$$
\begin{gathered}
\text { 1981 Drilling Report } \\
\text { on the } \\
\text { MUT } 1-6 \text { Claims } \\
\text { Nelson Mining Division } 49^{\circ} 05^{\prime} \\
\text { LTS } 82 \mathrm{~F} / 3 \\
\text { forg. } 117^{\circ} 12^{\prime} \\
\text { BP Minerals Limited } \\
\text { by } \\
\text { D.G. Allen, P. Eng. }
\end{gathered}
$$

TABLE OF CONTENTS

Page No.
SUMMARY 1
CONCLUSION 2
RECOMMENDATIONS 3
INTRODUCTION 4
LOCATION AND ACCESS 4
CLAIM OWNERSHIP, STATUS AND ASSESSMENT 5CREDITS
HISTORY 6
GEOLOGY AND MINERALIZATION 9
1981 DIAMOND DRILLING PROGRAM 10
Physical Work 10
Drilling 10
GEOLOGICAL RESULTS 11
Drill Hole M 80-2 11
Drill Holes M 81-1, 81-2 13
Drill Hole M 81-3 14
GEOCHEMICAL RESULTS 20
DISCUSSION 22

LIST OF FIGURES

FIGURE 1 LOCATION MAP $1: 15,840,000$2 CLAIM MAP 1:50,0003 GEOLOGICAL AND DRILL HOLE LOCATIONMAP4 GEOLOGICAL SECTION: DDH 77-1, 80-2,78-25 GEOLOGICAL SECTION: DDH 81-1,2,36 GEOCHEMICAL PROFILES DDH 80-27 GEOCHEMICAL PROFILES DDH 81-1,28 GEOCHEMICAL PROFILES DDH 81-39 GEOCHEMICAL PROFILES DDH 80-3After page 4
After page 5
In Pocket

After page 11
After page 13
After page 20
After page 20
After page 20
After page 20

LIST OF PLATES

PLATE 1 Photograph of Dril1 site M 81-3
2-4 Photographs of selected features of drill core
After page 16 After page 17

LIST OF APPENDICES

Page No.
Appendix I CERTIFICATE OF QUALITICATIONS 25
Appendix II DRILL LOGS In Pocket
Appendix III GEOCHEMICAL RESULTS In Pocket
Appendix. IV STATEMENT OF COSTS 27

SUMMARY

The MUT claims are situated 14 km south southeast of Salmo, B.C. The claims cover parts of Lost Creek and Wilson Creek valleys, both of which are tributaries of the South Salmo River. Access is by a 6.5 km 4 wheel drive road from the Salmo-Creston Highway. The claims are held under option by BP Minerals Limited.

The property lies in the Kootenay Arc, a narrow arcuate belt of folded and faulted miogeoclinal sedimentary rocks of Early Paleozoic age. Limestone in the belt host important lead-zinc deposits such as the Jersey and Reeves MacDonald Mines, and tungsten deposits such as the Emerald, Feeny, Invincible and Dodger Mines, all of which were significant producers. On the MUT property molybdenumtungsten mineralization occurs in skarn zones, in polymetallic quartz veins, and in weakly developed quartz vein stockworks.

In 1981 a program of 461 metres of diamond drilling in four holes was carried out on the MUT 6 claim. Purpose of this work was to locate a possible porphyry molybdenum-tungsten deposit which is inferred to be at depth. Drill hole M 80-2 was deepened from 233 to 269 metres where drilling problems were encountered. The hole passed through a series of mineralized granite and aplite dikes or sills and ended up in a well developed but weakly mineralized hornfels. Drill holes M 81-1 and M 81-2 were collared 108 metres southwest of

M 80-2. The holes were abandoned at 72 and 65 metres respectively because of caving problems. Drill hole M 81-3 was drilled at -75° near 80-1. The hole encountered a similar weakly mineralized hornfels zone below a depth of 70 metres and a similar but less abundant series of aplite sills. A gradual increase with depth in intensity of hornfels development and molybdenum content (10 to $50+\mathrm{ppm}$ Mo) were noted. The molybdenum content of the granite and aplite dikes in M 80-2 and skarns in holes M 81-3 ranged from 100 to 470 ppm , High fluorine (up to 5600 ppm), zinc (up to 3200 ppm), tungsten (up to 240 ppm) and copper (up to 140 ppm) were found to be associated with a zone of pegmatite dikelets containing fluorite, sphalerite and pyrrhotite between 72 and 155 metres in DDH M 81-3. Best grades obtained to date are in the zone of dikes in M 80-2; 79 m of 121 ppm Mo ($0.02 \% \operatorname{MoS}_{2}$).

CONCLUSION

In spite of the low grade molybdenum values obtained to date, the exploration potential for a porphyry molybdenum tungsten deposit remains good. Widespread high values of molybdenum, tungsten, fluorine, zinc and silver on surface, erratic hydrothermal alteration (biotite, siliceous and calcsilicate hornfelses) and weak quartz-molybdenite vein stockworks all suggest a large hydrothermal system. However, drilling has been confined to a relatively small area. There is some evidence in drill hole 81-3 that the area drilled
has not been sited on what might be the centre of a buried intrusion - many of the quartz veins and aplite sills lie along bedding planes suggesting that some channelling of hydrothermal fluids along the stratigraphy has occurred. Further drilling at wider-spaced intervals is warranted.

RECOMMENDATIONS

A program of diamond drilling is recommended to further test the property. Prior to drilling gravimetric surveys and further rock geochemical sampling are recommended as an aid to delineating target areas.

INTRODUCTION

During the period May 20 to June 6, 1981, diamond drilling was carried out by BP Minerals Limited on the MUT property. The purpose of the work was to test for a possible buried mineralized intrusion that is presumably responsible for hornfels and skarn development, quartz-molybdenite veining, mineralized aplite and granite dikes and prominent Mo-W-Zn-Ag geochemical anomalies observed on surface and in previous drill holes. The drilling was carried out by Wright Drilling Limited of Kamloops, B.C. Work was supervised by D.G. Allen of A and M Exploration Limited for BP Minerals Limited. Core was logged and split on the property. Split core is stored at the campsite on "MUT HILL". Total cost of the 1981 programm was $\$ 73,000.00$. Results of this work are summarized in this report.

LOCATION AND ACCESS

The MUT claims are located in southeastern B.C. in the Nelson Mining Division (NTS $82 \mathrm{~F} / 3$ at $49^{\circ} 05^{\prime}$ North Latitude and $117^{\circ} 12^{\prime}$ West Longitude). The claims lie north and south of the Lost Creek Valley road, approximately 38.4 air kilometres east of Trail and 14 air kilometres east-southeast of Salmo, B.C.

The drill camp on 'MUT HILL", between Wilson Creek and Lost Creek, and much of MUT claims 5 and 6 are accessible
by a good 4 wheel drive road, which runs 6.5 kilometres north from Highway 3, at a point 2.2 kilometres east of Highway 6 (Salmo Nelway).

MUT claims 1 and 2 are accessible by a poor quality 4 wheel drive road, which follows the 1,250 metre elevation contour, on the north side of Lost Creek eastward from the Jersey Mine. Access to the Nevada Mountain is by helicopter from Trail; 40 air kilometres to the west, or Castelgar; 42 kilometres to the northwest.

CLAIM OWNERSHIP, STATUS AND ASSESSMENT CREDITS

The property consists of the following claims (Figure 2):

Claim	Units	Record No.	Anniversary Date
MUT 1	10	371 (11)	Nov. 30, 1986
2	10	372 (11)	Nov. 30, 1985
3	16	373 (11)	Nov. 30, 1985
4	16	374 (11)	Nov. 30, 1986
5	16	377 (12)	Dec. 7, 1990
6	16	378 (12)	Dec. 7, 1990

They are owned by John M. Mirko and Ian G. Sutherland and held under option by Benson Mines Limited. BP Minerals Limited in turn holds the property under option from Benson Mines Limited.

APPLICATION FOR ASSESSMENT CREDITS

The 1981 assessment credits are to be applied as follows:

Claim	Units	Anniversary Date	Credit Yrs. Applied	Credit Value	New Expiry \qquad
MUT 1	10	Nov. 30, 1986	2 yrs.	\$ 4,000	Nov. 30, 1988
2	10	Nov. 30, 1985	3 yrs.	6,000	Nov. 30, 1988
3	16	Nov. 30, 1985	3 yrs .	9,600	Nov. 30, 1988
4	16	Nov. 30, 1986	2 yrs.	6,400	Nov. 30, 1988
5	16	Dec. 7, 1990	0 yrs .	0	Dec. 7, 1990
6	16	Dec. 7, 1990	0 yrs .	0	Dec. 7, 1990

Total Assessment Credits $=\$ 26,000(\$ 25,100+\$ 900$ Credit)
Value of Work to be Credited to PAC Account $=\$ 51,049.91$

HISTORY

The following history is taken from Bradley and Meszaros (1980):

The MUT claims were staked in November and December of 1976 by J. Mirko and I. Sutherland to secure ground adjacent to the Molly and Jumbo claims, suspected to contain economic concentrations of molybdenum and tungsten.

The general area has been extensively prospected since 1895, when the Southern Bells group (including the United Verde claims) were staked over silver-lead-zinc-gold mineralized quartz veins, south of Wilson Creek. Replacement lead-zinc-pyrite deposits in carbonate rocks were mine at
the H.B., Jersey, Reeves-McDonald, and Hunter V mines from 1902 until 1957. Skarn tungsten deposits were mined at the Emerald, Feeney and Dodger properties during the 1950's. The Molly Mine, owned by Cominco, was operated from 1914 to 1917 and produced 25,000 pounds of molybdenite concentrate. Tungsten as scheelite, in association with molybdenite, was discovered in 1952 by J. Gallo. Trenching was initiated over a wide area of the Molly claims and on what is now the MUT claims.

In 1977, Westwind Mines under option agreement with Mirko and Sutherland, conducted geological mapping, selective sampling of showings, grid establishment, road repair and 156.5 metres of $A Q$ diameter diamond drilling in hole 77-1. Supervision and reporting on the 1977 project was by J. Montgomery, P. Eng., and G. Von Rosen, P. Eng. An assessment report (\#6667) by V.M. Ramalingaswamy indicates an aplitic intrusion was intersected in hole $77-1$ from $149.5 \mathrm{~m}-156.5 \mathrm{~m}$. The target for the drilling was skarn tungsten-molybdenite mineralization at an hypothesized granite-limestone band contact.

In 1978, Benson Mines Limited, drilled 454 metres of $A Q$ core in diamond drilling holes 78-1, 78-2, 78-3. Hole 78-1 penetrated 116.7 m of argillite and minor limy argillite before termination in broken ground. Hole 78-2, declined 70°, bearing northwest, cored 226.52 m of agrillite and terminated at 236.28 m in aplite. Hole $78-3$ was collared 5 m south of the MUT Adit on Lost Creek, and drilled vertically for a
total of 101.8 metres. The hole intersected granite and interbedded argillite, siliceous sediments, skarn and agrillite. Narrow intersections of skarn assayed from . 18\% to 1.6% Wo3 with accessory MoS_{2} from 0.02% to 0.03%. Additional mapping, road drill site construction sampling of the MUT Adit, United Verde and 1% showings were also completed during this summer.

In 1978 Cominco completed a substantial diamond drilling program in the limestone - Lost Creek granite contact area of the Molly claims. The extent and results of this program are not known to the author.

BP Minerals optioned the MUT claims from Benson Mines in 1979. A $150 \mathrm{~m} \times 50 \mathrm{~m}$ cut grid was established on MUT claims 3-6. Geologicai mapping was completed at a scale of $1: 50,000$ and 1,175 soil samples were collected on the MUT grid. A ground magnetometer, scintillometer, and EM-16 survey were also completed on the grid."

In 1980, a total of 478.7 metres of diamond drilling in three holes was undertaken by BP Minerals Limited to test the aplite intrusion indicated at the bottom of drill holes 77-1 and 78-2 and to test an elliptical zoned $\mathrm{Zn}-\mathrm{Mo-Cu}-\mathrm{F}$ geochemical anomaly on the north side of "MUT Hill." Hole M 80-1 was abandoned due to technical difficulties. Hole M 80-2 was sited between previous drilled holes 77-1 and 78-2 and results confirmed the presence of a hydrothermally developed
system (see profiles in this report). Hole M 80-3 was collared 680 m west of $\mathrm{M} \mathrm{80-2}$ and encountered 200 metres of relatively unaltered limy argillite.

GEOLOGY AND MINERALIZATION

Geology of the area is described by Little (1950), Fyles and Hewlett (1959), summarized by Bradley and Hoffman (1980), and Bradley and Meszaros (1980). In brief, the property lies near the southern end of the Kootenay Arc, a narrow arcuate belt of folded and faulted rocks with a northerly to northeasterly trend. Limestone in the belt host important lead-zinc deposits and tungsten deposits. The Jersey Mine on the north side of Lost Creek produced more than 7 million tons grading $1.8 \% \mathrm{~Pb}$ and $4.1 \% \mathrm{Zn}$. The Feeny (60,000 tons - $0.92 \% \mathrm{WO}_{3}$), Invincible (275,000 tons - 0.78% WO_{3}) and Dodger (295,000 tons - $0.58 \% \mathrm{WO}_{3}$), mines of Emerald Tungsten were significant tungsten producers and lie between 3.5 and 4 km north-northeast of "MUT Hill". Tungsten occurs in skarns and molybdenum in quartz veins and joints in granite on Cominco's nearby Molly claims.

The MUT claims are underlain by argillite, phyllite, slate, and limestone of the Cambrian Laib Formation and Ordovician Active Formation. Granite of the Lost Creek stock, presumably related to the Nelson plutonic suite, occupies the northeastern part of the claim group. Locally the sedimentary
rocks on the MUT 5 and 6 claims have been converted to biotite and siliceous hornfelses. Limy units have been converted to tremolite-wollastonite skarns containing minor amounts of scheelite.

Molybdenite and scheelite are widespread on the MUT claims, occurring in skarns, polymetallic veins and quartz vein stockworks. Sphalerite is common in quartz and pegmatite veins in the hornfels zones intersected in previous drilling on "MUT Hill".

1981 DIAMOND DRILLING PROGRAM
Physical Work
Road work, drill site and campsite preparations were carried out during the period May 11, 1981 to May 20, 1981. A bulldozer was contracted from PineTree Logging of Salmo, B.C. for this work.

Drilling
A total 461.4 metres of drilling was carried out in four holes from May 20 to June 6, 1981 as follows (Figure 3):

DDH M 80-2 36.3 m (deepened from. 232.9 to 269.1 m)
DDH M 81-1 72.2 m
DDH M 81-2 64.6 m
DDH M 81-3 288.3 m

Drill Hole M 80-2
Drill hole M 80-2 was deepened from 232.94 to 269.14 m. The hole intersected fine grained granite in the intervals 232.87-237.7 and 259.75-260.95mocontaining 1-2\% disseminated biotite and minor amounts of pyrite.. Quartz vein abundance in the granite ranges from 11 to 22 per metre. Molybdenite is common in quartz veins and on fractures with sericite.

The remainder of the hole intersected well-indurated hornfelsic argillite containing zones of pervasive silicification (\pm calc-silicates) and biotitization. Pyrite and pyrrhotite is abundant as disseminated grains and irregular streaks along bedding or foliation planes. Irregular quartz veinlets (1-11 per metre)commonly contain pyrite, pyrrhotite and minor amounts of sphalerite. Quartz-molybdenite veinlets up to 1 cm wide range in abundance from 1 per 2 metres to 3 per metre and commonly have a purplish grey biotite hornfels envelope up to 0.7 cm wide.

A summary of the hole is as follows (see Figure 4): Geological description of Diamond Drill Hole M 80-2

Interval
232.9-237.7 m Fine grained granite

Secondary Features

11-22 qtz $\pm \mathrm{MoS}_{2}$ veinlets per metre.
MoS_{2} on fractures with sericite. Minor py dissem and on fractures.

Interval	Main Lithology	Secondary Features
237.7-253.7	Hornfelsic agrillite and siltstone	Scattered thin limy beds. $2-12 \mathrm{qtz} \pm \mathrm{MoS}_{2}$ veinlets per metre. Local purple biotite development mainly adjacent to qtz veinlets. Abundant dissem and streaks of $p y$ and po.
253.7-254.2	Lamprophyre dike.	
254.2-259.7	Hornfelsic laminated argillite. .	V. minor MoS_{2} in qtz veinlets and on fracts. ($1-10 / \mathrm{m}$) Minor sphal. in qtz veinlets. Abundant dissem and streaks of py and po. F.g. purple biotite development mainly along larger qtz veins.
259.7-261.0	Medium grained aplitic granite	Minor dissem MoS_{2} and muscovite.
261.0-269.1	Hornfelsic agrillite	Purple biotite as above. Foliation and/or bedding @ 61°. Py and po as above. $1-3 \mathrm{qtz} \pm \mathrm{MoS}_{2}$ veinlets/m. 262.75 cm aplite-pegmatite dikelet lined with MoS_{2}.

269.1 End of hole.

Dril1 Holes M 81-1, 81-2

Drill holes $81-1$ and 2 were drilled at the same site 108 metres southwest of M 80-2. Both holes were abandoned at 72 and 65 metres respectively because of intense faulting and caving at 63 to 64.6 metres. The rock type encountered is dark grey slaty argillite containing alternating graphiterich and quartz-rich laminae. Irregular segregations of fine grained quartz (quartz "sweats" -plate 2) and contorted quartz veins are common (up to 5 per metre). Pyrite occurs as disseminated grains and streaks along foliation planes and in quartz veins and segregations. Beds of tremolite skarn 0.1 4 metres wide are common. Sphalerite occurs locally in quartz veins.

Geological summaries are as follows (see Figure 5):
Geological description of Diamond Drill Hole M 81-1.

Interval Main Lithology
0-14 m Slaty limestone

14-26 Slaty argillite 5% dissem py. Po in tremolite-rich with thin tremo-1ite-rich beds

26-72.2 Slaty argillite.

Secondary Features

Cherty and graphitic-locally laminated. 1-4 contorted ptz and qtz py veinlets/m. Py and minor po dissem along cleavage planes. beds.
72.2 End of hole.

Geological description of Diamond Drill Hole M 81-2

Interval	Main Lithology	Secondary Features
0-14 m	```Dark grey slaty' argillite.```	Scattered contorted qtz veins and segregations with 3-5\% py. Graphitic; foliation @ 63-78 ${ }^{\circ}$ to core axis. Py occurs dissem, and as fine grained masses along cleavage planes.
15-26	Graphitic slate with thin actinolite and tremo-lite-rich.beds.	Py as above; po and minor sphal occur in skarny beds.
26-64.6	Graphitic slate.	Py and po as above. Foliation @ $63-87^{\circ}$ to core axis. 28-30: minor biotite hornfels. 38-42: traces of sphal in some qtz-py segregations. 32-36, 47-48, actinolite and 56-58: tremolite-rich zones. 46.3-47.1: fault zone @ 55°. 52-56: intensely sheared @ $0-60^{\circ}$. 56-58: locally hornfelsic.
	End of hole.	

Drill Hole M 81-3

Drill hole M 81-3 was drilled near $81-1$ and 2 at 305° azimith and -75° dip.

The interval 2.5 to 13 metres is a grey tremolite skarn. Tremolite occurs as disseminated radiating clots and as felted masses in a siliceous to argillaceous and locally carbonate-rich groundmass. $1-2 \%$ pyrrhotite and minor sphalerite occur disseminated in the skarn.

The interval 13 to 76 metres is a black slaty argillite as described above. Thin beds containing abundant white tremolite and dark green actinolite are common.

At 72 metres the slate becomes more competent and has less tendency to break along foliation planes. The section between 72 metres and the end of the hole is characterized by intervals of black hornfelsic slate alternating with sections of pervasively silicified hornfels containing minor amounts of wollastonite or tremolite and local garnet, diopside and epidote. Purplish brown biotite occurs finely disseminated in siliceous zones and as alteration envelopes along pegmatite and quartz veinlets. A subtle increase in intensity of hornfels development with depth is apparent. Below 255 metres tremolite and/or wollastonite is more abundant and coarser in texture.

Several types of quartz veins are present. The most abundant are quartz segregations or "sweats" that appear to grade into irregular contorted or boudined veins. They occur in both the slaty argillite and in the hornfels, (plate 2), range in abundance from 1 to 10 per metre, and contain pyrite, pyrrhotite and local sphalerite. Pegmatitic quartz-feldsparfluorite \pm pyrite \pm pyrrhotite \pm sphalerite dikelets up to 7 centimetres wide average about 1 per metre in the interval 72-155 metres (plate 3). Quartz-molybdenite \pm pyrite \pm pyrrhotite veinlets and molybdenite-coated fractures appear at a depth of 66 metres i.e. just above the hornfels zone.

In contrast to the quartz-pyrite and pyrrhotite veins, they are sharp and straight, usually with an alteration envelope of biotite hornfels. Their abundance ranges from 1 per 3 metres to 2 per metre. Many of the' quartz-molybdenite veinlets in the lower part of the hole lie parallel to bedding planes.

Pyrite occurs as disseminated grains, blebs and as streaks along foliation planes and in quartz-rich laminae in the slate and in quartz veins. Both pyrite and pyrrhotite (3-7\%) are present in the hornfels zone. Pyrrhotite is most abundant in skarns zones. Minor amounts of sphalerite occur as disseminations in the hornfels and slate.

Sills or dikes of light grey aplite were encountered at 130.5-131.0, 158.2-160.0, 168.6-172.7, 205.7-209.6 and 252.0-254.0 metres (plate 4). They were found to be less abundant in M 81-3 than in M 80-2 (12 metres vs 28 metres of core length). Quartz-molybdenite veinlets are slightly more abundant in the aplite compared to the hornfels but less well mineralized than in $\mathrm{M} \mathrm{80-2}$. Minor amounts of sericite occur along quartz veinlets and as fractures coatings.

Plate 1. Drill site M 81-3 looking southwest

Plate 2. Graphitic slate with irregular quartz and quartzpyrite segregations and veinlets.

A summary of the hole is as follows (see Figure 5): Geological description of Diamond Drill Hole M 81-3

Interval	Main Lithology	Secondary Features
$\begin{aligned} & 0-2.5 \mathrm{~m} \\ & 2.5-13 \end{aligned}$	Casing. Tremolite skarn	Irregularly dissem py and minor sphal. Locally siliceous and calcareous.
13-44.8	Black graphitic slate.	Foliation @64-70 ${ }^{\circ}$. 3-4\% py in f.g. ciots and streaks. Thin qtz-rich and argillaceous laminae common. Qtz common as segregations and crenulated veinlets up to 5 mm with py and minor sphal. 26.6-26.9: dissem to semi-massive ferroactinolite. 38-39.3: local purple biotite hornfels.
44.8-52	Sheared graphitic slate.	58.2-58.7: fault @ 80°.
52-70	Black graphitic slate	```59-59.2: biotite hornfels. 59.8-60.6, 62-65: actinolite- tremolite skarn beds with dissem po. 3-4% clots and fine dissem of py. Foliation e 75-850.```
72-122	Black slate with light grey to purplish grey biotite hornfels zones.	Relict bedding 65-90 ${ }^{\circ}$ to core axis. 3-4\% py and po as f.g. clots, streaks and dissem in slate and qtz-rich laminae. Minor MoS_{2} and tr scheelite in qtz veinlets. 77-80: irregular dissem garnet. 77.1, 80.1, 80.7, pegmatite 95.8, 95.4, 96.8, dikelets up $100.2,100.8,103$, to 3 cm with 106.8, 110.9. po, sphal. Local minor amounts dissem sphal. Sphal also in some irregular qtz-po veinlets. 108-114: calcareous laminae. 114-115: fault.

Plate 3. Hornfels containing fluorite-pyrrhotite-sphaleritepegmatite dikelet (middle row) and pyrrhotite-sphalerite-quartz veinlet with biotitized envelope (lower right row; BQ core 3.5 cm diameter).

Plate 4. Aplite dike containg quartz-molybdenite veinlets. A. 20 cm pyrrhotite-molybdenite-quartz vein occurs along the upper dike contact. Host rock is hornfelsic slate.

Geological description of Diamond Drill Hole M 81-3 (cont.)

Interval	Main Lithology	Secondary Features
122-158.2	Hornfelsic black	Relict bedding 60-85 ${ }^{\circ}$.
	slate with sections	Local dissem purple biotite.
	of light to dark	3-4\% py, po as dissem and f.g.
	grey bleaching.	clots and streaks.
	Possibly a fine	Minor sphal in qtz-po veinlets,
	grained mixture	Scattered qtz-MoS2 veinlets.
	of qtz and calc-	125.1, 126.1, pegmatite dikelets
	silicates	128.7, 136, with po, sphal,
		145.6, 149.0, fluorite.
		157.4. some with purplish biotite hornfels envelopes.
158.2-160	Light grey aplite	Contacts @ 71 and 76°, parallel to relict bedding.
		Scattered qtz-MoS 2 and qtz-posphal veinlets.
		Sericite along fractures and qtz veinlets.
160-168.6	Grey to dark grey	Variable amounts of f.g. calc-
	hornfels	silicates. (diopside and wollas-
		tonite?). Local purple biotite development. 'Py and po as above.
		Relict bedding @ 37-620, locally
168.6-172.7	Aplite	Contacts @ 57 and 65°.
		Scattered qtz veinlets lined with sericite.
		Minor MoS_{2} in veinlets and on fracts with py.
172.7-205.7	```Black slate-locally hornfelsic.```	Erratic zones f.g. purple biotite and grey calc-silicates.
		Scattered qtz-MoS ${ }_{2}$ veinlets
		commonly parallel to bedding © 51-75 ${ }^{\circ}$.
		Purple biotite developed
		adjacent to qtz MoS_{2} veinlets.
		$3-4 \%$ po and py as dissem and
		clots in siliceous segregations
		and laminae and along cleavage
		planes.

Geological description of Diamond Drill Hole M 81-3 (cont.)

Interval	Main Lithology	Secondary Features
205.7-209.6	Aplite	```192.5, 3 mm qtz-fluorite- sericite veinlet. 194.2, 194.3 qtz-feld-MoS} veinlet. Contact @ 65*. Scattered qtz, qtz-MoS2 \pm po veinlets. Minor sericite on fractures.```
209.6-252.0	Hornfelsic slate.	Alternation black slate, purplish grey biotite hornfels and grey calc-silicate-bearing sections. 3\% po dissem, in seams and clots and in qtz veinlets and segregations. Relict bedding $43-66^{\circ}$. Scattered thin qtz-MoS ${ }_{2}$ veinlets.- $1-3 / \mathrm{m}$ usually parallel to bedding.
252.0-254	Aplite	Contact @ 46 and 61°. Abundant $q t z$ and $q t z-\mathrm{MoS}_{2}$ veinlets. Sericite and fractures.
254.2-288.3	Hornfelsic slate -as above.	```Relict bedding 25-70. Py and po as above. Variable amounts of biotite and f.g. calc-silicates. 262.3-262.5 felsite dike @75-79 264-264.2 lamprophyre 265.7-266.1 qtz vein 273.9 pegmatite veinlet.```

End of Hole.

GEOCHEMICAL RESULTS

Drill core was split at three metre intervals in the skarn and hornfels zones and every other three metres in the slate. Samples were shipped to Rossbacher Laboratories Ltd. for $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{W}$ and F geochemical analyses. Results are presented on drill hole profiles on Figures 6 to 8 and data included in Appendix III. Results for the upper part of drill hole M 80-2 are discussed in the 1980 report (Bradley and Meszaros, 1980).

Inspection of the profiles indicates that the relatively unaltered slate and argillite have background values in the following ranges:

Mo 5-30 ppm, W 0-30, Sn 1-2, F 750-1500, Zn 200-1000, Pb 2-8, Ag 0.2-2.2, Cu 25-60.

Tremolite skarn zones in the slate show significant increases in $\mathrm{W}, \mathrm{F}, \mathrm{Zn}$ and Cu .

In the hornfels zone a gradual increase in molybdenum content from 30 to $60 \pm$ ppm is apparent (excluding higher values of up to 470 ppm in skarn zones and dikes) in holes 80-2 and 81-3. Average molybdenum content of dikes in hole M 80-2 is 182 ppm over 28 metres of granite and aplite vs an average of $4 \theta \mathrm{ppm}$ over 12 metres of aplite in hole M 81-3. Best overall interval is in the zone of abundant dikes in M 80-2: $79 \mathrm{~m}-121 \mathrm{ppm} \mathrm{Mo}\left(0.02 \% \mathrm{MoS}_{2}\right)$. Relatively high tungsten (up to 240 ppm), fluorine (up to 5600 ppm), zinc (up to 3200 ppm), and copper (up to 140 ppm) in the interval $72-155$ metres
correlates with a zone of quartz-feldspar-fluorite-sphalerite dikelets.

Higher fluorine, tungsten and molybdenum values in the hornfels and slate show some correlation with tremolite skarns. The highest tungsten value (400 ppm over 3 metres) obtained in $M 81-3$ is related to a quartz-scheelite veinlet running nearly parallel to the core axis.

DISCUSSION

The 1980 and 1981 drilling programs were directed towards testing for a buried mineralized intrusion that is presumably responsible for hornfels and skarn development and quartz-molybdenite veining observed on surface and in previous drill holes. Drill holes M 80-2 and 81-3 both encountered a zone of aplite and granite dikes or sills at approximately the same depth. However, they are less abundant and contain less mineralization in hole M 81-3 suggesting that it may lie more distant from a source intrusion. The apparent bedding plane control of quartz-molybdenite veinlets and dikes also suggests a lateral spatial relation with their source.

In spite of the subeconomic grades of molybdenum and tungsten encountered to date, the following observations confirm the presence of a significant hydrothermal system:

1) vein complexity - early quartz-pyrite and/or pyrrhotite veins, fluorite-sphalerite-pyrite-pyrite-bearing permatite dikelets and quartz-molybdenite \pm scheelite veinlets with biotitized envelopes;
2) alteration - variable intensity of silicification, biotitization and skarn development (tremolite-actinolite, wollastonite, minor garnet, diopside and epidote) in the hornfels; sericite in fractures and lining quartz veinlets in aplite and granite dikes;
3) intrusive rocks - aplite and granite dikes containing abundant quartz and quartz-molybdenite veins in DDH 80-2.

Further drilling is warranted on a wider spacing both down dip to the east (assuming that there is some degree of lateral channeling of dikes and hydrothermal fluids up stratigraphy) and to the north and southwest as indicated by fluorine and tungsten distribution in rock and soil. Prior to further drilling however, gravity surveys and fill-in rock geochemical sampling are recommended as an aid in defining where a buried mineralized intrusion might lie. Some further detailed geological mapping in selected areas to outline the distribution of skarn zones, quartz veins and sulfide distribution is also warranted.

REFERENCES

Bradley, M., and Hoffman, S., 1980. 1979 Geological, Geochemical and Geophysical Report on the MUT 1-6 Group of Claims. BP Minerals Ltd. Files.

Bradley, M., and Meszaros, E., 1980. An Assessment Report Detailing The 1980 Diamond Drilling Program on the MUT 5 Claim. BP Minerals Ltd...

Fyles, J.T., and Hewlett, C.G., 1959. Stratigraphy and Structures of the Salmo Lead-Zinc Area. B.C. Department of Mines Bu11. 41.

Little, H.W., 1950. Salmo Map Area. Geol. Survey of Canada. Econ. Geol. Series. No. 17.

Appendix I

CERTIFICATE OF QUALIFICATIONS

CERTIFICATE

I, Donald G. Allen certify that:

1. I am a Consulting Professional Geological Engineer, resident at 4570 Hoskins Road, North Vancouver, B.C.
2. I am a graduate of the University of British Columbia with degrees in Geological Engineering (B.A.Sc., 1964; M.A.Sc., 1966).
3. I have been practising my profession since 1964.
4. I am a member in good standing of the Association of Professional Engineers of British Columbia.
5. This report is based on field work carried out during the period May 11 to June 6, 1981. I personally worked on the property from May 20 to June 6, 1981.
6. I hold no interest, nor do I expect to receive any, in the M.U.T. claims, in Benson Mines Ltd., or in B.P. Minerals Ltd.

North Vancouver, B.C. December 7, 1981

Donald G. Allen
P. Eng. (B.C.)
Appendix II
DRILL LOGS
2a - Geological log DDH M 80-02DDH M 81-01
2b - Geological log DDH M 81-02
DDH M 81-03

F
DRILL
LOG
SHEET NO.

Appendix III

GEOCHEMICAL RESULTS
3a - Surface samples
3b - DDH M 80-02
M 81-01
M 81-02
M 81-03

ASSAY DATA SHEET

						mor						
Sememe	${ }^{\text {arfe }}$	-	.								Sexer memem	Hexm
,	\cdots					ar	,	,			,	
							3354.				- 0 \|x 6 at	160
20966	211		${ }^{4}$				5598			P ${ }^{48}$	${ }^{10} 100080.11$	10
$3 \cdots$	214	3	3				599			$\mathrm{T}_{5} 8$	(10)2092,	no
214	* ${ }^{\text {a }}$	s	,				${ }_{600}$			$44_{4} 6$	4 2040.8	${ }^{153}$
2 ${ }^{1}$	3200	3	3				6s,			O $3+$	1010 or 2	2 2ne 3
220	${ }^{203}$	3	3				\% 65			$4{ }^{4} 44$	1, mo o.	
20	${ }^{2} 20$	3									$19{ }^{19}$	$\left.{ }^{1}\right)^{42985}$
		3					${ }^{36} 68$			$4{ }^{384}$	10 \|100 0 9.7)	1200
224	$2{ }^{24}$		${ }^{3}$				3654			5^{5134}	${ }^{1} 194802^{10}$, Ma ${ }^{16}$
${ }^{29}$	\square^{2+2}						3305			- 0^{2}	10.2020. 2	
230	P35		3				36,56				1081808.4	

Appendix IV

STATEMENT OF COSTS

SUMMARY OF COSTS - 1981 DRILL PROGRAM MUT CLAIMS 1-4

1) LABOUR COSTS

Michael Smith (Project Geologist)
May, Nov. Dec., 198110 days x $\$ 200 /$ day $\$ 2000.00$
John Gravel (Geologist)
May 6-19 = 12 days x \$106/day 1272.00
John Dekker (Assistant)
May $1-7,16-18=8$ days $\mathbf{x} \$ 98 /$ day 784.00
Alistair Fyfe (Assistant)
May 10 days x \$70/day 700.00
2) CONTRACTORS

A \mathcal{G} M Exploration Services-Project
Management 11,126.76
A \mathbb{G} M Exploration Services-Gravity Survey $5,165.73$
3) ACCOMODATION

May 19 - June 15, 1981 . 471.70
4) TRAVEL
a) Airfares; Vancouver-Castlegar-Vancouver 456.85
b) Trúck rentals - Bow Mac Truck Rentals (Jimmy 4×4)

- Redhawk Rentals (3/4 ton 4×4) $\quad 1,275.00$
c) Car rental - Tilden 67.82

5) DRILLING COSTS
a) Road and site preparation (Pinetree Logging Co. Ltd.) May 14-25/81 1,820.62
b) Total drilling cost including Mob/Demob May 20 - June 6 Total footage $=461.4$ metres.
... continued
6) MATERIALS AND SUPPLIES (CONSUMABLES)
a) Office and field equipment
b) Lumber and tent floors.
\$ 1,884. 18
c) Fue 1 s
d) Food and meals

1,191.98
1,175.27
1,669.75
7) FREIGHT

Trucking and Air cargo 656.18
8) ANALYTICAL COSTS

Geochemical Assay (Rossbacher Labs)

$$
9 \text { assays } x \$ 13.20 / \text { assay } \quad 118.80
$$

111 assays x \$13.04/assay $\quad 1,447.70$

TOTAL EXPENDITURE $\$ 76,149.91$

Mr. Gene Gulajec
B.P. Minerals Ltd.

3rd Floor - 900 West Fender St.
Vancouver, B.C.
V6C 1L1
Dear Gene:

$$
\begin{aligned}
\text { Re: } & \text { M.U.T. Property Gravity Survey - } \\
& \text { Project } 517
\end{aligned}
$$

Mobilization and Fieldwork
Geophysicist 4 days @ $\$ 300 /$ day $\$ 1,200.00$ Assistant 4 days @ \$150/day . 600.00

Equipment rental
Gravimeter 1 week @ \$350/week 350.00
Meter insurance \& shipping 90.00
Magnetometer 1 week @ \$150/week 150.00
Room and board 6 man days e $\$ 40 /$ day 240.00
Vehicle expenses rental 4 days @ $\$ 35 /$ day 140.00
Mileage 1600 km @ $0.10 / \mathrm{km}$. . 160.00
Gas and oil 203.23
Report
Terrain corrections 65 stations @, \$15/station 975.00
Geophysicist 3 days e $\$ 300 /$ day 900.00
Draughting 6 hours e \$15/hour 90.00
Compilation typing, photocopying 67.50

APPROVED FOR PAYMENT
CHARGE $80037-5334-\$ 5,165.73$ Yours truly,

D. R. MacQuarrie

Rossbacher Laboratory $\mathcal{L} t d$. GEOCHEMICAL ANALYSTS \& ASSAYERS

2225 S. SPRINGER AVE., BURNABY, b.C. CANACA

AREA CODE: 604
BP MINERALS LTD.
1007-1111 West Hastings Street
VANCOUVER.B.C.
Project 517
Certificate no.

ITEM	DESCRIPTION	SUB-TOTAL	TOTAL
$\begin{array}{r} 111 \\ 109 \\ 108 \\ 110 \\ 5 \\ 106 \end{array}$	Geochem, analysis for 5 elements 3.20 Sn 2.50 W 2.25 Rock sample prep. 3.25 Assay prep. for geochem. analysis 1.50 2.00 CHARGE 80087-5324- $81,447.70$ APPROVED FOR PAYMERT	$\$$ $\begin{aligned} & 355.20 \\ & 272.50 \\ & 243.00 \\ & 357.50 \\ & 7.50 \\ & 212.00 \end{aligned}$	$\$ \quad 1,447.70$
TERMS - NET 30 DAYS			

Rossbacher Laboratory $\mathcal{L} t$. GEOCHEMICAL ANALYSTS \& ASSAYERS

2225 S. SPRINGER AVE., BURNABY. BC. CANADA
TELEPHONE: 299-6910
AREA CODE: 604
B.P. MINERALS LTD.

1007-1111 Hastings
Vancouver, B.C.
Project \# . 56.7.

DATE June 15,1981.
invoice no. \qquad 1302

CERTIFICATE NO. \qquad

5780-ZO3-GTPEEF, LANGEFY.B.G-VBA AAB-(604)530-9731
\#203 - 19945 - 56th Avenue, Langley,B.C. V3A $3 Y 2$
INVOICE NO
0706
B.P. Minerals Ltd.
\#1007 - 1111 W. Hastings Street
VANCOUVER, B.C.
ATTENTION: " Mr: John Decker

DATE May 6, 1981
FILENO.
PROJECT 81-31

RE: CONSTRUCTION OF TENT FLOORS

Construction of $14^{\prime \prime} \times 16^{\prime}$ Tent Floors
'F.0.B.' Bema Langley Warehouse
5 Tent Floors. © \$425.00 each
$\$ 2 ; 125: 00$

THIS IS OUR ACCOUNT: $\$ 2 ; 125: 00$
BEMA INDUSTRTES LTD.

;ivin

［VOICE

WRIGHT DRILLING LTD．

$$
\begin{gathered}
\text { STE 2 O-S 异. } \\
\text { CHASE, } \\
\text { UCE I Mo }
\end{gathered}
$$

SOLD TO

invoice no．
 282

SHIPPED TO
「B．P．Canada
Γ
／II I－West Hastings 5 － VANCOUVER，BC

SBLmo

(APD B.P. EXPLORATION CANIADA LTA. * 1007 - IIII Whas Hitstincs ST.
$\mathcal{O}_{n} \mathscr{A l}_{c c}{ }^{\prime}$ O) $)_{\text {ith }}$ VATMETREE LOGGING COMPANY LTD $357-9454$ કૈoms

$$
B 0 \times 27 \text { SALMO, } B C \text {. }
$$

Mr. Gene Gulajec
B.P. Minerals Ltd.

3rd Floor - 900 West Fender St. Vancouver, B.C. V6C 1L1

Dear Gene:
Re: M.U.T. Property Report - Project 517
Professional Services
D. G. Allen 10 days e $\$ 350 /$ day $\$ 3,500.00$

Assessment report 8 days
Editing \& compilation $\frac{1}{2}$ day
Memo - Re: exploration program 1 day Joint venture presentation $\frac{1}{2}$ day

Expenses

Typing 4 hours e $\$ 20 / \mathrm{hr}$	80.00
Photocopying	18.05
Vehicle and travel expences	7.50
	$\$ 3,605.55$

$$
L-83
$$

MINING ENGINEERING
$457 O$ HOSKINS ROAD. NORTH VANCOUVER. B. C.
TELEPHONE (BOA) 985.7921
V7K 2R1
Invoice \# 81-107-1
June 15, 1981

```
BP Minerals
Suite 1007
1111 West Hastings Street
Vancouver, B.C.
V6E 3N5
```

Invoice: Project 517-1981 Salmo Program
D. Cuvelier

Salary \$66.34/day x 14 days
(May 28-June 10) \$ 928.76
Expenses

Meals		
Airport taxi		7.40

D. Allen

Salary $\$ 350 /$ day $x 18 \begin{aligned} & \text { days } \\ & \text { (May 20-June 6) }\end{aligned} \$ 6,300.00$
Expenses

Motel May 20		28.62
Meals May 20	16.50	
Meals May 21	5.20	
Truck expenses (May 23-June 6)	210.98	
Motel June 1	6.00	
Meal		9.90
Parking June 8		3.00
		sub total
		$\$ 6,580.20$
		Total
		$\$ 7,521.21$

APPROVED FOR PAYMENT
CHARGE 8008z-2006$\$ 7,521.21$ DATE JUN 25 1981 INTLS

