GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILL ASSESSMENT REPORT

Barham, Peak, Volcanic, Key and CM Claims and
Barham and Peak Fractions

ATLIN MINING DISTRICT
104N 14W

Longitude $133^{\circ} 25^{\prime}$
Latitude $59^{\circ} 44^{\prime}$

Owned and Operated By:
PLACER DEVELOPMENT LIMITED
R.H. Pinsent

January, 1982

TABLE OF CONTENTS

Page
1.0 Summary 1
2.0 Introduction 2
2.1 Location and Access 2
2.2 Property History and Ownership 3
3.0 Work Performed 4
3.1 Geology 5
3.2 Soil Geochemistry 6
3.3 Geophysics 11
3.3.1 Magnetic Results 11
3.3.2 VLF Results 12
3.4 Diamond Drill Programe 12
4.0 Conclusions 13
5.0 Statement of Expenditures 15
6.0 Statement of Qualifications 17
Appendices
Appendix I Claim Map and Geology Map; Figs: 3, 5
Appendix II B. - Horizon Soil Analysis
Appendix III Soil Geochemistry Maps
Appendix IV Geophysical Maps; Figs: 16, 17
Appendix V Diamond Dril1 Logs; 81-1, 81-2
List of Tables and Illustrations

Table 1
Table 2
Table 3
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Standard Extraction and Analytical Methods
Summary of Analytical Results
Diamond Drill Core Assay Results
Claim Location Map, Province of British Columbia
Claim Location Map, 104N/11W, 14W
Mineral Claim Survey Map
Geological Map, Atlin Area (Aitken, 1959)
Geological Map, Claim Area
Soil Geochemistry Map, Mo
Soil Geochemistry Map, F
Soil Geochemistry Map, Cu
Soil Geochemistry Map, Pb
Soil Geochemistry Map, Ag
Soil Geochemistry Map, W
Soil Geochemistry Map, Ni
Soil Geochemistry Map, Co .
Soil Geochemistry Map, Zn
Soil Geochemistry Map, Mn
Ground Magnetics
VLF-EM Profiles

1.0 Summary

Placer Development Limited personne1 constructed 23.8 km of compass and chain grid and conducted geological, geochemical and geophysical exploration programmes over the Barham, Peak, Volcanic, Key and C.M. Claims in the Volcanic and Barham Creek drainages, 25 km northeast of Atlin, between 8th and 26th August, 1981. Two N and $B Q$, wireline, diamond drill holes with a combined length of 338 m were subsequently drilled on the Volcanic Creek property between 12th and 22nd September.

The main, Volcanic Creek, grid was constructed over a known molybdenite occurrence in the floor of a cirque. It was constructed with an east-west orientation and a line spacing of 100 m . The cirque floor, which has a pronounced northerly slope, downstream toward the Fourth of July Creek drainage, is cut by a series of minor, subsidiary, cirques below the level of the main valley wall. Mineralization occurs on fractures and in veins cutting gossanous diorite exposed in the cliffs which form the lower, subsidiary, cirques. The sloping grid extends above and below a mineralized cliff.

A total of 367 " B " horizon soil samples, collected on the Volcanic Creek grid at 50 m intervals were analysed for $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{W}, \mathrm{F}$, Au and Ag . The data show significant coherent anomalies for Mo and F. These anomalies are best developed along the east edge of the soil grid, over hornfelsed sediments and metavolcanics adjacent to the intrusion contact, and in a broad east-west band below the mineralized outcrop in the lower cirque. A total of 94 "B" horizon samples collected on the Key and C.M. claims in the Barham Creek drainage gave no coherent anomalies.

Geophysical data were collected at a 10 m spacing interval over both of the grids. A radem VLF survey defined the northerly trending intrusion contact and additional structures within the diorite. A magnetometer survey also showed the intrusion contact between weakly magnetic metasediment and moderately magnetic diorite. In addition, it reflected the presence of mafic volcanics in the

Figure 2. CLAIM LOCATION MAP $104 \mathrm{~N} / \mathrm{II} \mathrm{W}, 14 \mathrm{~W}$

$$
\text { SCALE } \quad 1: 50,000
$$

metasediment and mafic dykes in the diorite. Highly erratic magnetic data over the gossanous diorite probably reflects the presence of pyrrhotite in the diorite below.

Two drill holes were located to test areas of known surface mineralization. Hole PDL 81-1 (170 m) was drilled to test the main showing, in a gully, at the east end of the lower cirque cliff section. Hole PDL $81-2$ (168 m) was drilled in the diorite at the foot of the gossanous cliff. Neither hole encountered appreciable molybdenite mineralization although both encountered a weak quartz stockwork with appreciable pyrite and pyrrhotite.

The results of the exploration programme show that the gossanous diorite contains widespread, weak, molybdenite mineralization. No economic mineralization has so far been encountered on the property.

2.0 Introduction

2.1 Location and Access

The Barham, Peak and Volcanic claims (Figure 1) and the Barham and Peak fractions are located in the $104 \mathrm{~N} / 14 \mathrm{~W}$ map sheet in the Atlin Mining District (Figure 2). The contiguous properties are located approximately 25 km northeast of Atlin at longitude $133^{\circ} 25^{\prime} \mathrm{N}$ and latitude $59^{\circ} 44^{\prime} \mathrm{W}$. The claims adjoin the Adanac Mining and Exploration Limited Key and C.M. claims. The Adanac Molybdenum deposit is located 4 km south of the Volcanic Creek showing.

Figure 3, which was prepared by Placer Development Limited by Underhi11 and Underhill Surveyors Limited, shows the location of the three principal claims at a scale of 1:10,000. It also shows the location of the Vol claim, owned by Cominco Limited. The boundary between the Barham and the Vol claim is inferred as it is governed by the location of an earlier and now superceded claim group, the "G.S.L. Claim Group", which had not been identified on the ground at the time of the survey. The boundary is taken up by the Barham Fraction. The Peak Fraction is located between the Peak and Volcanic Claims (Figure 3).

The claims cover a cirque at the head of the Volcanic Creek drainage into Fourth of July Creek and at the head of the Barham Creek drainage into Ruby Creek (Figure 4). The two drainages are separated by an east-west ridge at an elevation of approximately 5000^{\prime} (1524 m). Barham Creek is accessible by road from Atlin, by means of the Adanac property four-wheel drive road system. The Volcanic Creek drainage is not road accessible at the elevation of the claims. A poor quality access road extends a short way up the creek from the Fourth of July Creek road. For practical purposes the Volcanic Creek drainage was accessed by helicopter from Atlin.

2.2 Property History and Ownership

The Volcanic Creek molybdenum prospect was originally held jointly by Canyon City Explorations Ltd. (Luck 1-48, Goodlife 1-8, 15-30) and Northern Empire Mines Ltd. (Mo 1-16) as a result of concurrent staking in 1968 and 1969. Archer Cathro and Associates Ltd. conducted an initial soil geochemical and prospecting programme over both properties in 1969 (Assessment Reports 2346 and 2446). The results indicated the presence of scattered molybdenum mineralization in float and outcrop at the head of the Volcanic Creek cirque. In addition, it outlined a sizable molybdenum soil anomaly in the floor of the cirque. Both property interests were optioned to Newmont Mining Corp. of Canada in 1970. A detailed study of the best mineral showing, the "Canyon zone", is described in Assessment Report 2519. Newmont attempted to assess the grade of mineralization exposed in the gully wall and ultimately concluded that the property did not warrant further action. The claims were allowed to lapse.

The showing was restaked as the G.S.L. Claim Group by J.R. Lerner in July 1973. The claims were kept in good standing but no work appears to have been done on the property. The claims lapsed in July 1978, after the Vol claim had been staked.

The Barham Claim (20 units) was staked over the same ground by J. Wallis in January, 1979, on behalf of Placer Development Limited. He also staked the Peak (18 units) and Volcanic (9 units) claims on behalf of the Company in December 1980. The Peak and Barham Fractions were staked by company personnel in September 1981, following the claim survey by Underhill and Underhill Surveyors Limited (Figure 3).

Claim	No. of Units	Record No.	Anniversary
Barham	20	546	January 17th
Peak	18	1267	January 12th
Volcanic	9	1268	January 12th
Barham Fraction	1	1532	September 17th
Peak Fraction	1	1533	September 17th

3.0 Work Performed

Placer Development Limited personnel conducted a geological, geochemical and geophysical exploration programme over the claim group between 8th and 26th August and two diamond drill holes were drilled on the Barham Claim between 12th and 22nd September.

A compass and chain grid was constructed over the head waters of the Volcanic Creek drainage. The 19.1 km grid was constructed with an east-west orientation and a line spacing of 100 m . A similar but smaller (4.7 km) grid was also constructed in the Barham Creek drainage.

Both grids were sampled at 50 m intervals and " B " horizon soil samples were shipped to the Placer Development Limited Laboratory in Vancouver. The -80 mesh fraction was subsequently analysed for $\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Ag}$, Au, W and F .

The grids were also covered by magnetometer and radem VLF geophysical surveys.

Two BQ-NQ diamond drill holes, totalling 338 m in combined depth, were drilled by Caron Diamond Drilling of Whitehorse. The hole locations were tied into the grid. The core is toled at a small lake just north of

$$
D H 81-1
$$

3.1 Geology

Figure 4 is a detail from the geological map for the Atlin Area by Aitken (1959). . The figure shows that the property is underlain by two principal geological units: (a) Units 6-8 which are sediments and volcanics belonging to the Pennsylvanian to Permian Cache Creek Group and (b) Unit 12, granitic rocks belonging to the Jurassic, Fourth of July Batholith. Cretaceous quartz monzonites (Unit 13) host the Adanac molybdenum deposit to the south of the property. A tertiary to Quaternary, basaltic, volcanic cone (Unit 16) outcrops to the north of the Barham Claim, in the Volcanic Creek drainage.

The geology of the property and the principal elements of the topography are shown in Figure 5. The figures shows a contact between the Cache Creek Group and intrusive rocks of the Fourth of July Batholith. The contact, which appears to be igneous but tectonically reactivated, runs approximately north-south across the Barham and Volcanic Creek cirques. The Cache Creek country-rock consists of two main units: (a) mafic metavolcanic hornfels and (b) siliceous metasediment. Both contain bodies of chilled quartz-eye, aplite porphyry. The country-rock abuts a large body of weakly altered, medium to coarse grained and locally foliated and mineralized diorite. The Volcanic claim (Figure 5) is underlain by a relatively fresh coarse-grained quartz monzonite which forms the west wall of the Volcanic Creek Cirque. The contact between the quartz monzonite and the diorite is probably a fault which strikes NE-SW and dips steeply to the south.

There is considerable topographic relief in the Volcanic Creek Cirque. Survey point 496 which is located on the ridge between the Barham and Volcanic Creek Cirques, is 420 m above survey point 497, at the head of the Long Lake in the floor of the Volcanic Creek Cirque (Figure 5). The diorite (plagioclase 80%, hornblende 18%, and biotite 2%) in the back wall of the cirque is exposed at two levels, above and below the soil sample grid lines. The diorite exposed in the upper level back wall is largely unaltered. At a lower level it is more intensely fractured, more strongly altered, gossanous, and weakly mineralized. The diorite in the lower cliff shows variable alteration to biotite, chlorite and clay. The rock is cormonly weakly deformed and granulated.

The lower level diorite is cut by sporadic veins of quartz and carbonate which are locally mineralized with molybdenite and minor pyrite, pyrrhotite, chalcopyrite and more rarely, sphalerite. The molybdenite occurs as coarse blebs and crystals bordering and within quartz veins, and as fine-grained dusting in some of the quartz veins. The best exposure of mineralized outcrop occurs in an approximately north-south oriented snow filled gully ("Canyon Zone") located to the east of the lower cliff section ($600 \mathrm{~N}, 400 \mathrm{~W}$, Figure 5). Mineralized veins ($2-9 \mathrm{~mm}$) and fractures are commonly oriented 120°, dip $75^{\circ} \mathrm{W} ; 20^{\circ}-40^{\circ}$ $\operatorname{dip} 90^{\circ}$ and less commonly $0^{\circ} \operatorname{dip} 20^{\circ} \mathrm{W}$ and $90^{\circ} \operatorname{dip} 90^{\circ}$. The fracture and gossan intensity is greatest along a north east-southwest axis defined by a ridge which separates the high level part of the grid located on the Peak claim from the main part on the Barham Claim. Iron post 974 (Figure 5) is located above a highly fractured, gossanous diorite cliff.

3.2 Soil Geochemistry

A total of 367 soil samples collected over the Volcanic Creek Grid were analyzed for $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{W}, \mathrm{F}, \mathrm{Au}$ and Ag. The analytical methods employed and the limits of detection for each are given in Table I. The analytical data are given in Appendix II and computer contoured maps which illustrate trends in element concentrations are shown in Appendix III. The maps also show the location of survey points and the outlines of the Barham and Peak Claims.

TABLE I
STANDARD EXTRACTION AND ANALYTICAL METHODS

Element	Units	WT (grams)	Extraction Procedure Attack Used	Time	Analytical Method	Detection Range
Mo	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO}_{3}$	4 hrs .	Atomic Absorption (A.A.)	1-1000
Cu	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO}_{3}$	4 hrs .	Atomic Absorption	2-4000
Zn	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO} 3$	4 hrs .	Atomic Absorption	2-3000
Pb	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO}_{3}$	4 hrs .	A.A. Background Corrected	2-3000
Ni	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO}_{3}$	4 hrs .	Atomic Absorption	2-2000
Co	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO}_{3}$	4 hrs .	Atomic Absorption	2-2000
Mn	ppm	0.5	C $\mathrm{HClO}_{4} / \mathrm{HNO}_{3}$	4 hrs .	Atomic Absorption	2-3000
W	ppm	1.0	$\underset{\substack{\mathrm{CHCl} / \mathrm{HO}_{2} \mathrm{SO}_{4} \\ \mathrm{HE} / \mathrm{S}_{4}}}{ }$	4 hrs .	A.A. Solvent Extraction	5-500
F	ppm	0.25	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO} / \mathrm{KNO}_{3} \\ & \text { Fusion } \end{aligned}$	30 min .	Specific Ion Electrode	40-4000
Ag	ppm	0.5	C HNO_{3}	2 hrs .	A.A. Solvent Extraction	0.02-4.00
Au	ppm	3.0	C $\mathrm{HBr} / \mathrm{Br}$	12 hrs .	A.S. Solvent Extraction	0.02-4.00

- 8 -

TABLE 2
SUMMARY OF ANALYTICAL RESULTS

	Maximum (ppm)	Minimum (ppm)	Mean (ppm)	Standard Deviation
Mo	300	0.5	26.8	33.7
Cu	1050	26	221.9	196.6
Zn	500	24	109.7	64.8
Pb	380	5	30.9	33.7
Ni	161	12	37.8	16.2
Co	104	9	28.2	11.6
Ag	4.1	0.1	0.47	0.43
Au	0.66	0.01	0.014	0.038
W	224	2.5	20.0	22.6
F	4000	70	513	332
Mn	1440	2	335	156

Table 2 lists the maximum, minimum, mean and standard deviation of each element population. The soil cover over the grid is thought to be thin and locally derived.

The geochemical data show coherent and essentially coincident soil anomalies for Mo and F and either background or scattered, incoherent, anomalies for all the other elements.

Figures 6 and 7 in Appendix III show that Mo and F anomalies extend in a broad zone over the east half of the grid, particularly over the metasedimentary country-rock east of the diorite contact, and below the gossanous cliff. The absence of anomalies above the cliff is noticeable. Figure 8 shows that Cu is erratic in distribution and that there are no coherent anomalies. Figures 9 and 10 show that scattered high Pb and Ag values are found in the talus below both the upper and lower cirque walls. Similarly, scattered W highs occur below the low cirque wall (Figure 11). The plots for Ni and Co (Figures 12 and 13) show slight enrichment over the metasedimentary and metavolcanic country-rock east of the diorite contact. Figures 14 and 15 show essentially background levels of Zn and Mn with occasional, scattered, high values. The values for Au were below the level of detection and they were not plotted.

A total of 94 samples were collected over a small grid in the Barham Creek drainage (Figure 5). The samples were analyzed for the same elements and the results are listed in Appendix II. The analytical data compares well with that of the Volcanic Creek drainage and background levels appear to be the same. There are no sizeable anomalies but there are weak Mo, $\mathrm{F}, \mathrm{Ag}, \mathrm{Mn}$ and Zn anomalies associated with two geophysical structures crossing the grid.

TABLE 3

DIAMOND DRILL CORE ASSAY RESULTS

Samp 1e Number	Hole	Footage	\% MoSp
66751	81-2	370-380'	0.02
66752	81-2	440-450'	0.03
66759	81-1	110-175'	0.08
66760	81-1	115-120'	0.07
66767	81-1	120-125 ${ }^{\prime}$	0.15
66762	81-1	125-130 ${ }^{1}$	0.02
66763	81-1	130-135	0.10
66764	81-1	135-740'	0.06
66765	81-1	140-145 ${ }^{\text {1 }}$	0.01
66766	81-1	145-150 ${ }^{1}$	0.02
66767	81-1	170-175'	0.48
66768	81-1	175-180'	0.04
66769	81-1	180-185'	0.01
66770	81-1	185-190'	0.02
66771	81-1	300-305 ${ }^{1}$	0.02
66772	81-1	305-310 ${ }^{1}$	0.05
66773	81-1	310-375'	0.12
66774	81-1	375-320'	0.01
66775	81-1	$390-400{ }^{\prime}$	0.11

3.3
 Ground Geophysics

A total of 25.1 km of flagged line were surveyed with a proton precision magnetometer (Scintrex MP-2) and a VLF-EM receiver (Crome Radem). The survey was run on lines 100 m apart using a 10 m intersection spacing to allow for data enhancement techniques to be applied during interpretation.

Stacked profiles of the magnetics were generated at a scale of 1:50,000, and smoothed data are shown as dotted lines in Figure 16. The smoothing was accomplished with a 7 point Gaussian filter in order to minimize phase errors. Anomalies caused by sources further than 20 m from sensor do not suffer materially from this level of filtering.

VLF tilt angle data were plotted using a $1 \mathrm{~cm}=10^{\circ}$ vertical scale on a 1:5000 base map. The data were "Fraser" filtered and dotted lines are used to represent the filtered information in Figure 17. Shaded areas in the figure indicate positive results. The data were also calculated using a second, wider, "Fraser" filter, but the results are not included as they duplicate the results given in the first study.

A preliminary analysis has indicated that it is not possible to make a direct correlation between the molybdenite mineralization observed and the geophysical response. There is, however, a very strong magnetic response, due to pyrrhotite to the SW of the area drilled.

3.3.1 Magnetic Results

The magnetics show a weak but consistent series of peaks to the east of the baseline. These anomalies are immediately west of a magnetic low which probably signifies the presence of Cache Creek Group sedimentary rock. The sediment, which is about 200 m wide in the south, wedges out at the north end
of the area surveyed. Weakiy magnetic rocks east of the sediment wedge are correlatable from line to line. There appears to be a weak contact response to the east of the sediment. The same weak structure was picked up on the Barham Creek grid where a marked magnetic low is flanked by very weakly magnetic rocks. Flat magnetic results west of the baseline reflect the consistent nature of the diorite over much of the Volcanic Creek grid. Several diabase dikes were encountered while performing the survey. They appear to have very little or no magnetic expression. The reason for the anomaly on line 0 was not resolved.

3.3.2 VLF Results

VLF and magnetic data show very little direct correlation except over the intrusive-sedimentary contact, which is a regional fault with a steep dip to the east. The arcuate nature of the geophysical response reflects the intersection of the structure with the topography from line 12 S to 10 N . The presence of this contact is marked by strong "Fraser" filter anomalies. A weaker structure is suggested about 400 meters east but dies out towards line 3 N . Two weak $\mathrm{N} 20^{\circ} \mathrm{E}$ trending structures are evident between the base line and 7 W on Line 8 N . These two structures lie close fo the mineralization found in the main gully exposure.

3.4 Diamond Drili Programme

Two diamond drill holes totalling 1,107 (337 m) were drilled to test known molybdenite mineralization (a) underlying the "Canyon Zone" and (b) below the lower cirque wall of gossanous diorite.

Hole PDL 81-1 was collared at grid 700 N and 320 W . The hole was drilled on a bearing due west and at a dip angle of 50°. The hole penetrated 5571 (170 m) of weakly altered, foliated, diorite. The hole was drilled with an NQ bit to a depth of 98 m and with a BQ bit thereafter.

Hole PDL $81-2$ was collared at grid 800 N and 838 W . The hole was drilled on a bearing due east and at a dip angle of 50°. The hole penetrated 550^{\prime} (168 M) of similar diorite. The first 12.8 M of core was $N Q$ diameter. There after the hole was reduced to BQ.

Detailed drill logs prepared by E.T. Kimura are located in Appendix IV. Both holes show evidence of a weak quartz and quartz-carbonate vein stockwork. The veins and fractures generally appear to contain only minor amounts of molybdenite with pyrrhotite and pyrite. Trace amounts of chalcopyrite and sphalerite were also observed in some veins.

Selected sections of mineralized drill core were shipped to Vancouver where they were analyzed for Mo. Table 3 lists sampile numbers, footages and MoS_{2} contents in percent.

4.0 Conclusions

The geological, geochemical, geophysical and diamond drill progranme carried out in the Volcanic Creek drainage, due north of the Adanac Molybdenum Deposit, confirmed the presence of molybdenite mineralization in a weak quartz sealed stockwork in dioritic rocks belonging to the Fourth of July Batholith. The diorite which is exposed in the walls of low level cirque in the floor of the main drainage, is fractured and gossanous. The gossan appears to be derived from weak fracture controlled pyrrhotite mineralization. Two drill holes under the gossan stained cliff confirmed the existance of the weak stockwork but failed to show significant amounts of molybdenite mineralization.

Soil samples collected on a grid above and below the gossan stained cliff show geochemical anomalies for Mo and F. The anomalies extent in a broad zone west to east below the cliff and north to south over the contact between the diorite and the countryrock Cache Creek Group sediment. Geophysical data
suggests that the contact is tectonic. The fault has been traced in a northsouth direction into the Barham Creek drainage. Several minor structures have been identified by geophysics in the diorite intrusion but they were not identified on the ground. These are commonly oriented $\mathrm{N} 20^{\circ} \mathrm{E}$.

The Volcanic Creek drainage is underlain by weakly altered and mineralized diorite, which is clearly part of a large hydrothermal system. No economic mineralization has so far been encountered on the property.

PLACER DEVELOPMENT LIMITED

5.0 Statement of Expenditures
 COST STATEMENT
 Volcanic Creek Property 1981

Staff Salaries

E. Kimura (Senior Geologist), period Sept. 1lth - 24th \& Oct 13-14 \& 16th. Total days $=17$ @ $\$ 305.00 /$ day
$=\$ 5,185.00$
R. Pinsent (Project Geologist), period Aug. 6-22nd, 24-25th Total days $=17$ @ \$245/day $=\$ 4,655.00$
M. Allen (Field Assistant), period Aug. 6-22nd, 24-25th Total days = 19 @ \$95.00/day
$=\$ 1,805.00$
B. Mulvaney (Field Assistand), period Aug. 6-23ra Total days $=18$ @ $\$ 95.00 /$ day $=\$ 1,710.00$
B. Ott (Technician), Period Aug. 24-28, Sept. 1, 4-5th, 11-14, 17 \& 19th; Total days $=14 @ \$ 185.00 /$ day $=\$ 2,590.00$
J. Thornton (Geophysicist) period Aug. 24 ~ 28th, Sept. 1,4 -5th Total days $=8$ @ $\$ 190.00 /$ day $=\$ 1,520.00$
K. Kanashiro (Cook) period Sept. 11 - 24th Total days $=14$ @ $\$ 170.00 /$ day $=\$ 2,380.00$
\$19,845.00
Camp Operation
Camp Construction as per McCory invoice \#4017 \$10,434.36
1,667.11
784.00
$\$ 12,885.47$
Analysis
Drill hold Sample Cost: 19 Samples Analyzed for (MOS, assay @ $\$ 7.00$, Geochem $\mathrm{Pb}, \mathrm{Zn} \& \mathrm{Cu} @ 0.75 \mathrm{ea} . \mathrm{Ag} @ 2.50$, W @ 4.00 F @ 3.75 and sample preparation @ $\$ 2.85=\$ 22.35 /$ sample) Total is $19 \times \$ 22.35=\$ 424.65$

Soil Samples: 367 Samples Geochem for ($\mathrm{MO}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Ni}, \mathrm{CO}, \& \mathrm{Mn} @ \$ 0.75 \mathrm{ea}$.
Ag @ @.50, Au @ 4.00, W @ 4.00, F @ $3.75 \&$ Sample preparation @ $\$ 1.40$
$=\$ 20.90 /$ sample) Total is $367 \times \$ 20.90 \quad \$ 7,670.30$

Drilling
Caron Diamond Drilling Invoice \#1073
covering DDH 81 -1 557^{\prime} \& DDH 81-2 550' $=\$ 39,998.71$
Core Boxes: Whalley \& Son invoice \#4050 = \$292.20
$\$ 40,290.91$
Helicopter
Keystone Helicopter (Hughes 500) Billing for August \& Sept. for the Volcanic Creek project $\$ 4,811.00$
Company Helicopter (A Star GH-VHMS) Billing for September for Volcanic Creek project $\$ 16,858.00$
$\$ 21,669.00$
Claim Survey
Underhill \& Underhill Invoice \#4622
$\$ 5,762.59$
Vehicle Expense
Tilden Invoice \#73228
$\$ 552.59$

TOTAL
$\$ 109,100.83$

6.0
 Statement of Qualifications

I, Robert H. Pinsent of 108-2080 Maple Street, Vancouver, British Columbia (V6J 4P9), do hereby certify that:

1. I am a geologist employed by Placer Development Ltd., of 1200-1055 Dunsmuir Street, Vancouver, B.C. (V7X 1P1)
2. I am a geology graduate of the following Universities:

Aberdeen University, B. Sc., Hon., (1968)
University of Alberta, M. Sc. (1971)
Durham University, PhD. (1975)
3. I have been engaged in the practice of geology since graduation in 1968.
4. I have supervised and carried out the fieldwork, and interpreted the data from the exploration programme on the Barham, Peak, Volcanic, Key and CM Claims (Latitude $59^{\circ} 44^{\prime}$, Longitude 133° 25^{\prime}) in the Atlin Mining District.

Respectfully submitted,

R.H. Pinsent

RHP/cs

1. Volcanic Creek Grid
2. Barham Creek Grid

1		10	CU	214	D6	NI	Co	MN	A G	AU	W	F	11.88
2	UDE	77	161	103	22	35	21	200	0.4	<0.02	14	460	vC 500n
3	50 E	15	152	70	14	37	19	340	<0.2	<0.02	14	480	
4	$10^{\text {ne }}$	22	63	44	14	26	14	133	<0.2	<0.02	－17	NSS	
5	15ne	12	26	43	10	22	1 U	$13 n$	＜0．	＜u． 02	11	NSS	
0	209t	52	93	88	27	37	20	230	<0.2	<0.02	15	460	
7	250E	30	83	94	15	43	21	192	＜0．2	＜0．02	13	580	
8	$30 \cap \mathrm{E}$	51	18%	130	40	43	24	290	0.2	<0.02	31	369	
9	350 E	63	307	230	40	70	70	230	0.5	<0.02	22	380	
10	400 E	50	79	76	15	36	21	270	0.2	<0.02	17	580	
11	$40 \cap \mathrm{E}$	50	80	75	13	29	19	370	0.2	<0.02	16	767	
12	Ung	18	66	73	17	30	17	200	0.2	<0.02	46	600	VC1000N
13	5ne	27	104	57	11	24	18	15°	0.4	<0.02	46	520	
14	10ne	31	177	14\％	34	52	75	340	ก． 5	<0.02	25		
15	200 E	22	255	104	56	44	28	284	0.9	<0.02	16	NSS	
16	UOE	18	0	$\cdots 2$	20	33	17	163	0.4	<0.02	10	520	VC 900N
17	$5 n^{\text {E }}$	14	83	\bigcirc	35	35	18	172	0.4	<0.02	14	387	
1\％	100E	24	77	06	20	33	21	210	$0 . ?$	＜0．02	20	400	
79	150 E	43	143	122	23	50	26	240	0.4	<0.02	49	\％ 30	
20	20ne	22	234	106	52	47	31	480	0.8	<0.02	15	700	
21	9\％\％	5	401	112	16	23	44	790	0．3	<0.02	NSS	NSS	vc 100 s
22	900 w	3	19：	96	14	23	30	330	0.5	＜0．02	18	42%	
23	8504	2	154	76	24	$? 1$	21	217	0.4	<0.02	16	240	
24	950N	3	216	100	29	20	29	320	0.0	<0.02	14	300	
25	70 Ch	5	690	2ち3	＋2	34	61	250	1.6	＜0．02	12	260	
26	64 CW	3	102	14%	\％ 9	20	24	$\cdots 20$	0.6	＜0．02	14	267	
27	600 m	5	600	215	45	30	69	580	0.8	<0.02	17	320	
28	12500	4	510	146	24	2	$\underline{7}$	530	1.0	＜0．02	18	340	VC $200 N$
29	1400 m	3	386	127	26	26	40	510	1．0	0.03	20	400	
30	1400W＊	$?$	350	124	25	27	39	480	1．0	0.02	18	360	
31	1450 w	$?$	212	101	16	19	28	330	0.3	＜0．02	11	340	
32	150 m	1	98	： 5	17	22	21	330	0.5	＜0．02	7	300	
73	1550 m	1	83	119	25	22	25	397	R． 2	<0.02	5	320	
34	1600w	2	73	105	22	22	23	370	？．？	<0.02	6	300	
35	1650 m	1	98	106	16	\bigcirc	20	460	0.4	<0.02	5	z00	
\％ 0	17 Un\％	1	67	98	12	23	22	マ30	＜0．2	<0.02	5	300	
？ 7	$175 \mathrm{n}_{4}$	1	93	114	14	21	22	290	n． 7	<0.02	7	280	
3 c	$1{ }^{\text {cun }}$	$\bigcirc 1$	64	27	14	20	19	310	0.7	<0.02	5	320	
39	1850w	1	29	40	11	12	12	330	0.3	<0.02	NSS	NSS	
40	10 Und	1	45	69	14	15	20	390	<0.2	<0.02	＜ 5	220	
41	50\％	46	271	131	40	35	32	340	0.4	＜0．U2	？ 3	280	vc 300n
4.	100w	18	22°	37	10	36	25	300	0.3	<0.02	20	220	
43	15 OH	$\bigcirc 0$	238	118	33	30	37	365	ก．7	＜0．0）	27	220	
44	$\geq 0^{n}$	21	256	116	2%	42	41	490	ก． 4	<0.02	43	200	
45	35 Fm	13	$15 ?$	70	14.	44	37	± 30	0.3	<0.02	40	220	
46	－60\％	11	80	70	13	26	75	240	ก．4	<0.02	28	200	
47	350	6	104	77	12	27	2 1	330	＜0．2	<0.02	24	2 Co	
45	40 O	14	215	10\％	15	45	3）	400	0.2	<0.02	20	720	
45	$45^{7} \mathrm{H}$	＊	147	10 t	22	38	35	330	0.7	<0.02	13	780	
50	$500{ }^{\circ}$	57	109	84	マ 7	10	26	450	<0.2	<0.02	15	260	
51	550%	5	48	58	12	20	15	240	<0.2	<0.02	13	200	
52	Lun_{6}	5	47	52	7	22	16	18°	＜0．2	＜0．0？	14	176	
53	65 nk	4	62	51	11	$? 0$	17	230	9.2	<0.02	13	18t	
54	$70{ }^{\text {m }}$	4	75	54	12	18	10	T3n	ก．4	<0.02	23	280	
55	Qunin	5	10^{6}	55	14	16	17	171	n．？	＜ 4.02	16	780	
50	cunn	2	129	66	13	10	21	330	n． 2	<0.02	14	340	

114	140 e	26	303	101	26	54	27	320	0.5	<0.02	13	580	
115	150E	24	104	41	10	26	13	108	$0 . ?$	＜6．02	7	440	
116	20ne	33	124	50	\bigcirc	32	18	172	0.2	＜0．02	7	800	
117	250E	10	41	45	ρ	27	16	143	0.2	<0.02	9	700	
118	T．OEE	38	141	万2	14	37	21	174	＜0．2	<6.02	18	880	
119	35ne	43	146	50	15	29	20	143	0.7	<0.02	19	020	
120	4008	74	170	85	17	26	23	248	＜0．2	＜0．02	5	1560	
121	450 E	27	155	88	23	44	25	272	$0 . ?$	＜0．02	C1	900	
122	500 E	55	113	90	17	38	22	173	0.2	<0.02	16	640	
123	$55 n_{t}$	28	153	114	21	53	31	797	＜0．2	＜0．0？	14	880	
124	UOE	35	590	320	${ }^{2}$	59	42	689	1．${ }^{\text {\％}}$	<0.02	11	060	VC 300 N
125	50 E	22	84	64	13	29	17	185	0.2	<0.02	7	380	
126	10 EE	40	70	46	ρ	27	12	488	$0 . ?$	<0.02	9	1040	
127	150 E	18	56	41	9	24	12	140	＜0． 2	<0.02	6	720	
128	209 E	13	41	44	7	27	15	139	＜0．2	<0.02	5	760	
129	2505	37	117	＋8	13	37	21	206	<0.2	<0.02	15	960	
170	3une	41	21	87	19	31	21	250	＜0．2	<0.02	32	1040	
121	T50E	53	214	81	20	36	24	208	0.3	<0.02	＜ 5	1080	
132	¢UOE	86	116	70	13	31	24	290	<0.2	＜0．02	14	1二80	
133	450 E	50	440	260	24	115	104	860	0.3	<0.02	7	1400	
134	45nを＊	49	440	260	？ 0	112	102	200	0.3	<0.02	4	1280	
135	sune	73	79	66	14	36	21	175	<0.2	<0.02	？	1080	
$1 \geq 6$	OCE	43	257	164	44	39	26	360	0.4	<0.02	17	10 O	VC 400 N
137	50E	72	113	68	20	26	21	180	0.3	<0.02	14	780	
$1^{7} 5$	$10^{\text {une }}$	15	57	48	12	26	15	166	<0.2	<0.02	12	1000	
139	15 EL	14	49	42	11	25	12	225	0.2	<0.02	10	967	
140	20ne	17	73	52	16	29	13	173	<0.2	<0.02	7	1000	
141	240 E	117	5un	300	65	140	42	460	0.6	<0.02	16	＞4000	
142	$30 \cap \mathrm{E}$	24	132	71	36	37	23	102	0.7	9． 08	20	960	
143	\％OUE＊	26	134	73	？ 6	38	25	181	0.3	$0 . \cap 7$	22	920	
144	350 E	75	？ 02	155	73	53	26	270	0.4	<0.02	13	800	
145	$40{ }^{\prime} \mathrm{E}$	15	137	120	23	60	32	240	0.7	ก．09	12	860	
140	45 Ce	－ 33	92	93	22	43	25	237	0.7	<0.02	14	1040	
147	sone	34	67	56	31	28	20	147	0.3	<0.02	12	1480	
148	$5{ }^{0}$	43	116	82	32	$\underline{2}$	19	260	0.4	<0.02	29	1160	vc 700 N
149	100%	127	218	12＊	49	37	28	280	1.3	<0.02	25	1220	
158	$15 n^{\prime \prime}$	21	44	50	16	23	18	193	＜0．2	<0.02	18	900	
151	？ 0 W	25	83	68	19	72	18	173	0.7	<0.02	36	860	
152	$25 n_{\text {w }}$	20	74	71	19	29	17	197	0.5	<0.02	14	$\bigcirc 40$	
153	$3 \mathrm{OH}_{4}$	58	231	160	21	24	35	467	0.7	<0.02	48	1360	
154	350%	8 S	271	127	マ	25	36	530	0.9	<0.02	42	$\bigcirc 00$	
155	4000	200	740	152	$\bigcirc 7$	29	30	560	2．7	<0.02	51	900	
156	450 w	92	352	157	37	27	37	580	0.9	<0.02	83	8.60	
157	550%	₹ 1	112	107	17	2\％	21	179	D．？	<0.02	25	600	
158	600%	32	124	36	22	34	22	130	0.2	<0.02	21	680	
159	457 m	16	125	$7{ }^{\circ}$	10	30	20	237	－．？	＜c． 02	14	hdn	
150	750 m	47	030	430	71	49	51	550	1.0	0.02	17	567	
161	90 Cw	13	350	172	57	23	47	70°	1.7	<0.02	61	720	
$1 \in 2$	$5 n_{i}$	$1{ }^{\circ}$	02	77	70	35	20	270	0.2	<0.02	27	1240	ve 8 OUN
1ヶ3	10n＊＊	23	64	65	？ 0	23	15	160	7.2	<0.02	14	840	
164	15 M	\％ 3	$\bigcirc 1$	95	19	29	17	230	＜0．2	<0.02	1\％	880	
165	$2 \mathrm{UnW}^{\text {c }}$	45	99	\bigcirc	23	26	19	250	0.5	<0.02	24	867	
166	$25 n_{n}$	79	146	107	71	25	19	750	0.8	<0.02	27	240	
167	$45{ }^{\circ}$	27	349	1 ¢	45	30	76	5001	1.2	<0.02	20	660	
168	$500_{\text {w }}$	21	8.2	${ }^{\circ} 0$	10	22	16	219	0.7	<0.02	26	840	
1＊9	S¢Cum	51	108	${ }^{1} \iota^{\circ}$	50	34	24	？90	9.9	<0.02	25	1290	
17	cuns	21	146	A_{4}	＞ 1	≥ 4	19	181	n． 5	＜0．0？	22	qun	

171	45 CW	0	52	81	19	27	16	151	ก． 3	<0.02	5	780	
172	650\％＊	\＆	54	57	20	24	16	145	0.7	<0.02	4	780	
173	70ワ＊	26	69	60	17	23	18	145	0.5	<0.02	22	680	
174	75 NW	13	33	40	16	34	17	133	0.5	<0.02	<5	1100	
175	${ }^{0} \mathrm{OH}_{\mathrm{w}}$	7 5	42	45	21	17	14	154	0.3	<0.02	20	840	
176	230 w	94	640	275	$1 ¢^{\circ}$	29	57	960	0.7	<0.02	15	760	
177	85°	27	295	21？	48	？ 7	47	620	0.7	<0.02	22	869	
176	$\mathrm{O}_{0}{ }_{\sim}$	35	01	80	54	20	10	2 90	0.8	<0.02	75	460	
179	1010\％	200	720	192	410	28	≥ 7	480	0.5	<0.02	224	920	
18 C	17596	116	920	230	4.50	？ 2		400	2.3	＜0．02	201	1040	
181	110¢\％	170	490	1えも	2.40	र2	3.4	440	1.0	<0.02	221	$10^{\circ} 0$	
182	11 Unw＊	180	490	129	240	32	It	440	2.3	<0.02	217	1040	
183	1150 w	29	600	152	45	29	39	440	1.4	<0.02	74	740	
184	$120{ }^{\text {\％}}$	28	1050	179	58	31	30	44%	1.2	<0.02	21	700	
185	1240 W	24	690	＇745	73	34	55	780	1．${ }^{\text {\％}}$	<0.02	16	700	
186	13 U \％	5	$3<3$	109	2 C	21	26	390	0.9	<0.02	7	520	
187	1250m	2	250	132	20	18	23	340	0.6	＜0．02	<5	600	
188	140 NW	2	136	08	14	20	25	357	0.5	＜0．02	<5	540	
189	ODE	20	54	50	16	23	14	164	0.7	<0.02	28	R40	vc 700N
100	50E	10	87	65	10	31	18	155	0.6	＜0．0？	12	700	
191	109E	15	60	81	18	23	18	220	0.5	＜0．02	<5	${ }^{2} 00$	
102	15 SE	38	205	260	45	55	29	$\times 50$	<0.2	0.03	18	600	
103	200 E	22	162	05	35	42	22	19\％	<0.2	0.03	14	740	
104	$30 \cap \mathrm{E}$	16	242	130	43	54	25	290	0.5	0.03	5	747	
105	ODE	54	73	65	20	27	18	169	<0.2	<0.02	44	580	Vc 800N
100	508	17	85	02	24	35	22	510	<0.2	<0.02	9	720	
197	1 U0E	12	40	70	16	27	10	161	<0.2	＜0．02	3	540	
108	150 E	21	100	84	24	48	26	200	<0.2	<0.02	15	660	
199	200 E	25	148	115	29	45	26	250	＜0．2	<0.02	16	780	
200	250 E	27	370	213	45	63	$\underline{3}$	290	0.2	<0.02	11	640	
201	フ5nE＊	30	390	216	51	63	± 1	290	0.4	<0.02	－		
202	gne	36	146	80	25	37	21	250	0.5	<0.02	12	300	vc 600 N
205	5ne	70	101	68	マ ${ }^{0}$	36	21	169	0.5	<0.02	5	469	
204	10ne	25	106	78	70	36	19	220	0.5	<0.02	7	300	
¢05	150E	35	135	98	36	49	23	270	0.2	<0.02	7	360	
206	20ne	300	1020	500	141	161	51	530	0.6	＜0．02	20	680	
207	？ 3 のE	180	400	$25 t$	49	10^{n}	35	？ 60	0.5	<0.02	17	520	
203		64	224	18？	$\underline{8}$	59	31	550	0.8	<0.02	14	720	
207	2508	？ 5	420	250	47	69	35	620	1．n	<0.02	15	500	
210	35気	22	429	250	4%	70	42	630	1.0	0.05	13	480	
211	Onw	27	257	$\bigcirc 1$	16	37	28	310	0.5	＜0．02	20	440	VC 00
212	10 Cm	15	6u0	16？	79	44	49	540	0.9	<0.02	17	360	
213	$15 \mathrm{r}_{\mathrm{w}}$	7	450	300	75	42	46	510	1．？	<0.02	24	300	
214	200%	\bigcirc	420	210	78	35	45	390	1.4	＜0．02	11	400	
215	$25^{\circ} \mathrm{F}$	15	500	330	113	42	40	500	1．？	<0.02	14	42%	
210	700 w	9	530	117	23	35	44	375	1.1	＜0．02	12	560	
217	400^{*}	\square	580	200	9.4	20	43	500	1.7	<0.02	16	300	
216	$46{ }^{\circ} \mathrm{W}$	5	467	109	20	32	42	510	1.0	＜0．02	10	287	
219	$50{ }^{\text {k }}$	6	240	105	19	27	31	\％ 0	9．c	<0.02	14	149	
220	550 w	\bigcirc	500	201	Su	${ }^{2} 0$	40	567	1.1	<0.02	11	250	
221	600w	5	40%	159	$4{ }_{4}$	25	32	719	1.0	<0.02	\bigcirc	250	
222	65 nm	6	≥ 52	117	30	28	？ 0	350	0.9	＜ 0.02	9	10°	
223	$70{ }^{6}$	\％	116	ho	19	23	75	マun	0.5	<0.02	\bigcirc	320	
274	75 nc	7	05	67	19	10	20	470	9．？	<0.02	7	280	
C25	？．09\％	3	35.	60	10	17	17	290	9．？	<0.02	5	260	
220	$25 \mathrm{n}_{\mathrm{k}}$	3	121	61	14	71	23	280	0.2	<0.02	11	290	
ci 7	POn＊	2	145	76	12	24	25	207	$n .4$	<0.02	9	220	

278	9504	3	270	77	13	23	30	340	0.6	9． 27	14	340	
229	1007 w	6	540	96	10	33	39	290	0.7	9.03	10	500	
230	$10^{\prime \prime} n_{\text {in }}$	3	283	$\bigcirc 9$	17	37	41	470	1.0	<0.02	＜ 5	240	
231	1100 W	4	870	166	2 C	3.3	45	290	1.0	0.05	18	200	
222	CO_{5}	15	470	121	40	33	33	360	1．${ }^{\text {\％}}$	<0.02	19	250	VC 100N
233	50 N	13	341	119	マ 1	47	3.9	480	1．n	＜0．02	28	260	
224	10 nw	13	355	120	73	36	34	360	1.9	ก．03	35	440	
235	$15 n_{w}$	17	354	215	46	35	43	470	0.0	<0.02	？ 3	400	
236	709w	13	338	14.9	43	30	$\times 5$	370	0．＊	＜0．02	27	320	
237	250%	13	328	217	Q ${ }^{\text {a }}$	27	43	530	0.8	<0.02	23	440	
238	300%	5	$\bigcirc 9$	53	18	19	24	250	0.5	<0.02	6	330	
279	200w＊	5	107	63	14	19	21	750	0.3	<0.02	5	\％ 20	
240	350 m	10	710	270	53	30	49	550	1．4	<0.02	9	370	
241	$40 \mathrm{nH}_{6}$	5	140	87	19	31	31	290	0.7	<0.02	＜ 5	300	
24.	450 w	3	126	96	15	20	23	290	0.5	<0.02	<5	400	
243	$50^{\circ} \mathrm{W}$	2	157	104	24	30	31	460	0.5	＜0．02	ε	320	
244	553w	1	78	61	13	21	20	240	0.6	<0.02	9	188	
245	corim	2	166	92	17	24	21	360	0.3	<0.02	＜ 5	210	
240	350 W	2	74	51	15	22	18	183	0.5	＜0．02	<5	180	
247	70.76	3	44	42	12	22	17	156	0.3	<0.02	＜ 5	192	
248	750 N	2	75	84	13	32	21	330	0.6	<0.02	7	250	
249	750w＊	2	77	85	19	31	23	337	0.6	<0.02	\bigcirc	230	
250	$30{ }^{3}$	5	159	114	23	21	27	330	0.6	<0.02	13	350	
<51	85 nW	\％	115	58	12	15	24	797	0.2	<0.02	15	280	
252	－Gnisis	3	149	66	14	19	23	310	0.5	<0.02	20	220	
＜53	950	3	365	03	14	26	34	280	0.5	<0.02	15	マ20	
254	1000%	5	450	75	17	23	36	250	3.5	＜0．02	33	380	
255	$105 n^{*}$	3	219	61	$1 \overline{1}$	28	26	270	0.3	<0.02	8	280	
256	1100 m	2	146	56	12	23	23	250	0.2	<0.02	8	240	
257	00n	16	490	145	51	36	38	500	0.7	<0.02	15	600	vc 200 N
く58	50w	27	301	135	24	48	33	290	0.5	<0.02	15	800	
259	100 w	R1	560	192	49	32	42	550	1.2	<0.02	80	1000	
200	150 N	13	237	181	44	31	37	427	0.4	<0.02	16	920	
261	20 n	10	144	10°	24	29	36	430	0.2	<0.02	16	860	
262	250 w	7	39	55	21	25	36	867	0.2	<0.02	7	240	
263	350 －	5	148	107	17	41	\％ 2	400	＜0．2	<0.02	18	700	
264	$40 \% 10$	12	730	290	51	32	52	530	1．？	<0.02	18	540	
265	450 m	4	185	116	23	30	34	460	0.7	<0.02	10	440	
266	50 NW	3	187	96	21	24	27	330	0.7	<0.02	8	460	
267	5506	2	67	58	13	21	18	210	<0.2	<0.02	<5	360	
268	605\％	1	50	60	5	20	15	164	<0.2	<0.02	＜ 5	196	
169	$650{ }^{\prime \prime}$	7	70	56	7	17	10	178	<0.2	<0.02	32	260	
270	70 M	3	123：	76	15	28	24	299	<0.2	<0.02	15	260	
271	750 w	3	99	79	17	？ 2	22	250	<0.2	<0.02	19	240	
278	300 w	2	54	46	10	17	11	240	<0.2	<0.02	<5	230	
¢ 73	950＊	1	143	74	14	19	21	390	＜0．2	<0.02	9	220	
274	900 w	$?$	108	79	1 L	23	20	290	<0.2	<0.02	20	440	
275	$059 /$	1	301	$\bigcirc 0$	10	3.4	31	300	<0.2	<0.02	31	520	
276	1000w	1	190	6	9	24	24	230	＜úl 2	＜u．0？	32	320	
277	195n	6	550	68	11	27	27	245	9.6	＜0．02	28	$\bigcirc 8$	
278	SO_{i}	41	109	07	76	23	19	250	0.4	＜0．02	33	520	VC GOON
279	$10 \mathrm{On}^{1}$	27	76	71	19	24	17	200	0.3	<0.02	52	460	
280	$150{ }_{W}$	30	157	97	23	$? 1$	18	240	0.7	＜0．02	41	520	
$<^{81}$	$20{ }^{0}$	31	04	80	16	30	21	230	0.4	<0.02	15	64%	
$2^{9} 2$	2506	29	02	75	$1{ }_{c}$	35	22	270	0.7	<0.02	28	$\bigcirc 0$	
2 R 3	300%	26	90	72	is	25	19	25°	0.5	＜0．02	23	730	
CR_{4}	\％ 50	15	50	52	14	23	14	300	$0 . ?$	<0.02	10	600	

225	357x＋	13	50	49	6	33	14	340	<0.2	<0.02	7	547	
286	400°	3.4	${ }^{2} 4$	76	0	14	10	156	ๆ．${ }^{\text {a }}$	<0.02	5	347	
287	450%	7 5	22	149	≥ 1	23	23	390	＜0． 2	<0.02	15	\％ 80	
288	$50{ }^{\circ}$	41	236	11 ？	49	31	T 4	420	0.5	<0.02	50	580	
289	5504.	41	158	${ }^{0}$	44	21	30	389	0.6	<0.02	35	1020	
290	$60{ }^{\circ}$	34	124	64	38	23	24	270	0.4	<0.02	38	660	
201	65nn	44	146	65	32	19	23	317	0.3	＜0．02	45	700	
292	700w	41	58	22	40	34	23	270	0.2	<0.02	20	620	
403	75 nk	9	26	24	6	13	9	65	<0.2	<0.02	5	220	
204	Qun＊	72	96	． 54	13	30	20	145	0.7	<0.02	18	500	
295	Qu゚＊＊	22	83	55	14	30	21	153	0.5	<0.02	20	500	
206	$\square_{5} \mathrm{n}_{n}$	34	41	48	31	23	17	300	0.7	<0.02	27	467	
227	903\％	29	192	130	55	30	？ 8	350	0.7	<0.02	33	60%	
208	05 Dn	48	200	175	84	35	35	490	9.3	<0.02	52	680	
299	$1000{ }^{10}$	59	810	420	12°	37	67	740	0.2	<0.02	20	547	
300	1070 w	110	670	26 C	700	37	51	690	0.5	<0.02	65	640	
501	1150 w	6	450	13 A	20	25	36	300	0.5	<0.02	10	327	
304	120n＇s	2	360	126	27	20	24	390	0.18	<0.02	5	300	
303	1250 m	＜1	176	12？	23	18	27	380	0.4	<0.02	<5	340	
304	1300w	<1	159	108	17	18	24	300	＜0．2	0.03	＜ 5	240	
375	1357 w	7	108	111	15	20	25	＜ 19	0.2	<0.02	15	220	
306	5 nW	37	152	81	27	29	20	350	0.2	<0.02	17	267	vc1000N
$3!7$	$10^{\circ} \mathrm{w}$	10	T3	50	14	≥ 5	15	138	＜0．2	<0.02	13	220	
308	150 \％	21	54	50	14	20	16	183	＜0．2	<0.02	54	400	
309	200 N	23	101	82	32	$\times 0$	$? 1$	290	<0.2	<0.02	17	380	
310	250 W	24	8.2	67	21	24	21	260	<0.2	<0.02	42	340	
311	300 w	29	69	54	15	27	17	240	＜0．2	<0.02	18	300	
312	250\％	18	29	37	13	21	14	190	<0.2	＜0．02	13	260	
313	4004	16	50	53	15	22	15	180	<0.2	<0.02	20	347	
314	409\％＊	14	55	53	14	21	16	175	＜0．2	<0.02	16	400	
315	450%	25	00	62	21	21	20	195	＜0．2	<0.02	20	260	
316	5 COW	64	450	186	49	32	40	465	0.2	＜0．02	20	220	
317	55 nh	73	295	79	＋9	20	29	350	0.6	<0.02	48	500	
318	6u\％＊	50	272	126	9	25	35	520	0.2	<0.02	38	320	
319	$65^{\circ} \mathrm{w}$	36	181	90	71	20	27	330	0.2	<0.02	37	480	
320	$7 \mathrm{On}_{\text {\％}}$	21	53	121	58	32	40	570	0.7	＜0．0？	12	280	
321	759 m	27	112	63	25	37	23	150	0.7	<0.02	17	280	
3こく	ROn＊＊	15	70	59	29	29	20	180	0.3	<0.02	4	220	
323	9501	36	147	93	73	23	26	$\times 20$	0.2	<0.02	26	380	
324	१57W＊	34	150	04	76	23	25	$\times 20$	0.3	<0.62	23	${ }^{2} 00$	
325	$00^{\circ} \mathrm{O}$	47	206	151	102	？ 8	？ 8	530	0.4	<0.02	41	300	
376	$75^{\text {\％w }}$	45	147	140	70	30	31	629	9.4	<0.02	40	380	
327	1ヵロが	16	37	62	33	21	18	220	＜0．2	＜ 0.02	14	400	
320	1750	33	$t<0$	197	74	25	₹ 1	360	1.0	＜0．02	\bigcirc	220	
329	11 Und	7	157	114	26	17	24	347	n． 6	<0.02	<5	200	
330	$1150 \times$	1	134	110	35	20	3.5	350	<0.2	<0.02	＜ 5	240	
371	1200%	25	217	33	71	15	22	240	1.0	<0.02	6	240	
332	1フ5nd	7	1 i 0	129	74	21	21	320	<0.2	<0.02	＜ 5	\％ 00	
333	470^{*}	54	40 C	19？	45	31	45	520	9．8	<0.02	16	380	VE 900n
334	1257	4	210	125	27	18	27	360	0．7	<0.02	7	200	
375	850\％	65	790	${ }^{7} 0^{7}$	10%	28	41	630	1.2	<0.02	28	160	VC 800 ON
330	1055＊	\bigcirc	750	16°	40	21	35	440	2．t	<0.02	5	170	VCTOOON
337	$5 \mathrm{C}_{6}$	51	200	117	37	29	30	？57	0.7	＜G． 02	71	190	VC 4 DUN
5×8	16n＊	4と	301	120	${ }^{7}$	41	7	530	9.7	60.02	26	380	
329	$15{ }^{\circ}$	19	136	90	17	34	？ 8	マ40	？．6	<0.02	18	440	
340	$20 n^{2}$	46	17\％	73	20	30	27	230	<0.2	<0.02	47	460	
3.41	75 CH	75	$1 y^{\circ}$	74	10	30	72	409	0.3	<0.02	39	600	

0

342	3uOw	13	12^{8}	58	12	33	7 J	778	<0.2	<0.02	30	460	
343	250n	34	162	102	76	26	23	$\times 30$	0.2	<0.02	29	300	
344	400%	12	92	70	17	28	25	270	9.7	<0.02	14	340	
345	5unw	34	112	56	19	18	26	490	0.4	<0.02	15	270	
346	550	54	142	71	21	24	32	370	0.4	<0.02	14	280	
347	6000	86	77	53	$? 1$	20	21	205	0.2	<0.02	53	420	
348	650．	36	$\underline{2} 06$	10°	13	45	68	$\bigcirc 00$	0.4	<0.02	18	320	
349	${ }^{\circ} \mathrm{OH}$	23	104	70	？ 0	30	23	270	＜0． 2	<0.02	10	260	
350	050 w	6	92	41	14	15	18	230	<0.2	<0.02	27	192	
351	1000＊	3	273	83	26	20	37	340	0.2	<0.02	17	160	
352	1500．d	3	145	86	20	25	28	330	<0.2	<0.02	10	320	
353	1550 m	1	104	53	12	23	19	250	＜0．2	<0.02	5	16%	
354	1 160ワ	$?$	182	65	16	20	26	280	0.0	<0.02	32	70	
355	165？6	$?$	75	64	16	17	19	260	<0.2	<0.02	27	152	
356	$170{ }^{\text {n }}$	1	70	90	14	22	24	28%	<0.2	＜ 4.02	5	188	
357	175ワ	1	57	64	14	21	22	260	0.4	<0.02	<5	16\％	
350	19004	1	53	57	10	19	21	235	0.7	<0.02	<5	176	
359	1850 W	1	70	69	1J	≥ 1	24	290	＜0．2	<0.02	<5	140	
360	100 W	1	123	146	19	21	31	350	0.4	<0.02	＜ 5	280	
361	1957w	1	113	130	25	24	21	330	0.5	<0.02	7	124	
362	2000%	1	47	88	17	22	13	290	0.7	<0.02	8	300	
363	50 m	37	63	47	11	29	15	175	0.4	<0.02	13	82^{\prime}	vc 500N
364	100^{1}	77	145	33	18	33	25	560	0.2	<0.02	14	620	
365	150 w	95	265	74	75	26	29	297	0.3	<0.02	32	580	
366	200\％	66	295	97	20	33	46	530	0.6	<0.02	？ 1	1160	
367	250＊	35	216	79	22	27	27	387	0.4	＜0．02	18	480	
jヶ6	30°	70	154	65	20	26	31	290	0.2	＜0．07	19	360	
359	＜ $50{ }_{\text {\％}}$	44	？¢ 6	115	32	25	39	500	0.3	<0.002	18	580	
370	$350{ }^{\text {m }}$＊	42	224	11 z	33	25	38	500	0． 2	＜0．02	18		
371	$40^{0}{ }^{\text {w }}$	11	145	06	20	27	26	330	0.3	<0.02	11	487	
376	450 m	10	93	51	18	17	17	155	0.7	<0.02	\bigcirc	380	
373	55 m	48	206	230	44	29	41	520	9.8	<0.02	29	480	
374	1800 w	1	161	159	31	21	20	430	1.1	<0.02	6	400	
375	1850＊	1	155	105	36	20	25	390	1.1	<0.02	6	347	
376	1900 w	1	115	21	24	22	19	270	0．A	<0.02	6	100	
377	10504	1	65	82	27	18	19	370	0.5	<0.02	5	250	
378	2000 w	1	58	67	23	17	22	330	0.4	<0.02	5	160	
379	5 OW	23	83	57	$? 0$	30	18	153	0.2	＜0．02	19	380	vc 600 N
$3{ }^{90}$	50\％＊	20	85	59	22	\％ 0	19	151	0.2	<0.02	16	420	
381	100w	58	$13 n$	72	27	$? 7$	21	761	0.4	<0.02	20	740	
382	150 w	63	234	115	42	41	31	530	0.3	<0.02	17	620	
383	$200{ }^{\prime}$	20	275	76	T2	26	26	317	0.4	<0.02	37	460	
384	$25 \Gamma^{\circ}$	9	332	228	85	33	50	560	1．7	<0.02	17	640	
385	300＊	27	123	80	35	21	31	400	＜0．2	<0.02	41	360	
386	35 CN	50	390	132	27	36	34	\＄ 20	0.4	＜U． 02	24	480	
387	400%	－ 140	271	67	16	30	\bigcirc	187	0.7	<0.02	18	400	
s9s	450 W	10^{5}	334	99	25	？ 7	33	289	0.6	<0.02	70	500	
39.	450 m ＊	107	350	07	22	25	32	387	9． 5	<0.02	60	400	
370	STO AU									1.10			
301	STD AU									1.77			
392	STD AU									1.16			
303	STD AU									1.04			
304	Stt AU									1.70			
305	STD AU									1．21			
50°	STO A	76	132	0.9	？ 5	16	16	127	？．				
397	STEA	75	14%	85	72	17	15	115	0.4				
303	STDA	76	140	03	33	21	17	10°	7.4				

LIST OT GEOCHEMICAL DATA FROM ATLIN
R. PINSENT

NTS	SAMPLE	PROJECT	no	CO	2N	PE	NI	CO	A G	AU	W	F	MN
bar 8005	00	1203	3	178	96	17	32	24	0.3	0.03	10	340	273
GAR 3005	50E	1203	5	530	159	30	40	35	0.6	0.10	9	420	304
SAR 800S	150 E	120	6	510	150	38	41	35	1.0	0.06	11	400	271
BAR 800S	100E*	1203	t	610	133	38	42	36	2.0		13	420	270
BAR 8005	150 E	1203	3	265	88	11	38	33	0.3	<0.02	10	200	340
BAR EOOS	200 E	1203	4	206	149	23	57	46	0.4	<0.02	< 5	260	660
BAR 800 S	250 E	1203	3	130	59	8	23	20	0.3	<0.02	< 5	200	219
BAR 800S	300 E	1203	3	104	119	40	44	35	0.6	<0.02	14	360	330
OAR 800S	350 E	1203	8	283	132	23	64	39	0.4	<0.02	NSS	NSS	310
GAR 800S	400 E	1253	27	382	130	15	69	41	0.3	<0.02	11	260	270
BAR 8005	450 E	1203	9	121	112	25	51	31	<0.2	<0.02	5	260	260
3AR 800S	500 E	1203	15	156	126	28	59	37	0.2	0.03	7	200	330
BAR 800S	550 E	1203	NS S	NSS	NSS	NSS	NSS	NSS	NSS	<0.02	NSS	NSS	NSS
PAR 900 S	600E	1203	24	128	153	47	63	36	0.3	<0.02	7	220	340
BAR 2005	50 H	1203	3	203	82	14	22	23	0.3	0.09	<5	320	250
bAR 800S	100 W	1203	3	200	86	9	20	30	0.2	0.03	5	320	270
3AR 800S	150 W	1203	3	233	69	11	20	27	0.4	0.08	11	300	309
GAR 900S	50	12 J	5	190	71	36	43	29	0.8	<0.02	<5	90	269
BAR 900S	50E*	1203	6	530	166	42	45	32	0.5		12	320	300
BAR 9005	50 E	1203	6	540	169	49	46	34	1.0	<0.02	10	300	320
BAR 900S	100 E	1203	7	610	172	121	42	35	2.8	<0.02	11	270	280
EAR 900s	150 E	1203	6	540	180	50	43	34	0.3	0.02	8	240	300
BAR 9005	200 E	1203	5	290	125	27	53	39	<0.2	<0.02	9	220	470
BAR 900S	250 E	1203	6	344	169	26	76	47	0.4	NSS	14	NSS	540
bar 900s	300 E	1203	6	365	171	32	73	46	0.5	<0.02	17	500	490
FAR 900S	350 E	1203	7	295	193	47	76	41	0.4	<0.02	8	470	410
EAR 900S	400E	1203	29	280	187	40	86	63	0.3	NSS	19	580	840
bar 9005	450 E	1203	16	335	235	49	82	47	0.2	NSS	10	520	520
SAR 900S	S00E*	1203	5	62	124	40	34	24	<0.2	<0.02	6	300	350
BAR 900 S	500 E	1203	5	63	124	40	37	26	<0.2	<0.02	8	340	360
GAR 900S	550 E	1203	5	66	133	43	61	31	0.4	<0.02	5	280	310
3AR 900S	600E	1203	2	38	106	18	48	20	<0.2	<0.02	17	340	210
BAR 900S	50W	1203	7	355	73	14	21	31	0.9	<0.02	12	220	340
GAR 9005	100 W	1203	3	213	73	14	23	26	0.2	<0.02	5	185	226
GAR 900S	150 W	1203	5	185	72	11	21	27	0.2	<0.02	<5	190	270
BAR 900 S	200w	1203	4	272	98	13	26	30	0.7	<0.02	5	200	430
GAR 900S	250w	1203	2	244	84	13	23	25	0.6	<0.02	<5	160	330
RAR 700S	300 W	1203	3	193	88	21	22	22	0.2	<0.02	<5	160	264
BAR1000S	00	1203	3	167	102	15	28	25	<0.2	<0.02	<5	260	320
BAR1000S	50 E	1203	3	96	151	26	27	27	<0.2	<0.02	6	320	350
EAR1000S	100 E	1203	4	140	190	40	39	32	0.3	<0.92	5	460	370
BAR1000S	150E	1203	3	105	183	27	45	31	<0.2	<0.02	6	500	390
3AR1J00S	250 E	1203	3	134	171	34	31	32	<0.2	<0.02	7	400	330
ZAR1J00S	250 E	1203	3	147	216	39	35	36	0.4	NSS	6	NSS	490
BAR1000S	300 E	1203	3	85	125	25	21	23	0.3	<0.02	7	400	236
BAR1000s	350 E	1203	4	140	204	39	33	32	<0.2	<0.02	8	380	370
EAR1000S	400 E	1203	5	149	222	44	38	36	0.7	<0.02	9	420	480
EAR1000S	450 E	1203	3	103	154	45	46	28	0.4	<0.02	<5	180	330
EAR1000S	500 F	1233	\bar{z}	64	158	47	52	29	0.2	<0.02	5	170	310
BAR1000S	550 E	120?	6	81	184	60	53	40	0.2	<9.02	5	N5S	1850
Par1Jods	SOOE	1207	2	53	112	20	28	18	<0.2	<0.02	5	195	165
BAR1000S	50w	1203	4	202	182	31	35	31	0.2	<0.02	<5	380	340
BAR1900S	130w	1203	3	161	196	24	36	31	0.5	<0.02	<5	280	310
GAR1000S	150 W	1203	3	10 E	201	31	33	31	<0.2	<0.02	5	340	390
FAR1000S	200W	1207	3	132	195	33	29	30	<0.2	0.19	6	200	410
GAR10005	250 w	1203	2	102	175	${ }^{2} \mathrm{C}$	30	29	<0.2	<9.02	5	440	390
Ear1000S	3004	120?	2	93	196	27	24	27	<0.2	0.03	<5	560	390
GAR1000S	350 w	1203	2	77	148	25	21	24	0.2	<2.02	5	300	340
aAR11005	00	1703	1	06	154	27	24	23	1.0	<0.02	9	310	300
BAR110GS	soe	120]?	2	101	127	49	49	33	1.0	<3.92	5	240	370

NTS	SAMPLE	PROJECT	MO	CU	7N	$P 9$	N I	co	AG	AU	W	F	MN
BAR1100S	100 E	1203	1	t8	156	37	37	27	<0.2	<0.02	<5	190	310
BAR1100S	150 E	1203	2	50	133	37	34	26	<0.2	<0.02	<5	250	420
bar1100S	200 F	1203	3	71	157	53	45	36	<0.2	<0.02	<5	380	640
GAR1100S	250 E	1203	2	59	133	41	34	25	<0.2	<0.02	14	350	254
gar 1100 S	3 J0E	1203	4	123	225	45	37	38	<0.2	<0.02	5	560	960
GAR1100S	350 E	1203	3	75	256	60	52	29	<0.2	<0.02	5	340	350
BAR11005	400 E	1203	3	53	127	49	39	27	0.5	<0.02	<5	350	380
bar1100S	450 E	1203	2	76	146	37	32	22	0.6	<0.02	<5	300	210
GAR1100S	500 E	1203	1	65	153	41	49	25	<0.2	<0.02	<5	170	250
BAR1100S	550 E	1203	1	54	119	33	36	20	<0.2	<0.02	<5	280	190
BAR1100S	COOE	1203	2	75	152	38	42	21	0.2	<0.02	<5	280	250
SAR1100S	50 W	1203	2	83	160	41	47	30	0.3	<0.02	<5	320	350
gar 1100 S	100W	1203	2	60	132	36	31	25	<0.2	<0.02	5	NSS	340
SAR1100S	150 W	1203	1	93	187	39	72	33	0.7	<0.02	6	NSS	380
BAR1100S	200w	1203	1	119	199	37	31	33	<0.2	<0.02	6	260	410
BAR1100S	250 W	1203	1	103	194	31	33	31	0.6	<0.02	6	NSS	410
BAR1100S	300 W	1203	1	102	169	34	30	30	0.3	<0.02	<5	165	370
BAR1100S	3504	1203	1	93	162	24	24	28	0.2	<0.02	<5	280	390
BAR1200S	50	1203	2	107	201	43	33	34	0.2	<0.02	<5	460	400
BAR12005	50 E	1203	1	102	178	49	40	36	0.5	<0.02	<5	540	460
EAR 1200 S	1 10F	1203	5	73	177	45	33	30	0.5	<0.02	<5	400	340
3AR1200S	150 E	1203	2	94	173	44	35	31	<0.2	<0.02	<5	360	360
gar 12005	200 E	1203	1	96	182	39	31	26	<0.2	<0.02	6	540	360
BAR1200S	250 E	1203	1	60	147	35	33	24	0.2	<0.02	<5	460	390
BAR1200S	250E*	1203	2	58	147	36	31	23	0.3	<0.02	<5	400	390
gar1200S	3008	1203	3	87	181	47	46	31	0.3	<0.02	6	170	400
BAR 12005	350 E	1203	3	70	162	35	31	27	<0.2	<0.02	8	200	350
EAR1200S	400 E	120%	3	79	160	41	47	29	<0.2	<0.02	<5	300	410
garizoos	450 E	1203	3	101	201	72	65	38	0.8	<0.02	5	200	410
BAR1209S	500 E	1203	2	74	173	49	59	31	<0.2	<0.02	<5	90	380
BAR1200S	550 E	1203	1	75	111	42	35	20	0.3	<0.02	< 5	125	180
GAR1200S	600E	1203	1	93.	330	94	71	32	0.6	<0.02	6	110	320
BAR1200S	600E*	1203	2	94	341	97	72	33	0.6	<0.02	6	145	320
GAR1200S	50N	1203	6	97	173	46	47	30	0.6	<0.02	<5	210	330
BAR1200S	150 W	1203	2	48	111	27	29	20	0.2	<0.02	<5	195	170
GAR1200s	150 W	1203	2	57	117	37	36	23	<0.2	<0.02	7	500	218
SAR1200S	200W*	1203	1	56	126	42	41	24	<0.2	<0.02	<5	300	248
BAR120Js	250 W	12 C 3	1	56	127	42	41	25	<0.2	<0.02	<5	340	251
3AR1200S	250w	$120{ }^{\text {a }}$	1	58	177	44	38	24	<0.2	<0.02	<5	400	242
AAR1>OnS	3กกเ	$1>03$	7	78	163	56	50	31	<3.?	<0.02	<5	220	330

10134
10134

lattitude departure:
elevation:
ELEVATION:

core she: NQW to 42^{\prime} RQW/42-550iogatd br: ET.K scale of log: $1^{\prime \prime}=10^{\prime}$ date: 21-23, September 19 Location: 125^{\prime} west a 260° az from 80ON beARING: 90° az date coliareo: l9 Sept $1981+800$ W dATE COMPLETED: 22 Sept 1981 dIp: -50°
\square rek 2W42-55

NOTE: INSTRUMENT CRONE RADEM
INSTRUMENT CRONE RADEM
STATION NLK (SEATTE)
STATION : NLK (SEAT
SCALE: $1 \mathrm{~cm}=10^{\circ}$

LINE $8+00$

LINE $9+00 \mathrm{~s}$
LINE $10+00 \mathrm{~S}$
LINE $11+00 \mathrm{~S}$

LINE $12+00$

10134

Figure 1

PLACER DEVELOPMENT LIMITED DRAWN JMT VOLCANIC CREEK-BARHAM CREEK | SCHLLE: $: 5000$ |
| :--- |
| DATE $82 / 0 / 20$ |

10134

