GEOCHEMICAL REPORT

BRUSSELS CLAIM GROUP

(Brussels 1 to 11)
(Golden Ring)
(Golden Lime 1 and 2)

KAMLOOPS MINING DIVISION

N.T.S. 92I/10E
$50^{\circ} 42 \mathrm{~N}, 120^{\circ} 41^{\prime} \mathrm{W}$

Work performed during the period 17 J une to 6 July , and 26 October to 3 November, 1981

25 February, 1982
R.A. Boyce

Placer Development Ltd.

CONTENTS

Page
1

1. INTRODUCTION2. LOCATION \& ACCESS1
2. PHYSICAL FEATURES 3
3. HISTORY AND OWNERSHIP 5
4. GENERAL GEOLOGY 6
5. PROPERTY GEOLOGY 7
6. GEOCHEMICAL SURVEY 8
7. GEOCHEMICAL RESULTS 10
8.1 Brussels Grid 11
8.2 Golden Ring Grid 12
8.3 Duffy Grid 13
8. CONCLUSIONS 14
9. RECOMMENDATIONS 15
10. SUMMARIES OF EXPENDITURES 16
11.1 Brussels 1 to 5, 10, 11; Golden Lime 1 and 2 16
11.2 Golden Ring 17
11.3 Brussels 6 to 9 17
11. STATEMENT OF QUALIFICATIONS 19
12. REFERENCES 20
APPENDIX A: Geochemical Laboratory Procedures
APPENDIX B: Geochemical Analysis Statistics
APPENDIX C: Geochemical Data Plots for Golden Ring Grid $今$
APPENDIX D Geochemical Data Plots for Duffy Grid

LIST OF ILLUSTRATIONS

Figure 1	Location Map 1:250,000		Page 2
2	Claims - Access 1:50,000		4
3	Grid Locations 1:50,000		
4	Golden Ring Soil Geochemistry	- Mo	Appendix C
5	Golden Ring Soil Geochemistry	- Ag	Appendix C
6	Golden Ring Soil Geochemistry	- Cu	Appendix C
7	Golden Ring Soil Geochemistry	- Zn	Appendix C
8	Golden Ring Soil Geochemistry	- Hg	Appendix C
9	Golden Ring Soil Geochemistry	- As	Appendix C
10	Golden Ring Soil Geochemistry	- Sb	Appendix C
11	Golden Ring Soil Geochemistry	- Au	Appendix C
12	Golden Ring Rock Geochemistry	- Mo	Appendix C
13	Golden Ring Rock Geochemistry	- Ag	Appendix C
14	Golden Ring Rock Geochemistry	- Cu	Appendix C
15	Golden Ring Rock Geochemistry	- Zn	Appendix C
16	Golden Ring Rock Geochemistry	- Hg	Appendix C
17	Golden Ring Rock Geochemistry	- As	Appendix C
18	Golden Ring Rock Geochemistry	- Sb	Appendix C
19	Golden Ring Rock Geochemistry	- Au	Appendix C
20	Duffy Soil Geochemistry	- Mo	Appendix D
21	Duffy Soil Geochemistry	- Ag	Appendix D
22	Duffy Soil Geochemistry	- Cu	Appendix D
23	Duffy Soil Geochemistry	- Zn	Appendix D
24	Duffy Soil Geochemistry	- Hg	Appendix D
25	Duffy Soil Geochemistry	- As	Appendix D
26	Duffy Soil Geochemistry	- Sb	Appendix D
27	Duffy Soil Geochemistry	- Au	Appendix D
28	Duffy Rock Geochemistry	- All elements	Appendix D

LIST OF ILLUSTRATIONS (cont'd)

Map 1	Brussels Soil Geochemistry	-Mo	In Pocket
2	Brussels Soil Geochemistry	-Ag	In Pocket
3	Brussels Soil Geochemistry	-Cu	In Pocket
4	Brussels Soil Geochemistry	-Zn	In Pocket
5	Brussels Soil Geochemistry	-Hg	In Pocket
6	Brussels Soil Geochemistry	-As	In Pocket
7	Brussels Soil Geochemistry	-Sb	In Pocket
8	Brussels Soil Geochemistry	-Au	In Pocket
9	Brussels Soil Geochemistry	-Tl	In Pocket
10	Brussels Rock Geochemistry	-Mo	In Pocket
11	Brussels Rock Geochemistry	-Ag	In Pocket
12	Brussels Rock Geochemistry	-Cu	In Pocket
13	Brussels Rock Geochemistry	-Zn	In Pocket
14	Brussels Rock Geochemistry	-Hg	In Pocket
15	Brussels Rock Geochemistry	-As	In Pocket
16	Brussels Rock Geochemistry	-Sb	In Pocket
17	Brussels Rock Geochemistry	-Au	In Pocket
18	Brussels Rock Geochemistry	-Tl	In Pocket
19	Brussels Rock Geochemistry	-K	In Pocket
20	Brussels Rock Geochemistry	-Cr	In Pocket

1. INTRODUCTION

A geochemical sampling program was carried out on the Brussels claim group, near Kamloops, B.C. during two periods in 1981. A total of 868 samples were taken, and analyzed for up to eleven elements. All field work was carried out by employees of Placer Development Ltd., under the direction of R.A. Boyce.

The purpose of the survey was to delineate favourable areas for mineralization with precious metals.

Results of the work were assessed and conclusions drawn about possible mineralization. Recommendations were made regarding further work.

2. LOCATION AND ACCESS

The Brussels claims are located south of Kamloops Lake, in south-central British Columbia. Brussels Lake, near the centre of the property, is 25 kilometres west of the city of Kamloops. The total area held is about 1,200 hectares. The claims are composed of two disconnected groups. The larger, northern group is about six kilometres long in a northwest orientation, and four kilometres wide. The group is bounded along the northeast by a powerline, and oil and natural gas pipelines. The Trans-Canada Highway is just outside the boundary, and the Canadian Pacific Railway is a further kilometre northeast, on the shore of Kamloops Lake. The smaller group of claims is about 2-1/2 kilometres long, located two kilometres south of the larger group. Duffy Creek cuts the southeastern corner of both claim groups. (See Figure 1)

Vehicle access is possible to almost all parts of the property, as it contains a complex of ranch and logging roads. The main roads are shown on Figure 2. The larger claim group may be reached from the "Old Highway" eleven kilometres east of the village of Savona via ranch roads to the central claims, and via logging roads to the southwestern ones. The southern claim group is more easily reached by logging roads along Duffy Creek. These may be approached from the Trans-Canada Highway at Cherry Creek junction, eighteen kilometres west of Kamloops. Road conditions vary seasonally.

3. PHYSICAL FEATURES

The Brussels claim group is situated in hilly country which is transitional between the Thompson Plateau upland and the valley of Kamloops Lake and Thompson River. Local topography varies from gentle to severe. The principal grain of the country runs northwestward, forming parallel ridges and valleys or benches. The main northwest-trending valley contains Brussels Lake and several other ponds, and is traceable from Beaton Lake to the "Old Highway". Another distinct valley/bench runs through the Golden Ring and Brussels 6 claims. The ridge northeast of Brussels Lake is bounded on its northeast by an escarpment up to 150 metres high, with dissected alluvial fans or collapsed narrow terrace at its foot. Below this is a broad terrace at highway level. The northwest grain pattern is modified by east-west and north-south lineaments. The results is many small, rounded to conical hills, with moderate to steep slopes.

Drainage is somewhat disrupted, resulting in numerous shallow ponds. Some of these are intermittant and are bordered with precipitate encrustations. Several ponds have been raised with dams. The three principal watercourses run northeastward. However, most of their courses are made up of north or east-flowing sections, following the minor lineation pattern.

The most recent glaciation pushed southeastward, parallel to the valley of Kamloops Lake. Hilltops were largely denuded of soil, while valleys were filled with debris. The result was to accentuate the northwest grain of the land. Terraces on the northeast of the property were deposited in a lake marginal to stagnant, recessional ice which occupied Kamloops Lake valley.

Elevation on the claims ranges from 400 to 1,200 metres. Local relief is less than 200 metres.

Brussels claims lie within Interior-arid climatic zone. Summers are hot and dry, and winters are cool. Much of summer precipitation occurs as heavy showers during thunderstorms, and in winter as snow. Precipitation amount varies from about 20 centimetre near Kamloops Lake, to 45 centimetres in higher areas, where up to a metre of snow may accumulate in winter.

Three vegetation zones exist on the claim group. Lowland terraces and lowest valley bottoms are a semi-desert of grassland with scattered ponderosa pine. Some rocky hilltops are similarily vegetated. Lower slopes host open stands of ponderosa pine, with grass and minor juniper as ground cover. Small groves of lodgepole pine and aspen also occur, including a re-vegetated burn. These first two zones are utilized for cattle grazing. Higher hill-slopes, which generally have a northeast aspect, are clothed in a mature, mixed forest. Common trees are lodgepole pine, balsam fir, spruce and minor alder and birch. Parts of this forest are currently being harvested.

4. HISTORY AND OWNERSHIP

The earliest recorded prospecting activity in the district was in 1896, when 200 claims were staked in the vicinity of Sugarloaf Hill (see Figure 1). Copper occurrences as veins, stockworks, and shears were found around the margin of Iron Mask Batholith and related intrusions. The largest production was from the Iron Mask Mine, six kilometres southwest of Kamloops. It produced copper, silver, and gold between 1901 and 1928. Another major mine was the Copper King, on Roper Hill, four kilometres east of Brussels claims. It produced copper, silver, and gold intermittantly from 1906 to 1940 . There was other minor production, generally without precious metals. The Iron Mask Batholith also contains magnetite deposits. The largest is the Glen Iron, on Roper Hill, which produced prior to 1904. Currently Afton Mine produces copper and gold from an open pit west of Iron Mask Mine (see Figure 1).

The only known showing on the Brussels property is the Hansen mercury showing, in the Golden Ring claim. Little is known about it and there is no record of recent work. Cinnabar occurred in a band of ankeritized greenstone, which was cut by many dolomite stringers. This is one of numerous, small mercury occurrences around the west end of Kamloops Lake. A few of these have seen minor production.

The area of Brussels claims saw much activity in the 1960's and early 1970's, in search for porphyry-copper deposits. Work was performed by various companies, most of whom held the ground for only a year or two. Claims which partly covered the area of the present Brussels property included the Cherry Creek, Hard, Lil, Pine, Gus, Pat, and Pam claims. Work performed included soil sampling, magnetics, electromagnetics,
induced polarization, geological mapping, and minor trenching. Soil samples were apparently analyzed for copper only. Numerous anomalies were reported by geochemical and geophysical methods. There is no record of any drilling.

Claims of the Brussels groups were located in the spring of 1981, by Murray Morrison, of Kelowna, B.C. The property includes eight Modified-grid system claims of various sizes, and six two-post claims. Data is summarized below (see Figure 2):

Claim Name	Type	Units	Record No.	Location Date
Golden Ring	Modified-grid	4	3324	15 March, 1981
Golden Lime	Two-post	1	3328	16 March, 1981
Brussels 1	Modified-grid	4	3440	21 April, 1981
Brussels 2	Modified-grid	2	3441	22 April, 1981
Brussels 3	Modified-grid	10	3442	22 April, 1981
Brussels 4	Modified-grid	6	3443	24 April, 1981
Brussels 5	Modified-grid	8	3444	27 April, 1981
Brussels 6	Modified-grid	4	3445	25 April, 1981
Brussels 7	Two-post	1	3446	28 April, 1981
Brussels 8	Two-post	1	3447	28 April, 1981
Brussels 9	Two-post	1	3448	28 April, 1981
Brussels 10	Two-post	1	3449	28 April, 1981
Brussels 11	Modified-grid	6	3450	29 April, 1981

5. GENERAL GEOLOGY

The oldest rocks exposed in the claims area are of the upper Triassic Nicola Group. This unit is the most extensive in Brussels claims and southward. The main rock types are various textures of volcanic fragmental and flow rocks, generally green in colour. Andesite is the commonest lithology. Minor sedimentary rocks are intercalated, including limestone and clastic types.

These are intruded by Juro-Cretaceous rocks related to the Coast Mountains Intrusions. The major body is the Iron Mask Batholith. The main mass of the batholith
occurs southwest of Kamloops, and two smaller exposures occur on Roper Hill and the opposite shore of Kamloops Lake. These are intruded by the later Cherry Creek and Sugarloaf phases. Rock compositions range from granite and syenite to pyroxenite. Intrusion of these rocks appears to be related to northwest-trending regional fractures. The main mineral production of the district is associated with these intrusive rocks. A few small plutons are exposed near Greenstone Mountain. It has been suggested that similar stocks or apophyses may exist at shallow depths in the area of Brussels claims.

The north shore of Kamloops Lake contains a small unit of lower Cretaceous Kingsvale Group. This contains various volcanic fragmentals and flows, and minor clastic sediments.

Southward from Mt. Durand is a band of Cretaceous or later, mafic volcanic flows and fragmentals, and minor sedimentary rocks.

The youngest rocks exposed are various members of the Eocene Kamloops Group. The basal Tranquille Formation crops out at various locations on the north shore of Kamloops Lake and east of Roper Hill. It is composed of deltaic and lacustrine sediments, and pillowed lavas. The Dewdrop Flats Formation overlies and is the major unit in areal extent north of Kamloops Lake and southeast of Roper Hill. It consists largely of andesite and basalt flows and breccias, with rhyolitic intrusions. The Mt. Savona Formation, on Mt. Sayona and southward includes coarse conglomerate and breccia, with sandsone interbeds.

Pleistocene deposits include deltas, alluvial fans, terraces, and drift and alluvium-filled valleys. However, such deposits are not extensive outside of major valleys.

6. PROPERY GEOLOGY

Brussels claim group is almost entirely underlain by rocks of the Triassic Nicola Group. The commonest rock type is a well-fractured, dark gray to brown-weathering, chloritized and weakly hematized, porphyritic andesite. Another common type is a greenish to rusty, fractured and locally brecciated volcaniclastic. Green tuff and conglomeratic tuff was noted in some locations. A band of conglomerate was mapped
in the southwestern part of the claims. Rare, fresh, hornblende-porphyry dykes were observed in the northeastern ridge-crest. The general strike of Nicola rocks is westnorthwest, with gentle dips southward. It has been suggested that the rocks have been gently folded, with west to northwest axial trace. Locally, carbonate fillings are common along northwest-trending shears. Carbonate wall-rock alteration was seen at various localities, but was most extensive near Brussels Lake. Local propylitic alteration was noted at one spot.

Kamloops Group - Dewdrop Flats Formation crops out in a small area between Beaton Lake and Duffy Creek. This oval-shaped area is clearly visible on airphotos as a lower-relief feature. Sparse outcrop in the area reveals a quartz-eye rhyolite. Rhyolite has also been mapped on the ridge east of Brussels Lake. This might also be included as part of Dewdrop Flats Formation.

7. GEOCHEMICAL SURVEY

A program of geochemical sampling was undertaken over areas considered favourable for precious metal deposition. Three separate grids were constructed in order to follow lineations or fracture patterns running northwestward. Sampling on lines perpendicular to these patterns was expected to indicate any linear metal concentration zones crossed. Grids were laid out by chain and compass. Sample spacing was 25 metres on line 250 metres apart. A total of 814 soil samples were taken on grid lines. Fifty-four rock samples were taken where outcrops were encountered.

Brussels grid was designated for work performed on Brussels 1, 3, 4 and 5 and Golden Lime 1 and 2 claims. This comprised the major amount of work in which 607 soil and 39 rock samples were collected. Baseline was set at 140° azimuth. Some intermediate lines were added during later follow-up work. Golden Ring grid included work on the Golden Ring claim. Baseline was set at 150°, and 123 soil and 14 rock samples were taken on cross lines. Duffy grid was named for work on Brussels 6 claim, adjacent to Duffy Creek. Baseline was also set at 150°, and 84 soil and one rock sample were collected.

HISTOGRAM FOR: CARABINE: BRUSSELS - ZN

SCALE OF HISTOGRAM IS 2.00 COUNTS/PRINT POSTIION


```
HISTO:RUN ON 82:02:10 AT 10:45:33
```

HISTOGRAM FOR: CARABINE: GRUSSELS - HG

STATISTICS OF X: MINIYUM: 1.0000 MAXIMUM: 243.0000 MEAN: 44.5025 STD. DEVIATION: 40.2210
O VALUES WERE OUTSIDE THE HISTOGRAM RANGE 607 PLOTTED
SCALE OF HISTOGRAM IS 2.00 COUNTS/PRINT POSTIION

NUMBER	MIDPOINT	PERCENT	020	40	60	80	100	120	140	160	180	200
			I---------1	-1	1							
107	5.0000	17.63	$\mathrm{I} * * * * * * * * * * * *$	***	****	***	***					1
68	15.0000	11.20	I************	* + *	***							I
33	25.0000	13.67	I************	***	****	***						I
85	35.0000	14.00	I************	***	****	****						1
66	45.0000	10.87	I************	* $\overbrace{\text { * }}$	****							1
52	55.0000	8.57	I************	***								I
39	65.0000	6.43	I************	***								I
14	75.0000	2.31	I*******									1
17	85.0000	2.30	I*********									I
22	95.0000	3.32	I***********									I
9	105.0000	1.48	I*****									1
11	115.0000	1.81	I******									I
7	125.0000	1.15	I*****									1
6	135.0000	.99	1***									1
5	145.0000	.82	1***									1
1	155.0000	.16	I*									1
2	165.0000	. 33	I*									1
2	175.0000	. 33	I*									1
3	185.0000	. 49	I**									I
2	195.0000	.33	I*									1
1	205.0000	. 16	I*									I
2	215.0000	.33	I*									I
1	225.0000	.16	I*									1
1	235.0000	.16	I*									1
1	245.0000	.16	I*									I
0	255.0000	.00	I									I
0	265.0000	. 00	1									I
0	275.0000	. 00	1									I
0	285.0000	.00	1									1
0	295.0000	.00	1									1
0	305.0000	. 50	1									1
0	315.0000	. 00	1									1
0	325.0000	-00	1									I
0	335.0000	.00	1									1
0	345.0000	.00	1									1
0	355.0000	. 00	I									1
0	365.0000	.00	I									I
0	375.0000	.00	I									1
0	385.0000	. 00	I									1
0	395.0000	-00	1									1
			I---------1									
			020	40	60	80	100	120	140	160	180	200

RISTOGDAN FOD: LARABIVF: GOLDEN PIHG - HO

\% CLASSES ..ILL ZE PLOTTED
DATA WILL RE LIMITED TO RANGE
.0000 T0
4.0000

U VAL'LS \&EPL UUTSIDE THE HISTOGRAM RANGE TOE FLOTTED
SCALE GF HISTCGPA" IS E.LC COUITTS/PPINT POSTIION

HISTOGPA' 5JF: CARAETAF: GOLDE'V PINO - CU

?


```
    O
HISTOGPAN FON: CMRAUIGE: GOLDEN FING - SU
    S1 VALUFS ACCFPTED FROM INPUT: ( 7? QEAD EDRORS, O NULL VALUES O REJECTED EY ID)
        4UCLNSSFS MILL EE PLOTTED DATA WILL DE LIMITED TO PANGE .0000 ro 10.0000
```



```
            iO vALILS AEPE OUTSIDE THE HISTOGRAM RA/GGE SY DLOTTED
    SCALE UE HASIFGRA* TS . S' COURTS/PDIMT POSTIION
NUNDER "IFPOINT PERCE.jT
```



```
\begin{tabular}{|c|c|}
\hline ．1－5n & ．ur \\
\hline ． 3750 & － 0 \\
\hline －\({ }^{\text {ar }}\) & －Un \\
\hline ． \(75 \%\) & .39 \\
\hline 1．1＞5n & 73.4 \\
\hline 1．5？ & － \\
\hline 1．6720 & －U \\
\hline 1．\({ }^{-5 \%}\) & －00 \\
\hline 2．17， & 17.05 \\
\hline ごらプ & ．\({ }^{0}\) \\
\hline く．とここの & －J \\
\hline 2．しつった & － 0 － \\
\hline 3．1？59 & － \(0^{\text {r }}\) \\
\hline 3．3－5n & －U？ \\
\hline 3．0こ5の & － \(0^{n}\) \\
\hline 3．37， & ． 39 \\
\hline 4.170 & 3.32 \\
\hline 4．5－5n & － \\
\hline  & － 00 \\
\hline \(4.0{ }^{7}\) & ． 0 \\
\hline 5．1230 & －J \\
\hline 5．373 & － 0 \\
\hline S．b？\({ }^{\text {ch }}\) & － 0 \\
\hline ¢．c．5「 & ． 09 \\
\hline \(\therefore 13^{n}\) & －\({ }^{\text {？}}\) \\
\hline －．5－5n & ．\({ }^{\text {n }}\) \\
\hline －．cこjr & －Ur \\
\hline －．．＇sn & － 0 \\
\hline 7．1－5n & －\({ }^{\prime}\) \\
\hline 7．ごらの & －J \\
\hline \(7.65^{n}\) & －60 \\
\hline 7．073 & － \\
\hline －12j0 & －\({ }^{0}\) \\
\hline ． \(3^{75}\) & － 30 \\
\hline －6．うr & －\({ }^{\text {n }}\) \\
\hline \(\therefore\)－u＇5 & － \\
\hline －135＊ & －\({ }^{\text {a }}\) \\
\hline ＂•j＂， & －Un \\
\hline  & －ir \\
\hline U．．\({ }^{\text {jr }}\) & －\({ }^{\text {n }}\) \\
\hline
\end{tabular}
l****
I
I
*******************
I**
```


HISTOGRAM FOR: CARABINF: DUFFY - MO
63 VALUFS ACCEPTED FROM INPUT:
(1 READ EPRORS,
0 null values
O REJECTED BY ID) 8 CLASSES WILL BE PLOTTED DATA WILL BE LIMITED TO RANGE .0000 T 4.0000

STATISTICS OF Y: MINIMUN: 1.0000 MAXIMUM: 2.0000 MEAN: 1.0602 STD. DEVIATION: 2394
0 VALUES LEFE OUTSIDE THE HISTOGRAM RANGE
8? PLOTTED
SCALE OF HISTCGRAM IS 1.00 COUNTS/POIVT POSTIION

)
HISTOGRAM FOR: CARABINE: DUFFY - ZN
34 VALUES ACCEPTED FROM IHPUT: (0 READ ERRORS, O NULL VALUES OREJECTED BY ID) 40 CLASSES WILL PE PLOTTED DATA WILL AE LIMITED TO RANGE $\quad 0000$ TO 160.0000

```

 4D CLASSES WILL RE PLOTTED
```


1 READ ERRORS,

```
O NULL VALUES
O REJECTED EY IDJ .000070 40.0000
STATISTICS OF X: MINIMUM: 1.0000 MAXIMUM: \(\quad\). 0000 MEAN: 2.6867 STD. DEVIATION: I.5O5S
o values lere outside the histogram range
83 PLOTTED
SCALE OF HISTOGRAM IS . 50 COUNTS/PRINT POSTIION
```


APPENDIX C

Geochemical Data Plots

For Golden Ring Grid

0

-

2
:

APPENDIX D

Geochemical Data Plots

For Duffy Grid

0

0

${ }_{+}+$

$$
\pm
$$


```
*)
-2500
```


$$
\begin{aligned}
& \text { (1): }
\end{aligned}
$$

MAP 5
MERCURY PPB

BRUSSELS SOIL SAMPLE GRID SCALE
$100 \quad 200 \quad 300$

MAP 6.
ARSENIC PPM

BRUSSELS SOIL SAMPLE GRID
(1LE No. 82-2-V 182-4B-0063

MAP 7.
ANTIMONY PPM
FILE REF. No. 82-2-V182-4B-0064

| |
| :--- | :--- |

