man/day	350.00	350.0
MISCELLANE	DUS SUPPLIES & EQUIPMENT RENTAL	226.40	226.4
REPORT PREI	PARATION		
	J. R. Kerr, P. Eng. (3 days)	750.00	
	Drafting	120.00	
	Secretarial, Photocopying, Blueprintin	ng 232.00	
	& Report Binding		1,102.0

APPENDIX B

GEOCHEMICAL DATA

BONDAR-CLEGG & COMPANY LTD.

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

REPORT:	121-1874					poit		PAGE	1			
SAMPLE NUMBER	ELEMENT CU UNITS PFM	Zn Mo FFM FFM	As PPM	W NOTES PPM	SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Mo PPM	As/ FFM	W N(PPM	ITES
BC-101 BC-102 BC-103 BC-104 BC-105	SOIL 18	46 3 24 2 26 2 41 2 25 ND	0.2 0.2 0.2 0.2 0.2 0.2	2 3 2 2 3	GD-13 GD-14 GD-15 GD-17 GD-18		8 14 5 19 10		3 6 2 1 2		2 3 2 2 2 2	
BC-106 BC-107 BC-108 BC-109 BC-110	31 34 25 26	26 ND 28 2 29 3 23 ND 22 ND	land a second	2 2 3 2 2 2	GD-19 GD-20 GD-21 GD-23 GD-24		11 55 66 43 27		3 4 3 2 ND	· . ·	2 2 2 2 2 2 2	
BC-111 BC-112 BC-113 BC-114 BC-115	13 28 36 14 5	51 (7 23 NU 37 1 37 1 20 (7	0.2 0.2 0.2 0.2 0.2	5 2 2 3 4	GD-25 GD-26 GD-27 GD-28 GD-31	(38 100 35 35 22		1 5 3 4 1		3 2 2 3 2	
BC-116 BC-117 BC-118 BC-119 BC-120	8 6 7 8 10	53 7 49 3 38 5 41 4 46 3	0.2	3 3 2 2 2 2	GD-32 GD-33 GD-35 GD-36 GD-37		22 34 24 32 20		1 2 5 5 3		2 2 2 2 3	Dug claime
BC-121 BC-122 BC-123 GD-3 GD-4	5 9 28 13 15	50 99 70 5 9 70 5 9 11	0.2 0.2 0.2		GD-38 GD-39 GD-40 GD-41 GD-43	ан алар у гаан алар алар адаа адаа адаа адаа адаа адаа адаа	20 17 9 10 50	••••	2 5 2 4 10		2 3 2 2 2	
GD-6 GD-7 GD-8 GD-11 GD-12	15 38 10 10 10	4 3	}	$\begin{array}{c} 3 \\ \begin{pmatrix} 3 \\ 4 \\ 2 \\ 3 \\ \end{pmatrix} Dug Clow$	5 GD-44 GD-45 GD-46 GD-49 GD-50		6 10 2 7 5		2 2 ND ND ND		2 2 2 2 2 2	

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

& COMPANY LTD

7

45

0.2

3

REPORT: 121-1874 PAGE 2 SAMPLE ELEMENT Cu Zn Mo W NOTES SAMPLE W NOTES ELEMENT Cu Z'n Mo AS As PPM PPM PPM UNITS PPM PPM NUMBER PPM PPM PPM NUMBER PPM PPM UNITS GD-51 7 ND 2 GD-93 71 2 ND ND 3 GD-52 GD-96 51 2 ND GD-53 5 GII-97 65 2 4 1 ND 2 GD-100 18 GD-54 16 3 66 GD-55 GD-101 48 2 8 2 11 GD-56 GD-102 63 2 23 2 10 2 2 5 GD-57 GD-104 353 8 ND 3 GD-59 9 GD-108 16 1 11 13 GD-115 GD-60 1 7 ND GD-61 12 ND GD-118 69 2 10 GD-119 43 GD-62 2 2 GD-63 13 3 GD-120 56 2 2 GD-64 56 GD-121 42 3 2 Jul. GD-66 11 ND GD-122 29 2 24 GD-67 3 2 GD-123 20 GD-68 9 2 Dua GD-124 ND 5 GD-69 ND 2 3 GD-125 5 5 84 38 GD-70 ND James GD-129 ND 3 GD-71 ND 11 GD-130 2 3 12 GD-72 ND 3 GD-131 5 11 GD-73 140 ND 3 GD-135 5 5 ND GD-74 19 3 GD-136 22 11 GD-76 49 3 Ż GD-137 GD-78 40 3 3 2 GD-138 ND GD-81 10 2 GD-140 2 GD-82 39 2 GD-141 4 5 2 GD-85 ND 10 2 43 GD-142 10 65 2 GD-88 JK-132 2 10 0.2 2 46 2 2 GD-90 _50 N 4 JK-133 10 0.2 3 44

JK-134

Geochemical Lab Report

BONDAR-CLEGG

(1,02

GD-91

ND

LONDAR CLEGG & COMPANY LID.

DEDODT+

171-1074

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

6

Geochemical Lab Report.

REPORT: 121-1874					FAGE 3	
SAMPLE ELEMENT NUMBER UNITS	Cu Zn PPM PPM		W NOTES CARD	SAMPLE ELEMENT NUMBER UNITS	Cu Zn Mo PPM PPM PPM	AS W NOTES PPM PPM
JK-135 JK-136 JK-137 JK-138 JK-139	29 79 30 67 14 56 35 91 15 61	2 0.2 5 0.2	2 2 2 2 2 2 2	KD-05 KD-06 KD-07 KD-08 KD-09	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2
JK-140 JK-141 JK-142 JK-143 JK-144	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(b) 0.2 (c) 0.2 (c) 0.2	2 2 2 2 2 2	KD-10 KD-11 KD-12 KD-13 KD-14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2
JK-145 JK-146 JK-147 JK-148 JK-149	5 58 24 47 35 102 24 87 24 87 24 75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2	KD-15 KD-18 KD-19 KD-20 KD-21	10 15 14 51 2 10 1	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $
JK-150 JK-151 JK-152 JK-153 JK-154	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	KD-22 KD-28 KD-31 KD-32 KD-33	27 (14) (14) (14) (14) (14) (14) (14) (14)	$ \begin{array}{c c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
JK-155 JK-156 JK-157 JK-158 JK-159	16 19 18 54 41 (91) 95 72 (95) 72) 72 (95) 72 (95) 72) (95) 72) (95) 72) (95) (95) (95) (95) (95) (95) (95) (95	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2	KD-34 KD-35 KD-36 KD-37 KD-38	26 16 22 3 1 3 2	2 2 2 2 2 2 2 2 2 2
JK-160 JK-161 JK-162 KD-2 KD-3	30 147 23 10 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2	КD-39 КD-40 КD-41 КD-42 КD-43	7 2 38 3 10 2 1 ND 6 3	2 2 2 2 2 2 2

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

AR-CLEGG & COMPANY LTD.

Geochemical Lab Report

BC

14 h. .

REPURIT	121-1874			, 	-		PAGE 4		λ
SAMPLE NUMBER	ELEMENT UNITS	Cu Zr איק PPM	n Mo As 1 PPM PPM	W NOTES PPM		MENT Cu NITS PPM	Zn Mo PPM PPM	As PPM	W NOTES PPM
KD-44		10	2	2)	KD-77	10 ⁻¹⁰	13		2)
KD-46		29 11	2	2	KD-78	4	9		2
КD-47 КD-48		9	.	2	КD-79 КD-80	1	/		2
KD-50		3	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	KD-80	10	6		2
KD-51		5		2	KD-82	10	5		- 2
KD-52		54	10	2	KD-83	1	4		4
КD-53 КD-54		55 - 4	18 \$	stars 🕻 🕹 seat	KD-84 KD-85	చ ా	_ ປັ		4
KD-55		5	A	2	KU-85	3 10	ວ. 5		3
1710.00			(a) A start of the product of the start o	n an an Anna an Anna an Anna an Anna Anna an Anna an Anna an Anna Anna an Anna	an a	7.0	0		5
KD-56		26	计操作数 7.余时有人的主	2 2	KD-87	6	20)		3
KD-57		60	10)	2	KD-89	65	13.		3
KD-58		26 63	11(2 2 Dud	KD-90	30	2	÷ .	2
KD-59		63	12		KD-91	25		· .	2
KD-61		25	13)	2 Colour	Ø KD-92	5	3		2
KD-62		11	9.55	2	KD-93	22	9	1	2
KD-63		5	6	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KD-94	20	7		2 June
КD-64		21	10		KD-95	7	8 -		2 2 2
KD-65		20	17	2. 2. 1997 (1997) 1997 - 1997 (1997)	KD-097	44	3		
KD-66	and the second	10	27	2	KD-098	40	2	, ···	2
KD-67	a a star a s	16	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2. a	KD-099	10	ND		2
KD-68		11	11	2	KD-100	6	2	·	2
KD-69		18	31	2	KD-101	4	1		2
KD-70		13	15	2	KD-102	9	41 }	•	2
KD-71	an a	45	15		KD-103	17	13)) • • • • •	2
KD-72		24	37 >	Sec. 2 - 1	KD-104	7	3		2
KD-73		32 23 93 41	31 32	2 2	KD-105	39	2		2
КD-74		23		2	KI-106	35	3		2
KD-75		(93)	11	3	KD-107	. 25	5		2
KD-76		41 July 200	18	2 1 Jacob 1 1	KD-108	12	0		2

BONDAR-CLEGG & COMPANY LTD.

5

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

REPORT:	121-1874					:					<u></u>	PAGE	6.			
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Mo PPM	As PPM	W PPM	NOTES		SAMPLE NUMBER	ELEMENT UNITS	Cú PPM	Zn PPM	Mo PPM	As PPM	W NO PPM	DTES
KD-197 WG-084 WG-085 WG-086		3 - 7 20 14	26 33 26	25) ND 1	0.2 0.2 0.2	2 2 2 2 2			WG-113 WG-114 GD-1 GD-2	ROCK	27 47 12 9	21 (89	4 (3) 7 9	0+2 0+2	$\begin{pmatrix} 2\\2\\2\\2\\2 \end{pmatrix}$	
₩G-087		`11 29	38 37	2 3	0.2	2		یر میں اور اس ایر د مراجع اور او	GD-5 GD-9	· · · ·	6		5	ta ang sang sang sang sang sang sang sang	2	
WG-088 WG-089 WG-090 WG-091		29 21 19 12	24 70 45	3 2 3 1	0.2 0.2 0.2 0.2	2 2 2 2			GD-10 GD-16 GD-22		5 1 57 12		5 5 6		N N N N N N N N N N N N N N N N N N N	
WG-092 WG-093		14	58	2 3	0.2	2			GD-29 GD-30		19 32		7 		2	
WG-094 WG-095 WG-096		12 9 10	60 40 35	3 4 3	0.2	322			GD-34 GD-42 GD-47		15		5 5 5		2 2 2	
WG-097		7	16	ND	0.2	, 2		2 	GI)-48		5	ana Mara Anton anta	16		2	fun
WG-098 WG-099 WG-100 WG-101		16 6 11 7	41 25 36 35	2 1 1 1 2 2 4 4 4 4	0.2 0.2 0.2 0.2	2 2 2 2			GD-58 GD-65 GD-75 GD-77		1 10 7 11		12 9 12(11)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Claunio
WG-102 WG-103		10	28 20	ND 1	0.2	2			GD-79 GD-80	•	11		10	· · · · · · · · · · · · · · · · · · ·	2	
WG-104 WG-105 WG-106 WG-107		7 23 7 11	25 64 24 52		0.2 0.2 0.2 0.2	2 2 2 2 2			GD-83 GD-84 GD-86 GD-87		7 9 20 7		13) 8 8 7		2222	
WG-108 WG-109 WG-110 WG-111 WG-112		22 52 27 (48) 15	56 71 46 56 49	3 4 2 4 5	0.2 0.2 0.2 0.2 0.2	2 2 2 2 2			GD-89 GD-92 GD-94 GD-95 GD-98		7 7 24 9 ND	••• • • • • • •	6 5 8 11 4	· · · · · · · · · · · · · · · · · · ·	3 3 3 2 2	

BONDAR-CLEGG & COMPANY LID.

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

REPORT: 121-1874

PAGE 7

SAMPLE NUMBER	ELEMENT CU UNITS PPM	Zn P'F'M	Mo PPM	As PPM PP	W NOTES M	SAMPLE NUMBER	ELEMENT CU UNITS PPM	Zn Mo PPM PPM	AS W N PPM FPM	NOTES
GD-99 GD-103 GD-105 GD-106 GD-107	2 3 4 3		11 5 9 3 8		2 2 4 2 2	KD-49 KD-88 KD-96 KD-111 KD-114	11 16 13 39 5	4 70 7 18 3	2 2 2 2 2 2 2 2	
GD-109 GD-110 GD-111 GD-112 GD-113	7 3 25 7 3		6 11 9 9 3		 2 3 4 2 4 4 2 4 4 4 5 4 4 5 4 5 4 5 5 5 6 6 7 7 8 7 8 8 9 9	KD-118 KD-119 KD-121 KD-130 KD-157	13 3 20 22 3	7 12 3 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
GD-114 GD-126 GD-127 GD-128 GD-132	4 2 2 2 1		11 6 3 8 5		2 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	KD-158 KD-159 KD-160 KD-161 KD-163	1 12 31 7 1305	6 6 8 8 25	222	Dug
GD-133 GD-134 GD-139 KD-1 KD-1	7 3 7 5 4		12 6 11 6 11		2 2 2 3 2	KD-165 KD-166 KD-167 KD-168 KD-169	7 77 2 2	8 9 22 7 14	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Claur
KD-16 KD-17 KD-23 KD-24 KD-25	2 2 1 2 2 2 2		5 10 5 10 4		2 1 3 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	KD-170 KD-171 KD-172 KD-175 KD-177	21513802320004		2 2 2 2 2 2 2 2 2 2 2 2 2 2	
KD-26 KD-27 KD-29 KD-30 KD-45	5 4 3 3 1		16 8 12 5 7		2 2 2 2 2 2 2 2 2	KD-178 KD-180 KD-183 KD-185 KD-187	25 57 3 2 1	12 (25) 8 14	2 3 2 3 3 2 3 2	

BONDAR-CLEGG & COMPANY LTD.

DACE

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

history

PART: 121-1949

SAMPLE NUMBER	ELEMENT CU UNITS PPM	Mo PPM	W PPM	NOTES	S SAMPLE NUMBER	ELEMENT UNITS	Cu Mo PPM PPM	W FFM		NOTES
CD002 CD003 CD004 CD006 CD011	SOIL 5 4 10 11 3	3 9 3 5 ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		CD045 CD048 CD049 CD050 CD051		19 1 10 1 10 2 3 ND 5 ND	22222222		
CD012 CD013 CD014 CD015 CD016	1 29 2 1 2	1 14 3 ND ND	2 ND 2 2 2		CD052 CD053 CD054 CD055 CD056		2 ND 4 1 8 7 2 4 12 6	3 2 2 2 2 2 2		۰ ۲
CD017 CD018 CD017 CD021 CD022	55 6 8 17	3 1 ND ND ND	2 2 2 2 2 2	Dug Claims	CD057 CD058 CD060 CD061 CD062		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 4 2 2	Dug Clas	um S
CD024 CD026 CD031 CD032 CD034	15 20 10 10 12	1 2 6 2	2 2 2 2 2		CD063 CD064 CD065 CD066 CD066		5 5 3 4 5 8 7 7 5 6	2 2 2 2 2		
CD035 CD036 CD037 CD038 CD039	15 3 2 6 11	1 ND ND ND ND	2 2 2 2 2		CD068 CD069 CD070 CD071 CD072	• • •	$\begin{array}{cccc} 3 & 4 \\ 5 & 4 \\ 3 & 3 \\ 1 & 4 \\ 1 & 2 \\ \end{array}$	2 2 2 2 2 2 2		
CD040 CD041 CD042 CD043 CD044	20 10 11 6 10	1 ND ND ND	2 2 2 2 2 2 2		CD073 GD144 GD146 GD147 GD147	1. 1. 1.	5 1 17 8 15 7 5 5 5 6	23222	•	

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

NDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

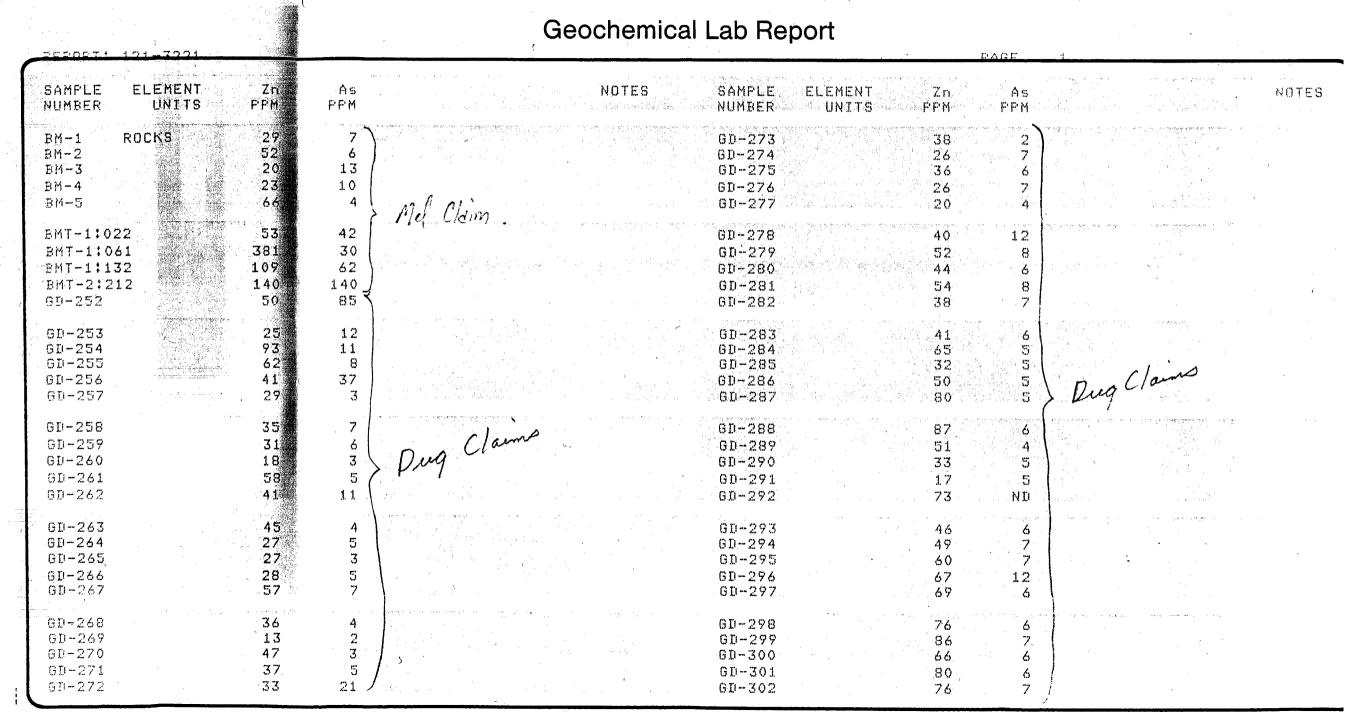
BO

					176 A 275 177	<i></i>	
SAMFLE NUMBER	ELEMENT CU MO W NOTES UNITS PPM PPM PPM	SAMPLE E NUMBER	LEMENT	Cu PPM	Мо РРМ	W PPM	NOTES
GD149 GD150 GD151 GD152 GD153	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GD186 GD188 GD189 GD191 GD192		23 65 20 6 8	12 15 8 7 9	ANN AN	
GR154 GD157 GD158 GD159 GD162	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GD193 GD194 GD195 GD196 GD197		8 15 15 7 8	7 9 9 5 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· · ·
GD163 GD164 GD165 GD166 GD167	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GD198 GD200 GD201 GD202 GD203		5 10 12 5 6	5 13 5 4 6	22222	Dug Claims
GD168 GD169 GD170 GD171 GD175	7 7 2 13 9 2 8 6 2 7 5 3 5 5 2	GD204 GD205 GD204 GD207 GD208		5 7 3 14 9	12 8 7 6 4	2 2 2 2 2 2 2	
GD176 GD177 GD178 GD179 GD180	7 5 2 5 8 2 7 7 2 4 4 2 7 5 2	GD209 GD210 GD211 GD212 GD213		1.8 29 14 13 3	11 9 31 18 10	2 2 2 2 4	
GD181 GD182 GD183 GD184 GD185	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GD214 GD215 GD216 GD217 GD218		10 5 26 17 12	21 39 11 8 8	3 3 2 3 2	

CLEGG &

i i

Î.


COMPANY LTD.

Geochemical Lab Report

BONDAR-

PEPOPTA	101-1010	
SAMPLE NUMBER		MO W NOTES SAMPLE ELEMENT CU MO W NOTES PPM PPM PPM PPM PPM
GD219 GD222 GD223 GD224 GD225	14 15 55 8 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
CD001 CD005 CD007 CD008 CD008	ROCK 9 5 3 10 3	
CD010 CD020 CD023 CD025 CD027	100 5 3 6 5	$ \begin{array}{c} 83 \\ 2 \\ 4 \\ ND \\ 2 \\ 5 \end{array} \end{array} > Dug Claims$ $ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} > Dug$
CD028 CD029 CD030 CD033 CD033	2 4 3 3	2 2 5 5 2 2 2 2 4 $ 2 $
CD047 CD059 GD143 GD145 GD154	2 2 4 2 5	
GU156 GD160 GD161 GD172 GD173	2 5 3 2 2	

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

.

DEPODT 1	101-7001			PAGE 2	
SAMFLE NUMBER	ELEMENT Zn UNITS PPM	As RFM	SAMPLE ELEMENT Zri NUMBER UNITS PPM	As PPM	NOTES
GD-303 GD-304 GD-305 GD-306 GD-307	110 105 28 94 263	$\begin{bmatrix} 5\\2\\5 \end{bmatrix}$	GM-09784GM-098115GM-099100GM-10081GM-101154	21 67 26 28 35	
GD-308 GD-309 GD-310 GD-311 GD-312	103 227 9 77 50	6	GM-102 34 GM-103 112 GM-104 67 GM-105 92 GM-106 13	32 82 12 98 7	
GD-313 GD-314 GD-315 GD-316 GD-317	23 74 66 66 55	5 6 4 Mel Claim ->	GM-10776GM-10811GM-10986GM-11031GM-11163	$ \begin{array}{r} 11 \\ > 1000 \\ 400 \\ 15 \\ 12 \end{array} $	
GD-318 GD-319 GD-320 GD-321 GD-322	69 61 70 60 58	7 53	GM-112 125 GM-113 59 GM-114 53 GM-115 73 GM-116 71	120 11 4	
6D-323 6D-324 6D-325 6D-325 6D-327	51 61 57 59 50		GM-11744GM-11847GM-11944GM-12042GM-12155	70 85	۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰
(GN-092 SN-093 GN-094 GN-095 GN-095	104 106 10 97 34	40 30 7 34 12	GM-122 78 GM-123 50 GM-124 158 GM-125 8 GM-126 74	12. 60 43	

BONDAR-CLEGG & COMPANY LID.

Geochemical Lab Report

LEFERRY NOT-DIAR		FAGE 1
SAMFLE ELEMENT Cu Nymber Units FFM	Mo PFM NUMBER UNITS	CU NO NO NOTed
SM-1 ROCKS 15 SM-2 99 SM-3 13 SM-4 20 SM-5 104	22 3 4 1 6D-273 6D-275 12 46 6D-276 6D-277	$ \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \\ 7 \\ 3 \\ 11 \end{bmatrix} $
EMT-1:022 8 BMT-1:061 6 EMT-1:132 123 EMT-2:212 50 GD-252 4	10 24 71 43 17	10 9 12 15 11 12 10 14 11 23
SD-233 S SD-234 39 SD-234 9 SD-236 3 SD-236 3 SD-236 4	4 7 5 5 5 4 6D-283 6D-284 6D-285 5 6D-286 4 6D-286	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SD-258 5 SD-259 6 SD-260	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	$ \begin{array}{c} 20 \\ 10 \\ 11 \\ 11 \\ 30 \\ 81 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 1$
50-263 50-264 60-265 7 60-266 3 18	9 13 8 7 11 11	24 19 18 32 6 26 10 31 6
268 4 10-268 4 10-270 4 31-272 4	4 9 17 12 37	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

.

	521-2769			and a second sec	·	
SAMFLE MUNSER	ELEMENT CU UNITS PPM		SAMFLE ELEMENT CO NUMBER UNITS PPI			le de
61-303 61-304 81-305 91-305 61-305 61-307	140	72 000 25	GM-097 GM-098 GM-099 GM-100 GM-101 GM-101) 10) 5 5 8		
01-308 85-309 85-310 -01-311 85-312	43 69 4 24 15	59 450 39	GM-102 GM-103 GM-104 GM-105 GM-106 21	5 127 2 38 4 43		
00~313 07-314 05-314 05-315 05-315 31-317	6 <u>32</u> 19 19 19 14	11 12 Dug Claums	GM-107 GM-108 GM-109 GM-110 GM-111	6 70 8 25		
60-318 50-319 60-320 90-321 60-322	27 11 16 17 13	7 13 5	GM-112 GM-113 GM-114 GM-115 GM-115		۰ ۰ ۰	×
01-323 01-324 01-324 01-323 31-323 31-323	12 4 15 9	$\begin{pmatrix} 10\\7\\8 \end{pmatrix}$	GM-117 GM-118 GM-119 GM-120 GM-121 1	4 6 4 7 6 6 4 7 8 8 7		
00000000000000000000000000000000000000	54 38 15 45 9	14 Mel Claim.	GM-122 GM-123 GM-124 GM-125 GM-126 22	2, . 21, 1 32 7 9		

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

PEPERTS	421-2585				PAGE			
SAMPLE	ELEMENT CU UNITS PPM	Zri Mo As PPM PPM PPM V	NOTES	SAMPLE ELEMENT Cu NUMBER UNITS PPM	Zn FFM	Мо РРМ	As PPM	NOTEE
GA:02 GA:05 GA:07 GA:08 GA:10	SOIL 5 28 13 12 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GA:47 GA:48 GA:48 GA:49 GA:50 GA:52 18		5 3 7 4 3	60 88 85 43 14	
6A:11 6A:12 6A:13 6A:14 6A:15	21 18 7 11 17	1 7 1 7 ND 2 1 2 2 2	Bri July Claims	GA:53 GA:54 GA:55 GA:55 GA:57 GA:57 GA:59 27		3 4 3 6 3	12 32 70 22 75	
GA:16 GA:17 GA:20 GA:22 GA:24	17 11 24 5 7	$ \begin{array}{cccc} 2 & 2 \\ 1 & 2 \\ 1 & 2 \\ 2 & 2 \\ 1 & 2 \\ 2 & 2 \\ 1 & 2 \\ \end{array} $		GA:62 31 GA:64 24 GA:66 12 GA:67 20 GA:69 13		4 2 2 3 2	30 9 30 41 25	
GA:25 GA:26 GA:28 GA:29 GA:30	24 43 40 28 24	2 2 3 2 9 6 3 7 4 20		GA:70 20 GA:71 10 GA:72 18 GA:73 27 GD:225 35	86	$ \begin{bmatrix} 3 \\ 14 \\ 11 \\ 3 \\ 4 \end{bmatrix} $	38 53 110 30	
6A:31 6A:32 6A:33 6A:33 6A:35	7 14 12 6 19	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GD:228 32 GD:229 30 GD:231 38 GD:235 55 GD:235A 105	85 105 105 80 165	8 9 31 19 18	Dug Claims	
0A:36 0A:37 0A:40 0A:43 0A:43 0A:46	9 11 22 19 11	B 12 2 7 3 8 3 23 4 55		GD:236 GD:239 GD:243 GD:244 17 GD:245 18	120 126 128 35 43	16 10 6 3 1	``````	

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: (604) 985-0681 TELEX: 04-352667

Geochemical Lab Report

REFORT:	421-2585		×		PAGE	5.17 		
SAMPLE NUMBER	ELEMENT Cu UNITS, PPM	Zn Mo As PPM PPM	NOTES SAMF Numb		Zn PPM	Мо РРМ	Ás FPM	96 (ES
GA:68 GD:226 GD:227	3 2 38	6 15 58 4 56 5	GK:4 GK:4 ∕GM:0	5. 36. 36.	8 73 14	3 4 22	2 5 ND	
GD:230 GD:232	8 1,41	54 30 76	GM:0 GM:1	8	90	112 18	9 85	
6D:233 GD:234 GD:237 GD:238 GD:240	9 21 4 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dug Claums GM:1 GM:1 GM:2 GM:2 GM:2	5 9 3 3	41 62 110 57 33	2 4 2 3 2	140 16 55 3 160	
GD:241 GD:242 GD:249 GD:251 GE:33	58 7 3 5 18	48 8 40 4 52 4 44 3 47 5	Mel Claim (GM: 2) GM: 2) GM: 2 GM: 4 GM: 4	1 10 3 58 6 139 0 8	64 40 84 10 64	4 15 . 3 ND 7	20 12 12 25 30	
GE:38 GE:41 GK:29 GK:30 GK:31	41 3 18 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GM:4 GM:4 GM:4 GM:4 GM:5	2 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	175 34 84 107 83	2 2 2 4 1	210 12 62 47 8	
GK:32 GK:34 GK:35 GK:36 GK:37	77 13 3 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GM:7 GM:7 GM:7 GM:7 GM:7 GM:7 GM:7	3 6 29 7 17	228 83 40 65 50	7 12 55 2 3	14 63 400 6 30	
6K:38 6K:39 6K:40 6K:41 6K:43	11 11 12 32 50	23 1 6 15 5 5 32 ND 4 57 6 2 80 3 5	КМ:С КМ:С КМ:1 КМ:1 КМ:1 КМ:2	9 5 9 1	51 40 25 21 185	2 5 3 2 3	2 2 30 30 200	

AR-CLEGG & COMPANY

LTD.

Geochemical Lab Report

E

B

REPORT:	121-2848	PAGE 2	
SAMPLE NUMBER	ELEMENT CU UNITS PPM	NOTES SAMPLE ELEMENT Cu Mo NOTES PPM NUMBER UNITS PPM PPM	
GA-134 GA-135 GRD-01 GRD-02 GRD-03	7 12 21 19 22	$ \begin{array}{c} 1 \\ 3 \\ 3 \\ 5 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	
GRD-04 GRD-05 GRD-06 GRD-07 GRD-08	12 10 15 57 12	2 KD-207 15 2 4 KD-208 22 6 2 KD-209 21 4 3 KD-209A 14 12 4 KD-210 32 8	
GRD-09 GRD-10 GRD-11 GRD-12 GRD-13	10 19 7 8 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
GRD-14 GRD-15 GRD-16 GRD-17 GRD-18	8 16 7 11	2 KD-216 25 9/ 2 KD-217 32 11/ 3 KD-218 15 30/ 5* KD-219 17 10/ 1 KD-220 7 840	
GRD-19 GRD-20 GRD-21 GRD-22 GRD-23	7 5 6 12 4	3 ND-221 11 23/ 2 ND-222 11 20/ 1 ND-223 16 13/ 5 ND-224 7 13/ 4 ND-225 .6 10/	
GRD-24 GRD-25 GRD-26 GRD-27 KD-201	6 8 4 29 26	4 KD-226 12 24 2 KD-227 13 9 4 KD-228 20 17 29 5 25 3 KD-230 14 13	

APPENDIX C

WRITER'S CERTIFICATE

·

.

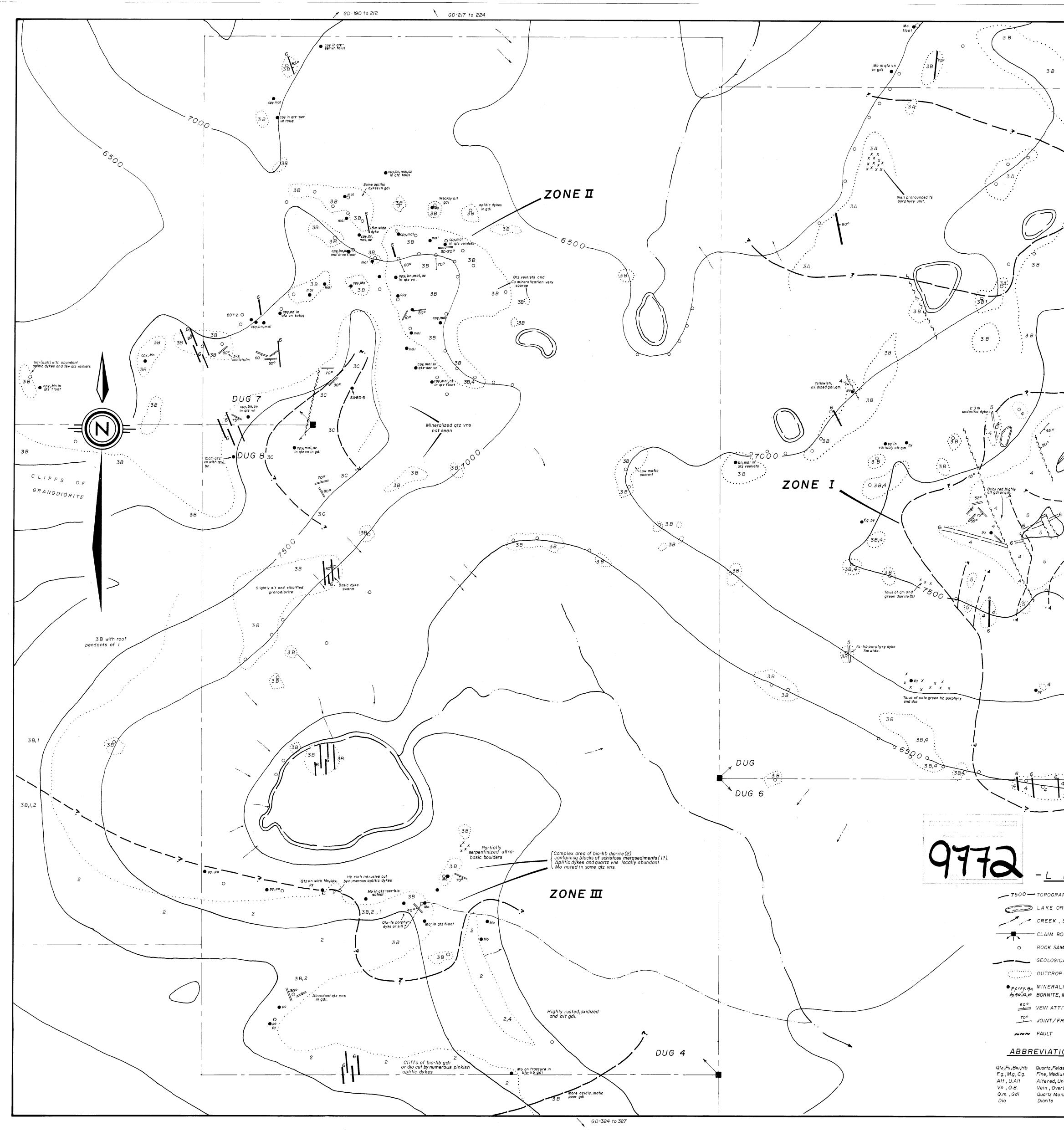
JOHN R. KERR, P. ENG.

Geological Engineer

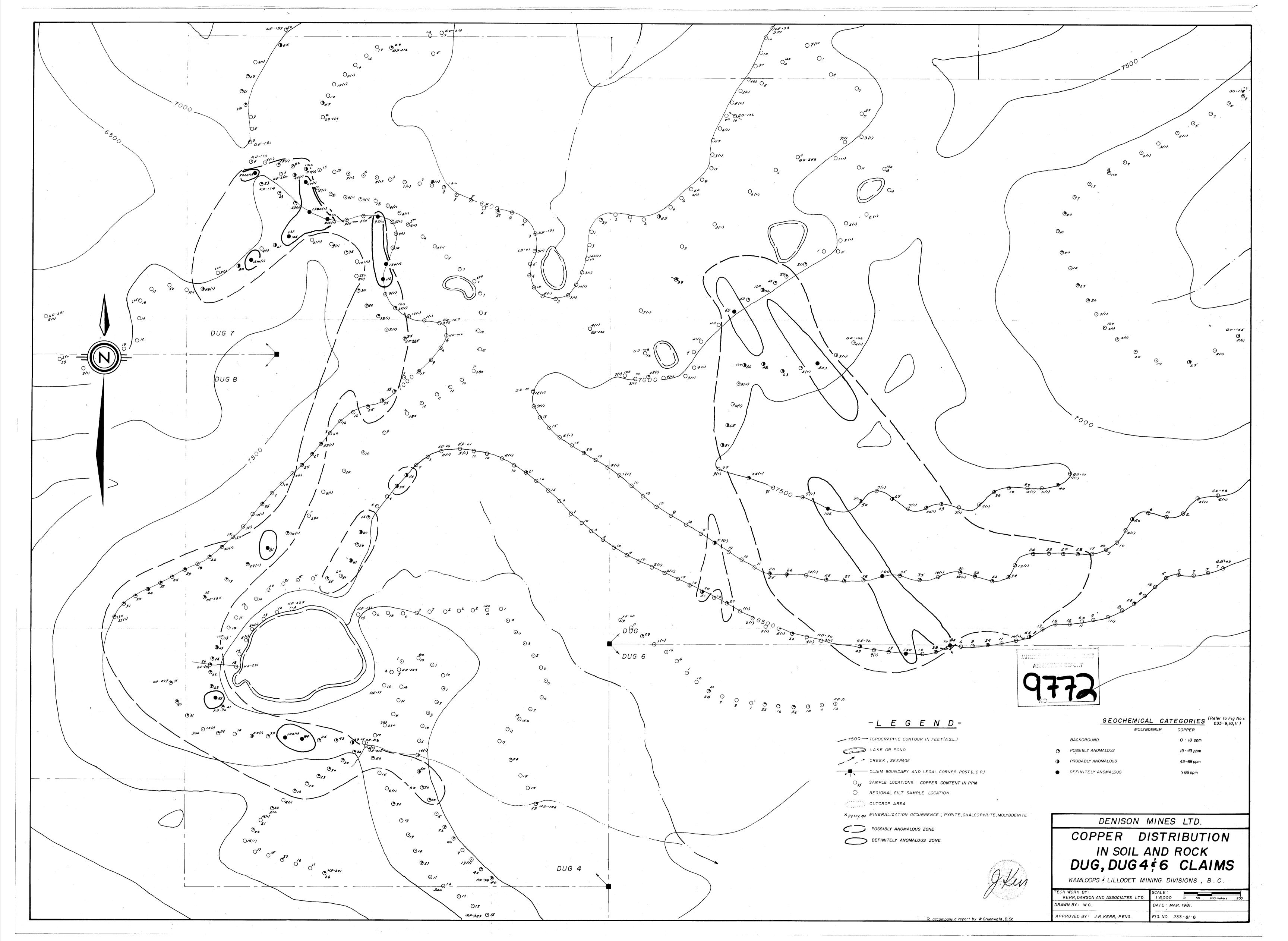
#1 - 219 VICTORIA STREET • KAMLOOPS, B.C. V2C 2A1 • TELEPHONE (604) 374-0544

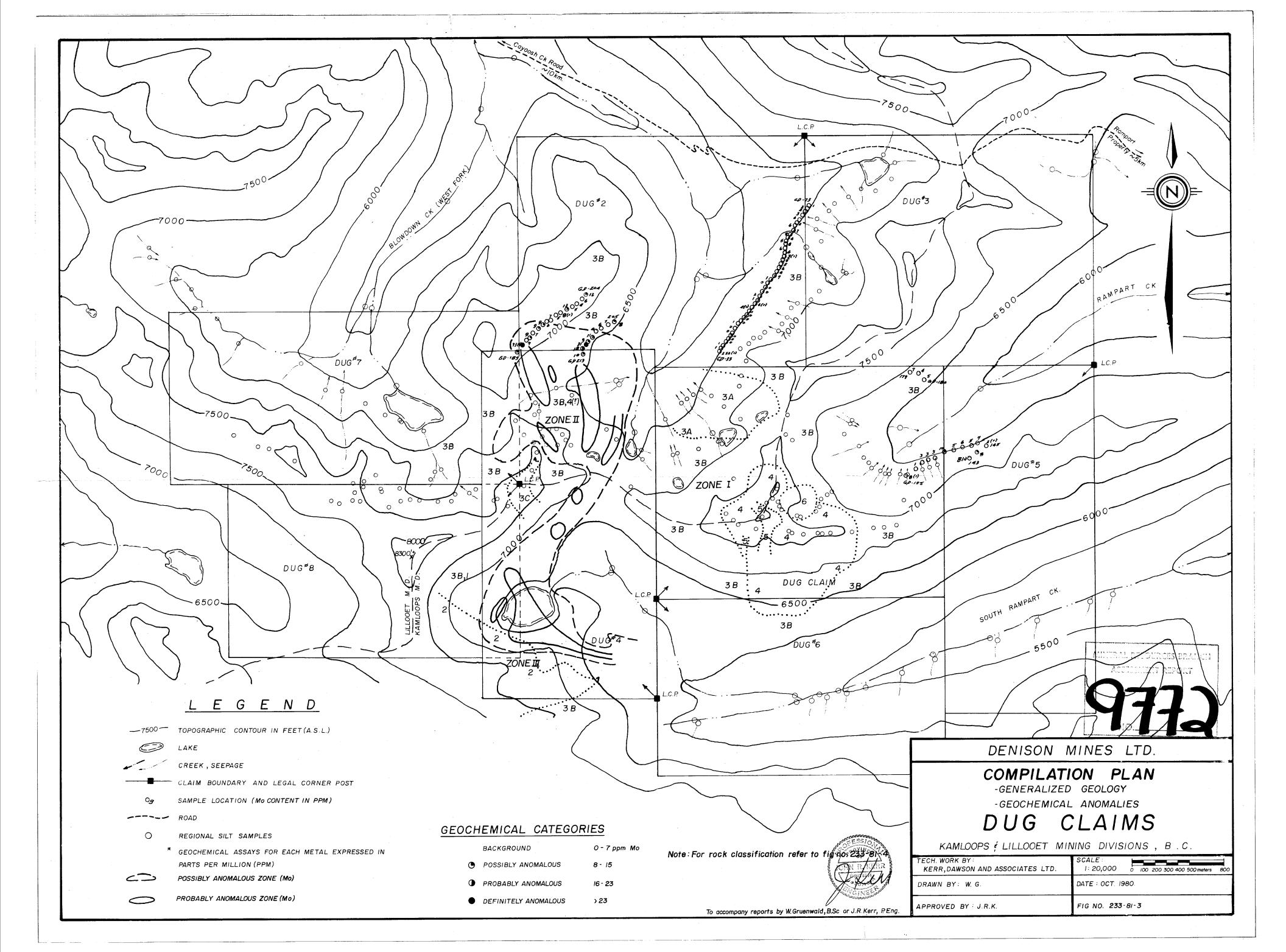
CERTIFICATE

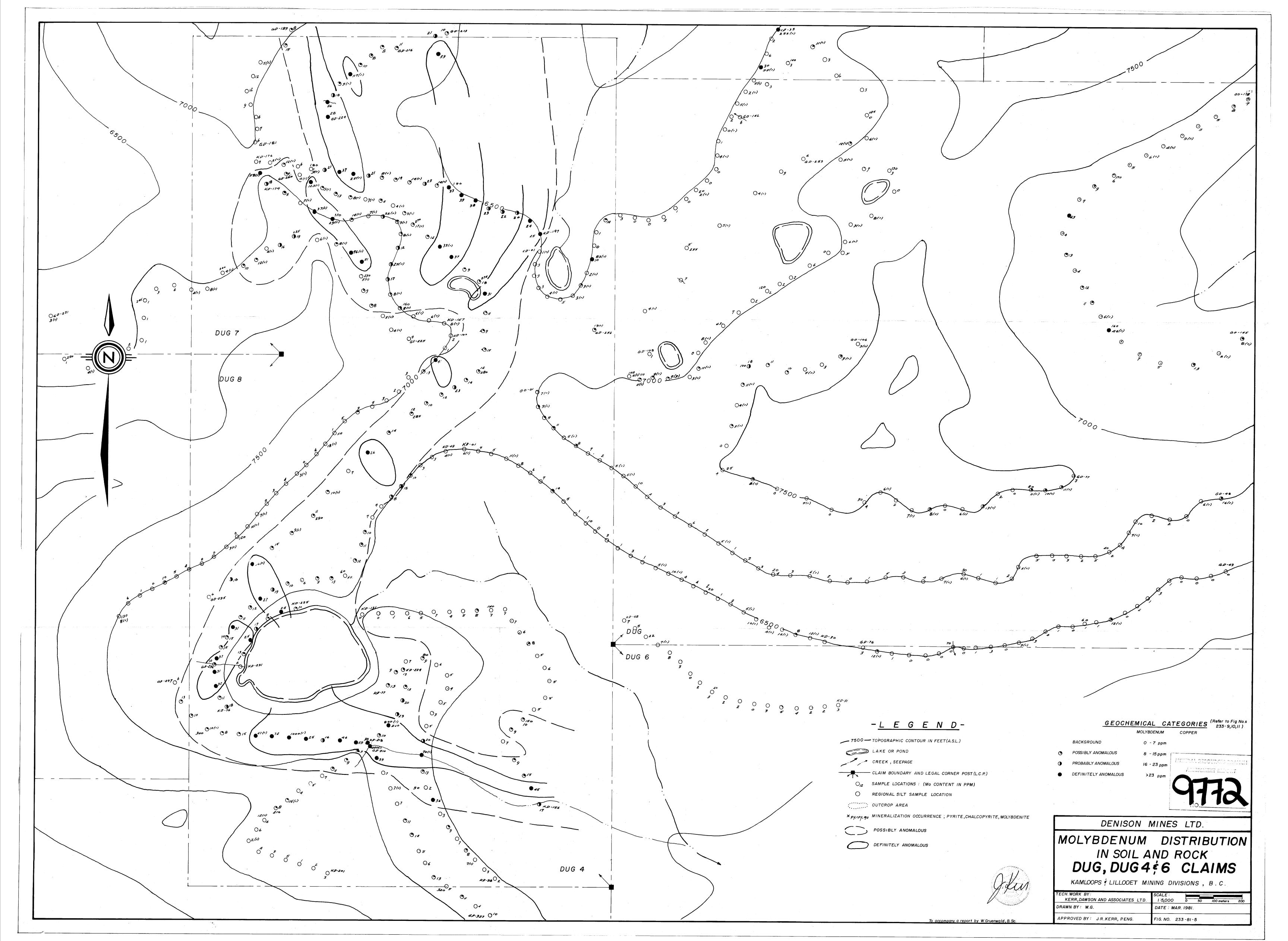
I, JOHN R. KERR, OF THE CITY OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:


- (1). I am a member of the Association of Professional Engineers of British Columbia, and a Fellow of the Geological Association of Canada.
- (2). I am a geologist employed by Kerr, Dawson and Associates Ltd., of #206 - 310 Nicola Street, Kamloops, B. C.
- (3). I am a graduate of the University of British Columbia (1964), with a B.A. Sc. degree in Geological Engineering. I have practised my profession continuously since graduation.
- (4). I supervised and assisted in the collection of data as compiled in this report.
- (5). I hold no interest, either direct or indirect in the DUG claims such as described in this report.

John R. Kerr, P. Eng.


GEOLOGIST


Kamloops, B. C.


November 10, 1981

	7500
	70
3 B	
	3B
	· · · · · · · · · · · · · · · · · · ·
3 B	3B
80°	
70 8	
3B	6
	зв
	· O · · · · · · · · · · · · · · · · · ·
\	
	3 B
	3B 6 3B,4
	о
	3 B
4 6 . Large plug of black	
basic rock.	3B / Jac
\	
	2000
) 5 /?	
f40°	
4 00° 4 80°	4) 3B
4 Highly altered . py, (1-2%). and limonitic atz M. Port Talus of	Q 6
	ЗВ
4	3B,4 .3B.
<i>a</i>	
4	
4	
	1.
	38
1,	3BQ
,	3B
4 4	
?	ROCK TYPES
	DARK GRAY, BROWN TO BLACK, FINE GRAINED, LOCALLY FELDSPAR PORPHYRITIC BASIC DYKES. OFTEN FOLLOW JOINT PLANES IN INTRUSIVE ROCKS.
	5 GREEN, FINE GRAINED DIORITIC PHASE WITHIN MAIN GOSSAN ZONE . OFTEN PLATY, LOCALLY CONTAINS DISSEMINATED PYRITE ± CHALCOPYRITE.
EGEND-	PALE BROWN, YELLOW TO BRICK RED, MEDIUM TO COARSE GRAINED QUARTZ
APHIC CONTOUR IN FEET(A.S.L.)	4 RICH INTRUSIVE (GRANODIORITE - QUARTZ PORPHYRY). WEAKLY TO HIGHLY ALTERED, LOW MAFIC CONTENT, LOCALLY KAOLINIZATION OF FELDSPARS.
DR POND	A PALE GRAY, MEDIUM GRAINED MUSCOVITE PORPHYRITIC GRANODIORITE. 3 B PALE GRAY, BROWN, MEDIUM GRAINED, UNALTERED GRANODIORITE
, SEEPAGE	C FINE GRAINED PHASE OF GRANODIORITE. DARK GRAY, MEDIUM GRAINED BIOTITE 'HORNBLENDE DIORITE, MAFICS OFTEN
BOUNDARY AND LEGAL CORNER POST (L.C.P.)	ALIGNED, MINOR PYRITE, PYRRHOTITE.
MPLE LOCATION	GRAY, BROWN TO BLACK, FINE TO MEDIUM GRAINED BIOTITE ± HORNBLENDE (QUARTZ -FELDSPAR) SCHIST AND GNEISS.FOUND AS ROOF PENDANT BLOCKS WITHIN THE GRANODIORITE (3 B) AND DIORITE (2) IN THE WESTERN PORTION
CAL CONTACT	OF THE DUG CLAIM BLOCK.
P AREA LIZATION OCCURRENCE ; PYRITE,CHALCOPYRITE,MOLYBDENITE,	
, MALACHITE, AZURITE, PYRHTE, CHALCOPYRITE, MOLYBDENITE, MALACHITE, AZURITE, PYRHOTITE	DENISON MINES LTD.
FRACTURE ATTITUDE	GEOLOGICAL PLAN
Not Contraction	DUG DUGALE OLAMA
IONS	DUG, DUG4¢6 CLAIMS
Idspar, Biotite, Hornblende ium, Coarse Grained.	KAMLOOPS & LILLOOET MINING DIVISIONS , B.C.
Unaltered er burden onzonite, Granodiorite	TECH.WORK BY: KERR, DAWSON AND ASSOCIATES LTD. 1:5,000 0 50 100 meters 200
	DRAWN BY: W.G. DATE: MAR. 1981.
To accompany a report by J.R.Kerr,P.Eng.	APPROVED BY : J.R.KERR, PENG. FIG. NO. 233-81-4

