REPORT ON GEOLOGY, GEOCHEMISTRY ASSAY RESULTS

BRAN CLAIM

Record No. 3424

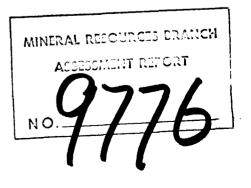
OMINECA MINING DIVISION

N.T.S. 93F/14E

Latitude: 53⁰ 55'W Longitude: 125⁰ 06'W

÷.

;


OWNER: J.C. STEPHEN

OPERATOR: DOME EXPLORATION (CANADA) LTD.

. by

K.A. D'ARCY J.C. STEPHEN

November 13, 1981

TABLE OF CONTENTS

Page

SUMMARY AND CONCLUSIONS	1
INTRODUCTION	2
CLAIM REGISTER	4
GEOLOGY: ROCK UNITS	7
ROCK DESCRIPTIONS	8
GEOCHEMISTRY	14
CONCLUSIONS AND RECOMMENDATIONS	16
STATEMENT OF EXPENDITURES	17

APPENDIX I - PETROGRAPHIC REPORTS APPENDIX II - SAMPLE DATA SHEETS APPENDIX III - SAMPLE HANDLING PROCEDURES

LIST OF ILLUSTRATIONS

FIGURE I	LOCATION MAP	Scale 1:250,000	<u>Page</u> 3
MAP I	BRAN CLAIM GROUP GEOLOGY	Scale 1:1000	IN POCKET
MAP II	BRAN CLAIM GROUP GEOCHEMISTRY	Scale 1:5000	IN POCKET
MAP III	AIR PHOTO ENLARGEMENT	Scale 1:5000	IN POCKET

·+e.,

REPORT ON GEOLOGY, GEOCHEMISTRY ASSAY RESULTS BRAN CLAIM

SUMMARY AND CONCLUSIONS

Assay of a mineralized float fragment found in 1980 lead to staking the BRAN claim. Geological mapping, a soil sample survey, prospecting and rock sampling was done during May, 1981.

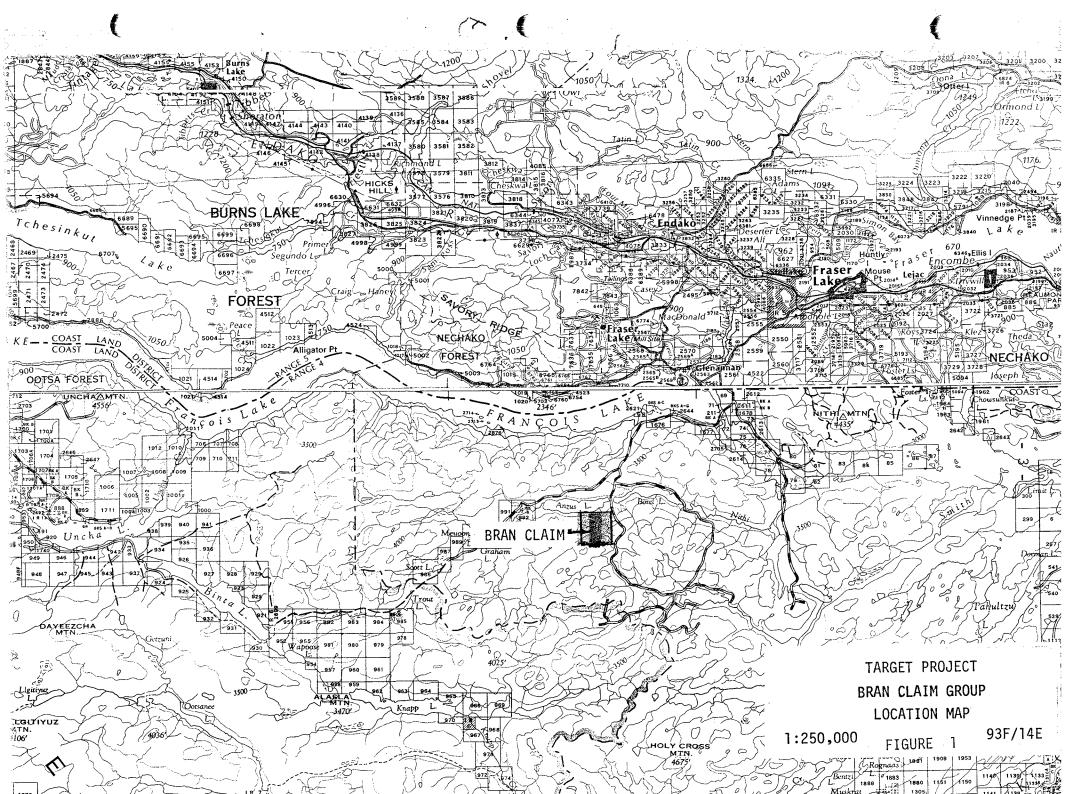
A north west trending creek valley follows the trend of a fault zone which contains intermittent carbonate-quartz veining.

No assays of economic significance have been obtained from bedrock exposures of vein material or from pyritized fractured volcanics. Float fragments of similar vein type material have assayed as high as 330 oz per ton silver.

No mineralization has been found in place, and because of the limited tonnage indicated by the type of occurrence, no further work is recommended for the current exploration program.

The property may be of interest to a small company on an option basis.

INTRODUCTION


Location and Access

The BRAN 1 claim is located immediately south of Anzus Lake which is 22 kilometres southwest of Fraser Lake on Highway 16. See Figure 1 Location Map.

Logging roads in the area have been recently rebuilt but access may be conveniently gained from Fraser Lake via the east end of Francois Lake to the narrows between Anzus and Borel Lake. From the narrows to the legal claim post at the south east corner of the property, access is by way of a somewhat rough road for which a 4-wheel drive vehicle is recommended.

Physiography

The claim occupies a portion of the Nechako Plateau which is an area of moderate relief covered by extensive glacial till deposits. Rock exposure is limited with the best exposure being along the canyon like portion of the creek valley on the claim block.

CLAIM REGISTER

Name	Record Number	Anniversary Date
BRAN 1	3424	November 14

HISTORY

No indication of previous exploration was evident on the claim although exploration has been conducted on silver, lead, zinc, copper mineralization occuring north of Cabin Lake, 6 kilometres southeast of the property.

A reconnaissance silt sample program was conducted in the region by Target Project for uranium during 1977. Follow-up work was done in 1978, 1979. In 1980, selected samples were analyzed for gold and arsenic. A sample immediately south of Anzus Lake returned 155 ppm arsenic. This anomalous value was investigated by prospecting which located the vein structure in "Bran" creek. A sample of mineralized float assayed 220 oz per ton silver and lead to staking the BRAN claim.

Target Project is a prospecting program funded by Dome Exploration (Canada) Ltd. and conducted by J.C. Stephen Explorations Ltd.

SUMMARY OF WORK

Prospecting was conducted over the BRAN claim, an area of 4 square kilometres by geologist Jean Pautler. Detailed compass survey and geological mapping of the "Bran" creek canyon was done by geologist Kim D'Arcy and Julia O'Connor. This mapping is shown on Map I at a scale of 1:1000.

Float and vein exposures were "grab" or chip sampled for assay purposes and results for 16 samples are shown on Map I.

Soil sampling was conducted on a tape and compass grid. A total of 221 samples were analyzed for zinc, silver, arsenic and gold and results are shown on Map II at a scale of 1:5000. Soil sampling covered one square kilometre in the central part of the claim plus a portion of the south boundary.

Map III is a reproduction of a 1:5000 scale enlargement of air photo BC 7560-278 showing the general character of the claim topography.

GEOLOGY

(Kim D'Arcy)

Method of Mapping

The creek course was surveyed by tape and brunton compass to provide a base map at a scale of 1:1000. Outcrop areas were then mapped together with vein fault zones.

Chip samples were taken across significant vein exposures for assay and representative pieces of float vein material was also sampled. Mineralized pieces were assayed while several were run geochemically.

Rock Units

.

TABLE OF FORMATIONS

4		CONGLOMERATE
4	a	Hematitic conglomerate
4	b	Conglomerate breccia
4	с	Basaltic conglomerate
3 3	a,3b	Dacite Tuff
3	с	Dacite Porphyry
3	d	Fine docite porphyry
3	е	Dacite Dykes
2		Andesite Tuff
2	a	Coarse Andesite Tuff
l		Basalt

۰_

.

BRAN GROUP

Rock Descriptions

Unit 1 - Basalt

This is fine grained, dark, present in subordinate amounts apparently as flows in sequences where andesitic tuffs are the dominant rock type.

Unit 2 - Andesite Tuff

This is a dominant rock type in the area. It is a fine grained, dark green tuff containing fragments of andesite and porphyritic andesite,(see thin section Report 2). It is generally pyritized and slightly altered.

÷

2a-Coarse Andesite Tuff

This is a coarse grained dark green rock with pale phenocrysts/fragments several millimetres in size. It was previously mapped as granodiorite. Due to its observed relationship to the finer tuffs (it generally overlies the fine tuff and a distinct contact was never observed) it has been mapped as a coarse tuff.

Unit 3 - Dacite Tuff

Dacite tuff as a whole are also a dominant rock type in the area. The fine tuff is the most abundant of these tuffs. These are fine grained grey-green rocks which may be magnetic and are altered. A thin section was done of this rock type. (Report 3)

3a-Dacite Tuff - Medium Fragments

This rock type is buff coloured with fairly homogeneously sized fragments. It is distinctly different in appearance from the fine tuff and distinct contacts may be observed. No thin section was done of this rock type.

3b-Dacite Tuff - Coarse Fragments

The coarse tuff is present only in minor amounts and is only observed at the north western end of the creek. The rock is pale buff in colour with coarse fragments of white, angular dacite. The rock is altered. It is found overlying a conglomerate. Thin section work was performed on this rock. (Report 3b)

÷

3c-Dacite Porphyry

This is a dark green porphyritic rock present in minor amounts generally with the coarse andesite tuff. (It underlies the tuff at the north western end of the creek) Thin section work was done (Report 3c) indicating that it is a hypabyssal porphyry with strongly altered phenocrysts. It has an unusual texture. Again, the phenocrysts are homogeneous in size and distribution and the rock looks bluish on a fresh surface to greenish on a weathered surface.

`3d-Fine Dacite Porphyry

2

Again, this is a minor rock type, found at the south eastern end of the creek associated with fine dacite tuffs. It is an equigranular looking hypabyssal rock. Thin section work was done on this.(Report 2c)

3e-Dacite Dykes

Minor rock type, pale green to black in colour with an aphanitic cherty appearance. Dykes are generally no more than 0.5 metres wide. It is observed underlying the fine andesite tuffs.

4a-Hematitic Conglomerate

This rock type is minor in occurrence and found only at the extreme north western end of the mapped area of the creek. It has a grey-purple clay rich matrix with large rounded pebbles of hematite and volcanics. This rock weathers to a red colour.

4b-Conglomerate Breccia

This is the most abundant conglomerate in the area. It also has a grey-purple matrix which is clay rich and contains small subrounded to subangular fragments of volcanics and hematite. It weathers to a greenish-purple colour. In some places this rock looks almost like a breccia.

It is found overlying the coarse dacite tuff at the north western end of the creek but is also observed in association with (apparently underlying) the andesite tuffs in the central area of the creek.

4c-Basaltic Conglomerate

This is also a minor rock type with a basaltic looking matrix containing large rounded pebbles which appear basaltic in composition. It is found in the south eastern end of the creek overlain by fine andesite tuffs.

Petrographic reports are provided as Appendix I

The sequence is generally basalt, andesitic tuffs, dacite tuffs, conglomerate. However, in the central part of the creek, andesitic tuffs overlie dacitic tuffs.

It is difficult to correlate the units but it seems likely that fine and medium dacite tuffs were overlain by the andesitic tuffs and in turn are overlain by the coarse dacitic tuff. Conglomerate (b) was probably formed last and deposited in topographic lows.

The fine porphyry (3d) was probably late, possibly intruded as a larger dyke but there is little outcrop. The coarse porphyry (3c) was also probably late but is also present in such minor amounts that it is difficult to determine much about it.

However, these and the dykes (unit 3e) appear to have a similar orientations and seem to reflect a major fracture system or fault.

Vein Fault Structure and Mineralization

Carbonate and quartz carbonate vein filling occupies a system of joints and faulting trending approximately 290⁰ and dipping vertically. In portions of the best vein filling, quartz or carbonate material would generally occupy widths of 20 cm or less but in some sections, fault gouge, sheared rock and vein material will aggregate widths up to 1 metre or more where parallel structures occur. Examples occur between survey stations F and G and at station 0. See Photo 1.

Photo I - Chip sampling vein zone between stations F and G

At locations such as station H northeast trending faults intersect the vein fault system without apparent significant offset of either system. These northeast trending faults contain minor carbonate filling up to 10 cm wide as above station CC. Vein float material returning assays of 37.9 oz, 220 oz and 331 oz silver per ton were located in the vicinity of stations W, X, Y. A similar large mineralized float was later found between stations F and G.

The vein fault system does not appear to be a single strong break but rather a series of breaks which tend to fade out into a series of tight joints or curve off to the north west in a "horsetail" structure. In some areas, as at station G and between J and K, the dacite is relatively well fractured and contains pyrite both on fracture planes and disseminated.

No significant sulphide mineralization was found in outcropping vein material and the best assays of this material were in the order of 0.60 oz per ton silver.

High grade float material contains sphalerite, tetrahedrite and minor galena. The vein material, however, appears otherwise identical to that in outcrops.

"The vein fault structure appears to be generally independant of the volcanic rock types but is not known to cut the conglomerate.

GEOCHEMISTRY

Procedure

Soil sampling was done on tape and compass lines at 100 metre intervals with samples taken at 50 metre stations. Several lines were irregular due to inexperience of the crew.

The intention was to sample the B horizon at each station but this proved difficult due to frozen ground conditions in May. Some sample locations were missed due to swamp areas. Sample data sheets are provided as Appendix II. The sampling conditions, as known to the writer, (J.C.S.) and shallow depth of many samples, suggests that a large proportion of the samples should be recorded from the A horizon rather than B horizon as noted.

Samples were taken with a grub hoe and material was placed in a Kraft paper bag marked with the grid location. A piece of flagging marked with the same grid location was tied at the sample site.

Samples were shipped in the raw state to Chemex Labs Ltd., North Vancouver for analysis. These samples were dried, sifted to -35 mesh and pulverized to 100 mesh before analysis. Methods are given briefly in Appendix III.

Results and Interpretation

No anomalous values were obtained for silver except for two isolated values of 0.8 ppm and one of 2.4 ppm along the trend of the creek valley and approximately on the trend of the veinfault zone. Zinc values are generally in the 30 - 50 ppm range with a few values in the 70 - 90 ppm range which are fairly generally scattered with a tendency for more of these values to be "down ice" to the east of the creek valley.

The higher zinc values greater than 100 ppm to a high of 485 ppm occur along the trend of the creek valley or as widely scattered samples down ice to the east.

One anomalous (?) gold value of 80 ppb was obtained.

Arsenic values are generally quite low, generally around 10 ppm with a high of 65 ppm. These values do not account for the original high silt value of 155 ppm near Anzus Lake. Later silt sampling did not return anomalous arsenic values.

The geochemical results for soil sampling do not provide useful anomalies. This is probably due mainly to the glacial till cover and partly due to poor quality samples from frozen soil.

CONCLUSIONS AND RECOMMENDATIONS

Although not discussed in this report, the Target Project also carried out detailed prospecting for precious metals in the immediate region. No mineral showings of significance were located.

Geochemical sampling on the BRAN claim has not been of value in locating a source of the high grade float found in BRAN creek.

Mapping and chip sampling along BRAN creek has not located high grade material in place and the character of the float fragments is such that a source of only very small tonnage may be expected.

It is concluded that the probable mineralized target is too small to be attractive as an exploration target for this program.

Respectfully submitted

J.C. STEPHEN EXPLORATIONS LTD.

.C. Stephen

STATEMENT OF EXPENDITURES

Wages and Benefits

Name	Date	Rate	Amount	
J. O'Connor	May 16-31	\$1750.m+15%	\$1,038	
K. D'Arcy	May 16-31	\$1750/m+15%	1,038	
J. Lawton	May 16-31	\$1000/m+15%	593	
L. Fasullo	May 16-31	\$1000/m+15%	593	
J. Pautler	May 20-29	\$1950/m+15%	723	
M. Masson	May 16-18	\$1750/m+15%	194	
J.C. Stephen	May 16,20, 21,31	\$150/day	600	\$4,779

Food and Camp Supplies

77 man days @ \$10

<u>Geochemis</u>	try and Assayir	ng			
•••	No. of Samples	Elements	Rate	Cost	•
111111	🛬 52 Geochem	Zn,Ag,As,Au	\$10.25	\$ 533	
111301	117	Zn,Ag,As,Au	\$10.25	1,199	
111302	52	Zn,Ag,As,Au	\$10.25	533	
111303	13 Assays	Au,Ag	\$ 8.50	110	
	3 Assays	Au,Ag+1 of	\$13.50	40	
		Zn,Pb,Cu			2,415

770

5 Thin Sections and Petrographic Reports	s255
	TOTAL \$8,219

NOTE:	Not Included - Truck Rental
1	- Check Sampling and Assaying
	- Preparation Photos, Maps, Reports

- 17 -

STATEMENT OF QUALIFICATIONS

KIMBERLEY D'ARCY

Education B.Sc. Geology 1981 Queen's University

<u>Experience</u> J.C. Stephen Explorations Ltd. May 1980 -Junior Geologist

K.A. D'Arcy, Geologist

STATEMENT OF QUALIFICATIONS

J.C. STEPHEN

Academic

3

1950 Associate Member British Institute Engineering Technology1950-1951 One year Geology University of Alberta

Experience Summary

ſ

- 1947-1955 Development and production experience in engineering and geology at Central Patricia Gold Mines, Eldorado Mining and Refining, Madsen Gold Mines, Hasaga Gold Mines, Pickle Crow Gold Mines as Surveyor, Assistant to the Engineer, Geologist.
- 1955-1959 Regional exploration experience with Pickle Crow Gold Mines, Combined Developments Ltd., R.G. Crosby and Associates, Jay-Kay Syndicate as Field Geologist.
- 1959-1961 Municipal construction including monolithic concrete tunnels as Senior Inspector.
- 1962-1968 Regional exploration with Mastodon Highland Bell Mines as field geologist.
- 1968-1976 Regional exploration with Bacon and Crowhurst Ltd., as supervisor of exploration syndicates.

1977-Present President J.C. Stephen Explorations Ltd.

During May 1981 I supervised mapping and sampling on the BRAN claim group.

J.C. Stephen Explorations Ltd.

J.C. Stephe

APPENDIX I

ł

.

•

· •••

PETROGRAPHIC REPORTS

.

Vancouver Petrographics Ltd.

JAMES VINNELL. Manager JOHN G. PAYNE, Ph. D. Geologist

> Report for: J.C.Stephen, J.C.Stephen Explorations Ltd., 1458 Rupert Street, NORTH VANCOUVER, B.C., V7J 1G1

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

PHONE (604) 888-1323 Invoice 2892

Samples: Five samples labelled 2, 2c, 3, 3b, and 4

The samples are grouped as follows:

1. Tuffaceous rocks

composition from andesite to dacite, with a variety of fragments of andesite and dacite as well as fragments of plagioclase and quartz phenocrysts

- #2 : fine grained tuff, variable texture, fragments of andesite, porphyritic andesite, and of quartz and plagioclase grains in a groundmass dominated by plagioclase, possibly with quartz, and lesser sericite, biotite, and Ti-oxide. The presence of andesite fragments and of biotite and Ti-oxide in the groundmass suggests that this rock is more mafic than the other tuffaceous rocks, and it is given the name andesite. Probably it is intermediate between andesite and dacite.
- #3 : fine dacite tuff, scattered fragments of quartz and plagioclase grains in groundmass dominated by plagioclase and sericite. The rock contains moderately abundant pores.
- #3b: coarse dacitic tuff, abundant fragments of various types of dacite and of plagioclase phenocrysts, minor fragments of quartz and muscovite phenocrysts in a groundmass dominated by plagioclase and sericite, with patches of very fine grained opaque.
- 2. Hypabyssal intrusive rocks
 - composition dacitic, porphyritic with plagioclase, hornblende, and minor biotite phenocrysts in a groundmass of plagioclase, guartz, (chlorite), and moderately abundant opaque, apatite and Ti-oxide; moderately to strongly altered, especially phenocrysts
 - #2c : hypabyssal dacite porphyry, plagioclase phenocrysts altered to sericite-epidote?; hornblende phenocrysts altered to actinolite-epidote-chlorite-(calcite) in various assemblages. Secondary patches of coarse grained quartz-calcite with actinolite needles in calcite and a few patches of chlorite.
 - hypabyssal dacite porphyry, groundmass finer than for #2c; #4 : plagioclase phenocrysts altered to kaolinite-sericite±limonite; hornblende phenocrysts altered to calcite-sericite-quartz

m Varpe John Payne

October 1981 SAMFLE PREPARATION FOR MICROSTUDIES • PETROGRAPHIC REPORTS • SPECIAL GEOLOGY FIELD STUDIES

Sample #2 Altered Andesite Tuff

The rock is a variable fine grained tuff, probably of andesitic composition, which has been somewhat altered with addition of sericite and pyrite. The rock contains several fragments up to 2 mm across. Some fragments are difficult to distinguish from groundmass; variations in composition in patches from 1 to 3 mm exist which may be original fragments or just variations in groundmass composition in an inhomogenerous rock.

definite fragments	
quartz grains	4- 58
plagioclase grains	2-3
epidote-rich patches	1- 2
lathy andesite	3-5
porphyritic andesite	1- 2
groundmass	
plagioclase-quartz	45-50
sericite	15-20
biotite	7-10
Ti-oxide rich patches	5-7
pyrite	1- 2
}	

Quartz forms subangular grains from 0.15 to 0.5 mm in size. These probably represent fragments of original phenocrysts in dacite.

Plagioclase forms grains from 0.3 to 0.5 mm in size; some are partly altered to fine grained epidote. These are original plagioclase phenocrysts in andesite or dacite.

Epidote-rich patches consist mainly of epidote and opaque, possibl with Ti-oxide. Grains average 0.3-0.5 mm in size. Epidote commonly forms prismatic grains up to 0.2 mm long in a very fine grained groundmass of epidote and opaque. Some of these may represent altered mafic phenocrysts, or possibly even plagioclase phenocrysts.

Rock fragments include two types of andesite. They form fragments up to 2 mm across. The first type consists of plagioclase laths averagi 0.1-0.2 mm in grain size in a very fine grained groundmass of plagioclase and epidote. The second contains a few plagioclase phenocrysts up to 0.7 mm long in a very fine grained groundmass dominated by plagic clase laths averaging 0.1 mm long. The latter are in subparallel orientation suggesting that the fragment is part of an andesite flow.

The groundmass has a variable composition, with irregular patches containing more or less sericite, biotite, and Ti-oxide. Much of the groundmass consists of extremely fine grained (0.01 mm) plagioclase possibly with quartz. Sericite occurs in the groundmass as scattered grains and patches up to a few mm across which are mainly sericite. Possibly sericite is an alteration of the plagioclase-rich groundmass. A few patches appear to be composed mainly of extremely fine grained quartz, and may represent cherty sediments, possibly of exhalite origin Biotite occurs as extremely fine grained patches, possibly of secondar origin; patches are up to 0.2 mm across and grade gradually to rapidly into the plagioclase-rich groundmass. Some patches contain abundant Ti-oxide; these average 0.1-0.15 mm in size, and grade into the plagioclase-rich groundmass.

Pyrite forms scattered anhedral grains averaging 0.1-0.3 mm in size, with a few up to 1 mm across.

One fragment 0.3 mm across consists of a very fine grained aggregate of muscovite.

Sample #2c Hypabyssal Dacite Porphyry

The sample contains plagioclase and lesser hornblende and minor biotite phenocrysts in a groundmass dominated by plagioclase with lesser quartz, chlorite, opaque, and epidote. Scattered coarse grained patches consist of quartz-calcite-(actinolite-chlorite). The yellow stain on the offcut block is due to sericite alteration of plagioclase phenocrysts and groundmass; no K-feldspar was identified in the rock.

phenocrysts plagioclase hornblende biotite groundmass	35-40 $8-10^{-1}$ $\frac{1}{2}-1$	
plagioclase	35-40	
quartz	5-7	
	3-5	
chlorite		
epidote	$\frac{1}{2} - 1$	
opaque	2-3 (moderately abundant magnetite))
apatite	minor	
patches		
quartz	2-3	
calcite	1-11	
actinolite	0.3	
chlorite	minor	

Plagioclase forms subhedral prismatic phenocrysts averaging 0.5-1.5 mm in size, with a few over 2 mm long. Grains are slightly overgrown by irregular patches of plagioclase in the groundmass, giving the phenocrysts ragged outlines. Alteration is to extremely fine grained sericite and epidote? (very high relief dusty inclusions).

Hornblende forms subhedral to euhedral grains averaging 0.5-1.5 mm in size. They are variably altered. Some altered grains consists mainly of actinolite with minor epidote patches. Others appear to be replaced further along the borders of grains to very fine grained chlorite, and a few grains consist mainly of chlorite with minor actinolite and minor to moderately abundant epidote. Calcite occurs in a few altered grains.

Biotite forms a few phenocrysts from 0.5 to 1 mm in size. They are completely altered to pseudomorphic chlorite with minor patches of epidote and Ti-oxide.

The groundmass is dominated by plagioclase, which forms an aggregate of anhedral to prismatic grains averaging 0.05-0.2 mm in length. They are slightly to moderately altered to dusty sericite and epidote. Quartz forms scattered interstitial grains averaging 0.03-0.05 mm in size. Chlorite forms patches averaging 0.05-0.3 mm in size. Pleochroism of chlorite is from pale to light-medium green. Epidote forms irregular grains and clusters of grains averaging 0.05-0.15 mm in size; clusters commonly are associated with opaque grains and clusters. Opaque forms equant grains averaging 0.03-0.05 mm in size, with a few up to 0.3 mm in size. The latter occur in clusters with epidote and minor apatite. Apatite forms grains from 0.05-0.15 mm in size, with a few elongate grains up to 0.4 mm long.

Alteration patches up to 3 mm across consist of aggregates of coarse to medium grained quartz and calcite, with abundant acicular to elongate prismatic actinolite grains in calcite, and scattered patches of chlorite. Actinolite grains average 0.3-0.5 mm in length, with a few up to 1 mm long. Chlorite occurs in a very fine grained aggregate.

Sample #3 Fine Dacite Tuff

The rock contains scattered fragments of quartz and plagioclase crystals, probably original phenocrysts, in an extremely fine grained groundmass dominated by plagioclase and sericite, with minor opaque (hematite?) and Ti-oxide. The rock contains moderately abundant pores up to 1 mm in size, averaging 0.1-0.2 mm.

fragments quartz plagioclase	1% 0.5-1
groundmass	
plagioclase	65-70 .
sericite	20 - 25
hematite	2-3
Ti-oxide	1-2
pores	5-7
epidote	one grain (origin uncertain)

Quartz forms subangular to angular fragments averaging 0.05-0.3 mm in size, with a few up to 0.7 mm across. These are of single grains or locally of quartz aggregates of a few grains.

Plagioclase forms, grains from 0.2-0.6 mm in size with subhedral outlines, probably representing original plagioclase phenocrysts. They are mainly unaltered to very slightly altered to dusty sericite? and opaque.

The groundmass consists mainly of extremely fine grained (0.01-0.02 mm) plagioclase in equant aggregates, with local patches up to 0.03 mm in grain size. Intergrown relatively uniformly with plagioclase is very fine grained sericite flakes. Locally sericite occurs in sericite-rich patches up to 0.5 mm in size. A few muscovite flakes up to 0.15 mm long are present. Sericite shows no preferred orientation.

Hematite? forms disseminated grains and clusters of grains averaging 0.03-0.05 mm in grain size, and also forms dusty grains scattered through the groundmass.

Ti-oxide forms patches averaging 0.05-0.1 mm in size, composed of very fine grained aggregates.

Epidote forms one subrounded grain 0.1 mm across; it may be a fragment or may be of secondary origin.

The rock contains moderately abundant pores averaging 0.05-0.3 mm in size, with a few over 1 mm across. Borders generally are irregular, but a few have subhedral to euhedral outlines, suggesting that the pores once held a mineral which has since been completely removed. Probably most pores represent original cavities in the rock.

The rock is cut by a few limonite veinlets with alteration halos in which limonite is intergrown with sericite of the groundmass. These probably are of weathering origin. The sample contains fragments of several types of dacitic rocks, and fragments of plagioclase and of quartz grains in an extremely fine grained groundmass of plagioclase and sericite with patches of opaque.

fragments	
dacite	
Туре А	15-20%
Type B	7-10
Type C	1- 2
Type D	1- 1
plagioclase	7-10
quartz	1 -1
.muscovite	minor
groundmass	
plagioclase	30-35
sericite	25-30
opaque	2-3

Type A dacite forms fragments up to several mm across. It is a porphyritic dacite with 10-25% phenocrysts of plagioclase up to 1 mm in size in a very fine grained groundmass of plagioclase and sericite.

Type B dacite is a fine grained rock composed of equant grains of plagioclase and quartz averaging 0.05-0.2 mm in size, with abundant opaque grains up to 0.5 mm in size and Ti-oxide grains up to 0.15 mm across. Some fragments appear to have the texture of a vein, with more abundant quartz and opaque relative to plagioclase and sericite.

Type C dacite is an extremely fine grained rock with abundant epidote alteration. Some fragments contain scattered plagioclase laths up to 0.3 mm in size.

Type D dacite is a very fine to extremely fine grained rock composed of cherty quartz or quartz-plagioclase.

Some fragments are difficult to classify. As well, some fragments? appear to have a very similar texture to the groundmass, with borders? of fragments outlined by slightly different contents of sericite (generally higher along the contacts).

Plagioclase forms scattered to locally abundant crystal fragments from 0.3 to 1 mm in size. These are slightly altered to extremely fine grained sericite.

Quartz forms angular grains averaging 0.2-0.5 mm in size, with a few up to 1 mm across.

Muscovite forms a few grains and clusters of grains from 0.3-0.6 mm in size.

The groundmass consists of extremely fine grained plagioclase with variable amounts of extremely fine to very fine grained sericite and patches of opaque. Sericite locally is very abundant, and the texture suggests that some of these patches may be sericite-rich fragments, possibly pumice in origin. However, these appear to grade into normal groundmass. Opaque forms clusyers up to 1 mm in size of clusters of equant grains averaging 0.03-0.05 mm in size. These are partly intergrown with groundmass plagioclase and sericite. Sample #4 Hypabyssal Dacite Porphyry (Plagioclase, Hornblende), strongly altered phenocrysts

The rock contains plagioclase and hornblende phenocrysts in a groundmass dominated by plagioclase and lesser quartz, with moderately abundant apatite and opaque as accessory minerals. Plagioclase is altered to kaolinite-sericite-limonite. Hornblende is altered to a variety of combinations of sericite-calcite-quartz.

phenocrysts

35-40%
10-12
minor;
35-40
8-10
$2 - 2\frac{1}{2}$
$1 - 1\frac{1}{2}$
$1 - 1\frac{1}{2}$

Plagioclase forms euhedral prismatic grains from 0.5 to 1.2 mm in size. These are in random orientation throughout the rock. They are completely altered to very fine grained to extremely fine grained aggregates of kaolinite-sericite with or without limonite as very fine grained patches. Most grains contain more kaolinite than sericite, but a few contain more abundant sericite.

Hornblende forms euhedral prismatic phenocrysts up to 1.2 mm in size. They are also randomly distributed through the rock. Alteration shows a variety of assemblages and textures. Some grains are altered to patches of very fine grained sericite in the cores, with thin rims composed of fine to very fine grained quartz and lesser interstitial sericite. It is difficult to determine if the quartz is part of the original grain or is a reaction with the groundmass during alteration. Other grains contain cores of fine to medium grained calcite with patches of sericite and rims of quartz. Some do not have the quartz rim, and others do not have the zone of sericite. A few are replaced entirely by fine to medium grained aggregates of calcite. Associated with hornblende are abundant grains of apatite and opaque, either along hornblende grain borders or in inclusions.

Biotite forms a few ragged phenocrysts up to 0.5 mm in size. These are replaced by irregular aggregates of muscovite.

In the groundmass, plagioclase occurs as irregular aggregates of grains averaging 0.03-0.05 mm in size. They are slightly altered to very fine grained sericite. This probably is what causes the yellow stain in the offcut block, rather than K-feldspar; however, it is possible that the groundmass contains extremely fine grained K-feldspar. Dusty opaque masks the texture of altered plagioclase.

Quartz forms equant anhedral grains averaging 0.03-0.05 mm in size intergrown with plagioclase.

Opaque forms grains averaging 0.05-0.1 mm in size, and locally forms clusters of grains up to 0.5 mm across. Apatite commonly is associated with opaque as subhedral grains averaging 0.05-0.1 mm in size. A few apatite grains are up to 0.4 mm long. Ti-oxide forms scattered grains averaging 0.05-0.2 mm in size, commonly associated with irregular opaque grains and patches.

APPENDIX II

SAMPLE DATA SHEETS

ω, c

GEOCHEMICAL DATA SHELT - SOIL SAMPLING

-8.C.-GOLD-SYNDICATE

NTS 93 F/14 EAST

3 rd LINE

SAMPLER JAMES LAWTON + LOUIS FASULLO

DATE MAY 20 1981 A.D.

.

BRAN SCAIMS PROJECT TARGET

AIR PHOTO NO.

LINE

SAMPLE					brown medium brown fine to:			1		ADDITIONAL OBSERVATIONS OF REMARKS	ASSAYS			
NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.	ADDITIONAL OBSERVATIONS OF REMARKS	Ag	As	Au	Zn
81 TABR	7+00N 15+005	6"	ß	brown				200	punes, alders	slope to east.	0:1	6	~16	34
<i>!!</i>	7+00N 14 +00E	7#	11	brown grey	fine to medium	15%		· · · · · ·	н		01	5	-16	28
11	7+00 N 13+00 E	<u>'4"</u>		н	щ	10%			4	second growth, several burnt trees ground frozen	0.1	27.	410	42
\$1	7+00 M 12+00 B	74	<i>i</i> i	<i>i</i> i	a				4	ground frozen, sample taken under tree roots	on	ø	\$10	6Z
Ħ	7+00 N 11 +00 E	7"	H	<i>i1</i>	fine			600	<i>II</i>	taken 40 meters above creek on conyonwall north conyon wall	8.1	5	~	24
li	7+00 N 10+00 E	5"	H	4	fine to medium	40%		65 0	pines	taken 25 to 30 motors above creek on . North caregoin wall.	04	6	XIO	<u>32</u>
(1	7+00N 9+00 E	71	11	H	H	50%		600	41	taken 50 meters above creek on south cangon wall.	0.1	6	×10	56
¥	7+00 N 8+00 E	6"	n	H	Ħ			flattish	H	second growth, frozen ground.	62	6	£10	62
ţı.	7+00N 7+00E	4"	æ	greg	course	50%			4/	glacial fill, fresen, taken 10 meters from tributary creek	01	6	*10	42
n	9+00 N 8+00 E	40	ß	grown	medium			flat	н	" glacial fill, taken under tree roots near a swampy hollow.	0.1	7	10	44
11	7+00 N 5+00 B	8"	A	black	11	80%			pines and alder	water saturated, lots of moss and humus	OR	7	Ø	54
11	500 N 5700E	4"	B	BROWN	FINE - MEDIUM	20%		25-30°	ų		0.1	5	~10	36
il	8+00N 6+00E	7	B	GREY- brown	MEDIU			25°	H	SOIL FROZEN	0.2	7	-10	38
и	8+00N 1+00H	3	B	h.	1/	208		1))	THIN LAYER OF B - glaciah TVII	0,1	5	-10	44
1/	8+00N 8+00E	6	B	11	11	15		40°	11	- glaciah TIII FO FROZEN B LAYER. TILLISK BROWN LAYER	0.1	4	<u> </u>	36
l/	200 N 900 E	1	0	1(1/2-3	408		60°	11+115 MOSS	TILLISK BROWN LAYER LITTLE SOIL MIXED WOTHWEATERED ROCKS 3-3 who DIAMETER	0.3	6	40	88
17	500 N 10+00E	iq	B	+1	į-3			60°	- 11	_	6.1	5	4/0	32
	8+00V 11+00E	1	0					450	MOSS	glacial Till NOSOIL] [i	· .	
	8+00N 12+0E	3	Ø					100	3 IN HUMUS		0.1	6	-10	58
····	500N 13TOOE	36	B			2 0%		FLAT	N	FROZENSOIL D m ALAYFR	0.1		-10	5

J.C. STEPHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA SHEET - SOIL SAMPLING

B.C. GOLD STNDICATE	
---------------------	--

93 F / 14E NTS

SAMPLER MISSON, LAWTON, FASOLLO

DATE

TARGET PROJECT

LINE

MAY 13/31

AIR PHOTO NO.

					DESCRIPT	ION				ADDITIONAL OBSERVATIONS OR REMARKS		ASS	AYS		
SAMPLE NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		٨g	As	Нu	Zh	
31-TA·BR	5700N 15700 E	7"								· · · · · · · · · · · · · · · · · · ·	0,1	<u>.</u>	<u> «10</u>	30	-
	5+00N 14+00 E	2"						60°		Eeside Stream	2.4	301	<u> 10</u>	485	•
	5700N 13+00E	5″		brown	FEDDL2	75 3			moss Hilli Sector						
	5+00 N 12+00E	3"		light brown	514				m0.55		0.1	5	×10	40	· ·
	5+00N 11+00E	\neq "		brown	5and 51/t				i		0,1	5	×10	22	- -
IOTAGE?	5+00N 10+00E	3"	. <u>.</u>	light brown	511.d.y 511+	30%					2.1	4-	<u> <10</u>	32	•
	5+00N 9+00E	<u>7</u> "		light crown	fn, sard 51/t				moss	····	1 ×	; 		ļ	-
	5400N 3-00 F	8"			sand pekble	203			pine Spruce	ABUNDANT QUARTZ GRAINS			ļ		
	5700N 7400 F	8"			gravel					R'0075					-
	5400N 6400K	1.11			soble				· · · · · · · · · · · · · · · · · · ·					 	-
	5700N 5700E			`		<u> </u>				NO SAMPLE					-
										Ŷ					-
	5+00 N 5+00 E					100%				NO SMARE					-
	6+00 N 6+00 E	6"		brown	sand		 				0.1	5	<u> < io</u>	48	- '
	6100 N 7700 E	7"			sand	50%					0,1	6	= 10	716	2
	6+00N \$+00E	7"		red		20%			moss		0,2	4	0</td <td>56</td> <td>2</td>	56	2
	STOON YHOCE	7"								NO SAMPLE			ļ	<u>-</u>	-
	6+00N 10tooe		_		_								.	-	<u>_</u>].
	6700N 11+00E	7"	-	light brown	sandy			-	_		0,1	6	< 10	44	Ð
	6+00N 12+00E	6"				50%		450	m 10 55						

J.C. STEPHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA SHEET - SOIL SAMPLING

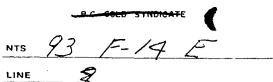
B.C. GOLD SYNDICATE

NTS	93	F	/	<i>'</i>].	4	E	

SAMPLER MASSON, FAISULLU, LAWATO

DATE <u>MNY 18/81</u>

PROJECT TARGET


AIR PHOTO NO.

LINE

SAMPLE	-				DESCRIPT	ION				ADDITIONAL OBSERVATIONS OR REMARKS	da	ASS	AYS	
NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.	ADDITIONAL OBSERVATIONS OF TEMPTING	4	As	itu	Zi
BI-TA-ER	6130N- 13400F				peòile			5-kap			1.Ž	65.	< j0	215,
	6+00N 13+70E			red						Rock sample-visible pyrite				
	14. + OD E			1517		50%				/				
	6480N 15700E									NO SAMPLE				
	151002													
			<u> </u>											
				·										
	-			. ···			·		-					
	-		-			-								
					-									
	-								-					
			-		-		-	·	-	,	-		<u> </u>	
		-												
				-		-			-					<u> </u>
	_					-					-			1
	_	-				.	-							
		_	_	_				-	_ [-#			·

GEOCHEMICAL DATA SHEET - SOIL SAMPLING

SAMPLER LOUIE FASULLO May 22/51

DATE

TAGRET PROJECT

AIR PHOTO NO.

SAMPLE				1	DESCRIPT	ION				ADDITIONAL OBSERVATIONS OF REMARKS		ASS	SAYS	
NO.	LOCATION	INCH		Colour	Part Size	% ORG.	Ph	SLOPE	VEG.	ADDITIONAL OBSERVATIONS OF HEMARKS	Au	As	Aq	71
FITABR	900 N 15100E	12	B	SANNY BROWN	TINE	10		20°	PINE PLDER		- 16	10	1	76
٨	9+00N 14+50E		2			30%			4	SACIAL TILL	- 10	.7	0.1	74
n	9+00N 14+00	1	\mathcal{L}			30%				LOCATED ON LARGE OUTCROP	.10	19-	0.1	62
H	9+00N 13+50E		A			20				12, NICHES DOWN FOUND NO SOIL IN B HORIZ.	-10	7	01	36
N	9+00N 13-00E	9	B	LIGHT BROWN	SANDY	152		GENTLE	PINE		210	•7	0.1	36
Ч	9+00 N 12+50E	B	B	11	n	102		<u>н</u>	n	SECOND GROWTH	10	9	01	52
t1	9+00 N 12+00 E 9+00 N	B	B	1	N.	•4		30%	4	-NEAP LARGE OUT CROP. - SECOND GROWTH - SOIL LAS ASH IN IT	-10	10	0.1	40
n .	11+50E	3	B	BROWN - GREY	FINE - PEBBLE	<i>h</i>			<u>۲</u>	- SOIL LAS ASH IN IT -NEMOR OUTCROO FERLS LIKE CLAYISK MATERIAL,	-10	9	0.1	62
ч	9-00 N 11+00E	5	D	BROWN	FINE	10%		SENTLE	K	AT BASE OF OUTCROPT Which HAS DEEN WENTHEREA	<10	9	0.1	48
11	9+00 N 10+50E	5	B	4	SANDY TEXTURE	152		400	μ 	SECON GROWTH ON SIDE MTN. MAY HOLE ZONE OF LEACHING.	-10	16	0.1	46
· · · ·	9+00N 10+00E	5	D	BROWN	FINE	10%				BOTTON STEFR UALLEY	×10	10	o.1	56
"	9+00N 9+91E	1	0	- BLACK				50°			10	7	0.1	108
	900 N 8+50E 9+00 N		-	·	 			11	PINE	BOTTON STEER VALLEY SECOND GROWTY	<10	9	0.8	76
h	STOOE	4	A			402		600	t1	SECOND GRIWIT	2/0	11	0.1	50
и	9+00N 7+50E	3	B	BROWN - GREY	FINE	158		25'	<i>u</i> '	BMINED WITH ASH. SMARL LEAGUED ZONE	40	9	0.1	44
"	9+00N 7+00E	4	B	n	h	102		3.	- 1(FREL CLAYISH WET. SECOND GROWTH	-10	9	0.1	54
•	9+00N 6+50E	8	B			50%		302	L,	TINCK OF CHARLOK	-10	-9	0.1	42
Ч	900 N 6+00E		ß	BROWN		202		20°	<i>!!</i>	INCA OF CTINELOR	10	11	0.1	66
"\	9400N 5+50E	4	ß	"	<u>u</u>	20%			· · ·		-10	11	0.1	48
11	9+00N 5+00E	3	C	9RBY				10°	4	CLAY SOIL	<10	11	0.1	34

J.C. STEPHEN GEOCHEMICAL DATA SHEET - SOIL SAMPLING	81 XTABR B.C. GOLD SYNDICATE
• • EXPLORATIONS LTD.	NTS 93 F/14 East
SAMPLER JAMES LAWTON	

DATE MAY 18 1981

-

......

PROJECT TARGET BRAN-CLAIMS

-

-

AIR PHOTO NO.

11

SAMPLE LOCATION	Denth	Horiz		DESCRIPTION			SLOPE	VEG.	ADDITIONAL OBSERVATIONS OF REMARKS	ASSAYS				
NO.	LUCATION	Depth	F10712	Colour	Part Size	% ORG.	Ph	SLUPE			Au	As	Ag	En
BI XTABE		12"	в	brown	fine to medum	15		_	Pings and alders	ground frozen, layer of ash 110 inch thiere above B	40	10	0.1	42
"	7+00 N 14+50E	7"	۵	brown- grey	//	15-			"		-10	11	0.1	54
11	7+00 N 14+00 S	6"	Ħ.	grey				301	"	ground frozen, glacial till	-10	//	0.1	24
"	13+50 E	8"	8	brown		0			11	ground frozen	410	11	0.1	56
11	7+00 N 13+00E	12 "	11	sandy brown	<u> </u>	20			pines .	taken at edge of conyon.	4/0	10	0.1	20
2	7+00N 12+50E	10"		greyish brown	"	20		600	pines	taken on north side of creek 20m above it. taken on south side of creek a 8m above it.	410	16	0.1	<u>38</u>
"	7+00N 12+005 7+00N	12"	11	<i>"</i>	ы 	· ·		// 	<i>"</i>	taken on south tide of creak 30m " "	40	12	0.8	108
	11+ 50 E 7+00 N	6 ''		brown		10		 	11 Pines	ground frazen 1200 ter in K. ground frazen, Johs of roots	×10	10	0.1	<u>44</u>
,,,	11400E	12"		- F Į	sine to	30			alders	J	-10	10	<u>e:1</u>	
<i>n</i>	10+50E 6+56N	12"	B	brown	medum	20		30.	 	lors of windfall, lots of clay and humans	<10	10	0.1	66
, 	10+00# 7+00N	14"		grey		30%		20°	pines	glacial fill	-	<		
	9+50E 7+00N	·7" 8"				5070			//	ground frozen, glacial till	~10 ~10		<u>0.1</u> 0.1	54 68
	9+00E 7+00N 8+50E	8"		ı)		50%			olders	glacial till, lots of roots	10		0,1	40
ii	7400 P	6"	B	brown	sandy		<u> </u>	100	ping	mixed with lots of pebbles	4/0		0,1	
	7+00 N 7+50E	5"	ß	bran	sand				11	near edge of tributary canyon, roots is mixed with peubles	0</td <td>11</td> <td>0,1</td> <td>68</td>	11	0,1	68
"	7+00N 7+00 E	10 "		grey				\$0°	,,	ground fiosen, glacial till, facen on slope of	10		0.1	34
1)	7+00N 6+50E	6 ''	B	light brown	fine to coarse				"	14 charcoal lager. misced with glacial hu second growth.	<10	10	0,1	92
))	7+00N 6+00E	7"	B	н	sandy				"	near edge of 2nd inbutany guily osh layer near surface	-10		0,1	
<i>J</i> I	7+00 N 5 + 50E	8"	B		1	40		402	Ц	taken on cast side of gully, ground frozen sprind growth, 10m from stream, ash layer	410	10	0.1	74

GEOCHEMICAL DATA SHEET - SOIL SAMPLING

B.C. OOLD SYNDICATE

NTS 93, FILLE

SAMPLER LOUIE FINSULLO

PROJECT

LINE

AIR PHOTO NO.

DATE 11/0- 27/81

SAMPLE				1	DESCRIPT	ION				ADDITIONAL OBSERVATIONS OR REMARKS		ASS	AYS.	
NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		A1)	As	Aq	7n
SI THOR	RICON	3	ζ	Geet	F-M	30		تلات ١٨ تلوث	PINE	JECOND GROWTH	10		0.1	
11	14-50E	7	B	BROWIN	A	20			4 ANDER		<10	10	0.1	42
1:	8+00 N 14+006	5	B	BROWN	1\	10		4	<u> </u>	SECOND GROWTH. -UNDER TREE ROOTS	-10	11	0.1	34
1:	13+50E	3	B	น	11	<u> </u>		FLAT	4	11	10	10	0,1	64
11	13+00E	7	B	LIGHT BROWN	١	15				9LACIAL TILL -SANDY TEXTURE	< 10	"	0.1	56
11	12+505	6	B	Ч	<u>ц</u>		[<u>بن</u>	4	SAMLE PEBBLES	<10	10	0.1	62
11	12+00E	1	B	SREY -BROWN		10	 	STEED	۶ <u>۲</u>		<u> 10</u>	_9	<u>e.1</u>	30
11 .	11+50E	à		geey				11	17	GLACIAL TILL NO BRORIZON	10	10	0,1	26
11	10+50E	8	B		MED	25		и	•1	TILLISH	-10	16	0.5	245
11	10+00E	5	B	BROWN		10		<i>t</i> 1	61 <u>.</u>	SECONJ GROWTH LINCH CHARCOAL NEAR BASE OF TREE	5/0	12	0.1	46
11	9+50E	5	B		SANDY	10		FLAT			=10	12	0,1	38
<u> </u>	9700E	3	B	· · · ·	FINE			POILING		TILLISK	-10	11	0,1	345
<i>il</i>	8+50E	3	н	и		10				SECOND GROWTH INCL ASH	-10	11	0.1	74
ŧī	STOOF	3	11	K	MED	10		STEEP			-10	16	0.1	38
¥1	77+50B	2	A	9REY				ો 	V(NUB NORIZON SECOND GROWTH	10	10	0,1	38
11	# 100 E	3	C	+1		10			12	SECOND GROWTH TILLISK CLAYISH SOLL	-10	//	0,1	44
1'	6+50E		 			10		"	PINE		-10	10	0,1	28
	6+00B	4	B	HIGHT BRUWIN		10		FLAT	\$	B MIXED WITH TILL SELON, GROWTH CHARCOAL DRESENT	-10	10	0,1	46
ÿt	5+30	3	C			20			PINE	CHARCOTTE DESSENT	-10	10	0,1	42
`	5+00	6	B	ļ	FINE		ļ	FLAT	15		-10	//	0,1	56

- B: C:- GOLD SYNDICATE

NTS 12,1 4.4 5

SAMPLER LEVIE FASULLO

DATE May 28/ Kl

PROJECT BRANS

AIR PHOTO NO.

SAMPLE					DESCRIPTION olour Part Size % DRG. Ph					ADDITIONAL OBSERVATIONS OR REMARKS		ASS	AYS	
NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		Au	As	AR	ZA
TAGE	1400N	9	B	9R= Y BROWN	SANDY	10		GENTLE	PINE ALVER		<u> <16</u>	Z	0.1	76
1)	14+50	6	ß	h	n	15			<u>, n</u>	SANDY-SINT - UNDER ROOT	<10	ø	0.1	74
11	13+00E	13	ß	LIGHT 1320W.U				STEEP	1)	UNDER ROOTS	×10	9	0.1	76
N	12+505	5	в			5		11	А	·	- 10	10	0.1	72
ti -	12+00E	10	A					н	11 .	REGOILTH UNDER ROOT SOL POCRLY DEVELOPED	<10	9	0.1	46
¥1	11+50E	Γ	ß	SPEY		20		<u>n</u>	h	UNDER TREE	10	1044	0.1	40
N	THE FE												 	
11	10+505	12	B	LIGHT BROWN	F- PEBRLO	30				VERY ORGANIC	-10			56
ι.	10+00		B	985Y	F	30		۱ ۱	PINE		410	9	0,1	34
N	9+50E	3	B	grey		4			<u>n</u>	MIKED WITH ROOTS	-10			36
ų	9+00B	12	C			30				SECOND GROWTH - UNDER TREE				44
11	8+50E	3	B	BROWNO -red		20		9ENTLE	11	UNDER TREE (WIND FALL)	×10	12 12	e.l	46
~ ~ ~	Stoce	5	B	SVEY		20		STREP		l) *	-10	10	0.1	36
L.L	7+50E	2	D	- Ц	FINE	20		"	PLUER		4/0	9	el	34
13	7+00E	3	B	17	SANDY		3	11	PINE		-10	9	0.1	36
11	4+50E	3	B	HIGHT BROWN		20		G. WALE		UNDER ROOTS	10	40	01	48
11	6+00 E					60		·\\	PINE	NO D	410	10	0,5	78
11	5+50	æ3			CLAY LIKE	30			· · ·	JECOND GROWTH	-10	7	0,1	64
	5+00E	8				30_		STEEP		NO B	10	7	0.1	56
								<u> </u>			<u> </u>			

_B.C._GOLD-SYNDICATE-

NTS 93 F/14 East

12

SAMPLER FASULLO PANTER

DATE MAY 27 1981

PROJECT TARGET - BRAN CLAIMS GROUP

AIR PHOTO NO.

SAMPLE					DESCRIPT	ION				ADDITIONAL OBSERVATIONS OF REMARKS		ASS	AYS	
NO.	LOCATION	Depth	Horiz	Cotour	Part Size	% ORG.	Ph	SLOPE	VEG.		Au	As	Ag	Zn
81 TABR	12+00N 15+00E			9 - 63	fine to pebble	15%	· · · ·		pines & alders	glaciai till, second growing, I" charesal	10	10	0.1	70
	12 + 0 N 14 + 50 Z	- St	B	grey	₩EF. []	25%		ganile to most.		second growth, near tree roots	<10	7	0.1	64
<u> </u>	12:00N 14+00E		B	light	Sine	10%		genite	"		-10	7	0.1	54
11	12400N 13400E		ß	greyish isroiwn	sandy- clang	2:01		genila	11	water Salarafad	×10	4	0.1	76
4	12400N 124505		C	light brown	fine to med.	5%		modento		weathered and some fragments	×10	_7	0.1	86
11	12 +00 N 12+00E		B	1 mil	Sina	157	·	moderat	4	1	~10	7	0.1	52
11	12400 N 12400 N		C	grey	fine clay	10%		South	"		×10	-7	0.1	34
<i>µ</i>	12+00N 10+00E		С	9-99	clay	20%.		"	"	taken under rosts	10	5	0.1	32
"	12+00N 9+50E		С		fineclay	25%		"	"		=10	5	0.1	44
11	12100N 7400E	7"	B	light	fine sandy	15%			4	taken on small mound	< 10	9	0.2	62
11	12+00 N 3+50 E		<	greyish brown	fine			moderale	pine		- 10	9	0.1	48
"	12400NO 8400E	10"	В	brown	fine			moderate	pine & aldons	3" humis	410	9	0.1	42
4	12+00 N 7+50 E	7"	C	gray	fine			н	pine	2" humus	-10	4	0.1	36
H	12+00 N 7+00E		С	grey brown				~	- 11	second growth, frozen	-10	_7	oil	36
н	12+00 N 6+50 E		В	light brown	fine to med.			/	.,	exposed by windfall, second growth	<10	10	0,1	44
,,	12+002	11"	с	gres	very Fure				•,		-10	7	0.1	46
4	12+00N 5150G	15"	ß	brown		307		/	pine 8 aldes	serond growth , 5" humas then chareoal	0</td <td>6</td> <td>0.1</td> <td>52</td>	6	0.1	52
	-													
														

	-B.CGOLD-SYNDICATE	1
NTS	OFF/12E	
N15		

SAMPLER MAY 29 13

PROJECT The State

LINE

SAMPLE		LOCATION Depth H			DESCRIPT	IÓN				ADDITIONAL OBSERVATIONS OF REMARKS		ASS	AYS	
NO.	LOCATION		Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		۸w	As	Ag	Zn
an 45K	ing i stap i . Builde									NO STIFLE	-			
	15 +150E	· ; ''						/		The second second	<u> <10</u>	5	0.1	110
	15400N 4400E	12"							1997 	and the provide state of the second state of t	×10	5	0,1	52
	13+501	12'				10				u ((((10	4	0.1	92
	12+500		B	Light	MED -	15%		an Creptor		R WEST WITH T I REALTLY	-10		0.1	68
						<u> </u>				SECTION SERVICE H	10	5	0.1	46
	105	4	B	ş x 	···	159		575EP	• • • • • • • • • • • • • • • • • • •	FINE TILL'S	<10	7	0.1	46
		-',	6						· · ·		.10		0.1	
	10 0 50 F	<u>()</u>				2					4/0 -	-	0,1	
	1+3C <u>1</u>	Û	$\hat{(},\hat{(},\hat{(},\hat{(},\hat{(},\hat{(},\hat{(},\hat{(},$					ţ.			<10	7	0,1	54
	9-0°E	4	В	BROUND TEAMON	Real	6		the state		NERO LANCES INT	5/0	4	0.1	36
	2120.	3	17	• \				<u> </u>			20	6	0.1	-44
	24002	4								Contraction and the second sec	- 10	6	0.1	34
-	1-302	?		1.9~1 5.2.000		10		1.1	PINS Start	Constant and the second	10	5	0.1	38
		·				. 0					10	7	0.1	34
	5,DE	n).		. N.		N N	-	- 13	· .	Sector and the sector of the s	~ <u>/</u> c	,	0.1	38
	5+552	17 A.					_	_			-10	7	0.1	62
	52000	3		ţ	_	(0	_	3 C 4	11	SHEADD CRAW TON	-10	, //	01	56
							_	· · ·						
·														

T	\boldsymbol{C}	STEPHEN	
J.	L.	EXPLORATIONS	ITD
		LAILONATIONS	LID.

B.C. GOLD SYNDICATE

NTS

SAMPLER FAILS //C

Ø

PROJECT

LINE

SAMPLE	LOCATION	Denth	Horiz		DESCRIPT	ION	_	SLOPE	VEG.	ADDITIONAL OBSERVATIONS OR REMARKS		ASS	SAYS	
NO.				Colour	Part Size	% ORG.	Ph	SCOPE			Au	As	Ay	Zn
81 TABR	0+00 H 10+00 E 5+50 N 10+00 E	2		3 HEY - BLOWN		20		STEEP	PINE ALDER	+ illish LAYER SWAMPY AREA	<10	4	1	
	10+00E 9+00N	7		D. Ack	CA 4124	30	· · · · · · · · · · · · · · · · · · ·	FLAT	<u>را ا</u>		<10	6	0.1	70
	10+00E 10+00E	25		SANDY	SAND			STEEP		Second GROW+H PARGE PEBBLES	<10	6	0.1	42
	10+00 E	41									<10	6	0,1	32
	6+00 N 12+00E	3							ALDER	+1111sk	<10	7	0.1	38
	13 -00 N 16 +00 E	4		GREY	GLAY			<u>``</u>		GLAYISH SOIL	10	6		32
······································										······································				

B.C. GOLD-SYNDICATE

NTS 93 F/14 East

Th

SAMPLER JAMES LAWTON LOUIS FASULLO

DATE NAY 25 1981

PROJECT TARGET - BRAN CLAIMS GROUP

AIR PHOTO NO.

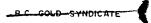
SAMPLE		0			DESCRIPT	ION		01.085		ADDITIONAL OBSERVATIONS OR REMARKS		ASS	AYS	
NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		Au	As	Ag	Zn
81 TABE	10100N 15400E	7"	в	browny	fine to medium	20%		25°	pines	pebbles in 13	-10	4	0.1	98
1	10+00N 14+50E	12"			11	10%		200	11	second growth, layer of ash and charcoal	10	3	0.1	38
л	10 × 20 N 12+50 E	4"				20%		250	pines g birch	ists of rock , minimal coll	<10		0,1	110
ŋ	10+00N 11+50E	6 "	B	Brown	11	20%			pines	at the top of a hill, lots of roots and rocks	<10	4	0.1	46
4	17+00N 11+00E	6"				30%		30°	birch	lots of weathered rock	46	3	0.1	64
и	10+00K	5"			medium	20%		30°	pines 8 alders	lots of rock very little awil	<10	3	0.1	32
11	10400N 9750 E	12"		gress	clayish	10%		450	pures	lots at roots	1/0	5	0,1	44
<u>h</u>	10+00N 9+005	6"				20%			47	neset to creek, lats of fill	e/0	20	0.1	13%
"	12+00N 8+00:5	8"		31:3		10% >		800	11	20 meters obove stream	10	5	0.1	52
"	10400N 74505	8"	B	brown	fine to medium	20%			pines g aldets	second growth	×10	5	0.1	46
	13+00 N 7+00 E	12"		grey		40%		100	alders	concil and a shall	-10	4	0.2	58
"	10+00 N/ 6+50 E	7"		grey		30%		10°		Browned hogen, lots of fill, laken under myss loboht roots	4/0	3	0.1	44
11	6+00 E	6"	B	brown		20%		150	pines & alders		410	4	0.1	52
"	10+00N 5+50E	5″	B	<i>II</i> .	11	:01.		200	"	then to stal	0</td <td>5</td> <td><i>0.</i>]</td> <td>36</td>	5	<i>0.</i>]	36
;;	10 100 N 5100 E	12 11	<u>n</u>	1	11	15 !	»	9120	11	lots of roots	-10	5	6.1	44
		 									 			
		 						· · · ·			 ;			
	<u> </u>									L			<u> </u>	

J.C. STEPHEN EXPLORATIONS LTD.

GEOCHEMICAL DATA SHEET - SOIL SAMPLING

B.C. GOLD SYNDICATE

NTS	93F	IRE


SAMPLER J. Pautler DATE May 20-30

PROJECT TARGET

AIR PHOTO NO.

[SAMPLE	·				DESCRIPT	TION				ADDITIONAL OBSERVATIONS OF REMARKS		ASS	AYS	
	NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		Au	As	Aq	Zg
31-7	A-B- 001_	BEAN Creek N. of Muger Cure on W. S.	ور ۹	- · ·	m guey-guen	" fire	10%		Steep	mess	- exposed on Wivide of wheam occuling wheat fund rusty congl - exposed by pheam out - avelying calcitic fracture tone	<u><!--0</u--></u>	15	<u>b,1</u>	64
	2	Bran Cuert OX +23m		נ(giey-gien buff-gien	coarde clay	10%		steep	vl 	- avelying calcitic fracture tone	40	5	0,1	38
								· · · · · · · · · · · · · · · · · · ·							
								·							
								 				 			
			L												
															
			-								*				
		·					-								
				· 		-									
•				<u> </u>											
													·	 	
		-	-		 				•						
		-	-	·}		.]	-								
	1	1	1	1		1			<u> </u>	1		<u>H</u>	<u>ــــــــــــــــــــــــــــــــــــ</u>		

Zn

102

34

Z8

34

36

48

50

44

20

34

32

26

46

44

28

42

64

34

3 0.1 84

-10

NTS 93 F/14 East

SAMPLER LAWTON & FASULLO

DATE MAY 18 (98)

14+000 N

STOD É

6"

ß

11

PROJECT TARGET - BRAN CLAIMS GROUP

LINE 14+50 E

AIR PHOTO NO.

DESCRIPTION SAMPLE ASSAYS LOCATION Depth Horiz SLOPE ADDITIONAL OBSERVATIONS OR REMARKS VEG. NO. Colour Part Size % ORG. Ph ٨s Aυ As 14400N fine to ground trosen, glacial hill 18" pines 30° 20% 81 TAER 15+00E medur 3 <10 0.1 ---pines p 14+00N lots of routs Jrey 12" 11 11 14-1DE 40 10% alders 4 01 40 ----14100N lots of rocks, shill half frozen 10" N grey 11 141002 201. 11 11 3 0.1 410 14 toon stones present in sample, layer of chanced u 12" grey 11 13+000 201 11 <10 3 0,1 14 +000 lots of roots and rocks 11 H 20° 18' 20% 11 12+50 5 410 4 0.1 taken under free roots, water saturated 14400N sandy 30% 11 11 . 12+00 2 40 3 0.1 extensive fill 141000 pebbles 12" بمتيرره 11 11 11+008 to free 4 0.1 <10 second arouth 14:00 N 8" 10% 150 11 11 10 + 50 E 40 3 0.1 14+00 N lots of rooks pines fine 101 600 B 4 14" brown 10 100E 3 </0 0.1 taken near creeke KINON alders 4 9+50E 30% <10 40.1 grayish fine to medium 14 +00 N lots of routs 6" 20% 60° 11 4 94000 orson 4 <10 0.1 14 + 00 N layer of ash ? 6" Sine pines brown 20% 60° h 3+505 3 0.1 <10 14+00 2 lots of roots pines 6" brown 81005 201 ald 11 10 4 01 14 tooN second growth, loks of rooks borin 6" ß 20% 4 11 1150E 4 10 0.1 hyltim 141000 lots of rooks 20% 4 B barry 4 20000 3 40 01 14+00 N lob of rook 8" grey 10% 200 11 +1 64508. 3 40 01 14+00~ taken in swamp brewn to pines 4" 20% 9-05 64008 10 5 01 pures & Lats of roots 14+00 N 10" brown B Sine 2010 alidere 5150 8 40 4 0,1

11

10%

lots of rools

93 F/14E

SAMPLER MASSON

DATE <u>MAY 17 131</u>

PROJECT TAPGET - BRAN CLAIM

LINE

NTS

SAMPLE			DESCRIPTION SLOPE VEG. ADDITIONAL OBSERVATIONS OR REMARKS				ADDITIONAL OBSERVATIONS OR REMARKS		ASS	AYS				
NO.	LOCATION	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		A3	As	Цu	: <u>'</u> /
-1-TA-5K	0 +30 N 2.7-20 E	511	1	212		50%			m:055	FREE OF GERLE A METER MADE	<u>e.1</u>	5	410	26
na a tanan dan dari seri T	0700N 19450E								-	NO SAMPLE	-		40	-
; *	757.5N 9400 B	D^{H}	1	prown	il gol	20%			111 25 5	Set 19 - Sec. S. J. J. K. A.	C.1	5	410	62
	13450 E									NO SAHMLE			470	
	0+00N 18+09E	3"	?	VEA DY SUDN		20%			sproce.	GLNZIFE TALL	2:1	5	-10	76
	an an an Arthur An Anna an Anna		1	ang kang Tang pangka	ov sveri Na sveri	der i			- , -		<u>C, 1</u>	5	-10	162
• *	the state of the second	3"	1	No. mit		3.7%					2.2	5	<10	_74_
				1.1.1							0.1	55	-10	300
	an an ann ann an An An Ann an Ann	17	1		erait. Sort	503			2296		<i>c.2</i>	6	-10	62
										the state of the second state of the second s	-			-
2-F-BR			7	14 1 1 1 - 1 1 1 1 1 - 1							0.1	5	<10	44
		P 	1	1. 201 1	2 1 J 					•	6.2	5	-10	58
1.	2 1 2 1 Pr. 1 7 2 10 P										-			
BITABR	10too E 1too N	-11	1			70%			Heats	AT ENER IN THE STATE OF THE ALL	0.1			50
11	2410M		1	2124				1010		Same V	0.1	5	20	40
· ·	ST SON	Ť	4		0/24						0.1	5	<10	34
1	- 1. 12.12		į.							A Contraction of the second			4	
:1	1. 1. 22 22	"ر				100%				NOT THERE IT				
<i>;</i> !	1.1. 2.8 A									NO SAMPLE "		1		
	11 (A. A.	1	1		1					TILL	0.1	5	~ic	52

B.C. GOLD SYNDICATE

93F /14E NTS

sampler FASUllo date MAY 20181

PROJECT TARGET

LINE

SAMPLE					DESCRIPT	ION		SLOPE	VEG.	ADDITIONAL OBSERVATIONS OF REMARKS		ASS	AYS	
NO.	LOCATION	Depth		Colour		% ORG.	Ph	SLOPE			AD	As		
81TABR	BAOUN 5700E		3	LIGLT BROWN Greyish BROWN	Fine -med	20		30°	PINE ALDER	CHARCOAL LAYER	:1 <u>C'1</u>	5	<10	36
	6+ 00E	6	B		MED			25°	· · ·	GLACIAL TILL		7.	<u> </u>	- 523
	7+00E	3		^1		20			1		0.1	5	<10	44
	8+00E	4	В	'n		10			שתוץ	TILLISK B	01	4	× <u>K</u> ×10	36 70
	9+00E	3				4 <i>ô</i>				GLACIAL TILL	0.1 0.3	6 6	×10 •10	
	10+00E	1	B	BROWN grey	NED_				ALDER.		01	5	- 10	32
	1) + 00 E					·				INFORMATION MISS	-			
	12+00E		 	ļ						PLACED	<u>n 1</u>	6	×10	58
	13 + ODE										0,1	5	~10	22
	14+000					L				.)	<u>o ./</u>	7_	<u> <10</u>	56
	15+00E			`						/	0.1	5	-10	126
		<u> </u>								· · · · · · · · · · · · · · · · · · ·	 		 	
							L							
												·		
		<u> </u>	.									. 	 	
														<u> </u>

J.C. STÈPHEN EXPLORATIONS LTD.

DATE

GEOCHEMICAL DATA SHEET - SOIL SAMPLING

B.C. GOLD STNUT

NTS 93F1145

SAMPLER D'ART CONNOR, PRUTCER 28/5/81

PROJECT TARGET

LINE 1300

.

			DESCRIPT	ION				ADDITIONAL OBSERVATIONS OF REMARKS		ASS	AYS			
NO.	13toon	Depth	Horiz	Colour	Part Size	% ORG.	Ph	SLOPE	VEG.		Au	As	Aq	En
81 TABR	15 E		No	SAMPLO	E TAK	N		<u>Ge 1013</u>	<u>SPICZE</u>	AKSS ALDERS (SLIDE THEM TOP OF HILL)		·		
	14+50E	<u>'</u>	C		CLAYEY (VLFINE)	20		GENTILE	11	€"3" Humus -" " " ")	×10		0.1	62
	14+00 E	10"	R	BROWN	MED. SAN CLAYEY	DY 15			MOSSUCE HUNCE	Rope FRAGMENTS PEES	80	3	0.1	86
	13+50	Ľ	50""" C+ T/LL	JOGHN	SAND Y	60		<u>730°</u> (30°)	·//	MENNY ROCK FRHOMENIS TREE RECTS	<u> 10</u>	_3_	0.1	112
	13+60	10"	TILL	<u>SROWN</u> GREY	-	25		GENTLE	•1	11 11 1256 1565 11 11 11	-10	_4	0,1	52
	12+50	<u>6"</u>	<u>în</u> u	GRET REOWN		10		. 4	<u> </u>	· March Manuscritter F120 2170	-10	4	0,1	42
·····	12122	<u>8″</u>	TIU	1. MOWERS	<u>CUA7</u> -	1 4		N (FREZZA	<u> </u>	-	0.1	54
	<u>11t50</u> _	1	<u>71U</u>	GRE-1 BROWN	<u> </u>	15-		1) 	· · ·	RECEN	410	3		
	11+00	61		GREY	ζ44Υ	15		GENTR	<u> </u>	0000 . NO ACCUS BUT RECTS	11		0.1	
	10+50	8"	<u> </u>	GREY	CLAY	10		100	·	NOOTS RECRET	<10	4	0.1	32
	f-t-si	8;	<u>c</u>	a.m.	cent	40		10°	STRUCE	H 4	=10	3	01	30
·	9+00	10"	C or Till	GREY BLACK	SANDY MED	30		400	N= 255	Rouis Recto	-10	4	01	32
	8150			-				,		10 painfle all argunite				
	8+0.	84	٢		SANBY (MED)			450	·/	ROOTS ROCK FRAGMENTS	-10	5	0.1	46
	7+50	10"	?	BLACK	SANDY	102		100	SPILLE	MUDDY - UERY WIST	-10	4	0.1	18
	7+0	6"	TILL	GREY GROWN	SANOY	207.		25°	•1	ROCISY , ROOTS	-10	3	0.1	
	6150	4″	3		SANDY	30%		50	11	1015 OF MOSTS	40	5	0.1	1
	6+0	8"	C	GREY BROWN		40%		100	<u>م</u> ۲	mossy organic	<u><10</u>	4	0,1	
	5+50	10'	13			207		10'		MOSSY ROOTS	-10	— —	01)	
	5+0	8"	164	BROWN	SANDY	15	<u> </u>	20°	×	B~1" thick - most + mosto	-10	4	<i>a</i> 1	177

J.C. STER EN EXPLORATIONS LTD.

GEOCHEMICAL DATA SHE T - ROCK GEOCHEM SAMPLING

B.C. GOLD SYNDICAT

935/14E NTS

SAMPLER J. Pautler

TARGET PROJECT

AIR PHOTO No.

LINE

DATE May 20-30

٦	SAMPLE	Τ΄	DOC *	ALTERATION	MINERALIZ ATION	STRIKE	ADDITIONAL	APPARE		AS	SAYS	<u> </u>		
	NUMBER	LOCATION	ROCK Typ e			DIP	REMARKS	1	TRUG	Au.	As.	- 8 -	Zntb	
ω	73879	OF + 20m BRANCEGEK	Calcite iem	blue staning, some queen	tetahedute? galena?		-a+ 73454 -floatat lottom of waterfall			<0.003		0.05		
(2)	73030		amyg daci k	rusty	pf fractures					~				
(3)	73831		porphyritic andesite	my staining around edge			Similar sample rag +16 ppm Ag in 1981			10 ppb		0.1pp		
(4)	73832	600 W/1050N	Cess porphysit	c (but less)						<td>3</td> <td>0.1</td> <td></td>	3	0.1		
(5)	73833	IW +205mN	flogt							10	3	0.1		
(6.)	73834	Ū.	porohi andesite	MN stamp around edge						<10	4	8.1		
(7)	73835	BLIOTODE I	Conglomeral		<u> </u>		00 (1) (<10	5	0.1		
(8)	73836	2 800N/1040 E	Calcite ven		sphalen te		ON W bank of BRANCE.			×10	12	0.1		
(9)	73837	OX + 22m BRAN CREEK	calcite (Plog P) argular		galena?		-bottom of fracture Zone in ander The			0.003	ļ	37.90	0.02	
(10)	73838	up lift on E side of BRAN CLOUR ALEM 73-	calcite ven	rusty	Stral		in congl. fault youge an anjular flogt	a		40.003		0.40 -	2.04%	
(11)	73839	1610 E/1000 N	dacite	rusty	fy		anjular flogt			10 ppb	3	0.1 pp.	*7	
(12)	73840	OCC + JOM	dacite	MN staining in derduitic veins	- · · · · · · · · · · · · · · · · · · ·	<u> </u>	·			10	19	0.2		
(13)	73841	11	dacite	rhoty	py, aspy? Sphal?					-10	170	0.8	Mapper	
(14)	73842	25 M. upstua Agn 73841		rusty	PY sphal.					~10	75	0.1	2n 320	
(15)	73843	07+8m	calcite ven	rusty	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Eside g pron a.			4/0	9	0.1	à	
K/M (16)	73844	0×+18m	andeoiten	rusty	unknown!		1)			-10	12	0.1	2. 142	
(17)									 		 			
(18)											 			
(19)											<u> </u>			
(20)			1				ł	1						

GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

B.C. GOLD SYNDICATE

BRAN CREEK

NTS 93 F/146

SAMPLER JC5 JO

PROJECT TARGET

編載

	DATE 31	May 1981					AIR PH	OTO No.					
ſ	SAMPLE	LOCATION	ROCK TYPE	ALTERATION	MINERALIZ ATION	STRIKE	ADDITIONAL REMARKS	APPARENT WIDTH TRUE		ASSAYS			
	NUMBER	LUCATION							TRUE WIDTH	Au.	C .,	Pi	Aq
(I)	27551	OD + 35								~0 <u>%</u> 03			0.03
(2)	27552	D+8								0.170		(0.59
(3)	27553	W+28								0.053	0.49	9 .02	331.2
(4)	27554	J+16	TUFFACECUS GOUGE	RUSTY			PAULT ZONG - RUSTI RED BLACK ON MEATHERED SUFFICE			0.003		(2.4
(5)	27555	<u>G + 30</u>	•			330°	▲ 73455 (80) WIDTH / FT			<i>0.00</i> 3			0.62
(6.)	27556	F+16	CALCITE			115=170°N				0.003			0,26
(7)	2757	F+16	RUSTI ZONE				LUCATION A 73829 73454			0. 505			0.22
(8)	77558	F+16	WALL ROCK			Li	1.75m - 25m 1m - 25m 1.556 1557 1 558 1559			0:003			0.20
(9)	27551	Ft16	RUSTY ZONG			14) == 2.2m>			0.003			005
(10)	27560		Gouide			030/85W				20:003			0.12
(11)	77561					285/SON	IV. SIDE SAMPLE IO" GOUGEE IN FAULT RELOW 73838			0.603			020
(12)	27562	ov				302/west	FAULT ZONE 12" TO NORTH WALL			KO-100 3			5.14
(13)	27563	OV	QTZ CARBONAT GOUGE	£			0'- 3' FROM SOUTH WALL - HEMATITE			0003			0.14
(14)	27564	ov	QTZ - CARB	-		-	CRAB SAMPLE - GTZ CARO ROLL N. HANGING WALL SIDE GRAB SAMPLE BETWEEN	ŀ		-0-003			0:12
(15)	27565		PYRITIZED ANDESITE				213 LAS SEMPLUS			<i>10.0</i> 03			0.14
(16)	27566		RHYOLITE				12" TROAT FINE MARINE AT S. JEND MBOUL UPPER FALLS		r	0.003			0:36
(17)													
(18)													
(19)							· · · · · · · · · · · · · · · · · · ·						
			1			t -		1 7	1	I	1	l	1 1

3[.65

APPENDIX III

.

SAMPLE HANDLING PROCEDURES

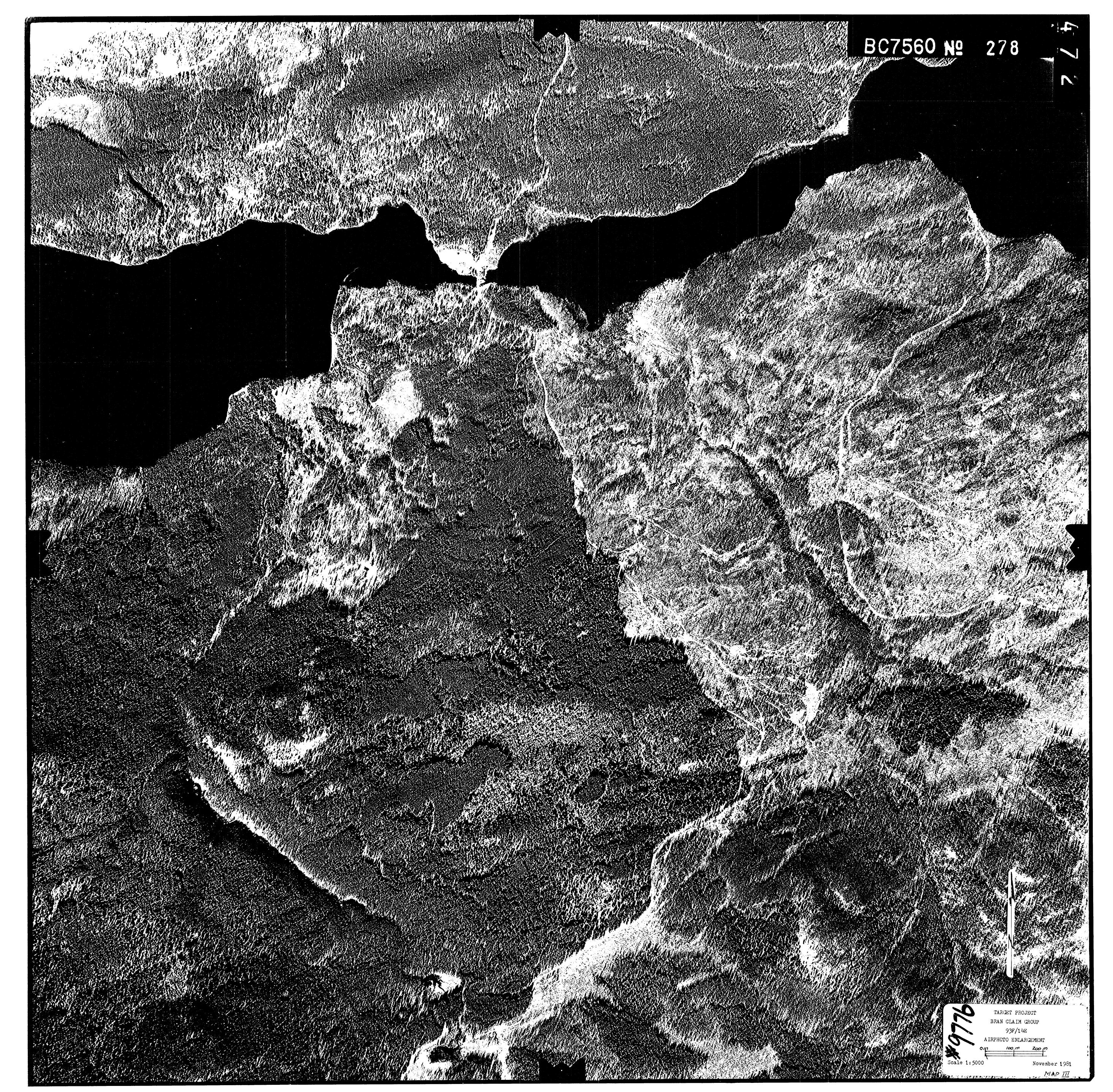
٩,

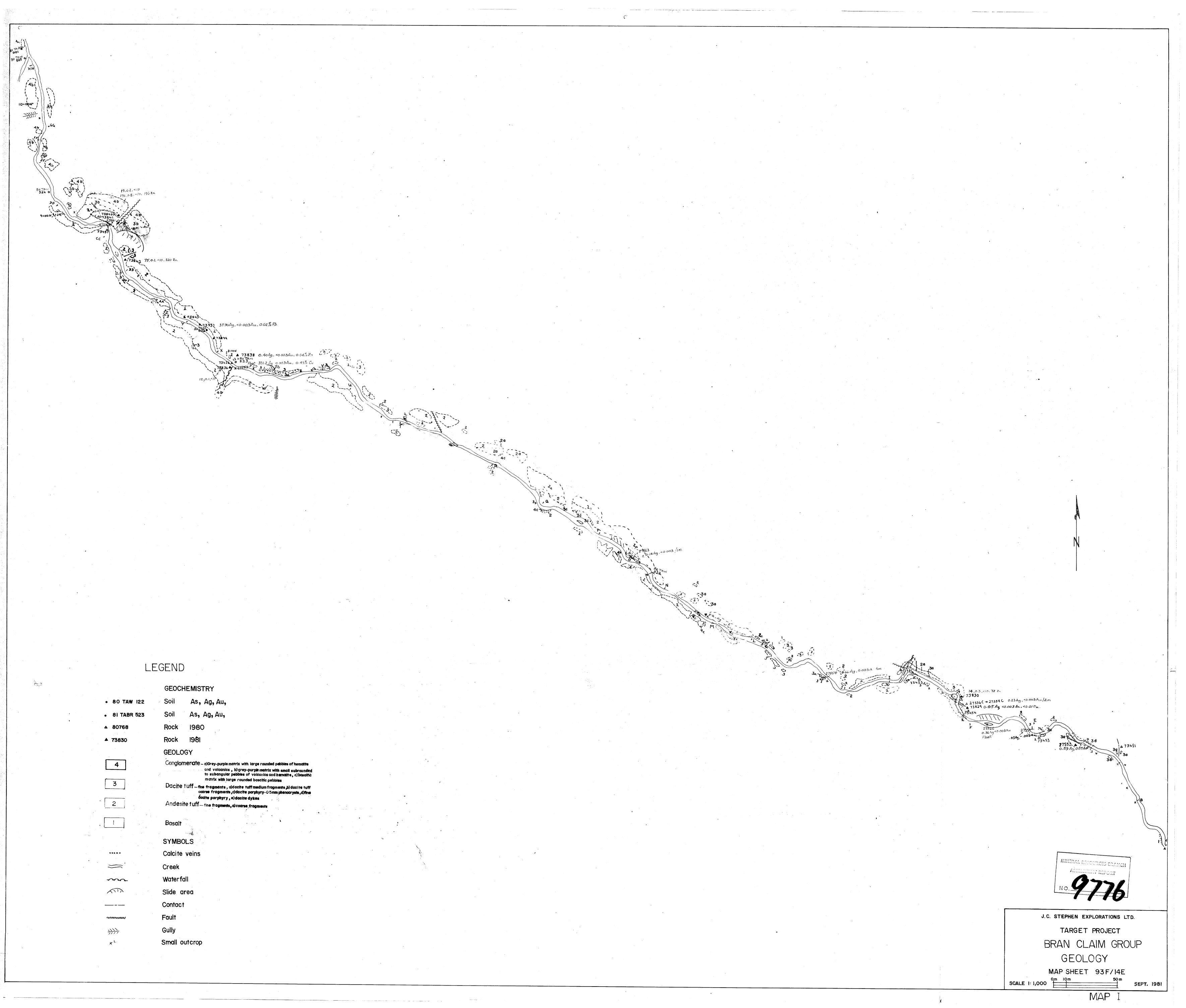
• • •

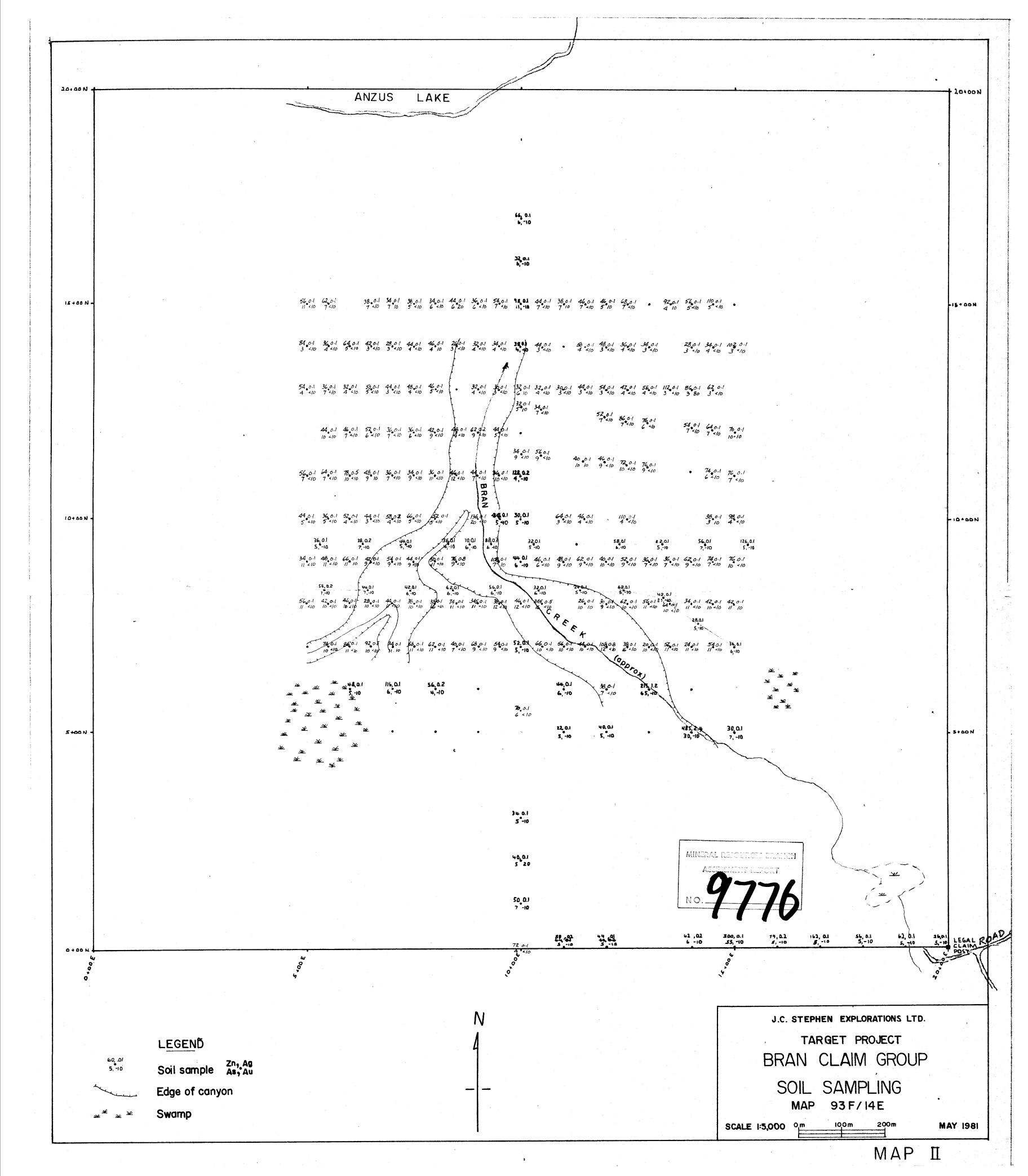
TARGET PROJECT: All samples for ppb Au, ppm Ag, As. Soils & Silts - Dry, screen -35 mesh and pulverize to -100 mesh for analyses. Ppb Au by aqua-regia digestion and chemical extraction followed by atomic absorption analyses. Ppm Ag, As by perchloric-nitric acid digestion and atomic absorption analyses.

> PPM Arsenic: a 1.0 gram sample is digested with a misture of perchloric and nitric acid to strong fumes of perchloric acid. The digested solution is diluted to volume and mixed. An aliquot of the digest is acidified, reduced with Kl and mixed. A portion of the reduced solution is converted to arsine with NaBH, and the arsenic content determined using flameless atomic absorption.

Detection limit - 1 PPM


PPB Gold: 5 gm samples ashed @800°C for one hour, digested with aqua regia - twice to dryness - taken up in 25% HCl⁻, the gold then extracted as the bromide complex into MIBK and analyzed via A.A. Detection limit - 10 PPB


ASSAY PROCEDURES


Gold: - Fire Assay Method.

0.5 assay ton sub samples are fused in litharge, carbonate and silicious fluxes. The lead button containing the precious metals is cupelled in a muffle furnace. The . combined Ag & Au is weighed on a microbalance, parted, annealed and again weighed as Au. The difference in the two weighing is Ag.

3.

