ASSESSMENT REPORT ON
DIAMOND DRILLING AND GEOLOGICAL MAPPING
on the

SILVER FOX AND MOLLY BLUE
MINERAL CLAIMS

by
D.A. Bending

NTS 93M/14W
$127^{\circ} 25^{\prime} \mathrm{W} 55^{\circ} 44^{\prime} \mathrm{N}$
$\$$
situated on Goathead Creek in the Omineca Mining Division
owned by
TEXASGULF CANADA LTD. (now KIDD CREEK MINES LTD)
work by
TEXASGULF INC. \&
KIDD CREEK MINES LTD.
0
INTRODUCTION 1
Location, Access, Terrain and Climate 1
History 1
Property Status 4
Summary of Work Completed, 1981 6
1981 DRILLING
K-1-81 9
K-2-81 9
GEOLOGY 10
Regional Geology 10
Property Geology 10
Sedimentary Rocks 10
Igneous Rocks 11
Granodiorite porphyry 11
Granodiorite dykes 11
Brown-pink aplites I and II 13
Pale grey aplites 13
Pink and buff felsic dykes 13
Irregular mafic intrusives with abundant inclusions 13
Intermediate and mafic dykes 14
Contact Effects 14
Veins, Alteration and Mineralization 15
Pervasive, light green alteration 16
Pink pegmatitic veins 16
Early potassic veins 16
Grey quartz $\left(\mathrm{MoS}_{2}, \mathrm{CuFeS}_{2}\right)$ veins 17
West Ridge veining and alteration 18
Deep pink potassic veins 18
Sheeted veins 18
Vuggy quartz, K-feldspar, pyrite veins 19
Large vuggy quartz veins 19
Argillic alteration 19
Structure 19
Intrusive rocks 20
Early potassic veins 20
Grey quartz $\left(\mathrm{MoS}_{2}, \mathrm{CuFeS}_{2}\right)$ veins 20
Other veins 21
Faults 21
GEOCHEMISTRY 22
DISCUSSION 22
BIBLIOGRAPHY 25
APPENDICES
APPENDIX 1 Assays and Geochemical Results from Drill holes
APPENDIX 2 Summary Geological Logs for Diamond Drill holes
APPENDIX 3 Sterographic Plots of Structural Data.
APPENDIX 4 Statement of Expenditures
APPENDIX 5 Statement of Qualifications4

LIST OF ILLUSTRATIONS

PAGE
Figure Title
1 Location Map 2
2 Detailed Location Map 3
3 CTaim Map 5
4 Simplified Geological Map showing Drill Hole Locations 7$8 \quad$ Data Plot showing $\mathrm{MoS}_{2}, \mathrm{~F}, \mathrm{Mn}, \mathrm{Cu}$Distribution, DDH K-T $=81$in pocket
Geological Mapin pocket
Section showing DDH K-1-81in pocket
Section showing DDH K-2-81in pocket
9 Data Plot showing $\mathrm{MoS}_{2}, \mathrm{~F}, \mathrm{Mn}, \mathrm{Cu}$ Distribution, DDH K-2-81 in pocket
ε
TABLES
Table 1 Claim Administration Data 6
Table 2 Assay Intervals Greater than $0.1 \% \mathrm{MoS}_{2}$ 8
Table 3 General Paragenesis-Kisgegas Property 12

INTRODUCTION

Location, Access, Terrain and Climate
The Kisgegas molybdenite prospect is located in the Atna Range near the headwaters of Goathead Creek, 58 kilometres north of Hazelton, British Columbia (Figures 1 and 2).

Direct access to the property is by helicopter. Chartered helicopters are available in Smithers, 125 km to the south. Equipment and supplies can be flown from logged areas near the confluence of the Skeena and Babine Rivers, 15 km west, or from farms near Kispiox, 30 km southwest.

Regional topography is characterized by isolated peaks separated by broad wooded valleys. Peaks above 2000 metres are surrounded by snow and ice fields. Relief on the property is moderate to extreme. The showings occur in a north facing cirque between elevations of 1500 and 1600 metres. Local tree line is about 1300 metres.

The region has a cool temperate climate with moderate rainfall. Much of the property is covered by a small glacier. Snow on and peripheral to this glacier persists until late summer. Accumulation of snow does not begin until October, although sporadic snowfall can occur at higher elevations during most of the summer. History

The history of the property has been reviewed by DeLancey (1979). The property, originally known as the 0le Group, was held by Canex from 1961 to 1963. Initial exploration was focused on low grade Mo-Cu mineralization in rusty hornfels adjacent to a granodiorite stock.

ALIAX personnel observed higher grade Mo mineralization in a quartz vein stockwork in the stock and scheelite in adjacent skarns.
$1)$
Figure 2

Texasgulf lnc.			
LOCATION MAP			
MT. THOMLINSON \boldsymbol{a} KISGEGAS PEAK MO PROSPECTS			
WORK AY	ORAW	OATE	DANS MO
PR.D.	E.R.	5-10-79	
-.			

The Fog and Frost Claims were staked to cover these occurrences. During 1964, 1965 and 1966, Amax carried out progranmes of geological mapping, trenching, rock chip sampling and one diamond drillhole 453 metres deep (location shown in figure 4): Although the upper part of the hole was reported to contain molybdenite, the overall results were apparently not encouraging enough to warrant further work, and the property was allowed to lapse.

In 1977 John Bot, an independent prospector from Smithers, staked the Molly Blue Claim (Figure 3). He optioned the property to Texasgulf on May 16, 1979. P.R. DeLancey (see DeLancey, 1979) spent four days on the property in August, 1979. He produced a sketch map of the geology on a scale of 1:5000, reported the style of the molybdenite and scheelite occurrences, and noted the presence of high grade MoS_{2} in angular float near the edge of the glacier (location shown in Figure 4). He proposed a drill hole to test the apparent source of the mineralized float, and staked the Silver Fox Claim (4 units) to cover parts of the stockwork outside the Molly Blue Claim.

The general retreat of snow and ice between 1966 and 1979 provided better exposure than that previously available. Amax's sample location markings on rock faces three to five metres above the ice indicate a significant retreat of the glacier during these fourteen years.

On the afternoons of September 13 and 14, 1980, the author and assistant examined the showings. A summary of observations made during the brief examination was produced for assessment credit (Bending, 1981).

Property Status

The principal mineral occurrences are covered by the Molly Blue and Silver Fox claims (Figure 3). The Molly Blue Claim

was transferred to Texasgulf Canada Ltd. according to the terms of the option agreement signed on May 16, 1979 (Bill of Sale, September 27, 1979). The Silver Fox Claim is covered by terms of the option concerning peripheral ground. The Goat 1, 2, 3 and 4 Claims were staked in September 1981 to cover scheelite occurrences north and west of the Molly Blue Claim. The Goat 4 Claim and part of the Goat 1 Claim lie within the area of influence of the option agreement for the Molly Blue Claim, as shown in Figure 3. Fexasgulf Canada tetd. changed its name to Kidd Creek Mines Ltd. effective December 30, 1981.

TABLE 1
Claỉm Administration Data - Kisgegas Property

Claim	Units	Date Staked	Record Number
Molly Blue	8	June 16, 1977	624
Silver Fox	4	August 20, 1977	2118
Goat 1	20	September 4, 1981	4308
Goat 2	10^{2}	September 4, 1981	4309
Goat 3	6	September 4, 1981	4310
Goat 4	4	September 20, 1981	4311

Summary of Work Completed, 1981
The work done in 1981 consisted of construction of a base camp and drillsites, prospecting, geologic mapping on a scale of 1:2500 and 719.3 metres of $B Q$ diamond drilling in two holes.

The camp was prepared in July by a crew contracted from BEMA Industries. Texasgulf personnel began geological work and drillsite preparation August 22. Longyear personnel were on the property August 29, and drilling commenced August 37. Drilling progressed steadily, without significant delays, and continued until September 22. The drill was dismantled and demobilized September 23. The camp was winterized and all Texasgulf personnel demobilized on September 25.

Mineralized core was split, and all of the core was logged and photographed. Three metre sample intervals were assayed for MoS_{2}. The samples were grouped into fifteen metre composites and analysed for Cu, F, and Mn. The core is stored in camp.

Work Distribution
Most work was carried out on the Molly Blue and Silver Fox Claims. Two days of reconnaissance prospecting were done on the Goat Claims.

DRILLING

The purpose of the 1981 drilling programme was to test, at depth, the extension of the exposed mineralization and alteration. Two BQ diamond drill holes, totaliing 712.3 metres, were completed. The locations of these holes are shown in Figure 4, assays and analyses are listed in Appendix 1, summary geological logs are given in Appendix 2, and all 3 metre intervals with assays greater than 0.1% MOS_{2} are listed in Table 2.

TABLE 2
Assay Intervals with Greater than $0.1 \% \mathrm{MoS}_{2}$

Hole	Interval	Length(m)	\%MoS2
	$51.0-54.0$	3.0	0.143
K-1-81	$267.0-270.0$	3.0	0.125
K-1-81	$342.0-373.0$	33.0	0.193
including	$342.0-345.0$	3.0	0.152
	$345.0-348.0$	3.0	0.400
	$351.0-354.0$	3.0	0.179
	$354.0-357.0$	3.0	0.295
	$357.0-360.0$	3.0	0.145
	$360.0-363.0$	3.0	0.285
	$369.0-372.0$	3.0	0.409
	$108.0-111.0$	3.0	0.107

K-1-87
DDH K-1-81 was drilled to test the mineralized stockwork, beneath the glacier, for a possible source of the angular high grade molybdenite bearing float found near the west edge of the ice. Figure 4 shows the location of the holes and the float occurrences, and Figure 6 shows the rock types, veining, and alteration encountered. Hole K-1-81 was drilled at Az. $156^{\circ} /-50^{\circ}$, to a depth of 421.3 metres. It penetrated variably altered and mineralized granodiorite, and was stopped in fresh granodiorite with sparse quartz veins. Most of the hole contained scattered molybdenite along quartz veins, and as fine disseminations in narrow zones of potassic alteration. The best intersection averaged $0.193 \% \operatorname{MoS}_{2}$ across 33 metres at a depth of 342 to 375 metres. Within this intersection was a three metre section which assayed $0.409 \% \mathrm{MoS}_{2}$.

K-2-81
DDH K-2-81 (291.0 metres Az.225 $/-51^{\circ}$) was drilled (a) to test the interpretation that the angular high grade float. was locally deriyed talus and not transported by the glacier; and (b) to test the stockwork exposed along the West Ridge. The hole cut granodiorite, with local compositional variations from quartz monzonite to quartz diorite, and locally abundant felsic dykes. Figure 7 is a geological section showing the veining,alteration, and rock types encountered. The first 160 metres intersected a well developed quartz vein stockwork, with moderate to intense potassic alteration and widespread traces of MoS_{2}. . The best assay interval was 108.0 - 111.0 metres, with $0.107 \% \mathrm{MoS}_{2}$ across three metres. The quartz veining and alteration became progressively less abundant below 200 metres, and the hole was stopped in fresh, unmineralized granodiorite at 291.0 metres.

GEOLOGY

Regional Setting

The Kisgegas property lies within the intermontane structural belt, in the southeast corner of the Bowser Basin. Most of the region is underlain by argillites, siltstones and minor carbonates of the Jurassic to Cretaceous Bowser Lake Group. These are intruded by a northwest trending group of roughly contemporaneous granodiorite and quartz monzonite stocks called the Bulkley Intrusions. The Bulkley intrusions have radiometric apparent ages of 70 to 84 Ma . (Carter, 1976). The Kisgegas molybdenite and scheelite occurrences are related to one such Late Cretaceous granodiorite stock.

Property Geology

The geology of the property has been discussed by Delancey (1979) and briefly by Bending (1981). The known mineralization is within and peripheral to an elongate east - west trending stock 1500 metres long and 600 metres wide. Molybdenite, chalcopyrite, and pyrite occur in a weakly developed quartz vein stockwork and dis-, seminated in altered areas within the granodiorite. Pyrite, pyrrhotite, and lesser ammounts of scheelite, chalcopyrite and molybdenite, occur in hornfels near the eastern contact. Scheelite occurs in sparse veins and along fractures in fresh argillite, and in garnet - epidote skarn developed in calcareous beds near the granodiorite contacts.

Sedimentary Rocks

Although the Bowser Lake Group sedimentary rocks exposed in the area have not been mapped in detail, four distinct assemblages were recognized during the 1981 programme. An unknown thickness of argillite and siltstone is overlain by a fifty metre thick section of interbedded argillites and greywackes. This is overlain by an interval characterized by locally calcareous argillites interbedded with one to two metre thick limestone subunits. The
highest peaks are capped by massive chert pebble conglomerates. The only fossils found were pelecypod fragments in the limestones. Igneous Rocks

Granodiorite porphyry
The dominant igneous rock underlying the property is granodiorite, with local compositional variations that range from quartz diorite to quartz monzonite. The rock is generally medium grained, with 2 to 3 cm . zoned phenocrysts of pink potash feldspar, and 3-5 mm quartz subhedra ('quartz-eyes') in a groundmass of plagjoclase, minor orthoclase and biotite; some hornblende may also be present.

Where fresh, this rock is weakiy magnetic. Hornfelsed argillite inclusions occur along intrusive contact zones and are particularly abundant near the west end of the stock. Pyritic, biotite rich schlieren that probably represent assimilated argillite inclusions occur near intrusive contacts and occasionally in the central portion of the stock.

The chronology of the igneous rocks, veins and alteration is summarized in Table 3. The following discussions classify each type of dyke by composition, texture and position in this chronology, from oldest to youngest.

Granodiorite dykes
Some granodiorite dykes intruding argillite near the north contact are clearly contemporaneous with the stock itself, but others crosscut the granodiorite, and are slightly later. These dykes are similar in composition to the granodiorite but are finer grained. with textures varying from a medium grained ground mass with 2-3 cm. k-feldspar phenocrysts, to a very fine grained groundmass with phenocrysts smaller than 1 cm .

TABLE 3
GENERAL PARAGENESIS - KISGEGAS PROPERTY

Intrusive Rocks

(01dest)
Granodiorite Porphyry
Granodiorite Dykes

Brown-Pink Aplite Dykes I
Pale Grey Aplite Dykes

> Pink Pegmatitic Veins(rare)
> Early Potassic Veins $\left(\mathrm{MoS}_{2}\right)$

Brown-Pink Aplite Dykes II

Pink and Buff Felsic Dykes

Irregular mafic intrusives with abundant inclusions
Intermediate and Mafic Dykes veins
West Ridge Veining and Alteration
Deep Pink Potassic Veins (rare)
Sheeted Veins
Vuggy Quartz, K-Feldspar, Pyrite Veins
Large Vuggy Quartz Veins

Veins
Alteration

Pervasive, light green alteration

Pink K-feldspathization Pink K-feldspathization along selvages $1-2 \mathrm{~cm}$ thick

Thin pale green selvages
Silicification, potassic alteration
Dark pink
K-feldspathization
Weak pink K-feldspathization
Weak pink K-feldspathization None

Argillic and late green alteration

Brown-Pink aplites I and II
Many brown-pink finely crystalline dykes 0.3 to 20 cm . wide (generally 0.5 to 2 cm .) outcrop along the ridge west of the glacier, throughout hole K-2-81, and near the bottom of hole K-1-81. Occasionally these dykes contain 1-3 mm 'quartz-eyes'. These dykes are cut by the early potassic veins. A second generation of brown-pink aplite dykes (II) cut the early potassic veins.

Pale grey a.plites
Pale grey aplite dykes up to one metre thick are exposed along the West Ridge and in hole $\mathrm{K}-2-81$. They vary in texture from finely crystalline to porphyritic, and contain distinct'quartz-eyes' up to 5 mm in diameter.

Pink and buff felsic dykes
Pink (occasionally pale buff) aphanitic to medium grained felsic dykes cut the early potassic veins. These dykes vary from less than 2 cm . wide to irregular masses greater than five meters in width. The larger dykes are medium grained, with $3-4 \mathrm{~mm}$. 'quartz-eyes' in an equigranular groundmass of quartz and feldspar (dominantly potash feldspar).

As outlined in Table 3, several generations of yeins separate the previous? described intrusive events from later intermediate and mafic intrusives.

Irregular mafic intrusives with abundant inclusions
Several small exposures of mafic, fine grained intrusive rock with inclusions of fresh and altered granodiorite and felsite occur within the granodiorite stock. The bodies themselves are irregular in shape. They crosscut the common vein types. The exposures are adjacent to the 1965 Amax drillsite and adjacent to the west edge of the glacier along the West Ridge.

Intermediate and mafic dykes
One porphyritic dyke of intermediate composition is exposed along the West Ridge. This dyke cuts all veins and alteration, and is itself unaltered and weakly magnetic. One mafic porphyritic dyke is exposed along the West Ridge. It cuts all veins and alteration, contains finely disseminated pyrite, and is moderately magnetic. Contact Effects

The contact zone adjacent to the granodiorite generally lacks extensive metamorphism or intense deformation. Contact effects, where present, include drag folds, contact metamorphism, felsite dykes and pods, and small lenses of intense silicification. Contaminated border zones are locally present in the granodiorite.

The bedding of the sedimentary country rocks is generally subhorizontal and not affected by the stock, but along the north contact the bedding of the argillite has been locally deformed in response to the intrusion.

The argillites alter along intrusive contacts to form a hornfels zone that varies in thickness from less than 1 metre to several tens of metres. The hornfels contains disseminations, fracture fillings, and local irregular concentrations of pyrite, pyrrhotite and, in some cases,chalcopyrite, molybdenite, and scheelite. Limestone beds adjacent to intrusive contacts are altered to skarn with garnets, epidote, diopside, pyrite, calcite, and scheelite. No systematic sampling has been performed, but some float found in the cirque has been visually estimated to contain up to 2% scheelite. The extent of the skarn zones has not been determined. In most cases these contacts are not readily accessible due to extreme topography. Numerous one metre thick skarn beds are exposed in the headwall above the glacier; this is apparently the source of much of the mineralized skarn and hornfels float.

The north contact zone is locally characterized by the presence of numerous angular inclusions of argillite and granodiorite in tan felsite. This zone, which is 2-3 metres thick, has the superficial appearance of a breccia. The felsite crosscuts both argillite and granodiorite, with sharp contacts and narrow but distinct chilled margins.

The 'North Boundary Felsite' consists of a pale tan, sugary textured siliceous rock with diffuse feldspar relics and occasional traces of pyrite and molybdenite. The superficial appearance of this rock is of a felsic intrusive, but it is probably an alteration zone in the granodiorite. Gradational contacts separating fresh granodiorite porphyry from 'felsite' can occur within a single outcrop.

Veins, Alteration and Mineralization
Molybdenite and lesser scheelite mineralization occur in quartz veins cutting the granodiorite pyritic hornfels peripheral to the stock, and in garnet pyroxene skarn within calcareous beds adjacent to the intrusive contact. The principal focus of the 1981 programme was the quartz vein stockwork within the granodiorite.

The mineralogy and chronology of the veins and alteration types are summarized in Table 3. Eight types of veins, each categorized on the basis of structure, mineralogy, alteration, texture and paragenetic position, occur in the stock. Some of these vein types have uncertain temporal relationships. Several types of veins that show intense pink potassic alteration may be contemporaneous or otherwise closely related, but are herein separated for discussion. Pre-intrusive white quartz veins, present in the argillite country rocks, are not included in Table 3. Significant amounts of molybdenite occur in veins of two ages: the early potassic veins and grey quartz veins. These veins are separated in time by the brown-pink aplite
and pale grey felsite dykes. Traces of molybdenite occur in two younger vein types in some localities. These are called 'deep pink potassic veins' and the 'West Ridge veining and alteration'. Some vuggy quartz veins with K-feldspar contain minor pyrite.

Peryasive, light green alteration
Much of the granodiorite has undergone weak, pervasive alteration which produces a diffuse green colour. The green (sericitic?) alteration is the first hydrothermal event; it is crosscut by all veins and felsic dykes. This alteration destroys the weak magnetism present in the granodiorite. Traces of pyrite in biotite flakes, and finely disseminated chalcopyrite, are present where this green alteration is strongest. The north, west, and east fringes of the stock are less altered than the central area.

- Pink pegmatitic veins

Two pink pegmatitic veins are exposed in the cirque near the north contact. These 2-3 thick veins are composed of pink potash feldspar, minor quartz, traces of biotite and rare molybdenite. The margins of these veins display $1-2 \mathrm{~cm}$ selvages of pink potassic alteration.

Early potassic veins
The early potassic veins generally contain quartz, pyrite, K-feldspar, and minor molybdenite. They are characterized by pale pink 0.5-1 cm thick selvages of potash feldspathization, frequently accompanied by finely disseminated molybdenite and pyrite. The veins vary in thickness from less than one millimetre to a maximum of 3 centimetres. Fluorite, gypsum, stibnite and sphalerite are present in some early potassic veins in hole k-1-81.

In some short intervals of drill holes K-1-81 and K-2-81 the veins are so closely spaced that the potassic alteration appears pervasive. More commonly, the potassic selvages are separated by fresh granodiorite, and the intensely altered bands represent only five to ten percent of the rock.

In DDH K-2-87, the alteration mineralogy of the early potassic veins varies with depth. Near the collar the selvages are the characteristic pale pink K-feldspar zones. At a depth of about 100 metres the outer margins of the selvages are lined with 2-3 mm bands of pale green sericitic alteration. The relative proportions of these two types of alteration vary with depth so that at 250 metres the sericitic alteration is predominant.

The mineralogy of the potassic selvages varies with host lithology. This is best demonstrated by following an individual vein through different rock types. Most granodiorite alters to form pale pink selvages, while the more mafic intrusive phases alter to a green colour. The argillite country rocks alter to form prominent pale grey-green sericitic selvages l-2 cm thick.

Near the toe of the glacier, 300 metres northeast of drillsite K-1-81, :are large angular blocks of granodiorite float cut by potassic veins bearing scheelite and powellite. No scheelite was observed in the core, and tungsten analyses of the core were uniformly low (2 to 3 ppm). This float may be evidence that a tungsten zone exists in peripheral parts of the early potassic vein system.

Grey guartz $\left(\mathrm{MoS}_{2}, \mathrm{CuFeS}_{2}\right)$ veins
The most prominent concentrations of molybdenite, chalcopyrite and pyrite, occur in grey quartz veins. These veins vary from 2 mm to 25 cm in width but are generally less than 3 cm wide. Molybdenite occurs as smears along the vein margins and between thin quartz bands within some larger veins. The margins of these veins are characterized by narrow $2-5 \mathrm{~mm}$ selvages of silicification and weak green alteration. The relative lack of alteration adjacent to the veins contrasts with the early potassic veins. The grey quartz veins are most abundant in the outcrops in the vicinity of drill site K-1-81.

West Ridge veining and alteration
Figure 4 shows a cluster of felsic dykes in an area of intensive quartz veining, and silicic and potassic alteration cropping out along West Ridge. The silicic and potassic alteration is associated with traces of molybdenite and chalcopyrite. In some exposures silicification and potash feldspathization are so intense that very little remains of the primary igneous fabric of the granodiorite. This alteration probably postdates the early potassic veins, but because the grey quartz (MoS2) veins have not been observed in this area the paragenesis is not established.

Deep pink potassic veins
Holes $\mathrm{k}-1-81$ and $\mathrm{K}-2-81$ intersected some quartz- k-feldspar veins, characterized by k-feldspar, with a deep brown-pink colour and 1-2 cm wide potassic selvages; these veins postdate the grey molybdenite bearing veins. Some of these deep pink potassic veins contain traces of molybdenite. Although the relative chronology of the Hest Ridge veining and alteration is not well established, textural and mineralogical similarity suggests that it is related to these deep pink potassic veins.

Sheeted veins
Much of the west end of the stock is penetrated by a swarm of quartz veins (and subordinate K-feldspar) with weak potassic selvages and traces of pyrite. These veins are 0.5 to 2.0 cm thick, $10-20 \mathrm{~cm}$ apart, and occur uniformly spaced across exposures more than fifty metres wide. They postdate the early potassic veins.

The sheeted veins exposed in the West Ridge do not contain molybdenite. Some large angular blocks of talus that are possibly derived from the north flank of the zone, about 100 metres below the outcrops examined, contain smears of molybdenite along veins that are similar in habit to the sheeted vein system.

Vuggy quartz, K-feldspar, pyrite veins
Veins containing vuggy quartz, k-feldspar and pyrite are scattered throughout the granodiorite and the hornfels. They vary from 1 cm. to 10 cm . wide but are generally less than 5 cm . Many show weak pink potassic alteration.

Large vuggy quartz veins
Vuggy white quartz veins 10 cm .to 50 cm .wide occur in the granodiorite and in the hornfelsed argillite. These veins have no distinct alteration. They are notably continuous; an individual vein near the west contact can be traced for more than 200 metres. All of these vuggy quartz veins strike about 045° and dip $60^{\circ}-85^{\circ}$ northwest.

Argillic alteration
Shear zones show intense argillic alteration of feldspars, producing a soft, friable light grey or pale grey-green aggregate. Thase intensely argillized shears are bounded by-2-3 metre wide zones of very intense deep green alteration characterized by destruction of biotite, removal of quartz, conversion of plagioclase to a green intergrowth of clay and epidote (or chlorite?) and incipient argillization of K -feldspar megacrysts.

This type of altered granodiorite weathers easily and is not generally observed in outcrop. Some is exposed along the West Ridge above drill site $\mathrm{K}-2-81$, and in the fault zone in the ciiffs east of the glacier. Short intervals of sheared and argillized rocks were intersected by holes K-1-81 and K-2-81.

Structure
The structural geology of the Kisgegas property can be considered in terms of the geometry of the various igneous phases and the orientations of the veins, fractures and faults.

Intrusive rocks

The granodiorite stock is elongate along an east-west axis. Several dykes of granodiorite that are contemporaneous with the stock dip steeply to the north and strike between 090° and 095°.

Figure 3-1 is a stereographic plot of the poles to all felsic dyke orientations measured. It shows a random orientation for the felsic dykes throughout the property, except for the West Ridge, where the dykes show a northeast preferred trend (see the geological map, Figure 4).

Early potassic yeins
Figure 3-2 is a stereographic plot of poles to orientations of the early potassic veins. It shows that they have a generally random orientation. In the central part of the stock, near drillsite K-1-81, these veins have a very strong preferred orientation; they strike northeast and dip $55^{\circ}-75^{\circ}$ northwest. The angles of intersection between the potassic veins and the core axis in DDH K-1-81 show a gradual decrease from 85° near the collar to 35° at depth. The orientations of the potassic veins in hole K-2-81 are less systematic; they form a stockwork of veins that intersect the core axis at $20^{\circ}-80^{\circ}$.

Grey quartz $\left(\mathrm{MoS}_{2}, \mathrm{CuFeS}_{2}\right)$ veins
The grey quartz ($\mathrm{MoS}_{2}, \mathrm{CuFeS}_{2}$) veins display a strong NE-SW trend (Figure 3-3). The dips of these veins vary from steeply southeast to steeply northwest, including some that are subhorizontal or have shallow northwesterly dips. The shallow dips are localized in the central part of the intrusive, near drillsite K-1-87. Figure 5 shows the orientation of the grey veins in this hole. In the top 100 metres, most of the veins dip about 30° to the $N W$ and intersect the core axis at about 80°. They are oblique to the most prominent set
of potassic veins. The dip of the grey veins becomes progressively steeper with depth, until at 350 metres they intersect the core axis at about 40°. The grey quartz $\left(\mathrm{MoS}_{2}\right)$ veins intersected by DDH K-2-81 are subparallel to the core axis. The apparent general pattern of the grey veins across this mineralized, central part of the stock, is nearly horizontal over the axis of the zone (in the central part of the stock) and steeply dipping along the fringes.

Other veins
The poles to measured orientations of the sheeted vein. system exposed in the West Ridge are plotted in Figure 3-4. The poles are tightly grouped and show a very strong preferred orientation, trending east-northeast and dipping $70^{\circ}-80^{\circ}$ northwesterly. This is a much stronger grouping than that in any previous vein set.

Figure $3-5$ is a composite plot of poles to orientations of late stage vein types. The large vuggy quartz veins show a strong preferred orientation parallel to the sheeted vein system. The other vein types have a random orientation.

> Faults

The stock is cut by numerous local faults. The only significant fault apparent in outcrop is exposed near the east end of the property. This is a reverse fault, oriented $052^{\circ} / 40^{\circ} \mathrm{NW}$, with at least 100 metres of vertical displacement. The trace of this fault is marked by a slickensided zone with $20-30 \mathrm{~cm}$ of rusty clay-rich gouge. This fault displaces and postdates all the types of veins exposed at the east end of the cirque.

K-1-81 intersected numerous shear zones showing argillic alteration. These zones intersect the core axis at about 30° and appear to be parallel to each other. Comparison of shear and vein orientations in core to adjacent outcrops indicates that these shears probably trend northeast and dip about 80° northwest. DDH K-2-81 has a higher proportion of altered shear zones than K-1-81. Most of the shears in $\mathrm{K}-2-81$ intersect the core axis at about 15°, but some are up to 45° to the core axis.

GEOCHEMISTRY

Fifteen metre composite samples from the drill holes were analysed by geochemical methods for $\mathrm{Sn}, \mathrm{W}, \mathrm{F}, \mathrm{Mn}$ and Cu . These elements were selected in an attempt to identify primary dispersion patterns related to the molybdenite mineralization. Sn and W analyses were discontinued when the first shipment of samples contained no detectable tin and a uniformly low (2-3ppm) tungsten content.

The Cu, Mn, and F values are plotted along with corresponding MoS_{2} assays in Figures 7 and 8. The data show no obvious pattern, but in the context of the geology of the holes some conclusions are possible. Each vein and alteration type has a distinct geochemical signature, and rigorous examination of primary dispersion patterns would require sampling of individual vein and alteration systems. Hole $\mathrm{K}-1-81$ has generally lower Cu values than Hole K-2-81, and a much higher Mo/Cu ratio. Cu-values in hole K-1-81 vary from 670 ppm to 188 ppm , with a mean Cu value of 350.8 ppm and a mean $\mathrm{MoS}_{2} / \mathrm{Cu}$ ratio. of 1.27. Cu values in hole K-2-81 range from a maximum of 850 ppm , near the collar, to 80 ppm at the bottom, with a mean of 373.6 ppm and a mean $\mathrm{MoS}_{2} / \mathrm{Cu}$ ratio of 0.67 . Hole k-2-81 penetrated the south margin of the stockwork, whereas DDH K-1-81 was closer to the centre of the system. The difference between these holes may indicate the presence of a Cu halo peripheral to the mineralized zone.

DISCUSSION
The Kisgegas Mo(W) property has extensive, locally intense potassic alteration, widespread quartz veining, and locally attractive grades of molybdenite mineralization in vein systems of two distinct ages. However, most of the quartz veins do not contain molybdenite and the most attractive mineralization is not related to the prominent potassic alteration.

The early potassic vein and alteration system contains molybdenite in veins and as disseminations in thin selvages. Because these veins are generally widely spaced, they make a minor contribution to the overall molybdenite grades, but intervals in which they are well developed and closely spaced (so about 50% of the interval has been subjected to potassic alteration) grade up to $0.15 \% \mathrm{MoS}_{2}$. The molybdenite content, the width of the selvages, and the width of these veins appear to be greatest in the central part of the stock, in the area of drill site K-1-81.

The grey quartz-MoS2 veins contain the richest molybdenite concentrations in the property. The best mineralization (0.2 to $0.407 \% \mathrm{MoS}_{2}$ across 3 metre intervals) intersected by hole K-1-81 occurs in grey veins, with a small proportion in early potassic veins. The grey vein system is exposed from the kest Ridge to the east side of the glacier, but in most exposures these veins are very narrow and widely scattered. The best exposures of this vein system are in the vicinity of $\mathrm{K}-1-81$, where the veins are more abundant and contain proportionately more molybdenite than elsewhere in the property. The fact that the best thirty metres in hole K-1-81 was richer and more continuous than any exposed mineralization serves to focus attention on the potential of this system at depth and beneath the glacier.

The area of intense veining and quartz-k-spar alteration exposed along the West Ridge contains only traces of molybdenite. The intensity of the alteration and the presence of traces of molybdenite suggest a possible relationship to more attractive mineralization. The 1965 AMAX drill hole was apparently planned to test this system; it was directed below the centre of the area of intense veining and alteration. The upper part was reported to contain very
low grade mineralization similar to that in the upper parts of K-1-87. The lower part, which penetrated the rock below the exposed quartz-K-spar alteration, contained only traces of molybdenum.

The outcrops of the sheeted vein system do not contain molybdenite. It is possible that this well developed vein system is the apical expression of a mineralized zone at depth, however, the available evidence in support of this idea is not strong enough to warrant drilling at this time.

The next steps in evaluating the property should be further drilling to test the mineralized zone intersected in hole K-1-81 at greater depth, and along strike to the east. Proposed hole K-3-81 is an attempt to penetrate the K-1-81 mineralization at a greater depth to further evaluate the grade and geometry of the system. Proposed hole K-4-82 is situated to test the eastern strike extension of the same stockwork.

The tungsten potential of the skarn and hornfels was not evaluated in 1981. Poor weather and limited manpower prevented systematic mapping and sampling of the cliffs where the skarns are exposed. As noted by DeLancey. (1980), some float in the cirque contains attractive quantities of scheelite. The beds that are the most probable sources of this mineralization are exposed along the cliffs east of the glacier and in the headwall of the cirque. They are generally less than one metre thick and not uniformly mineralized. More work will be necessary to evaluate the tungsten potential of this contact zone.

BIBLIOGRAPHY

BENDING, D.A., 1981. Report of Geolgoical Survey on the Molly Blue Claim (93M/14W). Assessment Report for 1981 work. 8 pages.

BOT, J., 1977. Assessment Report for 1977, Molly Blue Claims. 6 pages.

CARIER, N.C., 1976. "Regional Setting of Porphyry Deposits in Westcentral British Columbia! CIM Special Volume 15, Porphyry Deposits of the Canadian Cordillera pp. 227-238.

DeLANCEY, P.R., 1979. Report on the Kisgegas Molybdenum Prospect (93M/14W); Texasgulf Company Report, 6 pp.

SCHROETER, T., 1977. (assumed date - precise date unknown) "Molly Blue (93M/13E)". Unpublished description of property, 4 pp.
\bigcirc

APPENDIX 1

HOLE NO.: _K-7-81 PAGE 1 of 5
 LONGITUDE: _ 598,830E* DIP: $\quad-53 \quad$ INCLINATION: $156^{\circ} /-55$ at 415.1 ELEVATION: 1764*_____ at

SAMPLE	METRES		MoS_{2}	Sn	F		W	Mn	Cu
No.	FROM	T0	ASSAYS	ppm	ppm		ppm	ṕpm	ppm
18226	1.2	3.0	0.020						
18227	3.0	6.0	0.017						
18228	6.0	9.0	0.030	ND	500			210	268
18229	9.0	12.0	0.028						
18230	12.0	12.0	0.019						
18076	15.0	18.0	0.043						
18077	18.0	21.0	0.035						
18078	21.0	24.0	0.055	ND	470		2	240	220
18079	24.0	27.0	0.027						
18080	27.0	30.0	0.030						
18081	30.0	33.0	0.020						
18082	33.0	36.0	0.042						
18083	36.0	39.0	0.033	ND	410		2	190	280
18084	39.0	42.0	0.057						
18085	42.0	45.0	0.062						
18086	45.0	48.0	0.030						
18087	48.0	57.0	0.025						
18088	57.0	54.0	0.143	ND	550		3	210	405
18089	54.0	57.0	0.040						
18090	57.0	60.0	0.063						
18091	60.0	63.0	0.050						
18092	63.0	66.0	0.065						
18093	66.0	69.0	0.032	ND	520		3	255	360
18094	69.0	72.0	0.063						
18095	72.0	75.0	0.050						
18096	75.0	78.0	0.037						
18097	78.0	81.0	0.047						
18098	87.0	84.0	0.068	ND	550		2.	220	358
18099	84.0	87.0	0.037						
18100	87.0	90.0	0.067						
18101	90.0	93.0	0.022						
18102	93.0	96.0	0.014						
18103	96.0	99.0	0.077	ND	550		3	235	298
18104	99.0	102.0	0.013						
18105	102.0	105.0	0.073						

HOLE No.: _ K-1-81 PAGE 2 of 5 LATITUDE: ___ AZIMUTH: INCLINATION: \qquad at LONGITUDE:___ DIP:

INCL INATION: \qquad at
\qquad

INCLINATION: \qquad at \qquad

SAMPLE №.	METRES		$\mathrm{MoS}_{2} \quad 1 \mathrm{Sn}$			F		1 W	Mn	CH
	EROM	T0	ASSAYS		ppin	ppm		ppm.	ppm	ppm
18106	105.0	108.0	0.013							
18107	108.0	117.0	0.012							
18108	111.0	114.0	0.033		ND	500		3	220	670
18109	114.0	117.0	0.020							
18110	117.0	120.0	0.017							
18111	120.0	123.0	0.023							
18172	123.0	126.0	0.024							
18113	126.0	129.0	0.022		ND	550		3	220	515
18114	129.0	132.0	0.080							
18115	132.0	135.0	0.033							
18176	135.0	138.0	0.043							
18177	138.0	141.0	0.050							
18118	141.0	144.0	0.025		ND	550		3	225	515
18179	144.0	147.0	0.045							
18120	147.0	150.0	0.058							
18121	150.0	153.0	0.090							
18122	153.0	156.0	0.044							
18123	156.0	159.0	0.025		ND	500		3	300	341
18124	159.0	162.0	0.018							
18125	162.0	165.0	0.003							
18126	165.0	168.0	0.040							
18127	168.0	171.0	0.043							
18128	171.0	174.0	0.042		ND	710		2	290	302
18129	174.0	177.0	0.075							
18130	177.0	180.0	0.027							
18137	180.0	183.0	0.027							
18132	183.0	186.0	0.007							
18133	186.0	189.0	0.073		ND	580		2	275	238
18134	189.0	192.0	0.018							
18135	192.0	195.0	0.013							
18136	195.0	198.0	0.023							
18137	198.0	207.0	0.027							
18138	207.0	204.0	0.017		ND	710		2	270	235
18739	204.0	207.0	0.018							
18140	207.0	210.0	0.017							

PROPERTY: Kisgegas
HOLE No.: _K-1-81 PAGE 3 of 5

LATITUDE:	AZIMUTH:	INCLINATION:____ at
LONGITUDE:	DIP:	INCLINATION:____ at
ELEVATION:		INCLINATION:___ at ___

PROPERTY: __Kisgegas _
HOLE NO.: __K-7-8] PAGE 4 of 5
LATITUDE: \quad AZIMUTH:
LONGITUDE:___ DIP:
INCLINATION: \qquad
\qquad at \qquad
INCLINATION:___ at \qquad
INCLINATION: \qquad $/$ \qquad —_

HOLE NO.: K-1-81 PAGE 5 of 5

LATITUDE:	AZIMUTH:	INCLINATION:___ at
LONGITUDE:	DIP:	INCLINATION:______at
ELEVATION: _______		INCLINATION: ___ $/$ ___ at

SAMPLE No.	METRES		MoS?	Sn	F	1.6	$\mathrm{Mn} \quad \mathrm{Cu}$	
	FROM	TO	ASSAYS	ppm	R0n	ppm	ppm.	ppm
18211	420,0	421.2	0.007	ND	410		160	188
					\cdot			
\cdots								
		.						
						- \cdot		
.								

HOLE NO.: __K-2-8] PAGE \quad __ of 3
LATITUDE: 6,179,750N* AZIMUTH: 226° LONGITUDE: \quad 598,735E* DIP: __ -51° INCLINATION: $224,-51$ at 137.2 m INCLINATION: $229 / 51^{\circ}$ at 288.1 m
 \qquad /__at \qquad

PROPERTY: _Kisgegas
HOLE No.: __K-2-8I PAGE 2 of 3 LATITLUDE: \quad AZIMUTH:
LONGITUDE: \qquad DIP:
INCLINATION: \qquad / _ at \qquad

ELEVATION: \qquad INCLINATION:___ at INCLINATION:______at

PROPERTY: Kisgegas
HOLE No.: K-2-87
PAGE 3 of 3

\bigcirc	LATITUDE: LONGITUDE: ELEVATION:			AZIMUTH: DIP: \qquad	INCLINATION: \qquad \qquad at \qquad INCLINATION: \qquad / \qquad at \qquad INCLINATION: \qquad \qquad at \qquad				
	SAMPLE			MoS_{2}	Sn	F	W	Mn	Cu
	No.	FROid	T0	ASSAYS	ppin	.ppm	ppin	ppm	npm.
	1937	210.0	213.0	0.002					
	1938	213.0	216.0	0.002	ND	320		230	114
	1939	216.0	219.0	0.002					
	1940	219.0	222.0	0.003					
	1941	222.0	225.0	0.003					
	1942	225.0	228.0	0.007					
	1943	228.0	231.0	0.003	ND	300		200	149
	1944	231.0	234.0	0.007					
	1945	234.0	237.0	0.012					
	1946	240.0	243.0	0.003					
	1947	240.0	243.0	0.003					
	1948	243.0	246.0	0.003	ND	290		270	80
	1949	246.0	249.0	0.008					
	-								
							-		
.									
	-								

APPENDIX 2

SUMMARY GEOLOGICAL LOGS

DDH K-1-81
DDH K-2-81

TE	SGU	1 NC	DRILL HOLE LOG ${ }^{\text {HOLE NO. }}$ N-T-81 ${ }^{\text {K }}$
DEPTH ${ }^{(m)}$		REC'Y	DESCRIPTION
FROM	TO		
198.0	213.2	98-100\%	Variably altered granodiorite porphyry with_locally pervasive pink potassic
			alteration along early potassic yeins 65° to 80° to the core axis and sparse
			grey quartz, MoS 2 veins 70° to 80° to core axis.
213.2	220.1	100\%	Granodiorite dyke; similar in texture to the granodiorite but darker in colour
			(with more abundant biotite). Chilled margins 0.8 metre thick are dark orey, unaltered,
			and weakly magnetic. The inner phase of the dyke is weakly propyllitized and not
			magnetic. Note that the early potassic veins cut the dyke but seem to be less
			abundant than in the enclosing granodiorite.
220.1	227.3	99\%	Variably altered granodiorite with pink felsite and grey-green intermediate
			dykes. The granodiorite is characterized by weak to moderate pervasive propyllitic
			alteration, MoS_{2} bearing early potassic veins, occasioned MoSp-bearing grey quartz
			veinlets, later 1 to 3 cm . thick quartz k-feldspar pyrite veins, and vugay white quartz
			veins. The pink dykes cut the early potassic veins but show no distinct crosscutting
			relationships to the late vuggy quartz veins.
227.3	224.0		Variably altered granodiorite porphyry; pink potassic yeins and alteration are
			abundant and represent about 30% of the rock. These early potassic veins cut the core
			axis atangles of 35° to 80° in a stockwork. Later MoS ${ }_{2}$ bearing grey quartz yeins
			cut the core at about 70°. These later veins are sparse, with an average of two per
			metre.

TEXASGULF INC.			DRILL HOLE LOG $\left.\quad$HOLE NO. $\mathrm{K}-2-81$ \right\rvert\, $\begin{gathered}\text { PAGE } \\ \end{gathered}$
DEPTH(m)		REC'Y	DESCRIPTION
FROM	T0		
			potassic veins show zoned selvages, with 0.5 cm . green sericitic rims outside the
			more typical pale pink selvages. These early potassic veins occur 30° to subparallel
			to the core axis. A dark grey, biotite - rich, partly assimilated inclusion occurs at
			116.4 m. . The interval $125-128$ contains numerous 1 cm . thick brown - pink dykes
			subparallel to the core axis, that predate the early potassic veins. A 25 cm . thick
			flesh brown quartz - eye felsite dyke at 128.3, cuts the core axis at 50°.
			This dyke cuts the early potassic veins.
133.5	142.5	100\%	Weakly to intensely altered granodiorite as above. Some later, deep pink potassic
			alteration occurs along quartz, K-feldspar, pyrite veins that cut the early potassic
			veins. The interval 134.8 to 135.5 is characterized by shearing and intense argillic
			alteration that postdates the veins.
142.5	757.5	97\%	Sheared, intensely argillized and propyllitized granodiorite with relics of early
			potassic veins and white quartz veinlets. The interval 145.7-148.1 contains numerous
			white quartz veins and deep brown - pink potassic atteration, overprinted by shearing
			and green clay - rich alteration. The slickensided shears cut the core at $15^{\circ}-30^{\circ}$.
157.5	161.0	100\%	Weakly to intensely altered granodiorite porphyry with some $1-2 \mathrm{~cm}$. pale tan - buff
			felsite dykes 20° to subparallel to the core axis, and some short dark biotite - rich
			intervals that may represent assimilated country rocks. The interval is nearly
			fresh, with a very weak green colour, and is cut by a sparse stockwork of early potassic
			veins (most cut the core at $20^{\circ}-30^{\circ}$) and two vuggy white quartz veins.
161.0	163.5	100\%	Pale tan aplite dyke with pinheads of MOS_{2} and FeS_{2}. Locally altered (argillic,
			green) shears.
163.5	177.0	100\%	Variably altered granodiorite porphyry. Most is very
			weakly altered to a diffuse green colour with traces of FeS_{2} and CuFeS_{2} in corroded
			biotite flakes. A sparse set of early potassic veins with traces of MoS_{2}

TEX	ASGU	INC	DRILL HOLE LOG \quad HOLE $\mathrm{NO}_{\mathrm{K}-2-81} \mathrm{PAGE}_{4} \mathrm{NO}$
DEPTH		REC'Y	DESCRIPTION
FROM	T0		
			cuts the core at about 35°. Note 21 cm . wide grey quartz, MoS_{2} veins, cutting the core
			at 15°, in the interval 172.0-173.0. These are accompanied by 1 cm . thick green
			selvages.
177.0	216.0	100\%	Weakly to moderately altered granodiorite to quartz monzonite porphyry with
			pervasive, very weak green alteration, abundant tan - pink aplite dykes and a weak
			stockwork of early potassic veins with traces of MoS ${ }_{2}$. The selvages of the early
			potassic veins in and below this interval are generally pink along, the veins and grade
			into greenish sericitic alteration, 0.5 cm . wide, away from the veins. Less than 5% of
			the interval has been subjected to intense alteration. Note some quartz, pyrite, K-feld-
			spar and quartz, sphaterite, pyrite, K-feldspar veinlets, cutting the core at $20^{\circ}-80^{\circ}$,
			with green - pink potassic selvages, in the interval 197.0-198.0. The dykes that
			characterize much of the interval are 0.5 to 15 cm . thick, with textures that vary from
			sucrosic to medium grained with quartz eyes. These dykes predate the veins.
216.0	220.0	100\%	Variably altered granodiorite porphyry as above, without dykes. This interval
			is characterized by 0.2-0.3 metre sections with diffuse concentrations of biotite
			in the granodiorite.
220.0	235.3	100\%	Variably altered granodiorite porphyry; generally yery weakly altered, with a faint
			green tint and traces of pyrite. Sparse early potassic yeins that cut the core at 35° -
			40° contain traces of MoS_{2}. Several 1-2 cm. thick quartz, pyrite veins with weak
			potassic selvages cut the core at 40°. The interval $225 .-227$ is characterized
			by pervasive weak green sericitic alteration. The interyal $234-235$ shows locally
			intense, orange - pink potassic alteration that postdates the other vein types.
235.3	236.7	-99\%	. Intensely altered_granodiorite__ Pervasive light_pink potassic_alteration_along_
			closely spaced early potassir veins $15^{\circ}-35^{\circ}$ to the core axis, with finely disseminated
			MoS_{2}.

TEX	SGUL	INC.	
		REC'Y	DESCRIPTION
FROM	T0		
			propyllitic alteration. The dykes predate all veins and alteration. Quartz diorite with gradational contacts with the granodiorite. Generally fresh and
277.7	285.1	100\%	
			moderately magnetic, richer in biotite than the granodiorite and lacking k-feldspar
			phenocrysts. This is cut by a tan - pink aplite dyke in the interval 279.1-280.0,
			and numerous 1-2 cm. brown - pink dykes, at $30^{\circ}-40^{\circ}$ to the core axis. This interval
			is cut by many $0.5-1 \mathrm{~cm}$. quartz, carbonate, pyri.te veins, 45° to 65° to the core axis,
			with prominent green sericitic selvages. Individual veins of this type, where traced into
			the felsic dykes, change markedly in mineralogy: in the felsite they are quartz, k-feldspar
			veins with pink feldspathic selvages.
285.1	291.0	100\%	Granodiorite to quartz monzonite; generally fresh, weakly magnetic. Cut by medium to
			fine grained brown - pink felsic dykes at 50° to the core axis, and quartz, k-feldspar
			veins with deep pink potassic selvages.
			291.0 metres: End of Hole \quad,

APPENDIX 3

Stereographic Plots of Structural Data

0

Fig. 3-1 Kisgegas property: stereographic plot of poles to felsic dyke orientations. 32 measurements.

0

Fig. 3-2 Kisgegas property: stereographic plot of poles to measured early potassic vein orientations. 111 measurements.
\bigcirc

Fig. 3-3 Kisgegas property: stereographic plot of poles to measured grey quartz $\left(\mathrm{MoS}_{2}, \mathrm{CuFeS}_{2}\right.$, FeS_{2}) vein orientations. 20 measurements. ${ }^{\text {' }}$

Fig. 3-4 Kisgegas property: stereographic plot of poles to local composites of measurements of sheeted quartz veins. Each point is based on five to ten measurements in a small area. Total 72 measurements.

0

Fig. 3-5 Kisgegas property: sterographic plot of poles to measured orientations of late stage veins.

LEGEND
Quartz, K-feldspar, pyrite veins

- 39 measurements Large vuggy quartz veins
- 6 measurements
Other late veins
10 measurements

APPENDIX 4

Statement of Expenditures

STATEMENT OF EXPENDITURES

KISGEGAS-82 GROUP

SALARIES AND FRINGE BENEFITS - TEXASGULF INC.

G.R. Peatfield - P.Eng. Sept. 10, 11; 2 days @ $\$ 220$.
P.R. DeLancey - P.Eng. Sept. 10, 11; 2 days @ $\$ 200$. 400.00
D.A. Bending - Geologist

Period Aug. 21 - Sept.23;
32 days @ $\$ 140$.
4,480.00
E. Potsepp - Cook

Period Sept. 19-25; 6 days @ $\$ 705$.
J. Etzkorn - Cook

Period Aug.22-Sept.21; 29 days @ $\$ 80$. 2,320.00
G. Cooper - Geologist

Period Sept. 15-25; 9 days © $\$ 95$. 855.00
D. Piroshco - Geologist

Period Sept. 19-25; 5 days @ $\$ 75$. 375.00
P. Mouldey - Assistant

Period Aug. 21-29; 8 days © $\$ 60$. 480.00
M. Stanley - Assistant

Period Aug.21-25; 4 days @ $\$ 55.220 .00$
R. Larsen - Assistant

Period Sept. 13-25; 12 days @ $\$ 55 . \quad 660.00$
J. Leigh - Assistant

Period Sept.11-25; 14 days @ \$45.
630.00
$\$ 17,490.00$
$\$ 11,490.00$
ROOM AND BOARD
Tg Personne 1 - 123 days @ \$90. \$17,070.00
Longyear personnel - 108 days $0 \$ 90$. $\frac{9,720.00}{\$ 20,790.00}$
$\$ 20,790.00$

HELICOPTER SUPPORT

Invoice totals Highland 206 B	\$7,130.00	
Invoice totals Okanagan 206 B	12,758.61	
$206 \mathrm{~L}-1$	13,377.40	
Texasgulf leased A-Star	13,37.40	
75 hours @ \$550.	41,250.00	
	\$74,576.07	\$74,516.01

DIAMOND DRILLING

Longyear Canada invoices for drilling, survey, core boxes, supplies and equipment, moving, mob. and demob.	
Rental of Sperry-Sun survey instrument	1,480.50$\$ 57,103.76$

ANALYTICAL COSTS

224 MoS2 assays @ $\$ 8.00$	$1,792.00$	
224 sample preparation	168.00	
(composite) @ $\$ 0.75$	75.00	
20 W analyses @ $\$ 3.75$	460.00	
$46 \mathrm{Sn}, \mathrm{F}, \mathrm{Cu}, \mathrm{Mn}$ analyses @ $\$ 10.00$	$\$ 2,495.00$	$2,495.00$

REPORT PREPARATION
G.R. Peatfield, P.Eng. 1/2 day @ \$220. 110.00
D.A. Bending 5 days @ $\$ 140$. 700.00

Contract drafting 1,344.82
Inhouse drafting 300.00
Secretarial
Reproduction, etc.
250.00 150.00 \$2,854.82

2,854.82

MISCELLANEOUS

Office and technical supplies 100.00
Pro-rated share of travel 640.00

Shipping and storage 800.00

Communications (radio, etc.)

2,540.00

0

APPENDIX 5

Statement of Qualifications

STATEMENT OF QUALIFICATION

D.A. Bending - Geologist

D.A. Bending holds a B.Sc. degree in Geology from the University of Oregon (1976), and is presently completing an M.Sc. degree at the University of Toronto. He was employed by Texasgulf from May I, 1980 to February 1982, when he returned to the University of Toronto.

