BEAU PRE EXPLORATIONS LTD.

BLAZE & BPEX CLAIMS

VICTORIA MINING DIVISION

Lat. 48°31' Long. 123°53'

N.T.S. 92B/1W

GEOCHEMICAL ASSESSMENT REPORT

FOR

BEAU PRE EXPLORATIONS LTD.

JANUARY 27, 1982

by EDWARD W. GROVE, Ph.D. E. W. GROVE CONSULTAN

SUBMITTED FEBRUARY 1, 1982

E. W. Grove Consultants Ltd.

TABLE OF CONTENTS

	MINERAL REPORT TO SELANCII		PAGE
INTRODUCTION	MARK LIMONY & PART		1
LOCATION			3
ACCESS			5
PROPERTY	10.110		5
HISTORY	NO.		7
GEOLOGY	The second secon		10
GENERAL (GEOLOGY		10
LOCAL GEO	OLOGY		11
MINERALIZATION			12
1981 EXPLORATION PROC	GRAM		13
A. GEOCHI	EMICAL SURVEY		13
Sample	e Collection		14
Labora	atory Procedure		14
Data E	Presentation		15
Discus	ssion of Stream Sediment	Results	16
Conclu	isions		18
B. SAMPLI	ING PROGRAM		18
COST STATEMENT 1981 F	EXPLORATION PROGRAM		20
REFERENCES			22
CERTIFICATE			23
FIGURES			
1. Location Map	440		2
2. Location Map			4
3. Property Map			6
4. Victoria Map	Area		9
5. Stream Sedime	ent Sample Sites/Results	I	pocket
6. Stream Sedime	ent Sample Sites/Results	I	ocket
7. Stream Sedime	ent Sample Sites/Results	F	ocket
8. Stream Sedime	ent Sample Sites/Results	F	ocket
9. Rock Sample I	Locations	r	ocket

TABLE OF CONTENTS CON'T.

PAGE

APPENDIX I - Laboratory Results, Stream Sediments
APPENDIX II - Histograms - Stream Sediment Analyses
APPENDIX III - Laboratory Results, Vein Samples

INTRODUCTION

The Blaze and BPEX claims owned by Beau Pre Explorations Ltd. are located at Valentine Mountain, 40 kilometers west of Victoria, British Columbia. The original property was staked by Mr. Robert Beaupre in 1976 when his study of placer gold in the area led to the discovery of gold bearing quartz veins on Valentine Mountain.

Work on the property has included prospecting, soil sampling, trenching and rock sampling. At the recommendation of Mr. G.A. Noel, P.Eng., in his report of December 1, 1980 a stream sediment sampling program was undertaken in the claim area in February 1981. Because of heavy snow, heavy rain, washed out roads and limited access the silt sampling was not completed until early May 1981. During this early period considerable effort was expended rebuilding and repairing main access roads and the area of the claim group was expanded to include a large portion of Valentine Mountain.

Results of the geochemical survey were followed up by detailed prospecting and extensive rock sampling done mostly during the latter half of the year. A review of the geochemical and prospecting results combined with detailed geological observations led to the premise that a certain set of quartz veins found to trend at about 067°/V across the top and southerly face of Valentine Mountain contained the

best gold values. Careful prospecting and sampling of this vein set disclosed a number of such veins in which visible gold was found.

As a result of the 1981 combined geochemical and prospecting program on the Blaze group of claims, an area approximately 200-300 meters wide by 3000 meters long has been outlined in which gold bearing quartz veins have been discovered.

LOCATION

The Blaze group of claims is located on Valentine Mountain, 40 kilometers west of Victoria, in a southern portion of the Insular Mountain Range (Figure 1). Valentine Mountain rises abruptly from Bear Creek at about 380 meters elevation to 956 meters at the peak. Jordan River passes the northerly and west side of the mountain while Valentine Creek cuts across the northeast side. Drainage from this isolated roughly triangular shaped mass is therefore almost centripetal and ideal for stream silt sampling procedures provided weather conditions are complimentary. The south facing half of the mountain and the lower portion of the north portion have been completely logged off (clear cut) leaving a band of standing timber and swamp along the main east-west ridge. With the exception of this zone the streams are open and provide excellent rock exposures for prospecting, sampling and geology.

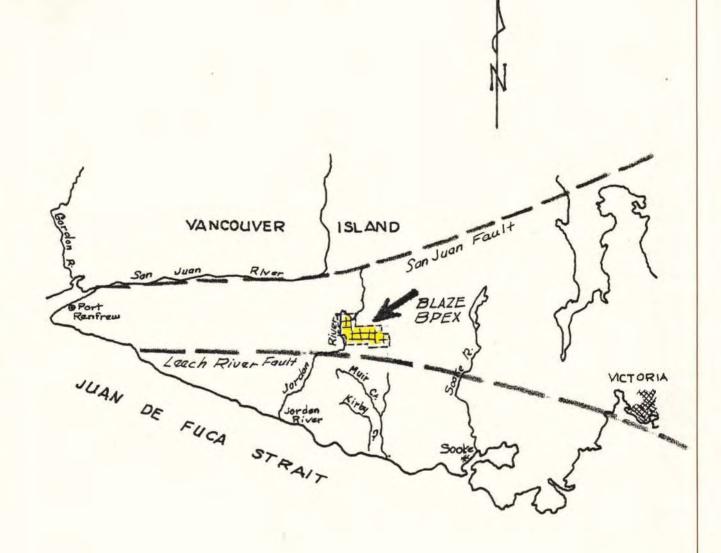
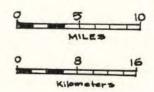
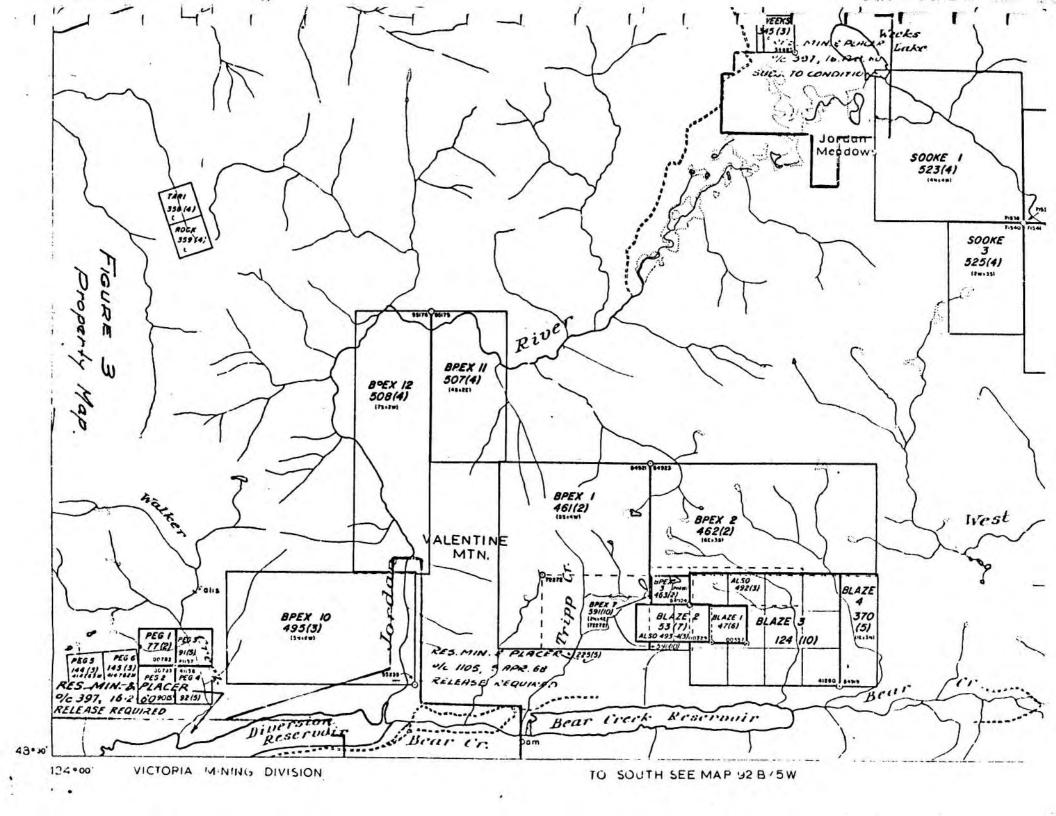



FIGURE 2

PROPERTY

LOCATION MAP



ACCESS

Access to Valentine Mountain is by good road from the settlement of Sooke, a distance of about 19 kilometers (Figure 2). Because of the past and current logging operations in the area by Pacific Logging a good road network exists on the claims, and the main roads to the area are well maintained. During the work week main road access is restricted during the period 0700 hours to 1700 hours. Heavy rains and snow caused road washouts during the winter and in the summer hot dry weather conditions severly limited access due to fire restrictions.

PROPERTY

The Blaze group of staked mineral claims includes the Blaze 1 to 4 claims and the BPEX 1, 2, 3, 4, 5, 6, 7, 11 and 12 claims comprising 92 units. These claims as well as the adjoining Peg 1 to 6, Bo 1 to 4 and 6, and BPEX 10 are all currently owned by Beau Pre Explorations Ltd. (Figure 3). In addition the company has applied for placer leases on the Jordan River and Bear Creek. A list of the claims and pertinent data relevant to this report follows:

Name	Units	Record No.	Expiry Date
Blaze 1	1	47	June 21, 1984
Blaze 2	2	53	July 12, 1984
Blaze 3	12	124	October 3, 1984
Blaze 4	3	370	May 26, 1984
BPEX 1	20	461	February 6, 1982
BPEX 2	18	462	February 6, 1982
BPEX 3	1	463	February 6, 1982
BPEX 4	3	492	March 6, 1982
BPEX 5	1	493	March 6, 1982
BPEX 6	1	494	March 6, 1982
BPEX 7	8	591	October 5, 1982
BPEX 10	18	495	March 6, 1982
BPEX 11	14	507	April 2, 1982
BPEX 12	8	508	April 2, 1982
	110		

In January 1982 a supplemental grouping on the Blaze 1 to 4 claims and the BPEX 1,2, 3, 4, 5, 6, 7, 11, and 12 claims was filed as allowed by current practice.

HISTORY

The search for gold on southern Vancouver Island has continued for almost 120 years since Lieutenant David Leech was credited with finding gold on the Leech River in 1864. In 1893 Herbert Carmichael, government assayer and later Provincial Mineralogist, stated:

"After leaving the slate country on the North Fork there is hardly any gold found in the creek, and no ledges have been discovered of any value, but some gold has been found in the West Fork, which drains Jordan Meadows. Gold is also got at the headwaters of the Koksilah, Jordan and San Juan rivers,

all of which rise in the same range of mountains, and it is not improbable that quartz veins will be met with in this vicinity. --- All of the gold in the creeks of this district is of a coarse character, and when ledges are discovered the quartz should prove free milling." (Ann. Rept. 1893, p. 1079)

Estimates of the total amount of placer gold recovered from the Leech River system indicate from \$100,000 to \$200,000 with the largest nuggets recovered (reported) weighing from ½ to 1 ounce.

In 1976 Mr. Robert Beaupre and his partner located a gold bearing quartz vein on the east ridge of Valentine Mountain after following up the placer locations and placer find stories. Work on the property was largely confined to the immediate area of the 'A' vein find and included surface trenching and sampling, soil sampling, and one bulk sample of gold bearing quartz weighing 775 pounds was shipped to the Tacoma smelter.

Property examinations have been made and reported on by T.E. Lisle, P.Eng. (Jan. 31, 1980; May 20, 1980) and by G.A. Noel, P.Eng. (December 1, 1980). G.A. Noel and Associates recommended the stream silt survey and prospecting program which was carried out by Beau Pre Explorations Ltd. personnel and contractors in 1981.

-9-

GEOLOGY

General Geology

The general geology of the Victoria area was first mapped by C.H. Clapp and published as memoirs in 1914 and 1917. These classic descriptions have been updated by Muller (1975) and shown here in Figure 4. The Valentine Mountain claims of Beau Pre Explorations lie entirely within the fault block bounded on the north by the San Juan fault and on the south by the Leech River fault. In this area the rocks are members of the Leech River Formation, variably deformed, intruded and metamorphosed units considered by Clapp as Carboniferous equivalents of the Cache Creek Group. Muller suggested that, considering the lack of fossils, correlation of the schists to Jurassic-Cretaceous Nooksack Group of Washington State offered the best solution.

The Leech River Formation includes deformed pelites, sandstones, volcanic rocks, chert and conglomerate. These units appear to have been intruded by sills, dikes and pegmatites at about 40 m.y. B.P. as determined by rock age studies on metamorphic minerals related to the plutonic event (Fairchild, 1979). Valentine Mountain lies entirely within the staurolite-andalusite-biotite metamorphic isograd related to the regional event. The grade of metamorphism decreases to the northeast through the biotite isograd towards Survey Mountain.

The major rock structures in the Leech River block appear to be very large open folds locally confused by plutons, deformation, metamorphism and faulting. The block is bounded north and south by major strike-slip faults and cut by several relatively widely spaced northwesterly trending faults. As suggested by Fairchild (1979) the major Leech River structure is a high angle composite fault of relatively young age (Oligocene to Miocene or later?).

Local Geology

The various sedimentary and volcanic (?) rocks that comprise the country rocks in the Valentine Mountain and adjoining areas are now mainly schists belonging to the lower amphibolite grade facies in which staurolite, and alusite, garnet and biotite are definitive minerals. Apparently original bulk rock composition played a significant role in determining the metamorphic assemblages. Locally very coarse and alusite-garnet-biotite schists are found in juxtaposition to almost fresh looking, current bedded, feldspathic sandstones.

The apparently primarily sedimentary units at Valentine Mountain have been intruded on the west at Jordan River by sill-like porphyritic granodiorite plutons that appear to plunge easterly under the mountain. Dike-like pegmatites apparently related to the granodiorite are found as sheets

west of the Jordan River. Diorite to gabbro dikes cut the Leech River units in the northwestern portion of the claims on BPEX 11 and 12 and appear to be ridge forming members.

The major structure on Valentine Mountain is an easterly trending open antiform that plunges at a low angle to the east under what appears to be a less deformed volcanic sequence. Detailed geologic mapping of the area remains to be completed.

All of the rocks in the Valentine Mountain area have well developed fracture systems. Several of these have been the loci of deposition of various ages of quartz veins and of gold-quartz veins.

MINERALIZATION

Interest on mineralization encountered on the Valentine Mountain claim group is concentrated on gold bearing quartz veins. At least three recognizable sets of quartz vein have been outlined and of these, one, and apparently the youngest, has the most visible gold and generally assays the highest. These veins have a width of from a few centimeters to 10 centimeters and can be traced for several 10's of meters. The vein frequency and therefore the potential of the property has not yet been fully determined. The main auriferous vein set has a fairly consistent attitude of about 067°/V in a

known zone that extends westwards from Valentine Creek about 3000 meters towards Tripp Creek. The known width is from 200 to 300 meters but may extend further under the timbered, swampy. zone that trends along the top of the mountain. Other quartz vein zones were indicated by the stream silt results on the north side of the mountain and on the east side of the Jordan River. Some work has been done on these veins but only in a preliminary fashion.

Sulfides including arsenopyrite and pyrite are common in the wall rocks of the various quartz veins and generally more abundant in certain country rock units. No other sulfide minerals of current economic interest have been encountered during this phase of exploration.

1981 EXPLORATION PROGRAM

A. GEOCHEMICAL SURVEY

The detailed areal stream sediment program recommended by G.A. Noel was started in February 1981 when both weather and road conditions were favorable. Because of frequent bouts of snow, ice, heavy rain and road washouts, the stream silt program was not completed until May 1981. The crew comprised two prospectors (one, short time only) supervised by the company consultant.

Sample Collection

Stream sediment samples were collected during the intermittent periods when streams were open (free of ice and snow) and when the flow was moderate (not murky). Sites were marked on air photographs and numbered on the ground with numbered survey ribbons. At each location the stream sediment samples comprised a composite of four or more sites within a few meters of each other and the kraft paper bags were completley filled with stream material. Because of the relatively high gradients, and high water flows in the area, organics were relatively absent and the silt-sand fraction relatively abundant. The samples were air dried before being sent to the laboratory for analysis.

Laboratory Procedure

The dried, numbered, stream sediment samples were sent in batches to the laboratory for analysis. Each batch included stream silt standards prepared from Sooke River sediment to provide an overall control and warning against possible accidental contamination. None was noted in the results. In most samples nine elements representing the various mobile to immobile pathfinders were determined. The laboratory used the -80 mesh size fraction for analysis and the analyses were by atomic absorption methods.

Data Presentation

The results of the stream sediment analyses have been plotted on recently prepared topographic maps which display the approximate claim boundaries, the stream systems, and the road/access system. Sample sites are shown by the number which corresponds to the sample number submitted to the laboratory (Appendix I). The geochemical results expressed as parts per million (Cu, Pb, Zn, Ag, Ni, Co) or parts per billion (Au) are listed on accompanying maps with the sample number. Two sets of maps are included with this report for the general Valentine Mountain area including the BLAZE 1 to 4, and BPEX 1, 2, 3, 4, 5, 6, 7, 11 and 12 claims (Figures 5 and 6). Two sets of maps also included show the sites and results for the BO 1 to 4, PEG 1 to 6, and BPEX 10 and 12 claims (Figures 7 and 8).

All 378 stream sediment samples were analysed for nickel, cobalt, gold, and arsenic. Of these, 226 sediment samples were also analysed for copper, lead, zinc, molybdenum, silver and tungsten.

Histograms utilizing three cycle graph paper were constructed for gold, arsenic, copper, zinc and nickel (Appendix II). As can be judged quickly from the analytical results (Appendix I) it was not necessary to include the histograms for the results on the remaining five elements.

Calculated background and threshold values as well as value ranges for the five significant elements follow:

Element Range						ground alue		shold lue
Au	< 5	ppb	to	85 ppb	< 5	ppb	40	ppb
As	< 2	ppm	to	350 ppm	> 6	ppm	50	ppm
Cu	3	ppm	to	191 ppm	36	ppm	100	ppm
Zn	7	ppm	to	168 ppm	57	ppm	100	ppm
Ni	3	ppm	to	191 ppm	26	ppm	79	ppm

On the basis of these results sample site areas with above threshold values were prospected. Areas of particular interest were those at which gold and coincident gold/arsenic anomalies were indicated. The significant anomalies are marked on the accompanying maps.

Discussion of Stream Sediment Results

The area of known gold-quartz mineralization extends from BLAZE 3 westerly across BLAZE 1 and 2 and BPEX 4. One anomalous gold and one anomalous arsenic value appear to indicate the veins at this end of the system. Two anomalous gold and one anomalous arsenic value suggested gold bearing quartz vein east of BLAZE 1 on BLAZE 3. This area was prospected and gold bearing quartz veins belonging to the $067^{\circ}/V$ system were located and sampled (Figure 9).

A second area located within BPEX 2 is indicated by four anomalous samples. One of these, No. 154, is the only anomalous coincident sample produced by the survey.

Preliminary prospecting in this area showed the presence of a quartz vein swarm which has been sampled in only a preliminary manner. These results yielded low values.

A third anomalous area indicated by the survey lies east of the Jordan River across BPEX 11 and 12. At least five anomalous values are indicated in an area which by direct observation is heavily pyritized. This area has not been prospected to date.

Three scattered anomalous values along the Valentine Main between BPEX 2 and on BLAZE 4 are in an area where quartz veins are fairly abundant. Insufficient prospecting and sampling has yet been done in this area.

One anomalous sample taken at the Walker-Jordan Main and another at the lower Jordan River (West Jordan Main) appear to represent placer materials which are now known to occur in these areas. These have now been protected with placer leases by Beau Pre Explorations Ltd.

On the basis of the statistical presentations made here (Appendix II) gold and arsenic appear to have a close relationship to areas of gold-quartz mineralization. The

other elements reported here - copper, lead, zinc, nickel, cobalt, silver, tungsten, and molybdenum - do not appear to have any such relationship and probably represent local rock values. No indications of any significant sulfide mineralization was indicated by the survey.

Conclusions

of the 378 sediment samples analysed twelve gave anomalous gold and twelve gave anomalous arsenic values. Only one of these samples was coincident. The area of known gold-quartz mineralization was indicated and at least three more areas were also suggested for prospecting and sampling. Of these, one has been well prospected and has been shown to have gold-quartz mineralization.

B. SAMPLING PROGRAM

As an adjunct and as follow-up to the stream sediment program quartz veins in the anomalous areas and particularly veins belonging to the 067°/V set were sampled for assay. The majority of the veins were chip sampled with hammer and moil and where possible channel samples were taken. The sample locations are shown on Figure 9. The map is one of several prepared for Beau Pre Explorations Ltd. by Arrowsmith Mapping Services of Victoria from B.C. Government air photographs.

As shown on Figure 9 the bulk of the 1981 rock (vein) sampling was completed on three areas. One, the BLAZE 1 and 2 claim area; two, a zone east of BLAZE 2 on BPEX 3; and the third, the upper north slope of Valentine Mountain on BPEX 2. The assay results are contained in Appendix III.

Vein sampling on the BLAZE 1, 2 and 3 claims was almost exclusively confined to $067^{\circ}/V$ set of quartz veins, several of which showed free gold (eg. 67/36, 67/2, 67/46). Sampling of the 230° and 270° quartz vein sets on the north side of the mountain on BPEX 2 gave uniformly low values (eg. VJH 1N - 0.002 oz Au/T).

Visual examination of the 067°/V quartz veins exposed on the BLAZE 1, 2, and 3 claims indicated they were generally a few centimeters wide and up to 20 or 30 meters long and were generally composed of glassy white, slightly fractured coarse grained quartz with minor or rare sulfides. The free gold in these veins is a bright yellow and found as discrete blebs and hackly masses concentrated along irregular fractures. Examination of the schistose walls of these veins disclosed the presence of very fine grained gold at least several centimeters outwards in the country rocks. Fine grained, well crystallized arsenopyrite is also fairly prominent in these wall rocks near the gold bearing veins.

COST STATEMENT 1981 EXPLORATION PROGRAM

1. Personnel Involved:

E. W. Grove Consultants Ltd. Overall field supervision, stream sediment survey, vein sampling, reports.

Beau Pre Explorations Ltd. Road maintenance, vehicles, equipment, materials allocation, vein sampling.

2. Costs

A. Stream Sediment Program

Topographic maps prepared by Arrowsmith Mapping Services, Air Photographs, maps and materials \$3,049 Wages: 4,265 John Decker, 42 days @ \$100/day Ted Archibald, 4 days " " 450 Laboratory Fees: 6,619 Bondar-Clegg & Company Ltd. Vehicle: 1 Blazer - 42 days @ \$43/day incl oil & fuel 1,806 540 Miscellaneous Supplies: \$16,729

B. Vein Sampling Program

Wages & Camp Costs:
2 men, 103 days @ \$94/man/day
1. Robert Beaupre
2. Alexander Olson or A.A. Bruce

Vehicles:
2 Blazers - 103 days @ \$43/unit/day

8,858

Tools & Supplies: 103 days @ \$52/day
Including shovels, picks, rock hammers, moils,
pack boards, packs, compass, belt chain, rope
chain, Atlas Copco Drill & bits, fuel, oil, powder 5,356

B. Vein Sampling Program (con't.)

Laboratory Fees:	
Bondar-Clegg & Company Ltd.	\$1,090
	\$34,668
Consulting Fees	5,322
Report Compilation	1,600
TOTAL 1981 EXPENDITURES	\$58 310

REFERENCES

Clapp, C. H. (1914): Geology of the Victoria and Saanich Map-Areas, Vancouver Island, B.C., G.S.C. Mem. 36.

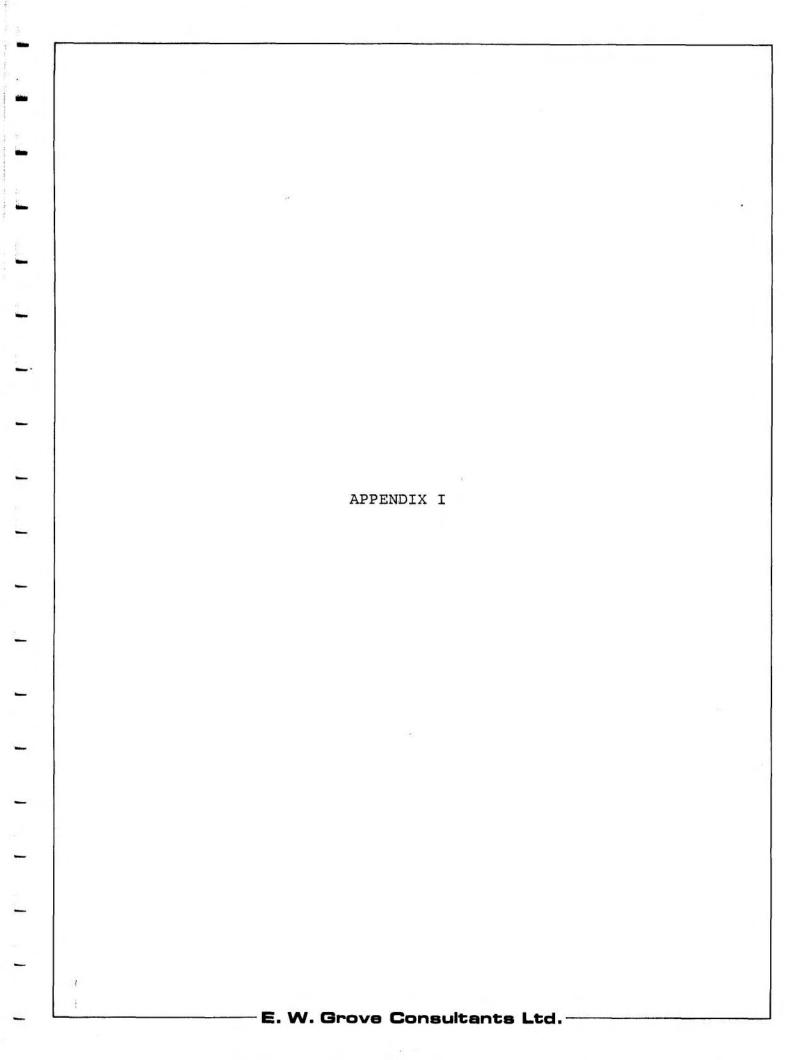
(1917): Sooke and Duncan Map-Areas, Vancouver Island, B.C., G.S.C. Mem. 96.

- Fairchild, L. H. (1979): The Leech River Unit and Leech River Fault, Southern Vancouver Island, B.C., University of Washington, M.Sc. Thesis.
- Lisle, T. E. (1980): Report on BLAZE 1 to 3 Mineral Claims, Victoria, M.D., Jan. 31, 1980.

(1980): Report on BLAZE 1 to 3 Mineral Claims, Victoria M.D., May 20, 1980.

- Muller, J. E. (1975): Victoria Map-Area, British Columbia (92B), G.S.C., in Report of Activities, Paper 75-1, Part A, p. 21-26.
- Noel, G. A. (1980): Report of 1980 Fieldwork on the BLAZE 1-4 Mineral Claims, Sooke Area, B.C., Victoria M.D.

CERTIFICATE


I, Edward Willis Grove, of the Municipality of Central Saanich, do hereby certify that:

- I am a consulting geologist with an office at 6751 Barbara Drive, Victoria, British Columbia.
- I am a graduate of the University of British Columbia (1955) with a Master's degree, Honours Geology (M.Sc. Hon. Geol.) and a graduate of McGill University (1973) with a doctorate in Geology (Ph.D.).
- 3. I have practiced my profession continuously since graduation while being employed by such companies as The Consolidated Mining & Smelting Co. of Canada Ltd, British Yukon Exploration Ltd., Quebec Dept. of Natural Resources, and British Columbia Ministry of Energy, Mines and Petroleum Resources. I have been in private corporate practice since January 1981.
- 4. I am a Director of Beau Pre Explorations Ltd.
- 5. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.

January 27, 1982

Victoria, B.C.

Edward W. Grove, Ph.D., P.Eng. E. W. GROVE CONSULTANTS LTD.

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 PHONE: 985-0681 TELEX: 04-352667

ELEMENT	EXTRACTION	METHOD OF ANALYSIS
Cu, Pb, Zn, Mo, Ag,	✓ Hot Lefort Aqua Regia	Atomic Absorption
Cd, Ni, Co, Mn, Fe	Multi Acid	
U	Hot Conc HNO ₃	Fluorimetric
	Hot Multi-Acid	
	1% Sodium Bicarbonate; 20°C	
	Basic Oxidizing; 20°C	
	1% Acetic; 20°C	
	0.1N HNO ₃ ; 20°C	
		Delayed Neutron Activation
w	Basic oxidizing fusion	Colorimetric
F	Basic Fusion	Citrate Buffer-Specific Ion
Au, Pt, Pd	Fire Assay and Hot Aqua Regia	Atomic Absorption
As	HC10 ₄ - HNO ₃ Arsine	Colorimetric
Hg	Aqua Regia	Closed Cell, Flameless Atomic Absorption
Sn, Sb, Ba, Rb, Sr, Y		Constitution of the State of th
Zr, Nb, La, Ce, Ti		Energy dispersive XRF
Th, Se, Ta, Ga, In	Hat Come HNO	Discrete angle/cathode XRF Atomic Absorption
Bi	Hot Conc HNO ₃ Multi Acid	Atomic Absorption
V, Be, Li	Multi Acid	Atomic Absorption
Cr	Sodium Peroxide Fusion	Atomic Absorption
TI, Re	Multi Acid + Organic	Atomic Absorption
	Extraction	Emission Spec
В	Fusion + H ₂ SO ₄	Colorimetric
P	Multi Acid	Colorimetric
S	Walti Acia	Leco Induction Furnace
3		Lees maderon ramase
WHOLE ROCK ANALYSIS		
SiO ₂ P ₂ O ₅	Multi Acid + Fusion	Gravimetric
K ₂ O Na ₂ O	Multi Acid + Fusion	Atomic Emission
CaO MgO MnO Fe Al ₂ O ₃	Multi Acid + Fusion	Atomic Absorption
TiO ₂	Multi Acid + Fusion	Colorimetric
S	***************************************	Leco Induction Furnace
Other:		

Geochemical Lab Report

FROM:	Beau-Pre Explorations Ltd.	REPORT NUMBER:	21 - 221

SAMPLE NUMBERS	Cu	Pb ppm	Zn	Mo ppm	Ag × ppm	Ni ppm	Coppm	$_{\mathrm{ppm}}^{\mathrm{W}}$	Au
BE61	41	10	69	2	-0.7-		22	2	5
¥ - 62	43	8	71	2	0.3	39	18	2	< 5
~ 63	32	7	48	1	0.2	24	10	2	10
64	28	8	51	2	0.2	23	14	2	< 5
√ √65	26	10	57	1	0.2	22	12	2	20
r 166	32	7	67	1	0.2	30	16	2	< 5
¥ ·67	37	7	73	1	0.2	31	16	2	< 5
1.69	27	8	57	2	0.2	25	14	2	< 5
V-70	24	10	74	3	0.2	25	37	2	5
4 shaet - 71 "	27	9	60	2	0.2	25	20	2	< 5
v × 73	40	6	48	1	0.2	34	11	2	10
1 × 74	48	9	62	2	0.2	49	16	2	< 5
¥ √75	26	9	49	2	0.2	29	14	2	< 5
v 76	39	8	59	2	0.2	37	12	2	< 5
V77	33	6	57	2	0.2	30	11	2	< 5
V-78	30	8	56	2	0.2	26	8	2	< 5
779	28	6	60	1	0.2	24	12	2	15
~ 80	42	10	66	3	0.2	38	14	2	5
y 91	26	7	83	2	0.2	26	14	2	< 5
,,92	78	10	90	4	0.2	56	16	2	10
√ ∨93	88	11	125	3	0.3	92	22	2	10
v .94	91	11	140	2	0.2	104	26	2	10
v95 BC	33	4	31	< 1	0.2	20	12	2	< :
. 496	61	8	75	1	0.2	- 50.	24	2	
, v97	113	9	(168)	2	0.2	114	-50	2	10
v ·98	115	9	156	2	0.2	124	32	2	10
99	90	8	97	3	0.2	83	36	2	15
▼ √100	(191)	5	81	2	0.2	65	16	2	15
- 101	71	4	61	2	-0.5	68	15	2	- 5
· v102	140	6	135	4	0.2	154	-52	2	-
v 103 €	33	4	32	1	0.2	22	12	2	< "
¥ × 104	75	7	58	3	0.2	52	14	2	< :
., 105	28	7	67	1	0.2	32	14	2	10
, 106	28	7	76	2	0.2	28	22	2	< !
107	32	7	60	2	0.2	36	14	2	- 5
vv 108	38	9	92	2	0.2	40	20		
v v109	16	5	57	1	0.2	30	14	2	< 5
v·110	22	10	52	3	0.2	19	12	2 2 2	
√ √111	21	9	49	2	0.2	22		3	
112	23	8	56	2			8 22	4	< 5
* 114	43	0	36	2	0.2	24	22	4	< :

TLX: 04-352667

Geochemical Lab Report PAGE 1A

FROM:	Beau-Pre	Explorations Ltd.	REPORT NUMBER:	21 - 221

DATE: __

SAMPLE NUMBERS	As °			
BE ¥ 61	32			
√ 62	35			1
√ 63	18			
√ 64	10			
65	11			
~ 66				
≠ 67	5 5 8			1
¥69	8			
▶ 70	22			- 49
/ :71	22 20			
0# slae = .71				
➤ 73 ➤ 74	11 7 5 6 7			
→ 74	7			1
₩ 75	5	, , , , , , , , , , , , , , , , , , ,	1 1 1	
₹ 76	6			
√ 77	7			
▼ 78	10			
. 79	3			4
. 80	6			1
29 80 91	10 3 6 7			
• 92	8		1 1 1	
	1			
93	8			
₩ 94	12 3			
₹ 95	3			
▶ 96	11			1
▶ 97	14			
* 98	15			9
¥ 99	37			
100	17			
· 101	23		1 1 1	
× 102	17			
1 103	2			
▶ 104	11			
105	25			
106	12			
√ 107	22			
√ 108	20			
▶ 109	3			1
▶ 110	25			
▶110 ▼111 √112	25 17 50			
√ 112	(50)			

Geochemical Lab Report

REPORT NUMBER: ______21 - 221

PAGE: 2

SAMPLE NUMBERS	Cuppm	Pb ppm	Zn ppm	Mo ppm	Ag ppm	Ni ppm	Coppm	W ppm	Au
BE 113	25	10	48	2	0.2	22	10	2	
v v 115	38	8	62	2	0.2	44	16	5	< 5
V 116	31	9	63	3	0.2	38	16	3	< :
V117	39	9	78	2	0.2	40	16	4	. < .
V118	39	10	81	3	0.2	36	14	3	<
✓ ✓ 119	61	13	66	4	0.2	38	22	2	< 5
• • ×120	55	10	21	3	0.2	28	10	7	
v < 121	25	10	37	3	0.2	20	8	4	1
✓ ✓122			54	3	0.2	22	10		<
123	18 33	6	60	3	0.2	30	12	3	<
✓124 ✓125	64 32	14 10	71 72	3	0.2	35 26	26 —50	3	< 1
√ 126	25	7	42	3	0.2	24	8	4	<
✓ ✓128	32	7	55	3	0.2	26	15	3	
√ 129	32	13	101	3	0.2	24	9	6	<
V~130	29	11	77	3	0.2	26	27	8	1
√ √131	22	7	64	3	0.2	22	14	3	
√ √132	27	22	64	3	0.2	30	54	5	1
V 133	19	10	54	2	0.2	22	28	5	<
134	15	9	36	1	0.2	19	6	3	1
√ 135	14	13	35	1	0.2	14	4	2	14
V 136	3	9	16	< 1	0.2	6	4	5	6
V×137	25	10	66	1	0.2	22	15	4	ī
V138	25	7	49	2	0.2	25	10	3	1
v /139	29	10	74	2	0.2	34	18	4	1 4
▼ √140	45	8	50	3	0.2	45	15	5	2
			73		0.2	28	18	3	1
• 141 • 141	15	7		1					24
₩ v142	18	8	62	2	0.2	22	12	3	
√ √143	26	7	69	2	0.2	28	12	3	
1 44	28	6	45	3	0.2	27	10	4	<
145	67	9	56	3	0.2	50	14	3	
VV146	30	9	37	2	0.2	30	12	3	3
147	47	6	61	2	0.2	52	18	3	<
√ 148	57	8	55	3	0.2	49	16	6	<
V 149	30	11	72	2	0.2	26	14	3	.2
√ ×150	22	11	57	3	0.2	24	10	3	2
√ 151	28	9	67	2	0.2	24	10	3	<
V152	29	7	68	2	0.2	27	12	3	2
√153	15	7	46	3	0.2	26	8	4	
√√153 √√154	26	7	57	3	0.2	22	15	3	4
									<
∨ 155	23 26	11	51 29	3 2	0.2	20 25	11	2	<
00 157								8	
001/158	49	6	41	3	0.2	38	14		3
50 VV 159	48	8	41	2	0.2	32	14	3	<
6 0 W 160	48	7	34	2	0.2	46	18	3	<

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 2A

SAMPLE NUMBERS	As ppm					
BE ✓113	13					
×115	8					
~ 116	12					
∨ 117	8		1		AL .	
v 118	10					
			-1			
· · 119	7					
120	7					
▼ 121	5					
▼ 122	7 5 5 7		1			
✓ 123	7		1			
V 124	12		4	1		
124	10					
▼ 126	12	1			+	1
√ 128	15		100	1		
✓129	7					
√ 130	18				1	
✓ 131	10		1			
▶ 132	25					
√ 133	13			1		1
v 134	7					
√ 135	7					
136	7 3				1 1	1
× 137	12			1		1
138	13		1	1		
	17		1	1	1 1	
v 139	1/					1
√ 140	53 7	4		1	1	
⊌ 141	7	- 19				
1 142	12	1				
√ 143	13			100		
144	7					1
V ₁₄₅	7					
~ 146	7					
v147	8	1				
√ 148	10					
✓149	10 8					
	1					
▶1 50	13			ŀ		
√ 151	10			1		
√ 152	10 120 25 50			1		
√ 153	25				1	
√1 54	50					
√1 55	20					
Ø √ 157	7		1		1	
ø √ 158	10		ĺ			
Ø √ 159	6				10	1
\$ × 160	< 2					
p + 100			1			

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 3

SAMPLE NUMBERS	Cu	Pb ppm	Zn ppm	Mo ppm	Agm	Ni ppm	Coppm	ppm	Au
E50 v / 161	36	7	36	3	0.2	47	16	2	. 1
001/162	32	8	32	2	0.2	42	13	3	<
10 レV163	38	7	36	2	0.2	36	12	3	1
po 1164	33	6	43	2	0.2	32	14	4	1
r 165	27	5	46	2	0.2	24	12	2	3
VV 166	19	5	45	2	0.2	19	11	3	1
~ 167	20	8	65	2	0.2	20	25	5	
168	20	7	51	2	0.2	20	10	3	<
✓ × 169	19	6	59	2	0.2	23	12	4	<
√170	73	8	72	3	0.2	41	14	4	1176
V171	36	4	80	1	0.2	39	20	3	<
60 × 173	47	7	35	1	0.2	40	14	2	1
80×174	47	9	40	2	0.2	41	16	4	
20 V175	62	10	68	2	0.2	58	30	3	<
Ø o 176	59	10	73	2	0.2	46	18	3	<
00 177	27	8	52	1	0.2	30	18	2	<
go 178	35	7	56	3	0.2	36	14	2	<
ø o 179	25	7	39	2	0.2	25	10	3	1
yo 180	45	12	57	2	0.2	33	16	4	2
yo 181	40	9	42	2	0.2	40	13	3	
Ø0 182	51	8	52	2	0.2	42	15	3	<
0 0183	44	8	44	1	0.2	41	15	2	
Jo 184	46	6	50	1	0.2	36	18	2	<
50 185	47	6	47	1	0.2	32	16	2	<
50 186	49	7	64	2	0.2	42	18	2	
00 187	49	8	55	2	0.2	46	13	3	
5 0 188	30	5	38	3	0.2	21	8	2	<
0 , 189	64	8	32	2	0.2	23	10	3	2
00 190	60	6	48	2	0.2	42	15	2	<
× 0191	60	8	63	2	0.2	45	20	2	<
↑ 0192	34	4	45	3	0.2	26	10	2	<
⊃ □ 193	38	6	47	2	0.2	26	12	2	<
0 0194	35	7	38	2	0.2	27	12	2	
Ø o 196	44	8	45	3	0.2	39	16	2	
0 . 197	46	6	37	2	0.2	32	16	2	<
po 198	49	9	54	2	0.2	42	40	2	<
00199	64	4	38	2	0.2	36	18	2	<
200	81	4	44	2	0.2	30	20	2	<
BL 20 206 - 249	37	4	33	2	0.2	20	12	2	<
9 0 220	38	4	37	2	0.2	20	12	2	1
30221	39	6	35	3	0.2	30	10	3	<
Ø 0 222	22	7	19	3	0.2	23	5	3	<
20 223	35	9	48	2	0.2	36	15	2	<
C 0 224	79	9	45	3	0.2	49	11	3	<
8 0225	29	10	20	3	0.2	23	6	2	<

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 3A

BE 0 161 0 162 0 163	. 6						
3 ∨ 163		1					1.
	7	1		1			
	6						1
5-164	30			- 1			
√ 165	27						
✓ 166	45						
~167	40			1	11		
√ 168	6			1	1		
~ 169	27				1		1
✓ 170	5						
✓ 171	11	1					
√ 173	7				į		
√ 174	8			1			1
√ 175	4						
ø 176	3						1
ø177	1						
g 178	2 3		Y 1		1		1
ø 179	4						
ø 180	11						
Ø 181	4			1		1	
Ø 182	5		1				
o 183	5 3 2 5						
> 184 2105	3		1		1		
2185	2			1			
∌186	5						
5 187	3 7			1			
<i>5</i> 188	7		1		1		
p 189	6			1		1	
. \$190	5					Į.	
Ø191	6 5 5.						
Ø192	5	4					
g 193	5	1		1			
0194	6		1		1		
2196	5 5 6 7	1					
9193 9194 9196 9197	5						
1198							
ø199	2			1			
ø 200	3						
cos 206	3				1		
9198 9199 9200 9206 9220	3 2 3 3 3					4	
2221							
2222	5 3 3 3 5						
× 222	3					4	
p 223	3						
Ø 223 Ø 224 Ø 225	3			1			
P223	3						

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 4

SAMPLE NUMBERS	Cu	Pb ppm	Zn	Mo ppm	Ag	Ni ppm	Coppm	ppm ppm	Au
BE Ø 0 226	54	11	27	4	0.2	38	13	2	. < 5
<i>⊅</i> ○ 227	43	9	43	5	0.2	34	13	2	< 5
5 0 228	45	88	45	3	0.2	34	11	3	10
Ø o 229	30	6	31	3	0.2	23	8	3	< 5
2 . 230	42	6	32	3	0.2	44	14	3	< 5
Ø o 231	132	6	36	6	0.8	128	26	2	5
o 232	62	8	34	4	0.2	55	16	2	< 5
Ø Ø 233	42	7	28	2	0.2	40	12	3	< 5
g o 234	51	7	35	1	0.2	44	13	2	< 5
00235 BL	38	4	34	ī	0.2	20	13	2	< 5
Ø Ø236	41	5	40	2	0.2	28	10	3	
Blank249 206	57	10	30	4	0.2	48	14	2	5
3/ank-250 ??	41	5	25	3	0.2	25	8	2	
Blank , >251 235	52	10	49	2	0.2	45	14	2	< !
BE BC ON SALE	43	6	37	2	0.2	25	10	2	< 10
BE BG % 2012									
202	49	9	63	2	0.2	28	10	2	< !
Ø 0 m 203	56	7	33	2	0.2	36	10	2	10
80 204	29	. 6	26	2	0.2	20	6	2	40
\$00 € 205	39	7	40	2	0.2	34	10	2	< 5
po 207	72	6	53	2	0.2	51	15	3	
BL v 1	31	6	64	1	0.2	28	14	3	10
v v 2	32	6	63	1	0.2	29	12	3	< 5
· √3	34	6	63	2	0.2	26	12	2	-
uknown 4	38	8	63	1	0.2	28	13	2	10
· ~5	43	8	70	1	0.2	30	15	3	20
1/6	25	8	62	2	0.2	20	16	2	
V V 7	23	10	35	1	0.2	14	20	3	<10
v × 8	20	7	47	2	0.2	16	17	3	
1/9	22	6	52	1	0.2	18	12	3	20
v 10	18	8	48	1	0.2	21	20	3	10
✓ 11	65	4	81	2	0.2	96	28	3	13
v ~12	17	8	46	1	0.2	16	13	4	1
~ ×13	20	10	66	2	0.2	18	15	4	< !
· ¥14	21	7	53	2	0.2	16	10	2	
√15	22	6	55	2	0.2	18	12	3	15
					100				
V16	45	8	62	2	0.2	35	20	3	< 5
V17	26	6	53	2	0.2	24	10	4	
√√18	33	7	61	2	0.2	28	12	3	10
. ✓19	22	6	38	2	0.2	10	10	3	< :
~ 20	24	6	33	1	0.2	60	31	3	10
Ven a m21 ~ 22 to	18	18	46	2	0.2	20	10	2	< 5
~ 22 the	42	4	38	1	0.2	23	12	3	< 5
C' c - 23	21	7	39	2	0.2	16	14	2	
V 24	51	4	49	2	0.2	30	14	20	10
· ~~25	24	5	59	2	0.2	23	10	2	

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 4A

Geochemical Lab Report

REPORT NUMBER: 21 - 221

SAMPLE NUMBERS	Cuppm	Pb ppm	Zn ppm	Mo	Agm '	Ni ppm	Co	ppm	Au
BL ~ 26	31	8	83	3	0.2	32	38	2	. < 5
v × 27	22	3	35	2	0.2	15	8	2	< 5
√ √28	31	3	52	2	0.2	40	14	2	< 5
V 29	27	6	49	2	0.2	19	10	3	< 5
/ /30	19	6	55	3	0.2	19	16	4	5
√ √31	31	5	57	3	0.2	25	12	6	< 5
1/32	28	7	60	2	0.2	27	45	3	< 5
00V33	58	5	55	2	0.2	40	14	4	
DO 1 34	54	6	59	3	0.2	42	16	. 4	< 5
DOV-35	33	5	45	2	0.2	28	12	4	< 5
00v - 36	30	4	45	3	0.2	26	12	2	5
V 37	55	6	62	1	0.2	45	20	2	< 5
V × 38	41	6	48	2	0.2	30	10	3	< 5
. v 39	60	9	55	2	0.2	50	18	4	10
v × 40	29	6	53	2	0.2	23	14	3	5
VV 41	26	6	53	2	0.2	26	12	2	< 5
v × 42	30	6	59	2	0.2	30.	13	5	< 5
V 43	31	7	63	3	0.2	28	13	3	5
V - 44	43	9	69	2	0.2	38	15	3	10
√ ∠ 45	37	8	64	3	0.2	36	16	3	(85
√ 46	63	10	52	3	0.2	45	18	3	< 5
×47	34	5	64	2	0.2	34	14	3	5
148	28	10	50	3	0.2	28	30	3	15
V49	34	9	62	3	0.2	33	€90	3	5
50 P 1 (238)	40	3	38	2	0.2	24	17	3	< 5
y √51	43	8	70	3	0.2	38	13	3	< 5
√ √52	36	7	72	3	0.2	30	16	2	< 5
₩ 53 8 Å	39	4	38	2	0.2	24	14	2	9
~ ✓54	21	5	52	2	0.2	23	10	3	10
✓ ✓ 55	33	6	57	3	0.2	26	10	3	10
∀ ∨56	38	6	62	1	0.2	32	11	4	10
✓ √57	35	6	61	2	0.2	28	14	3	< 5
▶ √58	35	6	78	1	0.2	38	26	3	
√√59 ×	56	4	78	4	0.2	66	20	6	(55 15
V60	44	3	57	2	0.2	39	15	3	
V V68 +1.	43	5	37	1	0.2	24	15	3	< 5
V 12 100	40	3	40	1	0.2	23	14	2	< 5
WX14 ~~	44	4	40	1	0.2	24	14	3	< 5
	38	5	36	1	0.2	22	16	2	< 5
80156	36	5	38	2	0.2	24	15	2	20
V172 12 - 247	33	3	32	2	0.2	20	15	3	< 5
Ø0195 ···	38	3	36	2	0.2	23	14	3	< 5
237 = 2	14	5	51	1	0.2	14	18	3	10
₹ ≥238 € 7 ₹ ≥239 €	37	8	66	2	0.2	31	14	2	10
7 -239	36	7	65	2	0.2	31	15	3	< 5

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 5A

3

SAMPLE NUMBERS	As ppm						
BL ~ 26	15			1			
~ 27	7			1			
~ 28	8						
2 9	12						
30	14						
√ 31	17						
/ 32	14					1	
ø v 33	5						
Ø √ 34	8						
Ø ∨ 35	5	1					
Ø ₹ 36	10						
₹37	3 7						
✓38 ✓39	6						
~ 40	6			İ			
							1
V41	9						
× 42	11						
~ 43	12		3				
V 44	10						
4 5	18						
46	3						
47	19						1
₩ 48	-5						
✓ 49	60						
✓50	2						
₩ 51	60 2 80		1				
V 52	11 2						
▶ 53	2		1)			
▶54	12		1				
~ 55	35				•		
- 56	30	100					
₹ 57	14		1				
-58	100						
→ 59 → 60	12						
√ 60	30						
√ 68	2						
12	2	1					
114	2 2 2 2						
√ 127	2						
72 114 127 156	2						
172	2						
A 195	3 3						
× 237	3						
✓ 238	14						
7, 239	14 35						
3			1				

Geochemical Lab Report

REPORT NUMBER: 21 - 221

		Cu	Pb	Zn	Мо	2 Ag	Ni	Co	W	Au
	MPLE NUMBERS	Cu ppm	Pb ppm	Zn ppm	Mo ppm	ppm	Ni ppm	Coppm	ppm	Au PP
BL	✓ 240 € ₹ ~24178	37 8	7	63 33	2 4	0.2	32 22	14 12	3 2	.<.
	24240	38	6	52	3	0.2	32	10	3	5
	243 103 244 14	91 40	9 7	95 82	3 2	0.2	93 29	22 15	2 2	
	1 V 245 /27	27	6	49	3	0.2	20	10	2	< .
	po 246 156 247 1712	48 41	7	54 79	2 2	0.2	50 34	24 18	2 2	< .
	60248	27	6	45	2	0.2	24	8	2	1
SPBL	✓ AA	9	4	21	2	0.2	6	2	2	20
	✓1B ✓ 2A	29	4	46 42	3 2	0.2	20 20	8 8	2 2	< .
	√ 2B	23 26 23	4 4 8	31	$\frac{2}{4}$	0.2	20 23 14	8 8 4	2 2	. 6
	✓1A0 ✓2A0	13	7	38 28	3	0.2	14	5	2	1
	K/3AO	3	6	7	3	0.2	4	2	2	<
	3A1 3A2	40 26	4 7	55 61	3	0.2	33	10 12	2 2	
		18								
*	detection limit or	v a emal1	comple							
	detection Timit of	a Small	. Sampre							
				1						
								-		
		1								
									1	

Geochemical Lab Report

REPORT NUMBER: 21 - 221

PAGE: 6A

SAMPLE NUMBERS	As ppm			
BL 240 241 242 243 ~244	7 15 7 7 12			
245 0 246 247 Ø 248 SPBL 1A	12 7 10 2 5			
1B ZA ZB 1AO ZAO	7 7 < 2 12 6			
→3A0 →3A1 →3A2	2 8 6	*		
The state of the s				

Geochemical Lab Report

FROM:_	Beau Pre - Explorations	REPORT NUMBER:	21 - 410	
FRUIVI: _		REPURI NUMBER:	41 710	

PROJECT: NONE LISTED DATE: March 30, 1981

SAMPLE NUMBERS	Ni ppm	Co ppm	PPb	As ppm				
VV 5A	20	4	< 5	12				
∨ ► 5B	42	10	< 5	12				
5C	32	. 10	< 5	15		1		
60 5A	31	. 8	< 5	2				
00 6B	64	14	5	5				
Ø0 6℃	56	13	< 5	.5				
. 7A	16	4	5	50				
7B	42	9	5	40				
7C	79	17	10	22				
BE - 237	20	9	< 5	7				
× ×238	23	7	< 5	2				
V 239 - 18 - 18	25	11	< 5	2	1		1 1	
240 252	16	4	< 5	3	1			
V 241	10	3	10	7				
v v 242	16	3	5	2	- 34	1		
V × 243	16	4	5	5				
· · 244	7	1	< 5	3	- 1	- 1		
v × 245	14	3	5	12				
v × 246	19	4	10	15		1		
¥ v 247	20	4	10	17		i i		
V ✓248	21	6	5	22				
√249	19	5	15	7		İ		
/ / 250	24	5	< 5	3		1		
VV251	19	4	< 5	5		Į.	1	
V ~ 252	22	5	< 5	5 7				
√ ∨ 253	14	3	< 5	5				
× ×254	22	5	< 5	6				
× ×255	13	3	< 5	7				
256	9	2	10	3				
257	22	5	5	5				
√ √258	13	3	< 5					
/	53	19	5	350				
259 260-BL-353	20	11	< 5	(350) (2)				
v 261	20	9	< 5	2			1 1	
262	20	8	< 5	5				
v 263	20	10	< 5	7				
√ 264 √ 265	22	10	< 5	48	1			
√ × 265 √ 266	18	8	< 5	10			1	
√ 266 ✓ √ 267	37 59	16 .14	< 5 5	60 15				

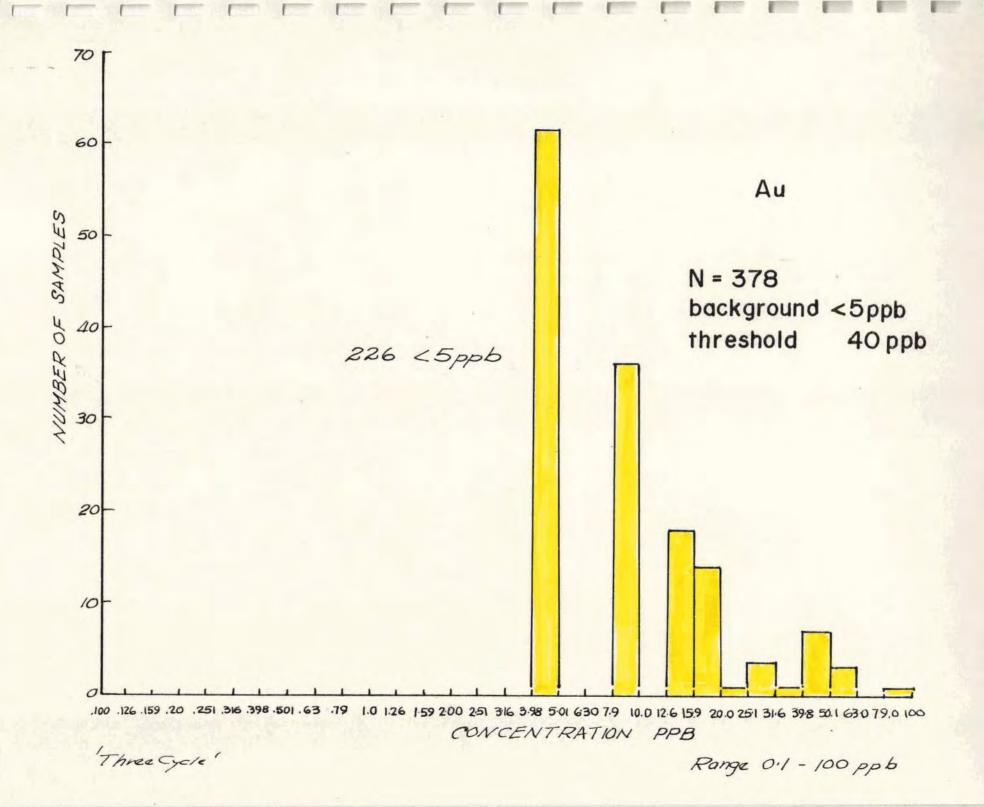
Geochemical Lab Report

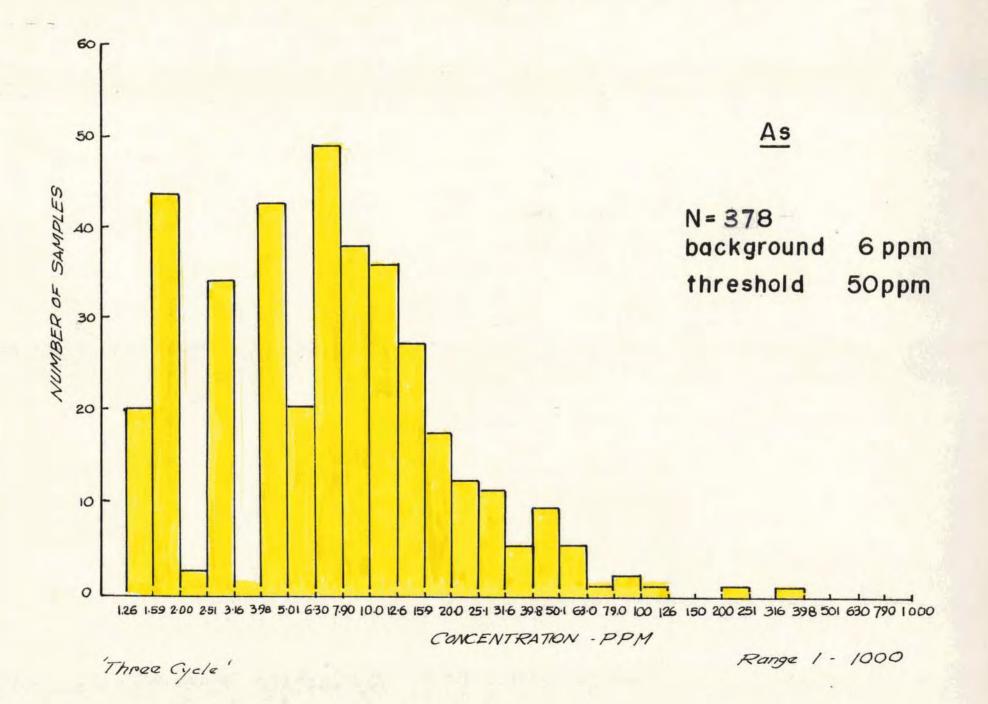
REPORT NUMBER: 21 - 410

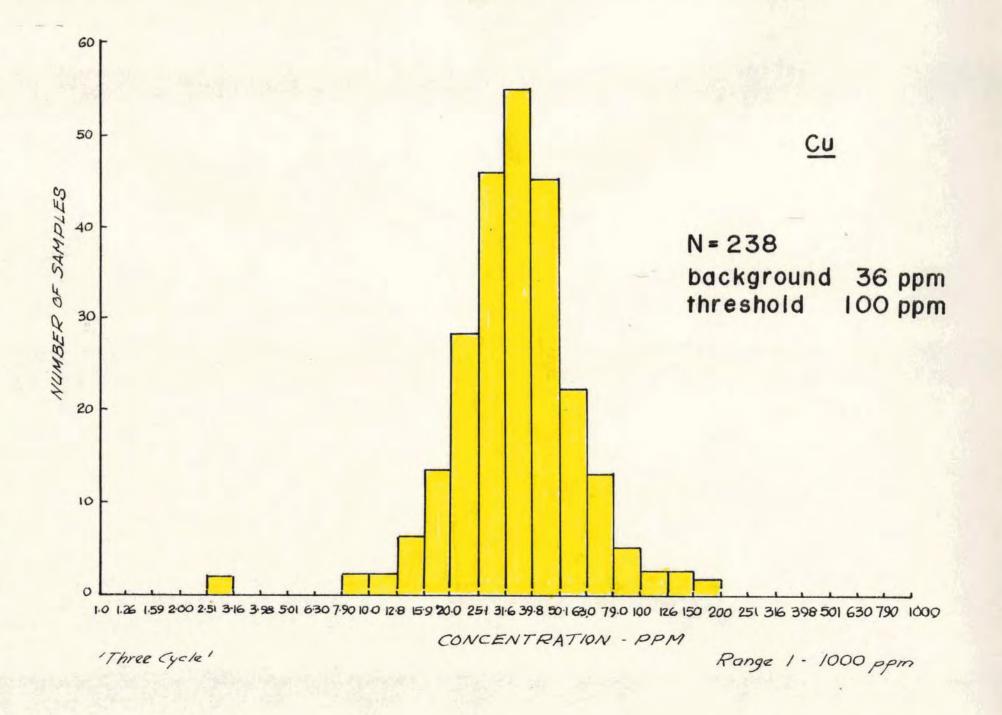
BE <- < 268	27 19 13 16	9 8	< 5	7				
~~270 ~~271 ~~272	19 13						1	
₹ 271 ₹ 272	13		< 5	2		1		
₹ 271 ₹ 272		4	< 5	2 2 2	1	1	1	
▼ × 272		8	< 5	2		1		
	18	6	< 5	< 2				
r V273	20		< 5	7				
		10						
· × 274	18	7	< 5	5	1			
, 275	10	3	< 5	< 2	N		1	
276	22	13	< 5	30	-		1	
· V v 277	24	8	< 5	12				
V 278	23	8	< 5	2				
₩ 279	15	5	< 5	< 2				
y 280	22	8	< 5	2	1		1	
× 281	14	6	15	10	İ			
√282	12	4	< 5	3				
√283						+		
	26	10	< 5	28				
✓ ×284	65	14	< 5	5				
✓ ∨ 285	40	7	< 5	2			1 1	
V ~ 286	18	5	< 5	2 6 7				
√ ∠287	21	5	20					
✓ ∕288	29	8	10	50		4		
~289	18	4	10	7	1	1	1 1	
/-290	31	9	< 5	12	1	1		
V-291	25	7	< 5	25		1		
v v292	31	6	< 5	< 2		1		
v · 293	33	19	< 5	12				
1294 At 359	22	10	< 5	< 2				
V295								
	28	10	< 5	5	1			
v296	30	12	5	5 2	1	4		
√ ~ 297	31	12	< 5	2				
Ø 0 298	27	93		15	6		1 1	
p 0 299	6	5	< 5	< 2				
p 0 300	26	11	< 5	10		i		
20 × × 301	21	8	5	12	1	1		
50 VV 302	27	12	5	18	1	1		
202					1			
ø 9 × 303	50	17	< 5	2 8 < 2				
d 0304	37	14	25	8				
00305	36	9	< 5	< 2				
<i>⊅</i> ∘306	36	20	< 5	10				
J 0307	10	2	< 5	10 5			1 1	
<i>₱</i> ₀308	30	7	< 5	1				
	23	10	20	3 55 2				
0 310 AL -355	22	13	< 5	3			4	
2 0 311	The state of the s		< 5	10	1			
90 312	54	16						
312	58 15	15	< 5	7				_

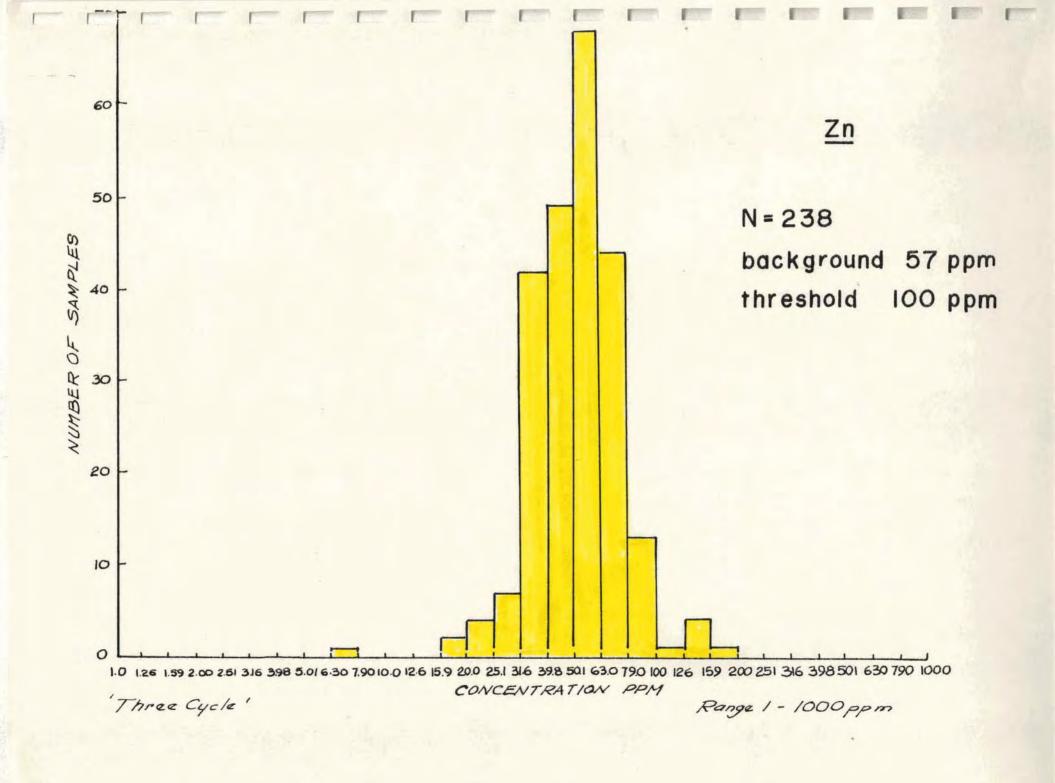
Geochemical Lab Report

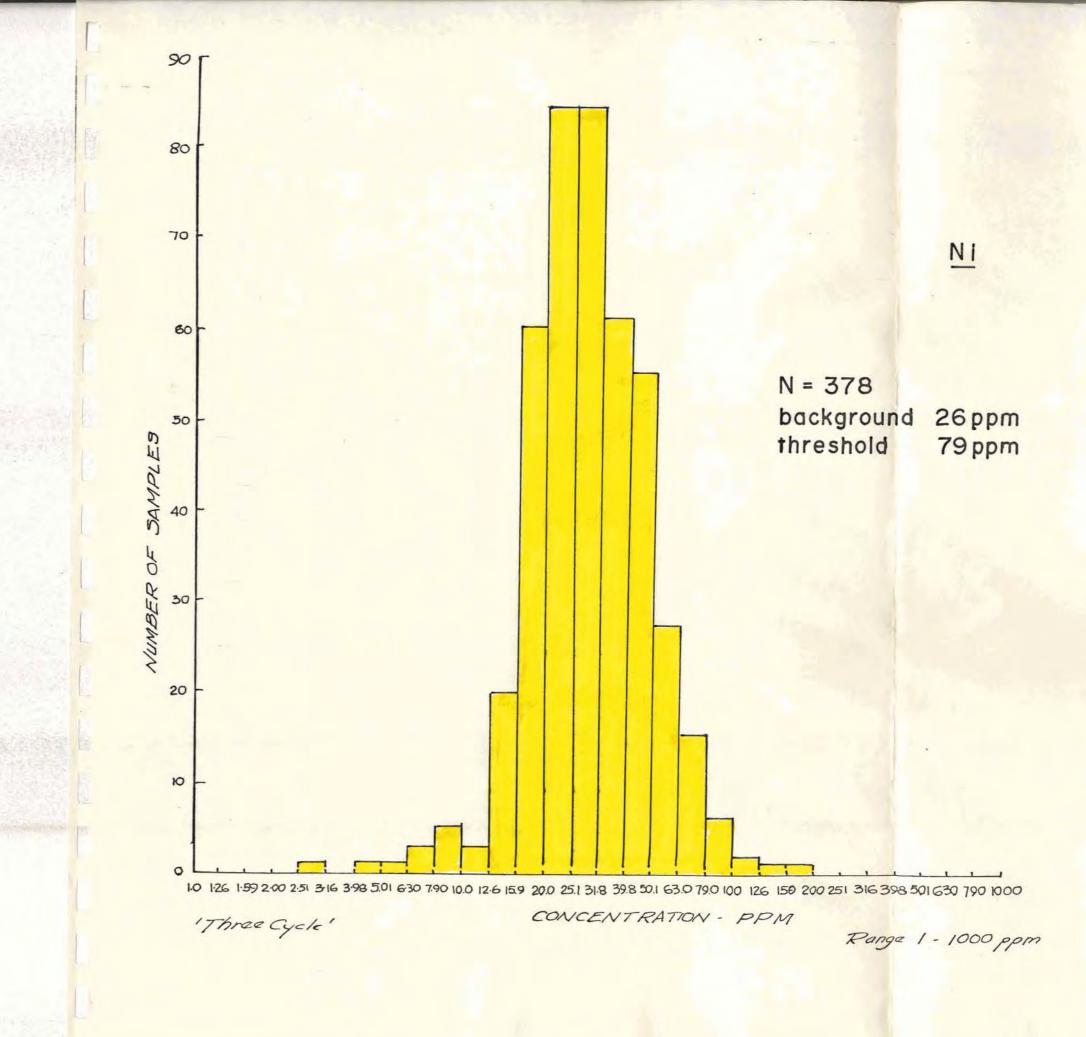
REPORT NUMBER: 21 - 410

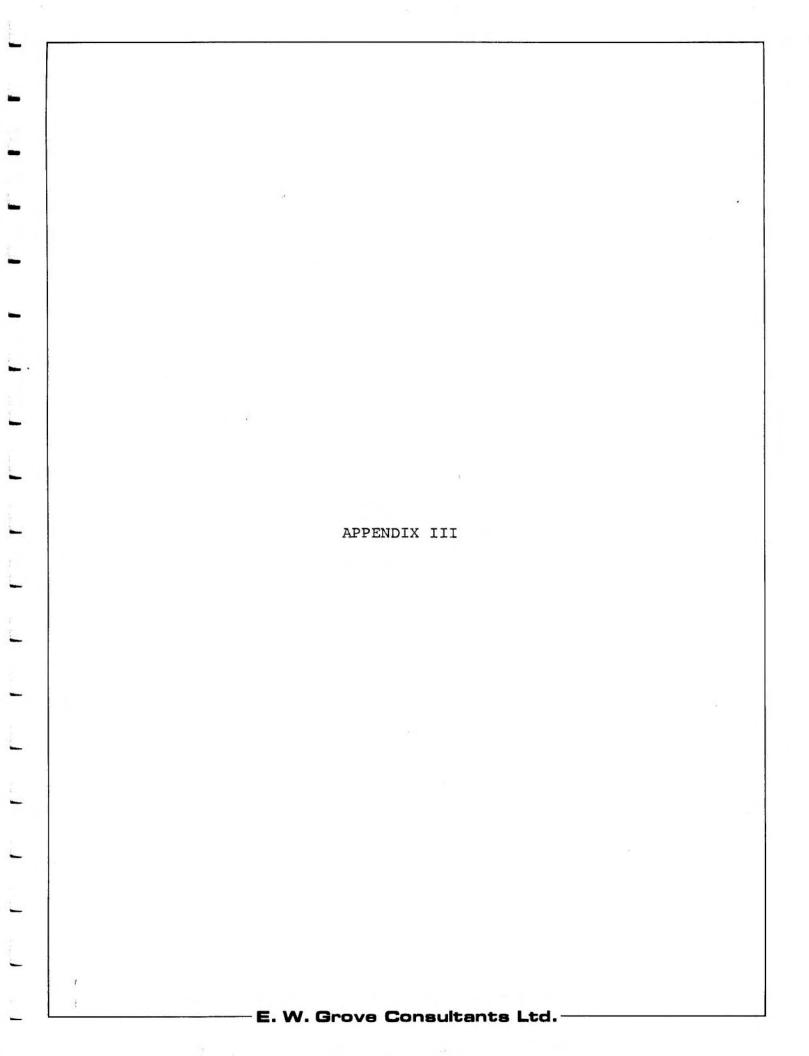

SAMPLE NUMBERS	ppm	ppm	PPb	ppm pm		
BE 30 313 50314 50315 70316 50317	41 19 31 21 29	13 6 9 9	< 5 < 5 < 5 < 5 < 5	7 3 8 4 4		
# 318 # 319 # 0 320 # 0 321 # 0 322	51 38 37 52 44	12 12 16 ,23 23	< 5 < 5 < 5 < 5 < 5	3 3 2 2 2		
Ø 0 323 Ø 0 324 Ø 0 325 ✔ 326 Ø 327	19 54 32 69 26	9 50 12 33 7	< 5 < 5 < 5 < 5 < 5 < 5	< 2 2 < 2 28 < 2		
50 328 50 329 01-356 60 0330 60 0331 60 0332	34 23 36 18 18	9 13 9 5 5	< 5 < 5 < 5 < 5 < 5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2		
グ > 333	24 22 24 29 3	7 7 8 9	< 5 < 5 < 5 < 5 < 5	< 2 2 2 2 2		
Ø 0 338 Ø 0 339 Ø 0 340 Ø 0 341 ೨ 0 ∨ √342	16 19 36 24 22	4 6 10 7 7	< 5 < 5 < 5 < 5 < 5	2 2 5 2 7		
50 v ×343 ×0 v ×344 50 v ×345 ×0 v ×346 ×0 v ×347	16 40 40 44 52	10 11 10 14	5 < 5 < 5 < 5 < 5	15 7 15 5 12		
5 0 √ 348 3 0 √ 349 3 0 √ 350 6 € 351 √ 352 239	54 16 41 19 19	15 8 12 5 4	< 5 < 5 30 < 5 < 5	15 10 24 7 7		•
353 260 354 294 355 310 0 356 329	47 33 29 40 29	18 14 9 11 9	5 < 5 < 5 5 45	220 5 26 < 2 7		


Geochemical Lab Report


REPORT NUMBER: 21 - 410


SAMPLE NUMBERS	Ni ppm	Co ppm	PPb	As ppm		
BE +V358 V359 V360 BEBG - 208 0 209 00 VA 00 V B 00 V C 10 V D 00 V E	28 25 27 29 48 11 18 8 31	10 9 40 8 9 3 7 2 7 5	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	18 15 10 7 < 2 2 3 2 10 14		
				,		
					i	
<i>V</i>						
	10)			


APPENDIX II - E. W. Grove Consultants Ltd. -



130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 • PHONE: 985-0681 • TELEX: 04-352667

Certificate of Assay

Beau Pre Explorati	ons Ltd.		A21 - 553
1640 Quadra Street	,		June 11, 1981
Victoria, B. C.	V8W 2L6		PROJECT: 67
	1640 Quadra Street	Beau Pre Explorations Ltd. 1640 Quadra Street Victoria, B. C. V8W 2L6	1640 Quadra Street

I hereby certify that the following are the results of assays made by us upon the herein described rock samples

MARKED	REKERNXP	ESSO ENT	MARKED	oz/ton	OZ/TON	MARKED	OZ/TOT PERCENT	NERSENX
	Au	Ag		Au	Ag		Au	Ag
67 / 1	0.002	-	67 / 16	0.002	-	67 / 35	0.002	-
2	0.10	0.04	/ 17	0.021	- 1	36	0.84	-
2A	0.010	-	18	0.002	4	37	0.005	
3	0.030		19	0.011	_	38	0.005	-
3A	0.028	- 1	20	0.12	-	39	<0.002	
4	0.027	i	21	<0.002	-	40	<0.002	-
5	0.024	0.02	22	<0.002	-	41	0.21	-
5A	0.002	-	23	<0.002	-	42	0.002	-
6	0.090		24	<0.002	_	43	<0.002	-
7	0.042	- 1	25	<0.002	-	44	<0.002	-
8	0.016	12	26	<0.002	-	45	0.007	_
9	0.002	-	27	<0.002	4			
10	<0.002	5- <u>5</u>	28	<0.002	- 3			
11	0.002	-	29	<0.002	-	1.	46	
12	<0.002	-	30	<0.002	-			
12A	0.006	-	31	<0.002	-			
13	0.004	-	32	<0.002	-	(1)		
14 15	<0.002	-	33	<0.002	-		0.00	
15	0.006	-	34	0.002	-			

NOTE:

Rejects retained two weeks Pulps retained three months unless otherwise arranged. Literate Account Province of British Columbia

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. V7P 2R5 • PHONE: 985-0681 • TELEX: 04-352667

Certificate of Assay

то —	Beau Pre Explorations Ltd.	A21 - 1399
-	1027 Pandora Street	October 4, 1981
	VICTORIA, B.C. V8V 3P6	PROJECT: NONE GIVEN

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

MARKED	PPROPERTY Au oz/ton	Ag oz/ton	MARKED	PERCENT	PERCENT	MARKED	PERCENT	PERCENT
53176 53177 53178 53179 53180 53181 53182 53183	0.53 0.008 1.44 1.10 0.088 0.009 0.004	0.09 0.05 0.12 0.05 0.02 0.08 0.04 0.04	67/36 67/36 67/2 67/2 67/46 67/47 67/48 67/49					

NOTE:

Rejects retained two weeks Pulps retained three months unless otherwise arranged. Registered Assayer, Province of British Columbia

To:	Beau	Pre	Explorations

V8V 3P6

1			
1		1	
		1	

BONDAR-CLEGG & COMPANY LTD.

REPORT	NO A21	162	0
DATE:	October	27,	1981

PAGE No. 1027 Pandora Avenue Victoria, B. C.

CERTIFICATE OF ASSAY

Samples submitted: October 8, 1981 Results completed: October 27, 1981

I hereby certify that the following are the results of assays made by us upon the herein described rock samples.

MARKED	GC	DLD	SIL	VER								
	Ounces per Ton	Grams per Metric Ton	Ounces per Ton	Grams per Metric Ton	Percent	Percent	Percent	Percent	Percent	Percent	Percent	
57/50 53185 -50 57/51 53186 - 51 67/52 53187 - 52 67/53 53188 - 53 53189 2NIEBERT	L0.002 L0.002 0.002 0.002 L0.002		0.04 L0.02 L0.02 0.02 L0.02									
L denotes 'less than'												

NOTE:

Rejects retained three weeks Pulps retained three months unless otherwise arranged.

Province of British Columbia

To:	Beau	Pre	Explo	rations	Ltd

DATE:

PAGE No.

November 16, 1981

1027 Pandora Victoria, B.C.

V8V 3P6

CERTIFICATE OF ASSAY

Samples submitted: October 27, 1981 Results completed: November 16, 1981

REPORT NO.

PROJECT: NOT LISTED

I hereby certify that the following are the results of assays made by us upon the herein described...... rock

	MARKED	GC	OLD	SIL	VER								
		Ounces per Ton	Grams per Metric Ton	Ounces per Ton	Grams per Metric Ton	Percent	Percent	Percent	Percent	Percent	Percent	Percent	
	53190 54 - 54 92	0.002		<0.02							140		
7/54	53191 54 - 54 QZQ3A	0.002	4-	<0.02									
	53102 1 - LAW KO	0 002		0.02									
(11)	53193 <i>(55)</i> 67/55 53194 56 67/56	0.017		0.02									
#2	53194 56 67/56	0.002	1 9	<0.02									
	53195 FZ	0.002		<0.02									
							_						
	*										ĺ		
				1 1			İ			. 7			

NOTE:

Rejects retained three weeks Pulps retained three months unless otherwise arranged.

1500 PEMBERTON AVENUE, NORTH VANCOUVER, B.C. PHONE: 988-5315 TELEX: 04-54554

CERTIFICATE OF ASSAY

Beau Pre Exploration Ltd. TO

A21 - 448

1640 Quadra Street

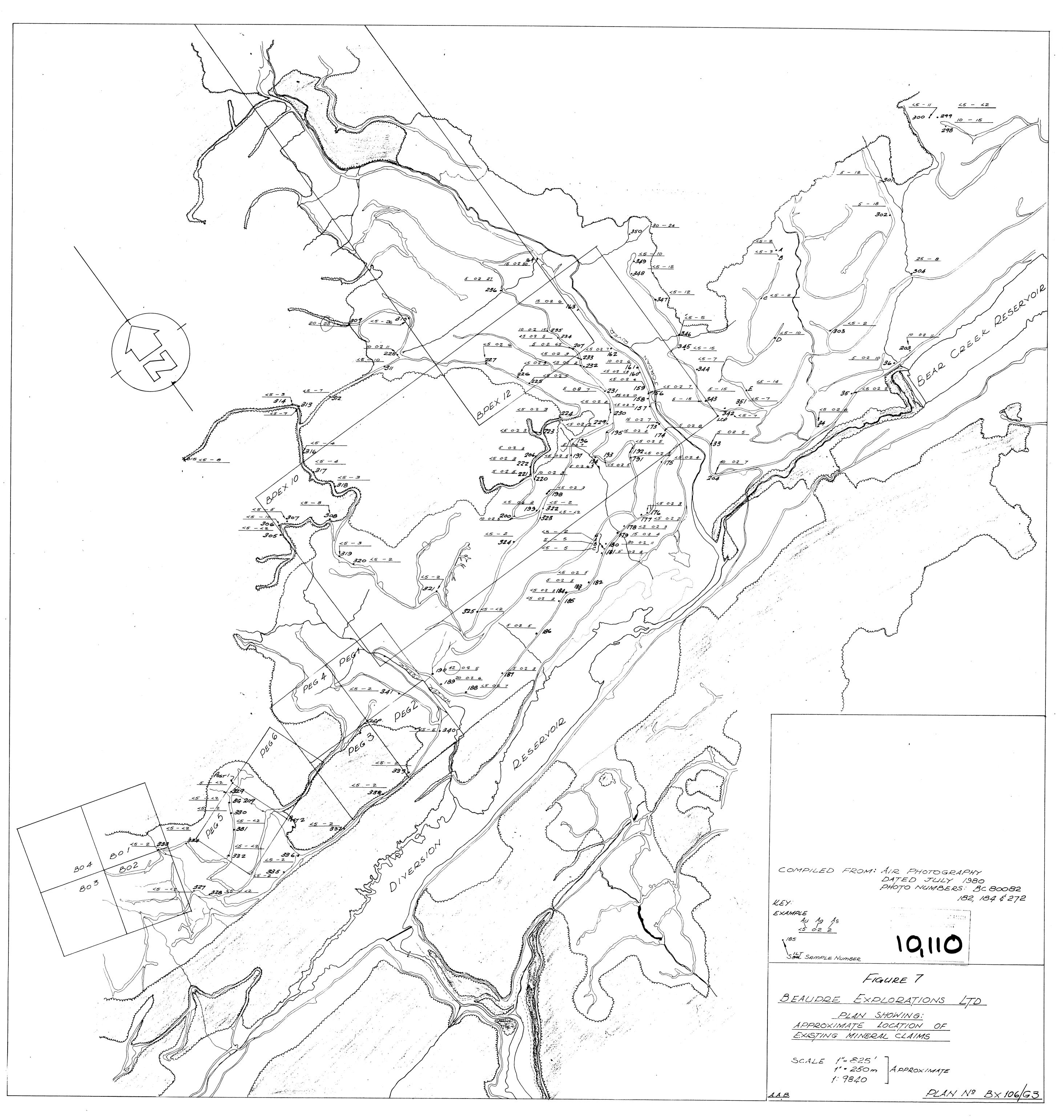
May 20, 1981

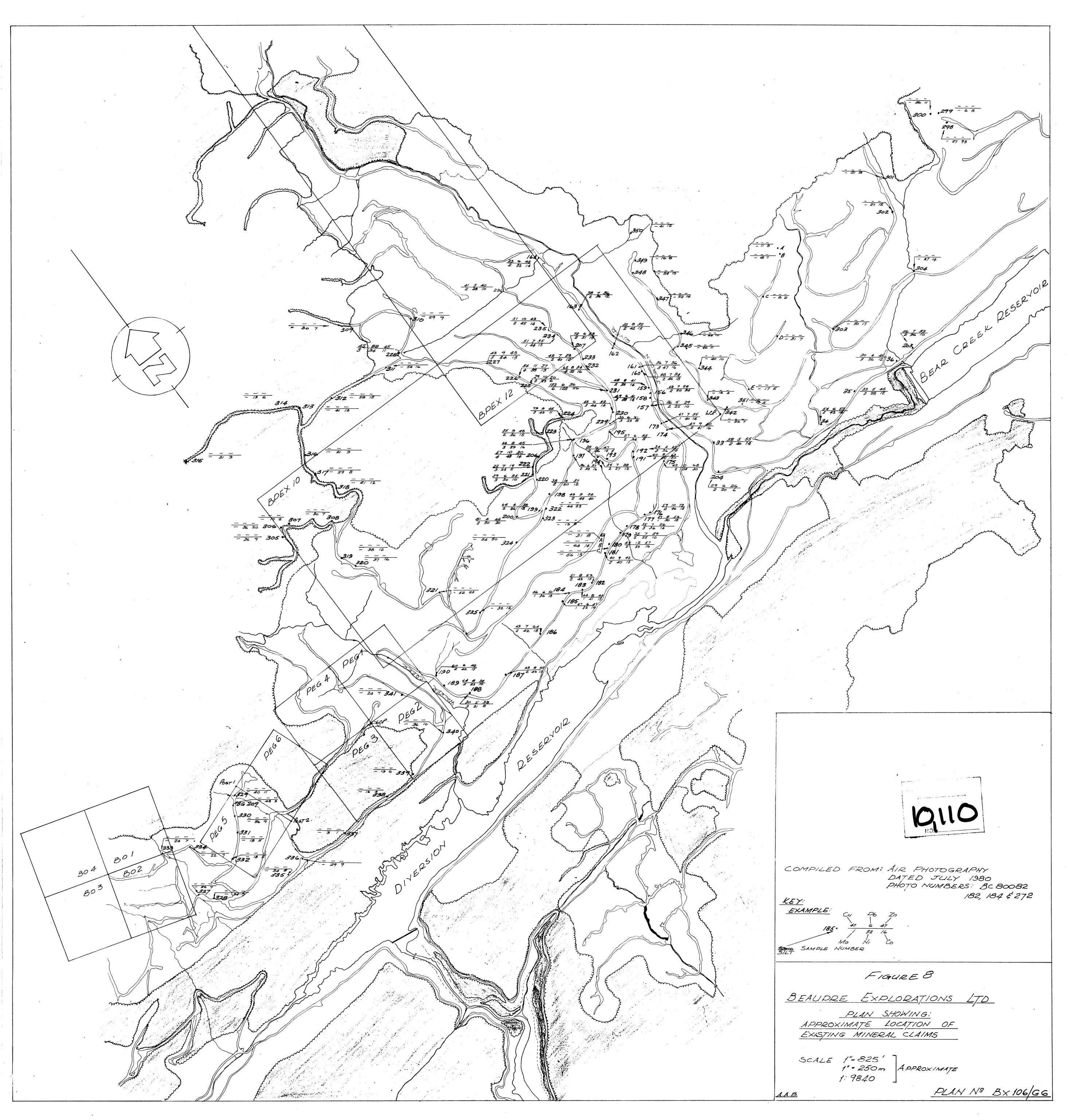
Victoria, B. C. V8W 2L6

PROJECT: VJH

I hereby certify that the following are the results of assays made by us upon the herein described

chip


samples.


MARKED	Au o 276 0fi	MARKED	Au DE TON	MARKED	Au Renent oz/ton	
48479 UJH 1N	<0.002	51551 UJH 25W	<0.002			
7.4 XN 15 484805	0.003	51552 " 25W	<0.002			
48481 USH 2N	<0.002	51553	<0.002		W 1	
48482'	<0.002	51554	<0.002			
48483 UJH 3N	<0.002	51555	<0.002			
48484	<0.002	51556	<0.002			
48485 (NJH 4N	<0.002	51557 YJH 15	<0.002			
48486	<0.002	51558	<0.002			
48487	<0.002	51559	<0.002		1	
48488 JUSH 2W	<0.002	51560	<0.002			
48489)	<0.002	51561	<0.002			
48490	<0.002	51562	<0.002			
48491)	<0.002	51563	<0.002			
48492	<0.002	51564	<0.002			
48493 WH 1W	<0.002	51565	<0.002			
13/11 6 48494 \	0.003	BLA20 51566	0.004		1	
48495	<0.002	MEN'S			İ	
48496	<0.002					
48497	<0.002					
48498 LYJH 15W	<0.002					
48499	<0.002				4	
48500 V JH 25W						

Rejects retained two weeks Pulps retained three months unless otherwise arranged.

