Au GROUPS
Au 1-19 MINERAL CLATMS
NTS: 93Al4W
Latitude $52^{\circ} 50^{\prime} \mathrm{N}$ - Longitude $121^{\circ} 25^{\prime} \mathrm{W}$
CARIBOO MINING DIVISION
REPORT ON GEOLOGY AND GEOCHEMISTRY BY
E.F. PATTISON, F.G.A.C.

Dates of Work: June 30 - August 17, 1981

$$
\begin{aligned}
& 8 \text { pages } \\
& \text { +Apreandices }
\end{aligned}
$$

Owner: Canadian Nickel Co. Ltd.
Operator: Canadian Ni.ckel Co. Litd. 80 - 10551 Shellubridge Way Richmond, British Columbia V6x 2w8

Page
I. INTRODUCTION 1

1. Location, Access and Physiography 1
2. Property Definition 1
3. Property History 2
4. 1981 Program Summary 2
a) Geology 2
b) Geochemistry 2
II. GEOLOGY 2
5. Regional Geology 2
6. Property Geology 4
A. Summary 4
B. Lithology 5
C. Structure 7
III. ROCK GEOCHEMISTRY 7
IV. Conclusions 8
ITEMIZED COST STATEEMENTS
REFERENCES
CERTIFICATE
APPENDICES
7. Geochemical Assays
8. Descriptions of Field Samples
MAPS IN POCKETS
Geology and Geochemical Survey MAP 3A
Scale: 1:12,000
Geology and Geochemical Survey MAP 3B
Scale: 1:12,000
Geology and Geochemical Survey MAP 3C
Scale: 1:1,000

I. INTRODUCTION

1. Location, Access and Physiography

The Au 1-19 claims are located around Yanks Peak, the summit of which lies approximately 25 kms . north northeast of the village of Likely (Figs. 1 and 2). The claims are accessible by truck from a generally poor track that leads from Keithley Creek to Barkerville. Forestry roads give some access to parts of the claim block whereas some of the property is most easily reached by helicopter.

The claims cover part of the transitional terrain between the high alpine, glaciated peaks of the main Cariboo Range to the northeast and the more subdued, rolling, topography of the Interior Plateau to the southwest. Topography varies from alpine terrain at the summit of Yanks Peak, through open sub-alpine meadows on the Snowshoe Plateau to densely forested lower slopes along the Keithley Greek and Caribou River drainage systems.

2. Property Definition

The property consists of 19 claims (315 units) staked between March 7 and March 11, 1981. Data for these claims is tabulated below.

Claim Name	(Units)	Record \#	Recorded	Due Date
Au 1	(15)	3274	March 25, 1981	March 25, 1982
Au 2	(20)	3275	"	"
Au 3	(20)	3276	"	"
Au 4	(20)	3277	"	"
Au 5	(20)	3278	"	"
Au 6	(20)	3279	"	"
Au 7	(20)	3280	"	"
Au 8	(20)	3281	"	"
Au 9	(18)	3282	"	"
Au 10	(20)	3283	"	"
Au 11	(20)	3284	"	"
Au 12	(20)	3285	"	"
Au 13	(8)	3286	"	"
Au 14	(6)	3287	"	"
Au 15	(20)	3288	"	"
Au 16	(16)	3289	"	"
Au 17	(10)	3290	"	"
Au 18	(10)	3291	"	"
Au 19	(12)	3292	"	"
	(315)			

The owner and operator for all claims is:
Canadian Nickel Co, Ltd.
80 - 10551 Shellbridge Way
Richmond, British Columbia
V6X 2W8

3. Property History

The claims were staked on the basis of a geological evaluation that suggested that the Yanks Peak area might be geologically and structurally analogous to the important past producing gold mines around Barkerville and Wells which lie approximately 25 kms to the north. Numerous small gold showings and gold occurrences are known in the vicinity of Yanks Peak. Good descriptions of these are given in publications by Lang (1936), Holland (1954) and Sutherland-Brown (1957).
4. 1981 Program Summary

A total of 163 man days was spent on the Au l-19 claims during the period June 30 - August 17, 1981. Work performed consisted of:
a) Geological mapping at a scale of $1: 15,840\left(1^{\prime \prime}=1 / 4\right.$ mile) over a total area of 7,875 hectares.
b) A total of 224 rock chip samples were collected and analysed for gold and arsenic. 57 of these were also analysed for silver and tungsten.
II. GEOLOGY

1. Regional Geology

Previous detailed regional mapping (Holland, 1954) which covered the northern portion of the Au claim block (roughly the area northwest of French Snowshoe Creek), suggested that the claims are entirely underlain by formations of the Cariboo Group of Late Proterozoic to Cambrian age. Table lists his proposed geological section.

Formation

Intrusive rocks

Upper Member

Middle
Snowshoe Member formation

Lower
Member
Basal
Member

Midas formation

Yanks Peak quartzite

Yankee Belle
formation

Cunningham
limestone

Lithology
Dykes of rhyolite porphyry, lamprophyre, diabase \& diorite.
Intrusive Contact

	Upper Member	Dark grey limestone, chlorite schist, black slate.
Snowshoe formation	Middle Member	Fissile, grey argillaceous quartzite; fissile, pinkishbrown weathering, sericitic quartzite.
	Lower Member	White to grey hard grit and quartzite, some feldspathic; interbeds of finer-grained argillaceous quartzite.
	Basal Member	Pea-pebble conglomerate, pancake conglomerate, or limestone conglomerate, grey gritty quartzite with argillaceous partings or thin argillaceous interbeds.
Midas formation		Grey to black silty quartzite, argillaceous schist \& slate with porphyroblastic ankerite, black fine-grained quartzite, grey sericitic argillaceous schist, ankeritic quartzite, and black limestone.
Yanks Peak quartzite		Grey to white, dense, fine-grained silicified quartzite, in places gritty or almost a pea-pebble conglomerate.
Yankee Belle formation		Light-grey to brown phyllite with interbedded quartzite, chlorite schist, characterized by absence of black silty quartzite \& at Yanks Peak by presence of numerous smokygrey quartz veinlets.
Cunningha limestone		Fine-grained, grey to black limestone largely bleached light grey to cream with thin chloritic interbeds in the upper 50 feet.

According to Holland, structure in the area is dominated by the Yankee Belle anticline, a large overturned fold structure whose southwest dipping axial plane lies just west of the summit of Yanks Peak. Formations as low in the sequence as the Yankee Belle formation are exposed in the core of the anticline. To the northeast of Yanks Peak, and extending for approximately 7 kms, he postulates a complex synclinorial structure characterized by repetitive, shallowly plunging anticlines and synclines which have the effect of exposing repeated bands of Midas and Snowshoe formation lithologies with the Midas formation being exposed in the cores of the anticlinal structures.

Older formations of the Cariboo Group, down to the Cunningham limestone are again exposed in the core of the major Cunningham anticline 12 kms northeast of Yanks Peak.

Struik (1981) has proposed radically different geological and structural interpretations of the regional geology. The major implication of these reinterpretations, as far as the Au claim block is concerned, is to cast considerable doubt on the correlation of rock units in the Yanks Peak area with the Cariboo group further to the east. Specifically, areas previously mapped as Snowshoe and Midas formations between Yanks Peak and Roundtop Mountain are now considered as being underlain by undifferentiated rocks of the Kaza group, and Cunningham, Black Stuart, and Guyet Formations which range in age from Hadrynian to Devonian.

Regional mineral exploration is focused on the search for deposits similar to the past-producing lode gold mines in the Wells-Barkerville area. These deposits are hosted by the same debatable complex of stratigraphic units that occurs between Yanks Peak and Roundtop Mountain. These deposits are traditionally referred to as occurring near the "Midas-Snowshoe contact."

2. Property Geology

A. Summary

Reconnaissance style geology was carried out at the scale of 1:15,840 by airphoto controlled pace and compass methods. Data were subsequently transferred on $1: 12,000$ scale enlargements of the relevant $1: 50,000$ topographic map (NTS 93A14W) (Figs. 3a, 3b). The objectives of the mapping were:
a. To define areas that might be stratigraphically analogous to the geology of the Wells-Barkerville area
b. To identify concentrations of auriferous quartz veins within such areas
c. To determine if any limestone horizons existed that might host auriferous carbonate "replacement" deposits.

17
A small area in claim Au was mapped at a scale of $1: 1000$. This area is outlined on Fig. 3a while the geology and geochemical results are compiled as Fig. 3c.

The geology of the portion of the property northwest of French Snowshoe Creek corresponds very well to the mapping by Holland. Areas adjacent to Yanks Peak, exposed in the core of the Yankee Belle anticline, were not traversed in detail but the geology appears to conform to his descriptions of the Yanks Peak and Yankee Bell formations. The main areas of interest, northeast and southeast of Yanks Peak, are underlain by units equivalent to his "Midas" and "Snowshoe" formations and these areas are mapped as such while realizing that these formational units may not correspond to the Midas and Snowshoe formations as defined further to the east by Struik.

B. Lithology

i) Areas underlain by the "Yankee Belle" and "Yanks Peak" formations were not traversed in detail but those outcrops that were seen agree with the descriptions of Holland. These descriptions are abstracted from his 1954 report. The area of outcrop of those formations as shown on Figs. 3A and 3B is taken from his map.

Yankee Belle:

Near Yanks Peak the Yankee Belle formation consists dominantly of grey silty quartzites, grey argillaceous and sericitic schists, and lesser amounts of grey quartzite. On the trail from the Nidas claims to the Yankee Belle camp a characteristic rock is a light-grey brownish-weathering quartzite, thinly laminated with grey silty quartzite and argillaceous schist. An almost complete section is exposed in the canyon on French Snowshoe Creek downstream from where the Yanks Peak quartzite crosses the creek at J. Sockett's mineral showing. The rocks are fairly uniform and are predominantly dark-grey fine silty quartzite, and argillaceous schist and slate. They have light-coloured laminations as much as an eighth of an inch thick which may be either ankerite or quartz-ankerite veinlets parallel to the schistosity. In the upper part of the canyon and near the Yankee Belle adit the rocks contain scattered pyrite cubes as much as half an inch across. As a general rule, the rocks weather to a light brown except on the main road below Snarlberg, where outcrops of grey slates and grey slaty argillaceous rocks are not unlike some members of the Midas formation. On the slopes of Yanks Peak above the Yankee Belle camp, the Yankee Belle rocks contain numerous smoky-grey quartz veins and lenticles, of which some crosscut the foliation and some are parallel to it. This smoky vein quartz is exceedingly common and appears to be restricted to the Yankee Belle formation and the overlying Yanks Peak quartzite.

Yanks Peak:

The Yanks Peak quartzite is an essentially uniform quartzite, medium to dark grey in colour but in most places light grey to bone white on weathered surfaces. The formation in places has thin interbeds of dark slaty material which increase in number toward the Yankee Belle and Midas contacts. At its base the quartzite in several places show a noticeable coarsening to gritty material or to a pea-pebble conglomerate. The coarse material is cross-bedded with a small angle of truncation of the beds. It is possible that the cross-bedding is more widespread but is masked by the general silicification that the formation has undergone. In some places the rock appears almost like vein quartz. At Yanks Peak the formation is crossed by numerous smoky-grey quartz stringers like those in the underlying Yankee Belle formation.
ii) Rocks classified as "Midas" formation consist of variably carbonaceous shales, siltstones and fine sandstones and are characterized by their general dark grey to black colour. Variable quantities of brown-weathering ankeritic carbonate metacrysts and cubic pyrite are commonly present.

Major outcrop areas of "Midas" 1ithologies were encountered; a) in an arcuate belt around the east side of Yanks Peak which appears to pinch out about 2 kms south of French Snowshoe Creek, and b) as tectonic or stratigraphic intercalations of various sizes within larger areas of "Snowshoe" lithology. Because of poor outcrop and lack of facing directions, it is uncertain whether the distribution of "Midas" lithologies is due to folding as suggested by Holland or simply reflects stratigraphic occurrences of lenses of "Midas" within the "Snowshoe".
iii) "Snowshoe" formation lithologies, consisting of fine to medium grained arkosic sandstones with rare beds of pebble conglomerate, are interpreted to underlie most of the property. Disseminated anhedral pyrite and rusty weathering ankeritic carbonate are common but not to the same extent as in "Midas" formation rocks. Best exposures of these rocks occur in a belt trending northeast-southwest through claims Au 12, 16, 17, 18 and 19. Outcrop on the southern half of the claim block is poor, even in deeply incised streams.
iv) Limestone: Only three exposures of sedimentary carbonate were mapped on the claims. Two of these, on claims Au 12 and 17, appear as thin interbeds within typical "Snowshoe" sandstones but may occur at approximately the same stratigraphic horizon. The third exposure is in an area of very limited outcrop in claim Au 1.
v) Felsic intrusions: Two small exposures of fine grained felsite were mapped on claim Au 16. Whether these represent sills or dykes could not be determined.
vi) Quartz + Carbonate Veins: Veins of various sizes and consisting of various proportions of quartz and ankeritic carbonate are ubiquitous throughout the claim block and are present in all formations. There appears to be no preferred orientation for these veins except for a concentration that strikes N 600 E and has sub-vertical to vertical dips. Fig. 4 shows a graphic presentation of poles to quartz veins.

Small quantities of pyrite are commonly present in these veins, galena is less abundantly present while sphalerite in trace quantities is only sporadically present. Visible gold was not noted in any quartz vein examined. There appears to be no correlation of anomalous gold content with vein orientation nor with sulphide content of quartz veins.

AU CLAIMS
STEREOGRAM OF POLES TO QUARTZ VEINS CARIBOO PROJECT BRITISH COLUMBIA

C. Structure

Because of the generally poor exposure and lack of good marker horizons, the structure of the claim block is not interpretable in any detail. Observations suggest that bedding is essentially parallel to a well-developed $\mathrm{N} 30^{\circ} \mathrm{W}$ trending foliation. A major antiformal structure which traverses the claim block parallel to this foliation is generally upright in character and may correspond to the Lightning Creek Axis of Sutherland-Brown (1957). Numerous local reversals of attitude probably correspond to minor, subsidiary, folds on the flanks of this major structural feature. Attitudes of minor folds suggest a gentle $10-15^{\circ}$ plunge to the northwest.

Major faulting was not observed, but a possible l km left-lateral offset in the position of the Lightning Greek antiformal structure suggests that a major northeast-southwest cross fault may exist.
III. ROCK GEOCHEMISTRY

During the course of mapping, 224 rock chip samples of quartz veins and the various formational units were collected and analysed for gold and arsenic. Of these, 57 samples were also analysed for silver and tungsten. All analytical work was performed by:

Kamloops Research and Assay
2095 West TransCanada Highway
Kamloops, British Columbia
V1S 1A7

Results and analytical methods are compiled as Appendix 1 and the results shown on Figures $3 a$ and $3 b$. Descriptions of the various samples are compiled as Appendix 2.

Emphasis was placed on evaluation of quartz veins and upon sulphide bearing specimens of the various host lithologies. Samples which returned assays of 50 ppb gold or greater are considered anomalous. Clusters of such anomalous samples or isolated samples assaying greater than 100 ppb gold may be worthy of follow-up. Areas identified as such are:

1. A cluster of samples with values up to 200 ppb located in claims Au 10 and 13 around the switchbacks at Snarlberg.
2. A group of samples with values up to 350 ppb scattered throughout the west half of Claim Au 3.
3. An isolated erratic quartz vein sample from Pine Creek in Glaim Au 6 which assayed 5020 ppb.
4. A cluster of samples assaying up to 100 ppb from the rock gorge in French Snowshoe Creek below Snarlberg in Claim Au 10.
5. Isolated values of 570 ppb in claim $\mathrm{Au} 18,620 \mathrm{ppb}$ in claim Au 16 , and 130 ppb in Au 5.
6. A cluster of values up to 1000 ppb from the detail area in the south half of claim Au 17.

All samples were analysed for arsenic to determine if it could be used as a pathfinder element. Arsenides were not identified in the field and the highest assay value obtained was 100 ppm . No obvious correlation exists between gold and arsenic assays and it is concluded that arsenic does not act as a useful pathfinder in this area.

Samples were randomly selected for silver and tungsten analysis. A cluster of anomalous silver assays ($\mathrm{Ag}>1.0 \mathrm{ppm}$) occurs in the area around Snarlberg and appears to coincide with an area of galena bearing quartz veins. Tungsten values were all below the detection limit of 4 ppm . The coincidence of anomalous gold and silver values in the area around Snarlberg suggests that silver might be a useful indicator element.

IV. CONCLUSIONS

Reconnaissance geological surveys and rock chip sampling on the Au 1-19 claims during the 1981 field season has produced the following results and observations:

1. Numerous rock chip gold anomalies with values up to 5020 ppb were outlined which may be worthy of additional work.
2. Most of these anomalies are associated with quartz \pm ankerite veins in "Midas" or "Snowshoe" formation lithologies. Most veins are sulphide-free. When present, pyrite is usually the most common followed by galena and rarely by sphalerite.

Weak gold anomalies are present in pyritic host lithologies.
3. Arsenic, silver and tungsten were evaluated as pathfinder elements for gold. There is no correlation between gold and either arsenic or tungsten. One area in claims $A u 10$ and 13 showed a spatial relationship between gold and silver, probably caused by the presence of gold in galena bearing quartz-ankerite veins.
4. Because of the generally poor outcrop, a combination of soil geochemistry, humus geochemistry and drift prospecting is suggested as the most suitable approach for the next stage of exploration.

Note: Costs for labour, personnel expenses, report preparation and miscellaneous costs are itemized below for the entire Au 1-19 claim block. They have then been distributed between the "Au North", "Au Centre" and "Au South" groups on the basis of the percentage of man-days worked in each group as follows:

Au North	33.8%
Au Centre	27.6%
Au South	29.4%
Other	9.2%

Labour
E. Pattison Aug. 7-17; 11 days © 216 276
T. Jones July $2,3,7,9,14,24-31$, Aug. 1, 5-9, 11-14, 25 days @ 145 3,625
S. Simigian July 1-5, 7,9,14, 24-31, Aug. 1-17; 33 days @ 90 2,970
C. Dionne July 1-5, 7,9,14, 24-31, Aug. 1-17;

30 days @ 71 2,130
D. Mossey

Aug. 1-17; 17 days @ 63
1,071
S. Harrigan

Aug. 1-17; 17 days @ 85
1,445
D. Magnuson

July 1-5, 7, 24-31, Aug. 1-9, 11-17;

30 days @ 60	$\underline{1,800}$
163 man days	15,417

Personnel Expenses
Food and allied expenses - 163 man days @ 10.30 1,680
Miscellaneous Exploration Costs
Equipment and Supplies $\quad 1,651$
Communications Expense 400
Freight 211
Report Preparation
Report writing; E. Pattison - 10 days @ 216 ,160
Drafting: H. Humphreys- 10 days @ 66
$\underline{-}$

Labour
33.8% of 15,417
Personnel Expenses
33.8% of 1,680
Miscellaneous Expenses
Expl. Equipment \& Supplies
33.8% of 1,651
Communications Expense 33.8% of 400
Freight
33.8% of 211
Report Preparation
Report writing - E. F. Pattison - 33.8% of 2,160 730
Drafting - H. Humphreys - 33.8\% of 660 223 $953 \quad 953$ $953 \quad 953$
Transport
Helicopter Bell 206, $1.0 \mathrm{hrs}$. @ 480 (incl. fuel) 480
Fixed Wing 1.4 hrs . @ 194 (incl. fuel) 213
Trucks \& Fuel
767
1,460
1,460
Analytical Expenses

Sample preparation	99 @ 2.50		247
Au Geochem	99 @ 5.25	520	
As Geochem	99 @ 3.00	297	
Ag Geochem	$19 @ 1.75$	33	
W Geochem	$19 @ 4.00$		76
			1,173

1,173
Total Expenditure Au North Group

568

558
135
71
764
764
.
Drafting - H. Humphreys - 33.8\% of 660 - 223
10,128

Labour
27.6% of $15,417 \quad 4,255$
Personnel Expenses
27.6% of $1,680 \quad 464$
Miscellaneous Expenses
Expl. Equipment \& Supplies
Communications Expense
Freight

27.6%	of	1,651
27.6%	of	400

465 27.6% of 400 27.6% of 211

110
58
633
633
Report Preparation
$\begin{array}{lllll}\text { Report Writing - E.F. Pattison }-27.6 \% \text { of } & 2,160 & 596 \\ \text { Drafting } & \text { - H. Humphreys } & 27.6 \% \text { of } & 660 & 182 \\ & & & 778\end{array}$
778
Transport
Helicopter Bell 206, 2.1 hrs. @ 480 (incl. Fuel) 1,008
Fixed Wing, $1.1 \mathrm{hrs}$. @ 194 (incl. fuel) 213
Trucks and Fuel $\quad 627$
$1,848 \quad 1,848$
Analytical Expenses
Sample preparation 66 @ 2.50 . 165
Au Geochem 66 @ $5.25 \quad 346$
As Geochem 66 @ 3.00 198
Ag Geochem 18 @ 1.75 31
W Geochem 18 @ 4.00 72 812 812

8,790

Labour

$$
29.4 \% \text { of } 15,417
$$

Personnel Expenses

$$
29.4 \% \text { of } 1,680
$$

Miscellaneous Expenses

$\begin{array}{llrrr}\text { Expl. Equipment \& Supplies } & 29.4 \% \text { of } & 1,651 & 485 & \\ \text { Communications Expense } & 29.4 \% \text { of } & 400 & 118 & \\ \text { Freight } & 29.4 \% \text { of } & 211 & 62 & \\ & & & 665 & 665\end{array}$
Report Preparation

Report Writing - E. F. Pattison	29.4% of 2,160	635			
Drafting	- H. Humphreys	29.4% of	194		
			829	.	829

Transport
Helicopter Bell 206, 5.1 hrs. @ 480 (incl. fuel) 2,448
Fixed Wing 1.5 hrs . © 194 (incl. fuel) 291
Trucks \& Fuel
$\frac{667}{3,406} \quad 3,406$

Analytical Expenses

Sample Preparation	22 @ 2.50	55	
Au Geochem	22 @ 5.25	115	
As Geochem	22 @ 3.00	66	
Ag Geochem	6 @ 1.75	10	
W Geochem	6 @ 4.00	24	
		270	270
			10,197

Other Expenditures on Au Claims

Labour
9.2% of 15,417
418

Personne1

9.2% of $1,680 \quad 155$
Miscellaneous Expenses
Expl. Equipment and Supplies
9.2% of $1,651 \quad 152$
Communications Expense
9.2\% of 400

37
Freight 9.2% of 21119

Report Preparation

$\begin{array}{lllrl}\text { Report writing } & 9.2 \% \text { of } 2,160 & 199 & \\ \text { Drafting } & 9.2 \% \text { of } & 660 & 61 & \\ & & & 260 & 260\end{array}$

Transport

Trucks 209

Analytical Expenses

Sample Preparation 38 @ $2.50 \quad 95$
Au Geochem 38 @ 5.25147
As Geochem 38 @ 3.00114
Ag Geochem 18 @ 1.75 31
W Geochem $\quad 18$ @ 4.00
72

$$
\begin{equation*}
459 \tag{459}
\end{equation*}
$$

Total Other Expenses on Au Claims 2,709

Au North	10,128
Au Centre	8,790
Au South	10,197
Other	2,709

REFERENCES

Holland, S. S., (1954); Geology of the Yanks Peak - Roundtop Mountain Area, Cariboo District, British Columbia. B.C. Department of Mines, Bulletin 34.

Lang, A. H. (1936); Preliminary Report, Keithley Creek Map Area, Cariboo District, British Columbia. G.S.C. Paper 36-15.

Struik, L. C. (1981); G.S.C. Open File Map 781.
Struik, L. C. (1981); A re-examination of the type area of the DevonoMississippịan Cariboo Orogeny, Central British Columbia. Canadian Journal of Earth Sciencie, V. 18, No. 12, pp. 1767-1775.

Sutherland-Brown, A., (1957); Geology of the Antler Creek Area, Cariboo District, British Columbia. B.C. Department of Mines, Bulletin 38.

CERTIFICATE

I, Edward F. Pattison, of Naughton, Ontario, do hereby certify that:

1. I am a Fellow of the Geological Association of Canada and a Member of the Mineralogical Association of Canada.
2. I am a graduate of McGill University, Montreal, P.Q. B.Sc. 1963, M.Sc. 1965 (Geological Sciences).
3. I have practiced my profession as an exploration geologist since 1968.
4. This report is based on my personal knowledge of the district, and my direct supervision of the work described in this report.

Edward F. Pattison
February 10, 1982

APPENDIX 1

ROCK GHIP GEOCHEMICAL ASSAY RESULTS

KAMLOOPS
 RI EARCH \& ASSAY LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

2095 WEST TRANS CANADA HIGHWAY - KAMLOOPS B.C.
VIS IA7
PHONE: (604) 372-2784 - TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Canadian Nickel Company Ltd.
80-10551 Shellbridge Way
Richmond, B.C.
V6X 2W8
CARIBOO PROJECT - Au CLAIMS

ald NO .	IDENTIFICATION	Plob	Pp)In As		KRal NO .	identification	Ppb Au	Pipili	
6	030306	15	100						
7	030307	5	5						!
8	030308	10	14						
9	030309	15	10						
10	11×030310	20	7						
1 C	RX030311	40	4	Fu	31	RX037283	20	3	Δ_{4}
2	RX030312	35	8	!	32	RX037284	15	4	.
3	RX030313	5	8		33	RX037285	20	2	
4	RX030314	20	11		34	RX037286	20	3	
5	RX030315	5	28		35	RX037287	10	7	
6	RX030316	15	11		36	RX037288	'15	3	
7	RX030317	L5	5		37	RX037289	25	L2	
8	RX030318	5	7		38	RX037290	1000	9	
9	RX030319	10	12		39	RX037291	35	3	
10	RX030320	15	4		40	RX037292	5	8	
11	RX030321	15	7		41	RX037293	5	3	,
12	RX030322	L5	3		42	RX037294	L5	3	
13	RX030323	15	3		43	RX037295	15	5	
14	RX030324	15	3		44	RX037296	65	3	
15	RX030325	5	4		45	RX037297	340	4	
16	RX030326	15	4		46	RX037298	35	5	2
17	RX030327	L. 5	7		47	RX037299	30	3	

61	RX 037257	15	-	-	3				
62	037258	15	-	-	L2				
63	037259	45	-	-	3				
640	RX 037260	45	-	-	14				
65	037261	40	-	-	3				
66	037262	45	-	-	2				
67	037263	35	-	-	4				
68	037264	30	-	-	3				
69	037265	45	-	-	3				
70	037266	35	-	-	2				
71	037267	40	-	-	3				
72	037268	40	-	-	6				
73	037269	35	-	-	3				
74	RX 037270	25	-	-	4				
75	037271	25	-	~	3				
76	037272	40	-	-	3				
77	037273	45	-	-	3				
78.	RX 037274	35	-	-	L 2				
18	RX030328	10	6		48	RXU37300	35	3	
19	RX030329	10	11		49	RX042462	90	5	
20	RX030330	570	76		50	RXU42463	20	7	
21	RX030331	10	43		51	RX042464	15	8	
22	RX030332	20	10		52	RX042465	10	2	
23	RX037275	20	20		53	RX042466	15	B	
24	RX037276	25	6		54	RX042467	10	3	
25	R×037277	10	L2		55	RX042468	105	54	
26	RX037278	20	3		56	18042469	110	20	
27	RX037279	25	5		57	RX042470	50	7	
$28 \bigcirc$	RX037280	25	3		58	RX042471	45	5	
29	RX037281	15	3		59	1 RXU42472	25	15	!
30	R×037232	20	4]	60	18×042473	180	9	1

NO	IDENUFLLATLON	$A q$	1		avicing	Welviolum	A	W	il
		ppm	ppm		31	RX037308	7008 .8	1.4	
				-	32	RX037313	1.4	14	
3	- RX030306	.3	14		33	R×037318	. .2	14	
4	RX030310	.3	$L 4$		34	RX037323	1.4	L4	
5	RX0'30332.	. 4	L4		35	RX037328	. 3	1.4	
6	RX030337	. 4	L4		36	RX037330	2.0	14	
7	RX030342	. 6	14		37	RX037333	110.0	L4	
8	R×030347	.3	1.4		38	RX037341	. 8	14	
9	RX030352	. 7	14		39	RX037342	40.0	14	
					40	RX037343	2.2	14	
					41	RX037344	10.7	14	
					42	RX037345	2.2	1.4	
					43	RX037346	.7	14	
					44	RX037347	3.4	14	
					45	RX037348	.2	14	
\bigcirc					46	RX037349	.1	L4	
17	RX037234	.2	14		47	RX037350	. 1	L4	
18	RX037239	. 3	1.4		48	RX037351	. 9	14	
19	RX037244	. 3	14		49	RX037352	.2	1.4	
20	RX037248	. 2	L4		50	RX037353	1.2	14	
21	RX037253	. 4	14		51	RX037354	. 5	L4	
22	R×037259	.1	14		52	RX037359	.2	14	
23	RX037264	.1	1.4		53	RX037364	. 1	14	
24	R8037269	. 3	14		54	RX037369	. 8	14	
25	RX037274	. 1	L4		55	RX037373	. 4	L4	
26	RX037279	.2	14						
27	RX037284	.1	14						
28	RX037290	. 2	14						
	RX037297	.3	14						
30	RX037302	. 2	L4						

APPENDIX 2

ROCK CHIP SAMPLE DESCRIPTIONS

							\square			
TRAVERSE N-IMBER				PROJECT CARIBOO PM ${ }^{\text {C }}$ [G			(s) Sandra Simi gian			
N.T.S.				AREA Au CLAIMS ${ }^{\text {A }}$ - ${ }^{\text {a }}$			August 1981			
SAMPLE	SAMPLE TYPE			SAMPLE LENGTH, WIDTH, AREA	LATITUDE, LONGITUDE and/or U.T.M.	SAMPLE OESCRIPTION	RESULTS (p.pm. / \%/oz.per ton)			
NUMBER	RX Rock, Talus	$\begin{aligned} & \text { Sx } \\ & \text { Stream } \\ & \text { Silt, } \\ & \text { Soil } \end{aligned}$	Grab, Chip, Channel			Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb	As ppm	Ag ppm	W ppm
RX037304	Otcp.		grab			qtz vein 4 m wide swarm bearing 63°	15	3		
305	1		${ }^{1}$			qtz vein in sandstone	75	4		
RXO30311	"		II			atz vein I m-wide bearing 45°	40	4		
-372	"		11			gtz vein $1 . / 2 \mathrm{~m}$ wide bearing 58°	35	8		
313	"		${ }^{17}$			2 m wide vein bearing 82°	5	8		
314	"		1			qtz area 30 cm boulders	20	11		
315	11		11			o/c of qtz bearing 10^{0} I m wide	5	28		
316	11		"			atz vein bearing $56^{\circ} 1.1 / 2 \mathrm{~m}$ wide	15	12		
317	${ }^{11}$		1			20 cm wide qtz vein bearing 58°	<5	5		
318	11		7			qtz vein bearing $134^{\circ} 1 \mathrm{~m}$ wide	5	7		
319	11		13			15 m-trench bearing 100°	10.	12		
320	1		11			atz vein bearing $90^{8} 2 \mathrm{~m}$ wide	75	4		
321	1		11			2 m wide trench w atz lots of gossan	15	7		
322	11		11			4 cm wide qtz vein	≤ 5	3		
323	${ }^{11}$		11			qtz rein in sandstone	75	3		
BX030333	11		"			¢tz_layer beaxing $125^{\circ} /$ vert	20	4		
334	II		11			4 cm atz vein in boulder	15	10		
335	\%		11			qtz vein boulder w vags of gossan	20	10		
336	11		11			2 m wide qtzy breccia	30	60	. 4	<4
337	"		"			gtz hollder. Wi gossaned vages	20	2		
338	11		1			qtz boulder w gossan \& py	20	90		
339	17		11			qtz boulder w gossaned vugs	30	4		
340	1		11			Lense-of bluish-qtz-W-40\% grasan	20	<2		
RX030347	$1:$		11			sandstone W gossaned l ayers.	30	6	. 3	<2
RX037308	11		${ }^{11}$			atz boulders in black slate	60	7	. 8	<2
309	11		π			qtz boulder some rusty patches	60	28		
310	17		1			qtz wovldexs-w lineated-gossan	80	4		
31.	12		1			$1 / 2 \mathrm{~m}$ houlder of l (z (white) gossan	40	2		
312	II		"			boulder of 80% gossaned sandstone	80	100		
RX037367	11		"			4 cm wide dtz vein	40	<2		
RX037313	1		11			gtz vein bearing $152 /$ vert -4 cm	100	4	1.4	<4
314	1		11			lense of gtz in shale	40	7		
315	11		"			$62^{\circ} \mathrm{qtz}$ vein $4 \mathrm{~cm}-2 \mathrm{~cm}$ wide	60	7		

TRAVERSE NUMBER

SAMPLE NUMBER	SAMPLE TYPE		
	RX Rock, Taius	SX Stream Silt, Soil	Grab, Chip, Channel
RX037247	RX		grab
248	11		1
249	17		1
250	11		11
251	11		11
252	11		11
253	11		4
254	11		11
255	11		11
256	11		1
257	11		It
258	1		\%
259	1		"
260	13		11
26.1	11		17
262	11		1
263	11		I'
264	1		II
265	11		1
266	\because		"
267	17		11
RXO42462	1		1
463	7		1
464	"		11
465	I'		11
466	11		11
467	t		"
468	1		I
469	1		1
470	11		${ }^{11}$
RX037301	1		II
302	17		17
303	11		${ }^{17}$

PROJECT ___ CARIBOO PM Ps
An_CLATMS
AREA
SAMPLE
LENGTH,
WIDTH,
AREA

LATITUDE, LONGITUDE and/or U.T.M.

SAMPLE DESCRIPTION
GEOLOGIST(S) ___Sanara_Simigian

\qquad -
Rock type, lithology, character of soil, stream silt, etc.
L.T.M.

TRAVERSE NUMBER
CARIBOO P.M.
GEOLOGIST(S)
S. Harrigan
N.T.S. $\quad 93$ A-I4

PROJECT
Au CLAIMS
date
August 1981

SAMPLE	SAMPLE TYPE			SAMPLE LENGTH, WIDTH, AREA	LATITUDE, LONGITUDE and/or U.T.M.	SAMPLE DESCRIPTION	RESULTS (p.pm. / \%/oz.per ton)						
NUMBER	$\begin{aligned} & \frac{\mathrm{RX}}{\text { Rock, }} \\ & \text { Talus } \end{aligned}$	$\begin{aligned} & \underline{\text { SX }} \\ & \text { Stream } \\ & \text { Silt, } \\ & \text { Soil } \end{aligned}$	Grab, Chip, Channel			Rock type, tithology, character of soil, stream silt, etc. Formation Mineralizotion, efc.	Au ppb	A_{s} ppm	Ag ppm	$\begin{aligned} & w \\ & p p n \end{aligned}$			
RXO42488	Otcp.		grab			Quartz vein limonite stained	40	5					
RX030341	"		"			Green staining (Cr?) River deposit	20	<2					
-342	"		"			Quartz lens in Snowshoe \&. Midas limonite	20	14	. 6	<4			
						staining							
343	"		1			Quartz lens limonite stained-clean white mnv	20.	8					
						lim.							
344	Talvs		"			Quartz float limonite stained river deposit	20	4					
345	-11		1			Quartz float green staining (Cr)?	20	2					
RX037357	1		"			Quartz float - dark mnv limonite staining	40	<2					
-358	"		"			Quartz float talings from mine	40	4					
359	Otcp.		1			Quartz vein - limonite staining along fractur	30	4	. 2	<4			
360	"		"			Quartz vein in float limonite staining	30	7					
361	"		"			Quartz vein limonite staining dirty	40	<2					
362	Talvs.		"			Quartz float - limonite staining dirty	40	<2					
363	Otcp.		"			Quartz vein limonite staining dirty	30	2					
364	Tiatus.		11			Quaxtz float mnv hematite, lim staining	4.0	<2	. 1	<4			
365	1-3.0.0.		"			Quartz float very dirty, kaolinized	40	<2					
366	"		"			Quartz float very dirty, kaolinized	20	<2					
RX042495	11		"			Quartz float, limonite staining	40	4	. 3	<4			
496	Otcp.		11			Quartz vein, limonite stained (hematite	40	3					
						staining?)							
RX030349	"		"			Midas schist, f.g. graphitic (ate?)	15	2					
RX030350	"		"			Midas quartzite schist f.g. graphitic py	50	6					
357	"		"			Midas quartzite schist.f.g graphitic py	70	2					

TRAVERSE NUIMBER
93 A 14 W \& 11 W

SAMPLE	SAMPLE TYPE			SAMPLE LENGTH, WIDTH, AREA
NUMBER	$\begin{aligned} & \frac{\mathrm{RX}}{\mathrm{Rock}}, \\ & \text { Talus } \end{aligned}$	$\begin{aligned} & \frac{\text { SX }}{\text { Siream }} \\ & \text { Silt, } \\ & \text { Soil, } \end{aligned}$	Grob, Chip, Channel	
RXO42443	Otcp.		grab	
444	"		"	
445	11		1	
446	"		11	
447	"		"	
448	11		1	
449	1		11	
450	1		11	
RX030307	Float.		\pm	
308	Otep.		"	
309	II		"	
310	11		"	
RX030301	Rock		"	
-302	Float		"	

PROJECT CARIBOO PM'S
GEOLOGIST(S) T.A. Jones
AREA Au_CLAIMS
DATE _ August 1987

LATITUDE,	SAMPLE DESCRIPTION	RESULTS (p.pm. $/ \% /$ oz.per ton)						
LONGITUDE and/or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	$\left.\begin{aligned} & \mathrm{oz} / \mathrm{t} \\ & \mathrm{Au} \\ & \mathrm{ppb} \end{aligned} \right\rvert\,$	As ppm	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{ppm} \end{gathered}$			
	Felsic volcanic dike (Foreign)	35	4					
	Qtz, Vein, Nr Midas Adit (Foreign) (Gal?)	95	6	. 4	<4			
	Ankeritic qtz. Midas dump (Foreign)	45	2					
	White atz. (Py?) Midas Thmp (Foreign)	25	3					
	White atz. No Py Midas Dumo (Foreign)	35	3					
	Qtz. W much rust - filled vogs (Foreign)	330	2	1.1	<4			
	Qtz. W much sulfide, saddle shaft (Foreign)	86\%\%	29	10.3	64			
	Qtz. Py, Tim Dump (Foreign)	1800	13	. 7	≤ 4			
	Rusty atz, flozat	5	5					
	Clean (Minor Py only) gtz, vuggy, vein.	10	14					
	Rusty qtz. W. much Py, en echelon 030308	15	10					
	Fractured qtz. W Py, from 030308 vein	20	7	. 3	<4			
	Pegmatitic mat'l, qtz. \& K-Spar, lenses	40	3	6	≤ 4			
	Massive white atz, with some light mica	40	3					
	-							
	.							

TRAVERSE N:IMBER

PROJECT CARIBOO PM ${ }^{1}$ S
AREA Au CLAIMS

GEOLOGIST(S)
Camile Dionne
DATE
SAMPLE
LENGTH,
WIDTH,
AREA

LATITUDE,	
LONGITUDE and/or U.T.M.	Ro

 GEOLOGY a GEOCHEMICAL SURVEY $\left.\right|^{\text {sete }} /{ }_{3 c}^{\text {nead }}$

