82-357-10420 5

(1981 Exploration Programme)

Based on Costs of Sample Collection for Metallurgical Research

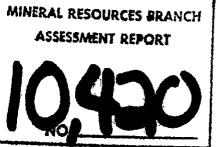
OWNER/OPERATOR

BORDER RESOURCES LTD., #1400 - 1030 West Georgia St., Vancouver, B.C., V6E 3C2 Telephone (604) 687-9444

PROPERTY LOCATION

New Westminster M.D. N.T.S. Grid 92H/6(E)

NORTH GROUP


49⁰29'00" N. Lat. 121⁰16'00" W. Long. (17 Claims) G 1-2, GWH 2, N 22-27, 28FR, 29FR, TAX 51-56

SOUTH GROUP

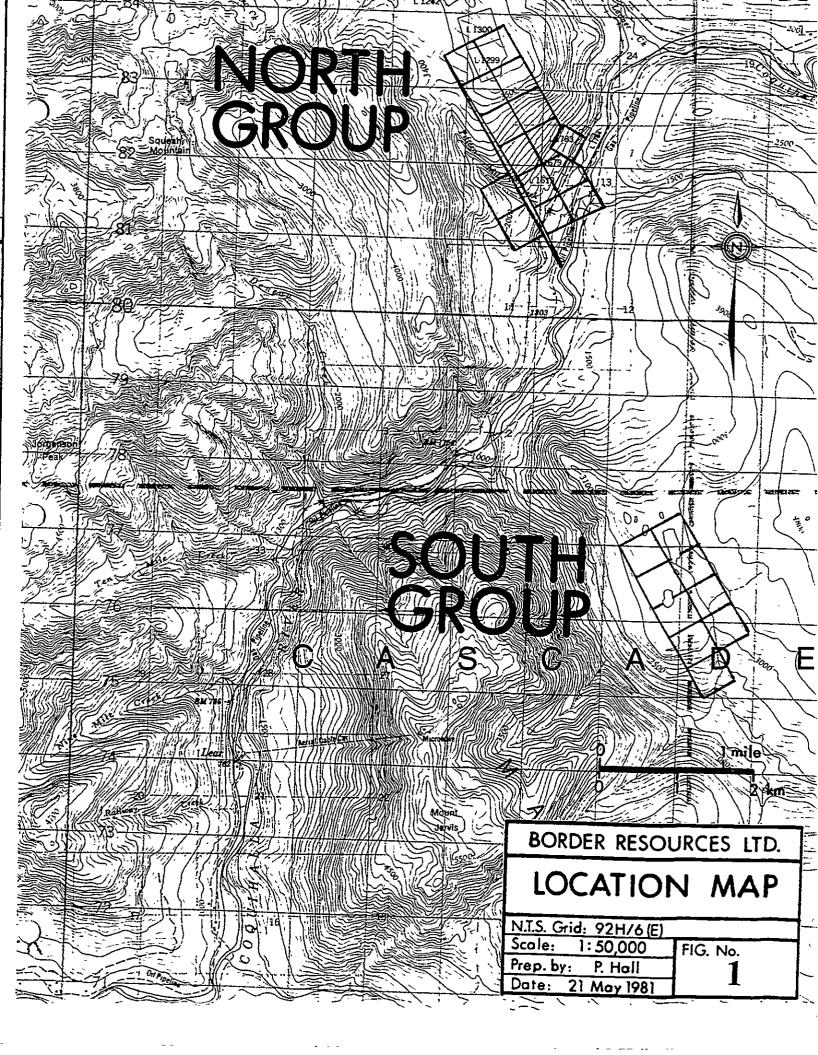
49⁰26'00" N. Lat. 121⁰14'00" W. Long. (9 Claims) EVE 1-2, TOY 3-9

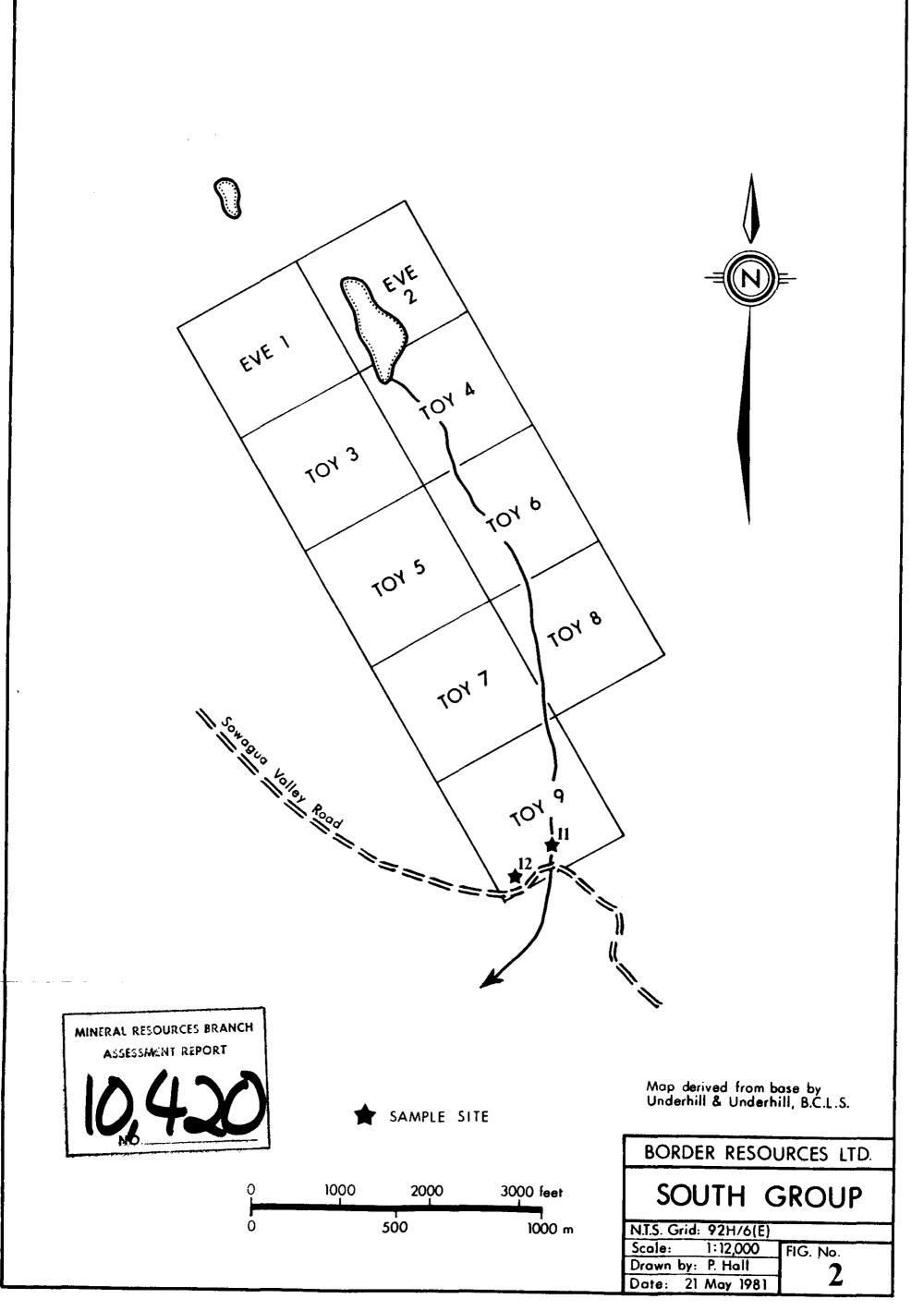
AUTHOR:	P. HALL, BA, BEd.
METALLURGIST:	H.E.A. von HAHN, P.Eng.
GEOLOGIST:	J.A. CHAMBERLAIN, P.Eng., PhD.

DATE: 21 May 1982

TABLE OF CONTENTS

SE	CTI	ON


()


1	Introduction and Synopsis of 1981 Exploration Work
2.	Progress Reports on Metallurgical Research:- (A-MIN-TECH RESEARCH LTD.) No.8 - Mineralogical Examination of Flotation Concentrates p.7
	No.9 - Flotation Tests for Nickel and Cobalt
	No.10- Magnetic Fractionation of Nickel Flotation Tailings for Recovery of Magnetite and Chromitep.36
	No.11- Flotation Tests for Nickel and Cobalt Recovery (draft)p.59
3.	Sampling for Nickel in the Coquihalla North Group Claims (Geologist's Report)p.66
4 .	Statement of Costs
5.	Bibliography
6.	Statement of Qualifications

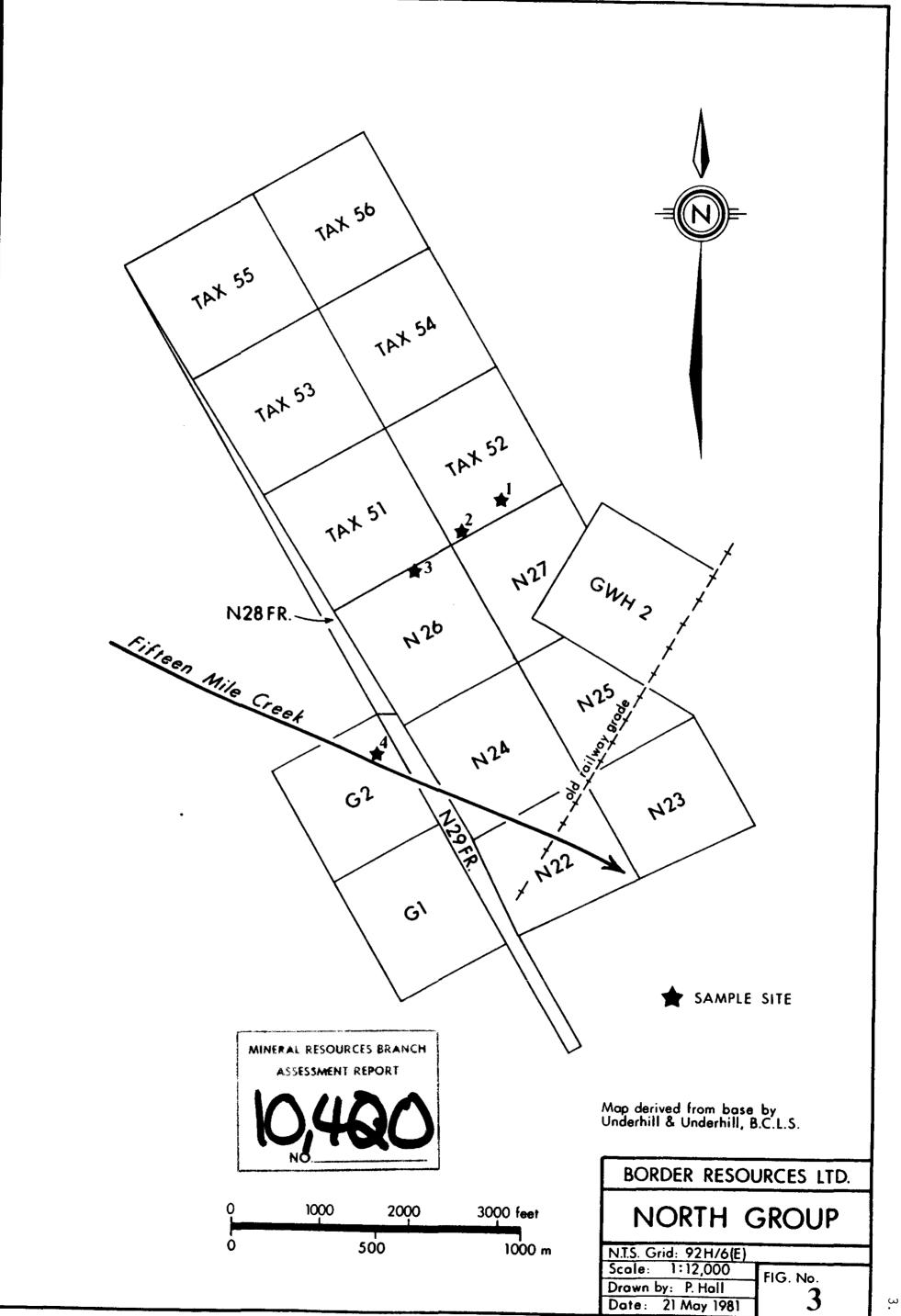

<u>MAPS</u>

Fig. No. 1	Location Map
Fig. No. 2	South Group
Fig. No. 3	North Group
Fig. No. 4	1981 Coquihalla Valley Exploration Programme - North Group Claims (pocket)

-- -

INTRODUCTION AND SYNOPSIS OF 1981 EXPLORATION WORK

This report is the unbroken continuation of the exploration programme commenced in 1980 on the 26 Coquinalla Valley claims held by Border Resources Ltd. During 1981, further metallurgical research was conducted by Dr. von Hahn on the samples from the 1980 sites. Copies of Dr. von Hahn's progress reports, nos. 8 to 11, are reprinted and included as section #2 of this report. Reports 1 to 7 were included in our 1981 Assessment submission.

From Dr. von Hahn's research, it became evident that a large bulk sample of the serpentine mineralization had to be obtained before significant further metallurgical studies could be performed. In accord with this conclusion, Dr. Joseph A. Chamberlain, P.Eng., PhD., was commissioned as a consultant to inspect the North Claims group and select a site from which the prescribed bulk sample was to be obtained. Between October 5-6, 1981, Dr. Chamberlain, in company with the writer climbed and sampled the claims area on the north slopes of the Coquihalla Valley. Dr. Chamberlain's detailed account of the fieldwork is reprinted and included as section #3 of this report. Figure #4 in the back pocket shows the sampling locations.

Based upon Dr. Chamberlain's recommendations to sample sites Nos. 9 and 11 from an 11 site total, the writer and a field assistant returned to the property on October 24, 1981. On that first day the field crew climbed back up to the selected sites to scout out a route by which the bulk sample could be brought down the mountainside. The preferred site, site No.9, was located on a steep sidehill in an unlogged forested area. Due to the terrain, the idea of building a rough cat road into the area at this stage of the work was ruled completely out. Fortuitously, however, a rock ledge was located approximately 150 ft (45 m) west of #9 site and this ledge, once cleared would be suitable for landing a helicopter on it. The plan was to hire a small Hughes 500 to fly the drill crew in and to fly out the 1000 lbs. (454 kg) of sample. The following day, the crew returned with a chainsaw and cleared off all the trees and snags that were on the ledge.

The third day was oriented towards obtaining a sample from the more accessible site No.11. Site No. 11 was located in an outcrop just to the north of the abandoned C.P.R. roadbed and within claim "N25". A cable was strung up over a washout in the road bed and by means of an aerial pulley system the rented Pionjar packdrill was conveyed to the site and the bagged samples returned. The site was drilled to depths of 3-4 ft. (1 m) and blasted with 40% Forcite (Mines Blasting Certificate #34231), and the unoxidized samples were immediately sealed in plastic orebags and trucked to Vancouver.

Flight cost quotations from helicopter companies were found to be considerably higher than what the company wanted due to ferrying charges and the policy of some companies to charge up to three hours minimum flight time regardless of actual time flown. In order to circumvent these high charges, it was decided to wait until the use of a helicopter could be shared with another customer working in the same area.

On November 27, 1981, a call was received that a helicopter would be available the following day to fly the drill in, in the morning, and to fly the samples and crew out in the afternoon. Although the helicopter was a Bell 206B and a much larger machine than the anticipated Hughes 500, it was nevertheless decided to try it out.

About noon on November 28, the writer took off from a cleared area beside the Coquihalla road and by circling rose up to Site No.9 on the mountainside almost directly above the takeoff spot. The fiveminute flight confirmed the accuracy of the decision to build the helicopter site where it was since no other likely sites could be seen anywhere. Unfortunately, the overhead branches of some of the larger trees surrounding the ledge projected too far into the cleared landing site area. The pilot made a careful effort to land his machine, but upon weighing the risks decided against doing so. On December 5th, the writer and a field assistant again returned to the property and equipped with two chainsaws successfully cleared the trees that were overhanging the helicopter landing site. A tree falling counterdirection caused a hang-up situation to develop and damaged one of the chainsaws, but by having the other saw there the hung-up trees were able to be brought to ground and the job completed.

The two helicopter companies that were at that time operating out of the Hope airport were once again contacted with the aim of arranging a shared-use hiring of a helicopter. Cancellations of proposed trips due to bad weather kept recurring until approximately December 26th, when a heavy snowfall covered the Coquihalla and ended our hopes to complete the sampling programme in 1981.

Reports from the Coquihalla indicate that the snowload is still heavy in the Fifteen Mile Creek area and accordingly the completion of the sampling programme is nowpostponed to the summer of 1982.

A Minerals Technology Service

Flotation, Hydrometallurgy Research & Testing

PROJECT BR-1

Progress Report #8

Date: 15 May, 1981

To: Border Resources Ltd., 412 Granville Square, 200 Granville Street, Vancouver, B.C., V6C 1S4

Attention: G.W. Hornby

Project Title: Treatment of Serpentine Rock for Recovery of Nickel and Other Valuable Minerals.

Report Title: Mineralogical Examinations of Flotation Concentrates.

Summary:

Mineralogical and photomicrographic examinations were made of polished mineral-particle-mounts of two flotation concentrates. The purpose was to identify the sulfides and to examine the size distribution and association of the sulfide particles.

The mineralogical examination showed that more than 98 percent of the sulfides present were pentlandite.

The photomicrographic examination indicated a particle size range from about 40 microns down to 5 microns for the sulfides. Most sulfide particles appear to be free, but there is also evidence indicating the presence of middlings.

cont'd. p.2

7.

8464 ADERA ST, VANCOUVER, B.C., CANADA, V6P 5E7, TEL: 604-2630338

Project BR-1

Progress Report #8 cont'd.

Mineralogical Examination of Flotation Concentrates

Introduction:

Mineralogical and photomicrographic examinations were made of polished mineral-particle-mounts of the 1st & 2nd concentrates drawn in flotation tests BRF-3, BRF-4 & BRF-5. The purpose of this work was to identify the sulfides recovered during flotation and to examine the size distribution and and association of the sulfide particles.

The mineralogical examinations were kindly performed by Dr. J.A. Chamberlain of Dolmage Campbell & Associates (1975) Ltd. His report is attached as APPENDIX 1 to this report.

Mineralogical Examination:

According to Dr. Chamberlain's report, more than 98 percent of the sulfides present are pentlandite, with some evidence of chalcopyrite and possible millerite.

The flotation concentrates used in the present examinations were derived from Serpentine rock designated Site 4.

The finding that most of the sulfides present in the concentrates are pentlandite is of some significance from a mineral dressing point of view. Many nickel recovery operations involving the flotation of pentlandite have to contend with the problem of separating pyrrhotite from the nickel concentrates. The indicated absence of pyrrhotite in the present concentrates suggests simplifications in flow sheet development.

Photomicrographic Examinations:

Figures 1 and 2, page 3, show photomicrographs of mineral-particlemounts of BRF-3 Conc.1 and BRF-4 Conc.1. The sulfide particle sizes range from about 40 microns down to about 5 microns. Most of the sulfide particles appear to be free, but there is also some evidence of the presence of middlings, seen mainly in Figure 1. The greyish, particles been are taken as being serpentine gangue.

ROVINCA Signed: EHAE XODHAAAN PSEng. BRITICH

Project BR-1

Progress Report #8 cont'd.

Photomicrographs:

Photomicrographs of mineral-particle-mounts of flotation concentrates showing pentlandite particles (white) and serpentine gangue particles (greyish).

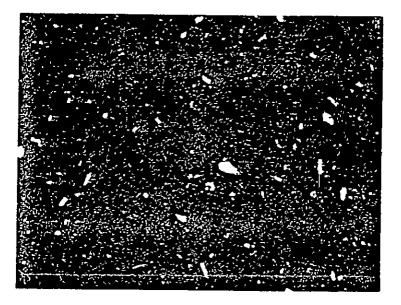


Figure 1: BRF-3, Conc. 1, Mag. 75x

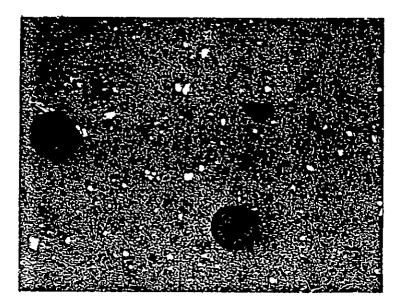


Figure 2: BRF-4, Conc. 1, Mag. 75x

Page 4 Project BR-1 Progress Report #8 cont'd.

DOLMAGE CAMPBELL & ASSOCIATES (1975) LTD. CONSULTING ENGINEERS

SUITE 1000-1055 W. MASTINGS STREET VANCOUVER. CANADA V6E 229 TELEPHONE (604) 681-2345

March 27, 1981

A-Min-Tech Research Ltd., 8464 Adera Street, Vancouver, B.C. V6P 5E7

Dear Dr. Von Hahn:

This is to advise you that I have made a brief examination of the polished sections of nickel sulphide concentrate you submitted to me bearing the following designations:

BRF	3	Conc.	1
BRF	3	Conc.	2
BRF	4	Conc.	1
BRF	4	Conc.	2
BRF	5	Conc.	1
BRF	5	Conc.	2

The polished section BRF 3 Concetrate 1 contains the most abundant sulphides, so I spent more time on this than the others. The grain size of the sulphides ranges downward from 0.03 mm to a few microns. They occur as free grains in a matrix of silicate, presumed to be mainly serpentine.

The mineralogy of the sulphides is simple. More than 98% of the grain are pentlandite. A minute amount of chalcopyrite was noted. One or two laths of possible millerite were also noted.

A small quantity (less than 2%) of magnetite is present. One grain of pentlandite associated with magnetite is recorded on the attached photomicrograph.

Sulphides appear to constitute about 10% of the section, but this is merely an educated guess. Pentlandite contains about 30% nickel by weight, so this suggests that the observed sulphides account for about 50% of the nickel in the concentrate if, as you state, the concetrate grade is on the order 6% nickel in BRF 3 Concentrate 1.

/2...

Page 5 Project BR-1 Progress Report #8 cont'd. DOLMAGE CAMPBELL & ASSOCIATES (1973) LTD.

March 27, 1981

No other nickel-bearing minerals were noted. No nickel-iron alloy (awaruite) appears to be present. The high cobalt content you mentioned is no doubt contained mainly in the pentlandite.

-2-

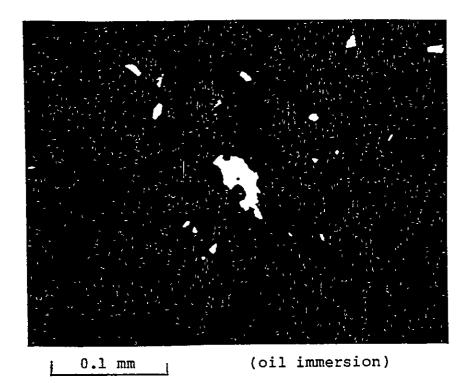
I think you have achieved a remarkable concentrate considering (a) the grade of the heads of less than 0.3% nickel, and (b) the metallurgical difficulties of working with a serpentine-rich matrix.

Please let me know if I can be of further help. I am extremely busy these days, but I would try to make some time available for this week.

Kind regards.

Yours truly,

DOLMAGE CAMPBELL & ASSOCIATES (1975) LTD.


Joseph A. Chamberlain, Ph.D.; P.Eng.

JAC:jm

cc: G.W. Hornby

Page 6 Project BR-1 Progress Report #8 DOLMAGE CAMPBELL & ASSOCIATES (1975) LTD.

BRF 3 Concentrate 1

Pentlandite (white grain, centre) associated with magnetiute (dark grey)

BORDER RESOURCES LTD.

Flotation Tests for Nickel and Cobalt

Recovery

Progress Report #9

- - ---- --- - - -

A Minerals Technology Service

Flotation, Hydrometallurgy Research & Testing PROJECT BR-1 Progress Report #9 Date: 25 May, 1981 To: Border Resources Ltd., 412 Granville Square, 200 Granville Street, Vancouver, B.C., -V6C 1S4 Attention: G.W. Hornby Project Title: Treatment of Serpentine Rock for Recovery of Nickel and Other Valuable Minerals. Report Title: Flotation Tests for Nickel and Cobalt Recovery from Site 1 and Site 4 Serpentine Rock Samples.

Summary:

The purpose of the work reported in this progress report was a continuation of the work described in Progress Report #4, namely to find and develop conditions for optimum nickel and cobalt recovery.

Five flotation tests were done under different conditions of reagent addition, degree of grinding and stages of flotation.

In one test, BRF-8, Site 4 material, overall recoveries of 53.7% Ni and 52.8% Co were achieved, with combined concentrate grades being 2.29% Ni and 0.133% Co.

It is evident from these tests that fine grinding will be an essential feature in obtaining adequate nickel recoveries. Further work in that direction is in progress.

Experimental evidence indicates that pulp aeration and the use of CMC gangue dispersant are of importance for improving recoveries.

The flotation behaviour of Site 1 and Site 4 materials appears to be distinctly different. Recoveries and grades for Site 4 material have been found to be better under similar test conditions.

cont'd. p.2

8464 ADERA ST., VANCOUVER, B.C., CANADA, V6P 5E7. TEL. 604-2630338

.

Page 2

 $\left(\right)$

Project BR-1

Progress Report #9 cont'd.

Table	of	Contents

	page
Summary	l
Introduction	3
Experimental	3
Test Conditions	3
Results and Discussion	4
Conclusions	6
References	7
Appendix 1: Chemex Labs Ltd. Certificat Assay	es of 19-22

List of Figures

Figure	1:	Plots	of	Nickel	Recovery	vs.		
		Concer	itra	ate Grad	le –		8	

List of Tables

Table	2				
# 1	Flotation	Test	BRF-6,	Test Conditions	9
2	Flotation	Test	BRF-7,	Test Conditions	10
3	Flotation	Test	BRF-8,	Test Conditions	11
4	Flotation	Test	BRE-9,	Test Conditions	12
5	Flotation	Test	BRF-10,	Test Conditions	13
6	Flotation	Test	BRF-6,	Results	14
7	Flotation	Test	BRF-7,	Results	15
8	Flotation	Test	BRF-8,	Results	16
9	Flotation	Test	BRF-9,	Results	17
10	Flotation	Test	BRF-10,	Results	18

Project BR-1

Progress Report #9 cont'd.

Flotation Tests for Nickel and Cobalt Recovery from Site 1 and Site 4 Serpentine Rock Samples.

Introduction:

Progress Report #4 gave results of flotation tests done on Site 4 material. These showed that nickel recoveries up to 43.1% and cobalt recoveries up to 39.1% had been obtained at combined concentrate grades of 4.2% Ni and 0.21% Co.

The tests described in the present report were done under conditions similar to those in the previous work with the aim to achieve better recoveries and to determine the effects of pulp aeration and finer grinding.

Experimental:

<u>Material</u>: Site 1 and Site 4 samples of serpentine rock in lumps ranging in size from 2" to 8". Approximate assays for both samples were 0.21% Ni and 0.011% Co.

Crushing, Grinding, Flotation: Laboratory equipment and procedures were the same as described in Progress Report #4.

Test Conditions:

Detailed test conditions for each test are listed in Tables 1 to 5.

<u>Grinding</u>: Grinding times were held constant at 37 min. except for tests BRF-6 (20 min.) and test BRF-10 (40 min.). Size distributions of the flotation feed are listed in footnotes (1) Tables 1 to 5.

Pulp Density: For grinding: 50% solids; for flotation: 25% to 22% solids.

<u>Reagents</u>: Collector: Na-isobutyl Xanthate, except for test BRF-6 where a combination of Na-ethyl Xanthate and K-amyl Xanthate was used; gangue dispersant: Carboxymethylcellulose; frother: Dowfroth 250.

<u>Conditioning</u>: Pulp conditioning was done following reagent addition for the lengths of time shown in Tables 1 to 5.

Aeration: Conditioning included aeration of the pulp in tests BRF-8, BRF-9, BRF-10. Aeration times are listed in footnotes (2) Tables 3 to 5.

Project BR-1

Progress Report #9, cont'd.

Pulp pH: 9.5. This is the natural value for this pulp.

<u>Pulp Temperature</u>: 20^OC starting. The temperatures rose during flotation to between 25^o and 35^oC as a result of the impeller stirring action.

Results and Discussion:

Results of the flotation tests are listed in Tables 6 to 10.

A summary of the concentrate grades and recoveries in terms of the cumulative results is shown below:

		8	Nit		Co) 8
Test		Weight	Grade R	ecovery	Grade I	Recovery
BRF-6. Concentrate Concentrate	-	0.36 0.60	1.75 2.11	3.25 6.58	0.092 0.108	3.09 6.10
BRF-7					0.100	0.10
Concentrate Concentrate		0.92 1.46	3.76 3.00	17.18 21.70	0.190 0.153	15.75 20.11
BRF-8 Concentrate Concentrate Concentrate	1&2	2.39 4.04 4.81	3.76 2.56 2.29	43.77 50.34 53.73	0.218 0.148 0.133	43.12 49.38 52.83
BRF-9 Concentrate Concentrate		1.93 2.81	2.32 1.80	21.73 24.59	0.121 0.094	18.89 21.45
BRF-10 Concentrate Concentrate Concentrate Concentrate	1&2	1.01 2.69 3.91 5.85	2.76 2.11 1.62 1.19	13.81 28.12 31.33 34.61	0.128 0.102 0.079 0.058	12.93 27.53 30.71 34.02

Test BRF-8 was done with Site 4 material. All other tests were done with Site 1 material.

• •

- - ---

The recoveries of cobalt closely resemble those of nickel. This is consistent with results of previous tests (Progress Report #4) and is considered indicative of cobalt being part of the nickel mineralization.

Project BR-1

Progress Report #9, cont'd.

The following discussion of results will be given in term of nickel, since cobalt follows nickel in its recovery behaviour.

The highest recoveries, 53.7%, were obtained in test BRF-8 on Site 4 material. This is consistent with the recoveries in test BRF-3, 43.1%, also on Site 4 material (Progress Report #4).

The highest recoveries on Site 1 material, 34.6%, were obtained in test BRF-10. The other Site 1 tests show recovery figures from 6.6% to 24.6%. No Site 1 tests were done in the earlier series (Progress Report #4).

To provide a convenient means for comparative analysis of the present tests as well as of those reported in Progress Report #4, plots were made of Recovery vs. Concentrate Grade. These plots are shown in Figure 1.

The plots appear essentially linear in the range of grades obtained, and have slopes that are indicative of the fact that grades go down as recoveries increase. The exception of plot BRF-6, where the grade increases with recovery, is thought to be a result of slow initial activation of pentlandite^{*}.

The plots in Figure 1 will now be analyzed in terms of Site 4 and Site 1 material.

Site 4 material: Tests with this material were done first and sofar the best results have been achieved with it. This is with reference to plots BRF-8 and BRF-3. The similar slopes and apparent continuity of the two plots show that the two tests are consistent with respect to each other. Essentially the same conditions of grinding time and reagent addition were used in these tests: The main differences between them were that in BRF-8 more total solids were recovered during flotation, a slightly finer degree of grinding was obtained, and pulp aeration was done in a deliberate manner. In test BRF-3 pulp aeration happened by way of a trial basis.

Plots BRF-4 and BRF-5 are also based on Site 4 material. However recoveries and grades in these tests are much inferior. In both tests a sulfide promoter, Aero 407, was used in addition to the xanthate collector. It is understood from recent discussions(1) that this reagent can also act as a promoter for silicate minerals. Activation of serpentine gangue would certainly offer an explanation for the poor results obtained in these tests.

*Pentlandite has been shown to be the principal nickel sulfide mineral recovered in flotation concentrates. Ref: Progress Report #8.

~ - - - --

18.

Project BR-1

Progress Report #9 cont'd.

Site 1 material: Plots BRF-10 and BRF-7 show a consistency of results in terms of linearity and slope similar to that obtained for BRF-8 and BRF-3. Recoveries for Site 1 material are however considerably lower. Grades are similar to those for Site 4 material, except for the two highest points on the BRF-10 plot, where they are lower because of more gangue carry over.

Plot BRF-10 exhibits a break as a result of a low initial recovery obtained in the first concentrate. This low recovery is attributed to the fact that the first concentrate was floated without the addition of Carboxymethylcellulose (CMC) gangue dispersant.

The slope of plot BRF-9 is similar to those of BRF-7 and BRF-10. The slope of plot BRF-6 is inverse to those of the other plots for Site 1 tests. As mentioned above this is thought to be related to slow initial activation of pentlandite.

In comparing the overall recoveries of the four Site 1 tests the following conclusions are drawn: The improved recoveries obtained for BRF-10 are attributed to a finer grind. The improved recoveries for test BRF-9 relative to those of BRF-7 are attributed to the use of aeration in BRF-9. The low recoveries obtained in BRF-6 are attributed to the coarse grind, the absence of CMC and lack of aeration. The change of collector in BRF-6 to a combination of Aero 325 and Aero 350 is considered to have had no_significant effect on the results in this test. Similarly the different amounts and modes of reagent additions in test BRF-10 relative to tests BRF-7 and BRF-9 are not considered to have had significant effects. The additional and staged use of Dowfroth 250 in BRF-10 was necessary to provide adequate froths.

Conclusions:

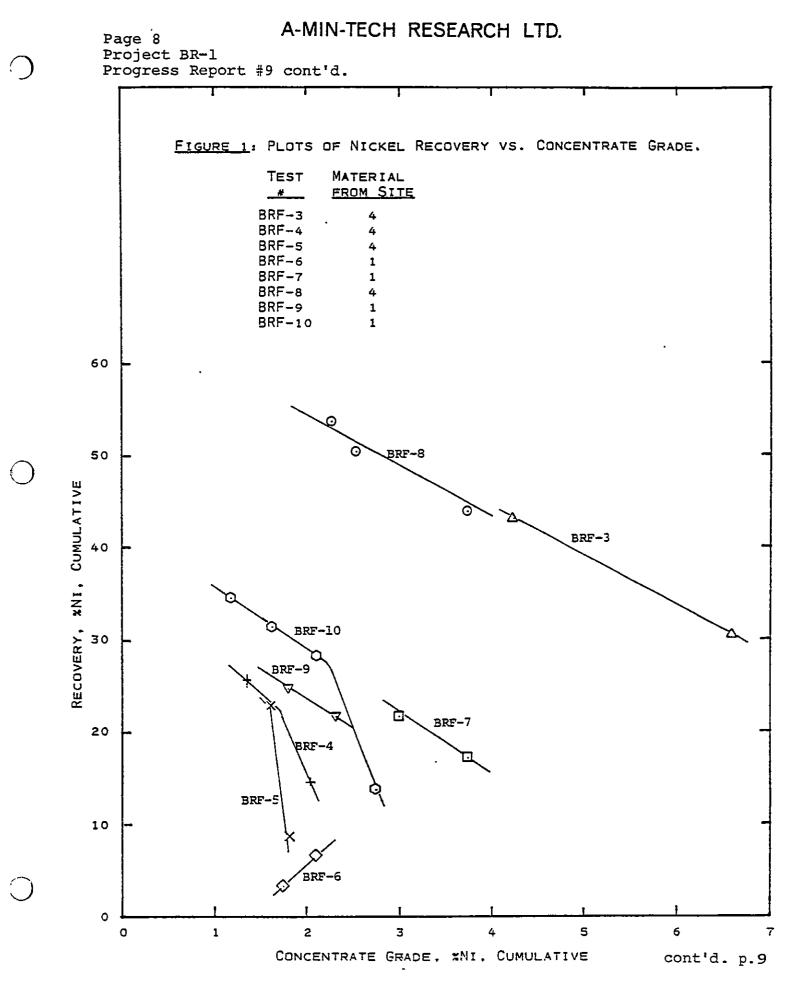
Flotation tests on serpentine samples designated Site 4 and Site 1 reported on in this report and in Progress Report #4 have provided the following information: For Site 4 material overall nickel recoveries in the range of 43.1% and 53.7% have been obtained at corresponding concentrate grades of 4.2% and 2.3%. For Site 1 material overall nickel recoveries in the range of 21.7% to 34.6% with corresponding grades of 3.0% and 1.2% were achieved.

The results indicate a distinct difference in the flotation behaviour of Site 4 and Site 1 materials under similar test conditions.

Factors that appear to have significant effects on recovery are fine grinding and aeration during conditioning. Maximum grinding to date has been done to a size distribution of 97% -200 mesh, 79% -325 mesh.

19.

Project BR-1


Progress Report #9 cont'd.

Experimental evidence exists that indicates that the use of CMC as a gangue dispersant is of importance for improving recoveries.

References:

(1) Private communication with staff of Sherritt Gordon Mines Ltd.

etin Signed: H.E Α þg. H. E. A. VONHAGN DRITISH

21.

7				Table 1 BRF-6, TEST rpentine Roci		5			Page 9 Project B Progress
STAGE	l Grinding ^{(:}	2 Condi- tioning	3 Head Sample	4 lst Flotation	5 Condi- tioning	6 2nd Flotation	7 Tailing Sample	Total Reagents	R-1 Report #9
Weight of solids in pulp, gm	750	750	703	701	701	699	655	_	9 cont
Water added, ml (makeup & wash)	750	1600	50	100	100	-	-	-	t d
Pulp volume, ml	1050	2650	2550	2610	2710	2685	-	-	• •
Pulp density, percent solids REAGENTS ADDED lb per ton of solids fe	50 eđ	24	24	23	22	22	-	-	
		0.02			0.03			0.05	I (
- Aero $325(2)$ - Aero $350(3)$	-	0.02	-	-	0.03	_	-	0.05	Į
- Dowfroth 250	_	0.02	-	$0.02^{(4)}$	0.01	-	-	0.05	:
pH, natural	-	-	-	-	-	-	9,5	-	
Pulp temperature, ^O C SAMPLES TAKEN	-	28	-	32	34	36	-	-	•
- Pulp volume, ml	_	-	150	40	-	25	150	-	
- Weight of solids, gm	-	-	46.5	2.5	-	1.7	44.5	-	-
Time of operation, min	20	54	-	4	22	4	_	-	
Time elapsed, min	20	88	73	92	118	122	-	-	

()

(1) 65% -200 mesh, 47% -325 mesh

۲

(2) Na-ethyl Xanthate

(3) K -amyl Xanthate

(4) Added in two stages

cont'd. p.10

22.

A-MIN-TECH RESEARCH LTD.

		ፑኒርጥልባ	ידסא ידבאיי	Table 2 BRF-7, TEST	CONDITION	5			Progress
				rpentine Rock		-			01
STAGE	l Grinding ⁽¹⁾	2 Condi- tioning	3 Head Sample	4 lst Flotation	5 Condi- tioning	6 2nd Flotation	7 Tailing Sample	Total Reagents	Report #9
eight of solids in	750	750	706	700	700	696	651	-	0 0
ulp, gm Water added, ml Makeup & wash)	750	1500 ⁽²⁾	-	150	-	40		-	cont'd.
ulp volume, ml	1050	2550	2400	2490	2490 [,]	2490	-	_	-
ulp density, ercent solids EAGENTS ADDED	50	25	· 25	24	24	24	-	- ,	
b per ton of solids feed	l –								
Aero 317 ⁽³⁾	-	0.067	-	-	0.133	-	-	0.200	
CMC ⁽⁴⁾	-	2.67	-	_	_	-	-	2.67	
Dowfroth 250	-	0.055	-	-	-	-	-	0.055	
H, natural ulp temperature, ^O C AMPLES TAKEN	_ 19.5	- 24	· _	-	- 28	-	9.55 29	- -	
Pulp volume, ml	_	-	150	60	-	40	150		
Weight of solids, gm	-	-	43.5	6.5	-	3.8	45.6	-	
lime of operation, min	37	23		6	10	5	-	-	
Time elapsed, min	37	64	61	20	82	87	-	_	

(1) 94% -200 mesh, 72% -325 mesh

(2) Includes 200 ml CMC solution added in stages(3) Na-isobutyl Xanthate

(4) Carboxymethylcellulose, Domtar Carboxel D435

p.11

cont'd.

÷

A-MIN-TECH RESEARCH LTD.

•					\bigcirc						\cup
				Tabl	8, TEST (Page 11 Project 1 Progress
STAGE	1 Grindina	² (2) 3 Head	l: Serpent 4 lst Flotation	5 Condi-	6 2nd	7 Condi- tioning	8 3rd Flotation	9 Tailing Sample		BR-1 Report,#9
Weight of solids in pulp, gm Water added, ml	750 750	750 1500 ⁽³⁾	710 100	693 80	693 -	681 -	681 -	676 -	629	-	
(makeup & wash) Pulp volume, ml Pulp density, percent solids	1050 50	2550 25	2500 24	2500 23	2500 23	2450 23	- 23	2390 24	· 	-	cont'd.
REAGENTS ADDED b per ton of solids feed • Aero 317 ⁽⁴⁾ • CMC ⁽⁵⁾ • Dowfroth 250	-	0.067 2.7 0.055	-	-	0.133	-	-	-	-	0.200 2.7 0.095	
DH, natural Pulp temperature, C GAMPLES TAKEN	-	- 24	-	-	- - 31	-	0.04 - -	- 31	9.5 -	-	
- Pulp volume, ml - Weight of solids, gm fime of operation, min		- - 36	150 40.1	80 17.0 8	- - 10	50 11.7 5	- - 2	60 5.5 , 6	150 46.7	- - -	
Time elapsed, min	37	85	67	93	105	110	113	, ų 119	121	-	

()

(1) 97% -200 mesh, 79% -325 mesh

- (2) Conditioning included aeration, stage 2, 8min.
- (3) Includes 200 ml CMC solution
- (4) Na-isobutyl Xanthate
- (5) Carboxymethylcellulose, Domtar Carboxel D435
- .12

cont'd.

24.

()

				Table 4 BRF-9, TEST rpentine Rocl		5			Page 12 Project BR- Progress Re
STAGE	l Grinding ⁽¹⁾	2 Condi-2) tioning	3 Head Sample	4 lst Flotation	5 Condi- tioning	6 2nd Flotation	7 Tailing Sample	Total Raegents	9
Weight of solids in	750	750	704	690	690	684	639	-	A-MIN
pulp, gm Water added, ml (makeup & wash)	750	1500 ⁽³⁾	200	200	-	100	-	-	A-MIN-TECH
Pulp volume, ml	1050	2550	2600	2650	2650	2680	-	-	Ц
Pulp density, percent solids REAGENTS ADDED lb per ton of solids feed	50	25	23	23	23	22	-	-	CH RES
- Aero 317 ⁽⁴⁾	-	0.067	_	_	0.133	-	-	0.200	SE/
- смс ⁽⁵⁾	_	2.67	-	_	-	-	_	2.67	Ŕ
- Dowfroth 250	-	0.055	-	-	-	-	-	0.055	EARCH
pH, natural Pulp temperature, C SAMPLES TAKEN	-	- 18	-	 24	-	-	9.55 -	-	4 LTD.
~ Pulp volume, ml	_	_	150	150	~	70	_	_	Ģ
- Weight of solids, gm	-	-	46.0	13.6	-	6.2	45.1	-	
Time of operation, min Time elapsed, min	37 37	28 81	- 70	7 88	10 103	6 109	_ 111	-	

(1) 92% -200 mesh, 70% -325 mesh

(2) Conditioning included aeration, stage 2, 11min.(3) Includes 200ml CMC solution added in stages

(4) Na-isobutyl Xanthate

,

(5) Carboxymethylcellulose, Domtar Carboxel 435

13

'n

cont'd.

Table 5 FLOTATION TEST BRF-10, TEST CONDITIONS Material: Serpentine Rock, Site 1										Page 13 Project B Progress		
STAGE	l Grinding ⁽¹⁾	2 (2) Condi- tioning	3 Head	4 lst Flo-	 F	6 2nd Flo-	7 Condi- tioning		9 Condi- tioning	10 4th Flo- tation	**	
Weight of solids in	750	750	704	697	697	685	685	676	676	662	620	-
pulp, gm Water added, ml (makeup & wash)	750	1600	-	50	150 ⁽³⁾	-	50	-	150 ⁽³⁾	-		A-MIN-TE
Pulp volume, ml	1050	2650	2500	2490	2640	2540	2590	2470	2620	2470	-	· 1
Pulp density, percent solids REAGENTS ADDED lb/ton of solids feed	50	24	24	24	23	23	23	23	22	22 -	- Total Reagent	- CH F
- Aero 317 ⁽⁴⁾	-	0.067	-	-	_	<u>.</u>	0.067	-	-	-	0.134	S
- Dowfroth 250	-	0.055	-	-	0.027	-	0.014	-	0.027	-	0.123	Σ
- CMC ⁽⁵⁾	-	-	<u>.</u>	-	1.33	-	-	-	1.33		2.66	EARCH
pH, natural	-	-	_	-	-	-	-	-	-	-	9.5	Ξ
Pulp temperature, ^O C SAMPLES TAKEN	20	-	-	23	-	-	-	26	-	31	-	LTD.
- Pulp volume, ml		-	150	60	_	100	~	1Ż0	-	150	150	<u>d</u>
- Weight of solids, gm	n —	-	46.1	7.1	-	11.8	-	8.6	-	13.7	42.6	•
Time of operation, min Time elapsed, min	40 40	22 78	- 71	7 85	9 95	6 101	10 114	6 120	9 131	7 138	_ 140	

(1) 97% -200 mesh, 78% -325 mesh

(2) Conditioning included aeration, stage 2, 8min., stage 5, 5min, stage 7, 3min.

(3) Includes 100 ml CMC solution added in stages

(4) Na-isobutyl Xanthate

(5) Carboxymethylcellulose, Domtar Carboxel 435

26.

		FLOTATION	Table 6 TEST BRF-	-6, RESULTS			Page 14 Project BR-1 Progress Repor
	Product	% Weight	% Nickel Assay	% Nickel Distribution	۶ Cobalt Assay	۶ Cobalt Distribution	רי # 0
INDIVIDUAL RESULTS	Head Concentrate 1 Concentrate 2 Tailings Head, Calculated	0.36 0.24 <u>99.40</u> 100.00	0.20 1.75 2.64 0.18 0.192	3.253.3393.42100.00	0.011 0.092 0.132 0.010 0.011		ont'd.
CUMULATIVE RESULTS	Concentrate l Concentrate 1&2	0.36 0.60	1.75 2.11	3.25 6.58	0.092 0.108	3.09 6.10	

Table 6

cont'd
י ש
15

A-MIN-TECH RESEARCH LTD.

•

 \bigcirc

		FLOTATION	Table 7 TEST BRF	-7, RESULTS			Page 15 Project BR-1 Progress Repor
	Product	¥ Weight	¥ Nickel Assay	ہ Nickel Distribution	% Cobalt Assay	ہ Cobalt Distribution	++ 9
INDIVIDUAL RESULTS	Head Concentrate 1 Concentrate 2 Tailings Head, Calculated	0.92 0.54 98.54 100.00	0.20 3.76 1.69 0.16 0.201	17.18 4.52 78.30 100.00	0.011 0.190 0.090 0.009 0.011	15.75 4.36 79.89 100.00	cont'd.
CUMULATIVE RESULTS	Concentrate 1 Concentrate 1&2	0.92 1.46	3.76 3.00	17.18 21.70	0.190 0.153	15.75 20.11	

.

 \mathcal{Q}

ļ

1

i

28.

Page 16 Project BR-1 Progress Report #9 cont'd.

,

•

.

8

FLOTATION TEST BRF-8, RESULTS

	Product.	% Weight	% Nickel Assay	% Nickel Distribution	% Cobalt Assay	ء Cobalt Distribution
INDIVIDUAL	Head	-	0.21	_	0.012	_
RESULTS	Concentrate 1	2.39	3.76	43.77	0.218	43.12
	Concentrate 2	1.65	0.82	6.57	0.046	6.26
	Concentrate 3	0.77	0.90	3.39	0.054	3.45
	Tailings	95.19	0.10	46.27	0.006	47.17
	Head, Calculated	100.00	0.206	100.00	0.012	100.00
CUMULATIVE	Concentrate 1	2.39	3.76	. 43.77	0.218	43.12
RESULTS	Concentrate 1&2	4.04	2.56	50.34	0.148	49.38
	Concentrate 1&2&3	4.81	2.29	53.73	0.133	52.83

1

.

Page 17 Project BR-1 Progress Report #9 cont'd. A-MIN-TECH RESEARCH LTD.

)

.

	Product	¥ Weight	¥ Nickel Assay	۶ Nickel Distribution	ہ Cobalt Assay	ہ Cobalt Distribution
INDIVIDUAL RESULTS	Head Concentrate 1 Concentrate 2 Tailings Head, Calculated	1.93 0.88 <u>97.19</u> 100.00	0.22 2.32 0.67 0.16 0.206	21.73 2.86 <u>75.41</u> 100.00	0.012 0.121 0.036 0.010 0.0124	18.89 2.56 <u>78.55</u> 100.00
CUMULATIVE RESULTS	Concentrate 1 Concentrate 1&2	1.93 2.81	2.32 1.80	21.73 24.59	0.121 0.094	18.89 21.45

Table 9

FLOTATION TEST BRF-9, RESULTS

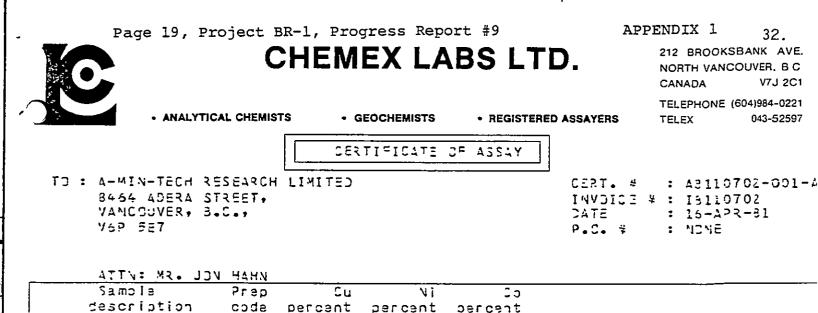
د

 $\hat{()}$

A-MIN-TECH RESEARCH	LTD.
1ge 18	
roject BR-1	
rogress Report #9 cont'd.	

 \bigcirc

.


рн рн рн р ιĒ 井 ŭ cont

	Product	% Weight	۶ Nickel Assay	ہ Nickel Distribution	% Cobalt Assay	% Cobalt Distribution
INDIVIDUAL	Head	_	0.21	-	0.010	-
RESULTS	Concentrate 1	1.01	2.76	13.81	0.128	12.93
	Concentrate 2	1.68 1.22	1.72 0.53	14.31 3.21	0.087 0.026	14.60 3.18
	Concentrate 3 Concentrate 4	1.22	0.33	3.28	0.028	3.31
	Tailings	94.15	0.14	65.39	0.007	65.98
	Head, Calculated	100.00	0.202	100.00	0.010	100.00
CUMULATIVE	Concentrate 1	1.01	2.76	13.81	0.128	12.93
RESULTS	Concentrate 1&2	2.69	2.10	28.12	0.102	27.53
	Concentrate 1&2&3	3.91	1.62	31.33	0.079	30.71
	Concentrate 1&2&3&	4 5.85	1.19	34.61	0.058	34.02

Table 10

FLOTATION TEST BRF-10, RESULTS

()

<u>per</u>cent

0.20

1.75

2.54

0.18

9.20

3.76

1.59

0.15

percent

0.011

0.092

9.132

9.010

0.011

0,190

0.090

0.009

- -

--

- -

--

- -

- -

_ _

_ _

_ _

- --

_ _

- --

- -

- -

_ __

_ _

- -

<u>percent</u>

--

_ _

<3.01

3.19

0.06

<0.01

214

214

214

214

214

214

214

214

SRF-6 HEAD

BRF-6 CUNC 1

BRF-6 CONC 2

3R=-7 CONC 1

PRF-7 CONC 2

BRE-7 TAILS

34F-6 TAILS

BRE-7 HEAD

Registered Assayer, Province of British Columbia

Page 20, Project BR-1, Progress Report #9

CHEMEX LABS LTD.

C

APPENDIX 1 33.

212 BROOKSBANK AVE NORTH VANCOUVER. B C CANADA V7J 2C1

TELEPHONE (604)984-0221 TELEX 043-52597

ANALYTICAL CHEMISTS	GEOCHEMISTS

Prep AU-FA+AA

CERTIFICATE OF AMALYSIS

 CERT. ≈	:	:	A3110794-001-
INVOICE 4	:	:	IS110794
DATE	:	;	11-A1Y-51
P.C. #	:	:	NUNE

ŦΠ	:	A-MIN-TECH	1100432355	1 I ALTED
	•	A MIN CON	(LUCANC)	L1
		2464 ADERA	STREAT.	
		1717 AJC A	31K_4 ¥	
		VANCOUVER+	3.0	
			34644	
		V52 587		

ATTN: MR. VON HAHN

. • .

SETCIE

DATE P.C. ≉	: ll-may-sl : Nune

• REGISTERED ASSAYERS

Cascription	code	323			
	214		 	 	
389-8 CONC #1	214		 	 	
BRF-3 CONC ≠2	21+		 	 	-
385-9 COMC #3	214		 	 	
BRF-8 TAILS	214	5	 	 	
	214		 	 	
3RF-6 CONC ≠1	214		 	 	

MEMBER CANADIAN TESTING

......

contd. p.21

Page 21, Project BR-1, Progress Report #9

CHEMEX LABS LTD.

CERTIFICATE OF ASSAY

APPENDIX 1 34.

212 BROOKSBANK AVE NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE (604)984-0221 TELEX 043-52597

_ _ _ .

• ANALYTICAL CHEMISTS GEOCHEMISTS

• REGISTERED ASSAYERS

ERT• #			A8110881-001-A
NVOICE	¥	-	
ATE		:	28-MAY-81

TO : A-MIN-TECH RESEARCH LIMITED 8464 ADERA STREET, VANCOUVER. B.C... V5P 5E7

C I Ð. P.O. # : NONE

	ATTN: MR. VO	N HAHN				-		
	Sample	Ргер	Cr 203	Ni	Co	Fe (%)		
	description	code	2	percent		acid ext		
	BRF-9 HEAD	214		0.22	0.012			
	BRF-9 CONC 1	214		2.32	0.121			
	BRF-9 CONC 2	214		0.67	0.036			
	BRF-9 TAILS	Z14		0.16	0.010			
	SRF-3 MAG	214	1.01	0.13	0.011	DELAYED		
	BRF-7 MAG	214	2.78	0.13	0.013			
	SRF-3 NON MAG	208	0.34	0.17	0.009			
	BRF-7 NON MAG	208	0.20	0.12	0.007	DELAYED		
<u> </u>						<u> </u>		
)								
/						~ `		
			•	·····		Engrand .		
CT	<u>Ά</u> , μεμπερ		R	egistered	i Assayer	Province d	of British	Columb
- F	CANADIAN TESTING							
(7)	ASSOCIATION						cont'd	. p.22
				•				•

Page 22, Project BR-1, Progress Report #9 APPENDIX 1

• REGISTERED ASSAYERS

		35.
212	BROOKSBANK	(AVE
NOR	TH VANCOUVE	RBC
CAN	ADA V	7J 2C1

TELEPHONE (604)984-0221

043-52597

CHEMEX LABS LTD.

GEOCHEMISTS

COPTIFICATE DE 4354Y

TO : A-MIN-TECH RESEARCH LIMITED 8464 ADERA STREET, VANCOUVER, 5.C., VoP 517

. ANALYTICAL CHEMISTS

CEPT. = : A0110946-001--IN/GIDE 4 : 15110945 DATE : 14-44Y-91 P.C. 4 : NONE 01-07-01

TELEX

<u> </u>	ATTN: MR. H.					 	
	Sample	jr∋b	`+ I	Сэ			
÷ —	<u>Jescription</u> BRE-10 HEAD	<u> </u>	<u>carcent</u>	<u>trecrec</u>		 	
		214	0.21	0.010		 	
Ì	BRF-10 CONS 1 BRF-10 CONC 2	21-	2.75	0.125		 	
1		214	1.72	0.037		 	
		214	2.53	J.L20		 	
	3x5-10 CONC 4 3x5-10 TAILS			3.317		 	
1	3RF=10 141L3	2:4	0 • T u	3+307		 	
i							
I							
•							
						 	••• •
: 							
_							
\sim							
-						 • • • • • •	
•							
1							
1							
1							
			<u></u>			 	
İ							
ļ							
1							
				·		 	
1							
I							
İ							
5							
J	***************************************					 	
				• • • • • • • • • • • •	• .		
сти			•		********** RS1VEF + 2r		

Registered Assayer, Province of Smithen Columnia

A Minerals Technology Service

Flotation, Hydrometallurgy Research & Testing

4

()

PROJECT BR-1

BORDER RESOURCES LTD.

Progress Report #10

Magnetic Fractionation of Nickel Flotation Tailings for Recovery of Magnetite and Chromite

1

A Minerals Technology Service

Flotation, Hydrometallurgy Research & Testing

PROJECT BR-1

Progress Report #10

Date: 31 December, 1981

To: Border Resources Ltd., 412 Granville Square, 200 Granville Street, Vancouver, B.C., V6C 1S4

Attention: G.W. Hornby, P. Eng.

Project Title: Treatment of Serpentine Sample for Recovery of Nickel and Other Valuable Minerals.

Report Title: Magnetic Fractionation of Nickel-Flotation Tailings for Recovery of Magnetite and Chromite.

Summary:

Single-stage magnetic fractionation tests were done on tailings of Site 4 and Site 1 nickel-flotation tests to recover magnetite and chromite. A Davis tube magnetic separator was used. The magnetic fractions showed the following grades and recoveries in terms of iron and chromic oxide:

Test	Site	₹Fe	%Fe	%Cr2O3	%Cr₂O₃
#		Assay	Recovery	Assay	Recovery
BRM-1	4	39.5	63.25	2.78	62.91
BRM-2	1	20.0	58.28	1.01	36.16

The stoichiometric iron content of magnetite is 72.4%. Commercial grades of magnetite concentrates are of the order of 69% iron. Further testwork is required to determine the feasibility of obtaining commercially viable grades and recoveries.

The calculated head-assays of the magnetic separator feeds were as follows:

Test #	%Fe	\$Cr ₂ O ₃
BRM-1	6.79	0.48
BRM-2	5.49	0.45

These values are consistent with the iron and chromium values of emission spectrographic analyses of serpentine samples as reported in Progress Report #2.

9464 ADERA ST VANCOUVER BC CANADA VAD SET TEL 604 0620220

Page 2 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

Analyses of the magnetic and non-magnetic fractions for oxideiron and total-iron showed virtually no difference in values. This suggests that there is essentially no iron present in silicate form in the serpentine samples tested; which is encouraging from the point of view of seeking improvements in magnetite recovery.

No significant recovery of nickel and cobalt into the magnetic fractions took place. This suggests that native nickel-iron alloys (awaruite) are absent from the serpentine samples used.

No upgrading of precious metals took place in the magnetic separation tests, as indicated by comparison of assays of the magnetic fractions for gold, silver, platinum and palladium with corresponding assays of serpentine samples as reported earlier in Progress Report #2.

Semiquantitative emission spectrographic analyses were done on the magnetic fractions to determine the possible recovery of additional elements of importance. Comparison of the results with those obtained in earlier similar analyses of serpentine samples (Progress Report #2) showed essentially no differences except, of course, for iron and chromium. Some upgrading of manganese, vanadium and zinc occured also, but is not considered of significance because of the low initial values of these elements.

Mineralogical examinations of mineral-particle mounts of the magnetic fractions showed the dominant opaque mineral to be magnetite. Chromite particles were seen to be intergrown with magnetite. A single chromite particle was also seen. Pentlandite, haezlewoodite and/or millerite particles were present as mimor constituents as well as some chalcopyrite particles. No evidence was found of nickel-iron alloy particles (awaruite). Particle sizes mostly ranged downward from 25μ diameter. Some larger particles, up to 100μ diameter seen also. Gangue, making up 20-30% of particles present, was not identified but presumed to be antigorite.

Photomicrographs of mineral-particle mounts were prepared for illustrative purposes. Examinations of these indicates the presence of magnetite middlings. For comparison photomicrographs were also prepared of polished sections of Site 4 and 1 serpentine samples. A noteworthy observation was that the size range of the magnetite particles in the polished sections is similar to that in the particle mounts; indicating that no significant comminution of magnetite particles took place during grinding.

Page 3 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

The easy recovery of chromite into the magnetic fraction is encouraging from the point of view of preparing bulk concentrates. The mineralogically observed intergrowth of magnetite with chromite indicates, however, possible difficulties in the separation of the two minerals and/or the achieving of satisfactory chromite concentrate grades.

Signed: H.E A.2.2.20 Har H.E. A VONLAR Ċ,

Page 4 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

Contents:

	page
Summary	l
Introduction	5
Experimental	5
Results and Discussion	5
Magnetite and Chromite Recovery	5
Head Assays	6
Assessment of Results	6
Silicate-Iron	7
Nickel and Cobalt Recovery	7
Precious Metals Recovery	8
Semiquantitative Emission Spectrographic Analyses	8
Mineralogical Examinations	9
Photomicrographs of Mineral Particle Mounts and Polished Sections	10
Chromite Recovery	10
References	12
Table 1: Magnetic Separation Test BRM-1, Results	13
Table 2: Magnetic Separation Test BRM-2, Results	14
Figure 1: Particle Mount of Magnetite Concentrate, Test BRM-1	15
Figure 2: Particle Mount of Magnetite Concentrate, Test BRM-2	16
Figure 3: Polished Section of Serpentine Sample, Site 4 Material	17
Figure 4: Polished Section of Serpentine Sample, Site 1 Material	18
Appendix I: Chemex Labs Ltd. Assay Certificate # A8110881-001-A	19
	0&21
Appendix III: Chemex Labs Ltd. Assay Certificate # SP 1102	22

40.

Page 5 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

Introduction:

The presence of magnetite and chromite in the Border Resources Ltd. Coquihalla ultramafic complex had been indicated in reports by J.A. Chamberlain¹ and A.J. Sinclair².

Emission spectrographic analyses of serpentine samples, reported in Progress Report #2 of the present project, showed iron values of 5-10% and chromium values of 0.3-0.5%.

Visual observations on tailings of nickel-flotation tests indicated the presence of magnetite.

Accordingly it was decided to do single-pass magnetic separation tests on the tailings of two nickel-flotation tests to determine the feasibility of recovering magnetite and chromite.

Experimental:

Magnetic separation (or fractionation) tests were done on the tailings of flotation tests BRF-3 (Site 4 material) and BRF-7 (Site 1 material). The tests were designated BRM-1 and BRM-2 respectively.

The apparatus used was a Davis tube wet magnetic separator.

The work was done by Bacon, Donaldson & Associates Ltd.

The assays were done by Chemex Labs Ltd.; see Appendices I to III.

Results and Discussion:

<u>Magnetite and Chromite Recovery</u>: Results of the magnetic separations are given in Tables 1 and 2 for tests BRM-1 and BRM-2 respectively. The grades and distributions obtained in the magnetic and nonmagnetic fractions are shown in terms of percent iron and percent chromic oxide (Cr_2O_3) . They are summarized below for the magnetic fractions as follows:

Test	Site	%Fe	%Fe	%Cr2O3	%Cr2O3
#		Assay	Recovery	Assay	Recovery
BRM-1	4	39.5	63.25	2.78	62.91
BRM-2	1	20.0	58.28	1.01	36.16

Page 6 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

Head Assays: Iron and chromium head assays for the magnetic separator feeds were calculated and are listed in Tables 1 and 2. They are summarized below:

Test #	۴Fe	\$Cr203
BRM-1	6.79	0.48
BRM-2	5.49	0.45

These values are consistent with the iron and chromium values obtained earlier in semiguantitative emission spectrographic analyses of serpentine samples of Sites 1 and 4 as reported in Progress Report #2.

Assessment of Results: It is evident from the data presented that considerable recovery and upgrading of both magnetite and chromite were achieved by single passage of nickel-flotation tailings through the magnetic separator. This is indicated particularly by the results of test BRM-1 with Site 4 material.

The stoichiometric iron content of magnetite is 72.4%. Commercial grades of magnetite concentrates for smelting purposes are of the order of 69% iron. The results obtained in this work in a single stage magnetic separation are not satisfactory in terms of commercial requirements. They are, however, considerd to be sufficiently encouraging to warrant further testwork.

Improvements in recovery will have to be sought by optimization of factors such as degree of grinding, pulp density, rate of throughput, magnetic field intensity. Improvements in grade will require further process steps such as additional passes of magnetic concentrates through the separator and regrinding of middling particles.

Another noteworthy feature of these results is the similarity of recoveries of magnetite and chromite. This is particularly evident in test BRM-1 where the recovery values for the two minerals are virtually identical. This behaviour is useful from the point of view of obtaining bulk concentrates. For the subsequent separation of chromite from magnetite it will be necessary to develop a process that will exploit any differences in the behaviour of the two minerals.

Page 7 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

Silicate-Iron: The question arose: How much of the iron in the magnetic concentrates is present in silicate form? To answer this, separate analyses were done for oxide-iron (by acid extraction) and total iron (by Na-oxide-peroxide fusion). The results are listed in Appendix I, and are shown below for examination.

Test #	%Fe _acid extr.	%Fe total
BRM-1 Mag	39.50	39.50
BRM-2 Mag	19.50	20.00
BRM-1 Non-Mag	2.60	2.73
BRM-2 Non-Mag	2.60	2.80

The figures show that there is no silicate-iron in the magnetic fractions. Also, the amount of silicate-iron in the non-magnetic fractions is small.

The conclusion to be drawn is that virtually all the iron in the serpentine is present in oxide form, i.e., magnetite; not counting the small amounts (relatively speaking) of iron tied up in pentlandite.

No analyses were done for silicate-chromium, but in view of the similar behaviour of chromite and magnetite in the magnetic separations, it is concluded that silicate-chromium is not present in significant amounts.

The absence of any significant amounts of silicate-iron is encouraging from the point of view of seeking improvements in magnetite recovery.

Nickel and Cobalt Recovery: The magnetic and non-magnetic fractions of tests BRM-1 and BRM-2 were assayed for Nickel and Cobalt to determine whether any upgrading of these metals had occured as a result of the magnetic separation.

The results are listed in Appendix I and are shown below for examination. Also shown are the assays of the feed materials.

Test #	Magnetic %Ni	Fraction %Co	IS	Non	-Magne %Ni	tic Fractions %Co
BRM-1 BRM-2	0.13 0.13	0.013 0.011			0.12 0.17	0.007 0.009
				Sepa	rator	Feed Materials
BRM-1 da BRM-2 da	ta from Prog. ta from Prog.	Rep.#4 t Rep.#9 t	test test	BRF-3 BRF-7	0.12 0.16	0.007 0.009

43.

Page 8 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

It is evident from these figures that essentially no upgrading of nickel and cobalt were achieved through magnetic separation. The slight increase in the cobalt assays of the magnetic fractions relative to those of the separator feed materials is not considered to be of significance.

These results suggest that no magnetically susceptible nickelor cobalt- minerals, such as native nickel-iron alloys (awaruite), are present in the separator feed materials. The presence of nickel and cobalt in the magnetic fractions is attributed to the presence of sulfide particles carried over as part of the gangue. This conclusion is consistent with the findings of the mineralogical examinations discussed below.

<u>Precious Metals Recovery</u>: In view of the possible association of precious metals with magnetite, the magnetic fractions were analyzed for gold, silver, platinum and palladium. The values obtained are listed in Appendix II and are shown below together with corresponding earlier analytical values of Site 1 & 4 samples of serpentine (see Progress Report #2).

Test	Site	Au	Ag	Pt	Pd
#		ppb	oz/ton	ppb	ppb
BRM-1 Mag	4	<100	0.01	<50	<25
BRM-2 Mag	1	<100	0.01	<50	<25
Serpentine Progr. Rept		S			
l-D Cut	1	25	0.09	<50	150
4-A Cut	4	20	<0.01	<50	<50
4-B Cut	4	5	<0.01	<50	<50

These results show that essentially no upgrading of precious metals took place in the magnetic separation tests. The seemingly higher values of gold in the magnetic concentrates only reflect a less sensitive analytical method used on these concentrates as compared to that used on the serpentine samples.

Semiquantitative Emission Spectrographic Analyses: The magnetic fractions of tests BRM-1 and BRM-2 were subjected to 30-element semiquantitative spectrographic analyses to determine the possible recovery of additional elements of importance. The results are listed in Appendix III. On comparing these results with those obtained in earlier spectrographic analyses of Site 1 and 4 serpentine samples (Progress Report #2, Appendix I-3) no

Page 9 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

significant differences are evident except, of course, for chromium and iron. Some upgrading is indicated for manganese, vanadium and zinc. However, the values are not high enough to be considered of importance.

Mineralogical Examinations: Mineralogical examinations were done on mineral-particle mounts of the magnetic fractions of tests BRM-1 and BRM-2. The purpose was to determine the mineral particle compositions of the fractions. The work was kindly done by Dr. J.A. Chamberlain. The observations were communicated orally to H. von Hahn during the examinations and taken down by him as notes.

The results of these examinations are as follows:

Mineral-Particle Mount, Magnetic Fraction, Test BRM-1

Magnetite: Dominant opaque mineral, most grains at 25µ (0.025mm) diameter.

<u>Chromite</u>: A little chromite present; magnetite intergrown with chromite; most chromite seems to be middling; a single chromite particle also seen, dia. 100µ (0.1mm).

Geologically chromite forms first; virtually no chromium should be present as silicate. Later during serpentinization magnetite precipitates out and often forms a rim around the chromite, hence the intergrowth.

<u>Sulfides</u>: A few discreet sulfide grains are present; some to 250μ diameter; most are identified as pentlandite; two grains of haezlewoodite also seen; for haezlewoodite read also millerite; sulfide particles large compared to magnetite particles; small sulfide particles (2-10 μ) seen under higher magnification; small chalcopyrite particles also seen.

Nickel-Iron Alloys: No evidence was found of nickel-iron alloy particles (awaruite). This is consistent with finding that the magnetic separation tests yielded no upgrading of nickel.

Gangue: Gangue estimated to make up 20-30% of particles present; not identified but presumed to be antigorite on the basis of earlier identifications. 45.

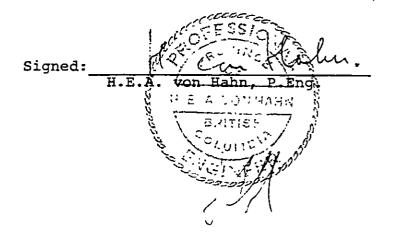
Page 10 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

Mineral-Particle Mount, Magnetic Fraction, Test BRM-2

The observations made on this mount relative to magnetite, chromite and the sulfides were essentially the same as those made on the previous mount. The main difference was that the particles were generally smaller and the particle concentrations lower. No nickel-iron alloy particles were seen. The proportion of gangue was higher, being about 60%.

Photomicrographs of Mineral-Particle Mounts and Polished Sections: Figures 1 and 2 show photomicrographs depicting typical areas of the mineral-particle mounts of the magnetic fractions of tests BRM-1 and BRM-2. The photomicrographs were prepared to provide a visual means of illustrating the makeup of the magnetite concentrates. Figures 3 and 4 show photomicrographs of polished sections of respectively Site 4 and Site 1 serpentine samples which illustrate, for comparison, the mode of occurrence and particlesize distribution of magnetite and nickel sulfides in the host rock.

Descriptive details, explanatory of the pictures are given in the captions.


Mineral Particle Mounts: The photographic evidence in Figures 1 and 2 is essentially consistent with the mineralogical observations as given above. One additional observation is the indicated presence of magnetite middlings as can be seen by examination of the photographs with a magnifying glass. Middlings would require regrinding of the concentrate to improve the grade by further magnetic separations.

Polished sections: The photomicrographs in Figures 3 and 4 depict typical areas of the magnetite bearing serpentine of Sites 4 and 1 respectively. The Site 4 section exhibits a much greater magnetite particle density as well as the typical stringer-type arrangement of the magnetite particles. Surprisingly, the size range of magnetite particles in the polished sections is similar to that in the mineral particle mounts; suggesting that despite the considerable degree of grinding done to the magnetic separator feed (78% -325mesh) no significant comminution of magnetite particles took place.

Chromite Recovery: The easy recovery of chromite into the magnetic concentrates, as shown above, is encouraging from the point of view of obtaining a bulk concentrate. The mineralogical examinations, which show magnetite intergrown with chromite, suggest

Page 11 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

however, that there will be difficulties in separating the two minerals by magnetic means, as well as in obtaining a satisfactory grade of chromite concentrate if a successful separation method, e.g., flotation, is developed. Research in this direction is required.

Page 12 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

References:

1. J. A. Chamberlain, Geological Report Coquihalla Property, B.C., May 2, 1971, p. 4.

2. A.J. Sinclair, Mineralogy of a Composite Sample, Hornby-Menzies Ultramafic Complex, July 12, 1976, pp. 7-11.

$\mathbf{\Sigma}$
1
2
\geq
=
<u> </u>
\mathbf{O}
T
RE
m
Ω.
m
5
2
고
\mathbf{O}
<u>`</u>
╺╾┺╸
-
\sim

Page 13 Border Resources Progress Report

s Itd. #10 cont'd.

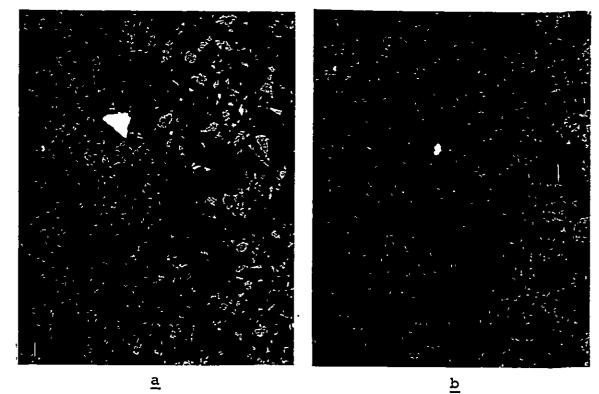
	8	8	8	ŧ	£
Product	Weight	Fe	Fe	Cr_2O_3	Cr_2O_3
	-	Assay	Distribution	Assay	Distributior
			· · ·	<u>.</u>	<u></u>
Magnetic Fraction	10.87	39.5	63.25	2.78	62.91
Non-Magnetic Fraction	89.13	2.80	36.75	0.20	37.09
Head, Calculated	100.00	6.79	100.00	0.48	100.00

Table 1

MAGNETIC SEPARATION TEST BRM-1, RESULTS

Feed Material: Tailings of flotation test BRF-3, Site 4 serpentine

Progress Report #	Border Resources	Page 14
#10 con:	Ltd.	A-MIN
nt'd.		-TECH
		RESEAI
		RCH
		LTD.


Table 2

MAGNETIC SEPARATION TEST BRM-2, RESULTS

Product	8	१ Fe	8	. 8	9 6	
· .	Weight	Assay	Fe Distribution	Cr₂O₃ Assay	Cr ₂ O ₃ Distribution	
	······································			<u> </u>		
Magnetic Fraction	16.01	20.0	58.28	1.01	36.16	
Non-Magnetic Fraction	83.99	2.73	41.72	0.34	63.84	
Head, Calculated	100.00	5.49	100.00	0.45	100.00	

Feed Material: Tailings of flotation test BRF-7, Site 1 serpentine

Page 15 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

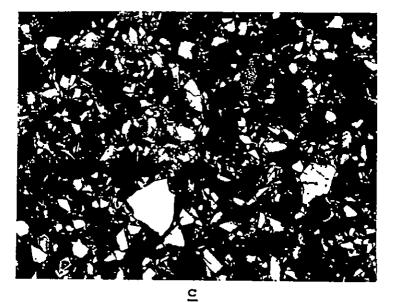
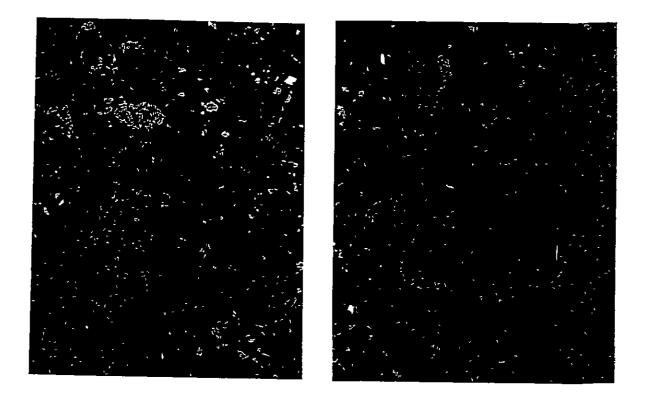
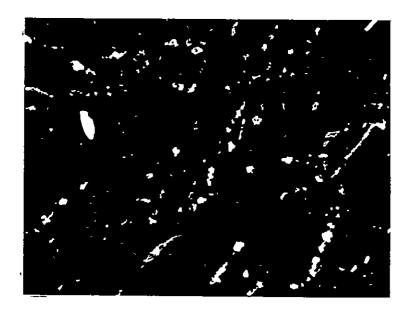



Figure 1: Particle mount of magnetite concentrate, test BRM-1. Mag. 100X. Views <u>a</u>, <u>b</u>, <u>c</u> taken of different fields. Grey particles magnetite, size range $10-50\mu$. White particles nickel sulfides, pentlandite or possibly haezlewoodite/millerite. Serpentine gangue particles evident in plastic matrix. Magnetite middling particles also evident; seen best in view <u>c</u> by means of magnifying glass.

Page 16 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.



a

b

Figure 2: Particle mount of magnetite concentrate, test BRM-2. Mag. 100X. Views a and b taken of different fields. Grey particles are magnetite, size range $3-70\mu$, mainly $10-20\mu$. White particles nickel sulfides, pentlandite or possibly haezlewoodite/millerite. Serpentine gangue particles evident in plastic matrix. Magnetite middling particles also evident; seen best by means of magnifying glass.

Page 17 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

a 4 sec. exposure

<u>b</u> 2 sec exposure

Figure 3: Polished section of serpentine sample, Site 4 material. Mag. 100X. Grey magnetite particles arranged in typical stringers in serpentine matrix. Size range $10-30\mu$. White particles are nickel sulfides, e.g., pentlandite; seen more clearly in view <u>b</u>. Pentlandite-magnetite middling evident near left side of view <u>b</u>.

Page 18 Border Resources Ltd. Project BR-1 Progress Report #10 cont'd.

a 4 sec. exposure

<u>b</u> 2 sec. exposure

Figure 4: Polished section of serpentine sample, Site 1 material. Mag. 100X. Grey particles are magnetite. White particles are nickel sulfides, e.g., pentlandite; seen more clearly in view <u>b</u>. Size ranges $5-40\mu$.

Page 19 Border Resources	Ltd. Prog	gress Repo	ort #10 co	nt'd. 4	APPENDIX	I 55.
Project BR-1	CHEM	EX LA	ABS L	ΓD.	212 BROC	DKSBANK AVE NCOUVER B C V7J 2C1
· ANALYTICAL CHEMIS	its . G	EOCHEMISTS	· REGISTE	RED ASSAYERS	TELEPHON TELEX	NE (604)984-0221 043-52597
•	CER	TIFICATE	OF ASSAY			
TC : A-MIN-TECH RESEARCH	LIMITED			CERT.#		0331-001-A
3+64 ACERA STREET, VANCOUVER, 3.C., V6P 5E7				INVDICE DATE P.O. *	<pre>\$: I811 : 03-J : NONE</pre>	15-NU
ATTN: MR. VON HAHN					<u></u>	
Sample Prep description code	Сг 203	NI percent	Co <u>percent a</u>	Fe (%) f cid_ext	Fe (%) 	·
335-9 4EAD 214 385-9 CONC 1 214		0.22	0.012			
38F-9 CONC 2 214		0.57	0.121 0.036			
$\frac{3RF-9}{3RF-87} \frac{TATLS}{MAG} \frac{Test # 214}{BRM-2214}$	1.01	2.15	0.010			'
3PF-V ³ MAG BRM-1214	<u>1•01</u> 2•73	<u> 0.13 </u> 0.13	<u>0.011</u> 0.013	<u> 19.50 </u>	<u>20.00</u> 39.50	
3PF- TNON MASBRM-2203	0.34	9.17	0.009	2.60	2.80	
SRE-V3NCN MAGBRM-1208	0.20	0.12	0.007	2.60	2.73	l
			· · · · · · · · · · · · · · · · · · ·	<u> </u>		
\frown						i
· · · · · · · · · · · · · · · · · · ·	·	<u> </u>				
·			• 			
· ·						
				· · · · · · · · · · · · · · · · · · ·		
	·					
	<u> </u>					
	-					
			~			
<u>_</u>			()	/		
·)			1-1-1	/		
CTA	• •		Kerka A.F	فالتدرم	<u></u>	•••••
CANADIAN TESTING	२ e :	gistered (Assayer, D	rovince of	Critisn	Columpia

\mathcal{L}		- ANALYTIC	CAL CHEMIS	rs •ge	OCHEMISTS	· REGISTER	ED ASSAYERS	CANADA TELEPHON TELEX	V7J 2C1 IE (604)984-0221 043-5259
				CERTIFI	CATE OF A	NALYSIS			
то	8464	N-TECH RE ADERA ST CUVER, B. 5E7	REET	LIMITED			CERT. # Invoice Date P.G. #	: A8114 # : I8114 : 13-N1 : NONE	
	Samp	le Test #	Prep	Pt	Pd				
	BRF 3	iption MAG (BRM-1) MAG (BRM-2)	<u>code</u> 214 214	<u>ppb</u> <50 <50	¢pb <25 <25				**
	•			••••••••••••••••••••••••••••••••••••••					
Ć	-	<u> </u>							·· ···· ······························
			·						
<u></u>	<u> </u>								
				·					
)						· · · · · · · · · · · · · · · · · · ·	an Amd.		

•		Page Bord	e 21 der Res	ources	Ltd. Pro	gress Repo	ort #10 cor	-+1-3 N	מסבי	NDTY TT	57. 2 of 2
7) ? ?	ject BR	-1 (CHEM			D .	21 N	2 BROOKS	SBANK AVE COUVER B C V7J 2C1
\mathcal{O}			. ANALYTIC	AL CHEMIS	STS . (GEOCHEMISTS		ED ASSAYERS		LEPHONE	(604)984-0221 043-52597
					CER	TIFICATE C	FASSAY				
	8 V	464 Al	CERA STI Ver+ B+1	REET	LIMITED		<u>.</u>	∟ CERT• # INVCICE DATE P•C• #	* :		
	S de	ample script	Test #		Au FA g/tonne	s z	Ag FA oz/T			<u> </u>	
	BRF	3 MAG	(BRM-1) (BRM-2)	214	<0.1 <0.1	N.S.S. 0.09	0.01				
i											
ł		-			~						- -
1											
				 .	• • • •		·····				-
О											
					··						
	-				<u> </u>					··	
ļ									·		
-			<u></u>					· · · · · · · · · · · · · · · · · · ·			•
			-								
ļ			<u> </u>								
-				<u> </u>							
•											
Ċ						N.	4	· · · · · · · · · ·			ſ
		WENBER ANACYAN TEST	ING		Reg	gistered A	ssayer, Pr	ovince of E co		ish Co d. p.22	

In	Project Progres:	Resources Ltd. BR-1 s Report #10 cont'd. HEMEX LABS	212 BRO NORTH Y CANADA	DNE: 984-0221	58.
ANALYTICAL C	HEMISTS	· GEOCHEMISTS REGISTI	ERED ASSAYERS		
8464 Ad Vancouve	ech Resea era Stree er, B. C.	CATE OF LALYS'S rch Limited t	- CERTIFIC INVOICE RECEIVES		
V6P 5E7		Test # → BRM-1	Test # → BRM-2 ^{SE}	-	
SAMPLE NO. :		Concentration]
Aluminum	Limit (0.02%			IAG	
Antimony	100	0.5%	0.5%		
Arsenic	100	bcl	bcl		
Barium	2	bel	bcl		
Beryllium	5	2 b a 1	bcl		
Bismuth	10	<u>bcl</u> bcl	bcl		
Boron	20	bcl	bcl		
Cadmium	50	bcl	bcl		
Calcium	0.05%	0.15%	bcl		
Chromium	10	>5000	0.3%		
Cobalt	20	50	>5000	<u></u>	
Copper	2	30	50		
Geramium	10	bcl	30 1 - 1		1
Iron	0.05%	>20%	bcl		i
Lead	10	bcl	20%	•	
Magnesium	0.02%	5%	bcl	<u> </u>	{
Manganese	5	1000	7%		
Molybdenum	100	bcl	2000		
Nickel	100	1000	bcl		Í
_Niobium	200	bcl	1000		
Potassium	0.5%	bcl	bcl		
Silicon	0.05%	7%	bcl 10%		
Silver	1	bcl	bcl		
Sodium	0.1%	bcl	bcl		1
Thorium	200	bcl	bcl		
Tin	10	10	10	<u></u>	
Titanium	20	100	70		
Vanadium	50	100 -	100		
Zinc	20	300	150		
	20	30	30		ľ
		ROGRAPHIC ANALYSES			
>5000ppm=>500		50ppm=25-100ppm			
5000ppm=2500-	-10000ppm	20ppm=10-50ppm			
2000pp.a=1000-		10ppm=5-20ppm			
<u>1000ppm=500_2</u>	2000ppm	<u>5ppm=2-10ppm</u>			
500ppm=250-10	000ppm	2ppm=1-4ppm	· · ·	<u> </u>	
200ppm=100-40	Орра	1ppm=0.5-2ppm			ł
100ppm=50-200		bcl=below concentra	tion limit		1
Ranges for Ir	on, Calci	um & Magnesium are repor	ted in X		

ŋ

•

MEMBER CANADIAN TESTING ASSOCIATION

CERTIFIED BY.

HA Shefer

••

DRAFT

A Minerals Technology Service

Flotation, Hydrometallurgy Research & Testing

PROJECT BR-1

Progress Report # 11
Date: 21 July, 1981
To: Border Resources Ltd.,
 412 Granville Square,
 200 Grqnville Street,
 Vancouver, B.C.,
 V6C 1S4

Attention: G.W. Hornby

Project Title: Treatment of Serpentine Rock for Recovery of Nickel and Other Valuable Minerals.

Report Title: Flotation Tests for Nickel and Cobalt Recovery from Site 11 and Site 12 Serpentine Rock Samples.

Summary:

The purpose of the work reported in this progress report was to investigate the nickel and cobalt flotation from Site 11 and Site 12 rock samples under conditions similar to those used in the earlier tests.

Four tests were done with Site 12 material and two tests with Site 11 material.

Flotation of Serpentine gangue was found to be a problem in these tests, particularly with Site 12 material.

For Site 12 material recoveries of up to 25.13% Ni and 24.26% Co were achieved with cumulative concentrate grades being 0.67% Ni and 0.028% Co.

For Site 11 material recoveries were up to 40.67% Ni and 42.01% Co with cumulative concentrate grades being 1.13% Ni and 0.055% Co.

Mineralogical examinations indicate that the low recoveries obtained for Site 12 material can be attributed to a relative deficiency and very small grain size of nickel sulphides.

Table

FLOTATION TEST BRF-16, RESULTS

Material: Serpentine Rock, Site 11

	Product	۶ Weight	% Nickel Assay	ہ Nickel Distribution	% Cobalt Assay	% Cobalt Distribution
INDIVIDUAL RESULTS	Head Concentrate 1 Concentrate 2 Concentrate 3 Concentrate 4 Tailings Head, Calculated	2.32 1.87 1.76 1.38 92.67 100.00	0.21 1.81 1.22 0.62 0.50 0.13 0.20	$20.70 \\ 11.20 \\ 5.38 \\ 3.39 \\ 59.33 \\ 100.00$	0.010 0.085 0.060 0.032 0.027 0.006 0.010	20.59 11.66 5.89 3.87 57.99 100.00
CUMULATIVE RESULTS	Concentrate 1 Concentrate 1&2 Concentrate 1&2&3 Concentrate 1&2&3&4	2.32 4.19 5.95 7.33	1.81 1.55 1.27 1.13	20.70 31.90 37.28 40.67	0.085 0.074 0.061 0.055	20.59 32.25 38.14 42.01

.

60.

•

Table

FLOTATION TEST BRF-15, RESULTS

Material: Serpentine Rock, Site 11

	Product	% Weight	% Nickel Assay	% Nickel Distribution	% Cobalt Assay	و Cobalt Distribution
INDIVIDUAL	Head	_	0.21	_	0.011	_
RESULTS	Concentrate 1	1.44	2.40	16.93	0.108	14.20
	Concentrate 2	1.45	1.34	9.55	0.064	8.50
	Concentrate 3	0.99	1.04	5.08	0.051	4.64
	Concentrate 4	0.89	0.64	2.82	0.034	2.79
	Tailings	95.23	0.14	65.62	0.008	69.87
	Head, Calculated	100.00	0.20	100.00	0.011	100.00
CUMULATIVE	Concentrate 1	1.44	2.40	16.93	0.108	14.20
RESULTS	Concentrate 1&2	2.89	1.87	26.48	0.086	22.70
	Concentrate 1&2&3	3.88	1.66	31.56	0.077	27.34
	Concentrate 1&2&3&4	4.77	1.46	34.38	0.069	30.13

Table

()

FLOTATION TEST BRF-14, RESULTS

Material: Serpentine Rock, Site 12

	Product	% Weight	% . Nickel Assay	% Nickel Distribution	% Cobalt Assay	ہ Cobalt Distribution
INDIVIDUAL RESULTS	Head Concentrate 1 Concentrate 2 Concentrate 3 Concentrate 4 Tailings Head, Calculated	$ \begin{array}{r} 1.64 \\ 2.89 \\ 2.11 \\ 1.65 \\ 91.71 \\ 100.00 \\ \end{array} $	0.20 0.65 0.79 0.60 0.56 0.18 0.22	$ \begin{array}{r} 4.84 \\ 10.34 \\ 5.74 \\ 4.21 \\ \overline{74.87} \\ 100.00 \\ \end{array} $	0.009 0.026 0.034 0.025 0.025 0.025 0.008 0.010	$ \begin{array}{r} 4.41 \\ 10.13 \\ 5.44 \\ 4.28 \\ 75.74 \\ 100.00 \\ \end{array} $
CUMULATIVE RESULTS	Concentrate 1 Concentrate 1&2 Concentrate 1&2&3 Concentrate 1&2&3&4	1.64 4.53 6.64 8.29	0.65 0.74 0.70 0.67	4.84 15.18 20.92 25.13	0.026 0.031 0.029 0.028	4.41 14.54 19.98 24.26

.

٠

Table

FLOTATION TEST BRF-13, RESULTS

Material: Serpentine Rock, Site 12

	Product	% Weight	۶ Nickel Assay	% Nickel Distribution	१ Cobalt Assay	ہ Cobalt Distribution
INDIVIDUAL	Head	-	0.22	_	0.011	_
RESULTS	Concentrate 1	2.12	0.92	9.43	0.040	8.89
	Concentrate 2	2.81	0.69	9.40	0.029	8.56
	Concentrate 3	1.41	0.60	4.09	0.027	3.98
	Tailings	93.66	0.17	77.08	0.008	78.57
	Head, Calculated	100.00	0.21	100.00	0.010	100.00
CUMULATIVE	Concentrate 1	2.12	0.92	9.43	0.040	8.89
RESULTS	Concentrate 1&2	4.93	0.79	18.83	0.034	17.45
	Concentrate 1&2&3	6.34	0.75	22.92	0.032	21.43

٠

Table

FLOTATION TEST BRF-12, RESULTS

Material: Serpentine Rock, Site 12

	Product	% Weight	¥ Nickel Assay	% Nickel Distribution	ہ Cobalt Assay	ہ Cobalt Distribution
INDIVIDUAL	Head	-	0.22	_	0.009	_
RESULTS	Concentrate 1	3.81	0.67	11.79	0.030	11.26
	Concentrate 2	3.26	0.44	6.62	0.021	6.74
	Concentrate 3	2.40	0.54	5,99	0.026	6.16
	Concentrate 4	2.24	0.60	6.23	0.028	6.20
	Tailings	88.29	0.17	69.37	0.008	69.64
	Head, Calculated	100.00	0.22	100.00	0.010	100.00
CUMULATIVE	Concentrate 1	3.81	0.67	11.79	0.030	11.26
RESULTS	Concentrate 1&2	7.07	0.56	18.41	0.026	18.00
	Concentrate 1&2&3	9.47	0.56	24.40	0.026	24.16
	Concentrate 1&2&3&4	11.71	0.57	30.63	0.026	30.36

Table

FLOTATION TEST BRF-11, RESULTS

Material: Serpentine Rock, Site 12

	Product	% Weight	۶ Nickel Assay	ء Nickel Distribution	१ Cobalt Assay	% Cobalt Distribution
INDIVIDUAL RESULTS	Head Concentrate 1 Concentrate 2 Concentrate 3 Tailings Head, Calculated	2.512.372.3992.73100.00	0.23 0.35 0.42 0.80 0.18 0.20	$ \begin{array}{r} 4.30 \\ 4.86 \\ 9.32 \\ \underline{81.52} \\ 100.00 \\ \end{array} $	0.012 0.017 0.020 0.036 0.010 0.011	3.874.307.7884.05100.00
CUMULATIVE RESULTS	Concentrate 1 Concentrate 1&2 Concentrate 1&2&3	2.51 4.88 7.27	0.35 0.38 0.52	4.30 9.16 19.48	0.017 0.018 0.024	3.87 8.17 15.95

•

DOLMAGE CAMPBELL & ASSOCIATES (1975) LTD.

CONSULTING GEOLOGICAL & MINING ENGINEERS

1000-1055 WEST HASTINGS STREET VANCOUVER, CANADA V6E 2E9

Border Resources Ltd.

SAMPLING FOR NICKEL IN THE

COQUIHALLA NORTH GROUP CLAIMS

October 10, 1981

66.

Joseph A. Chamberlain

Consultant

Vancouver, Canada

.

 \bigcirc

TABLE OF CONTENTS

		Page
1.0	Introduction ·	1
2.0	Location	1
3.0	Geology	1
4.0	Sampling Program	1
5.0	Discussion	2
6.0	Conclusions and Recommendations	2

FIGURES

Figure 1	Location of Sampling Sites	In pocket
----------	----------------------------	-----------

- -

_

_ _ _ _ _

DOLMAGE CAMPBELL & ASSOCIATES (1975) LTD. CONSULTING GEOLOGICAL & MINING ENGINEERS

1000-1055 WEST HASTINGS STREET VANCOUVER, CANADA V6E 2E9

SAMPLING FOR NICKEL IN THE

COQUIHALLA NORTH GROUP CLAIMS

1.0 Introduction

The writer was requested by Mr. G.W. Hornby of Border Resources Ltd. to conduct a nickel sampling program on a segment of the company's North Group Claims on the Coquihalla River, B.C.. Accordingly, the writer spent October 5 and 6, 1981, on the property, mapping and sampling outcrops in the designated area. In this work, he was ably assisted by Peter Hall.

2.0 Location (121°15'W, 49°29'N)

The subject claims are located ten miles east of Hope, B.C.. They are accessible by a well-maintained gravel road which presently services logging and mining companies operating in the area.

3.0 Geology

The regional and local geology have been described by the writer in the following reports and will not be repeated in the present report:

Nickel Distribution in Coquihalla Ultramafic Belt, August 30, 1969 Geological Report Coquihalla Property, May 2, 1971 Nickel Distribution in the Coquihalla Ultramafic Complex, Progress Report No. 2, August 28, 1971 Geochemical Program, Coquihalla Property, September 2, 1972.

4.0 Sampling Program

Much of the area selected for follow-up sampling occupies a burned area east of Fifteen Mile Creek. The traverse route and sampling locations are shown on Figure 1. Assay results are tabulated in Table 1. These represent assays of chip samplés taken from the outcrop areas indicated in Figure 1.

Sample Site No.	Chemex Sample No.	Elevation Feet (Metres)	Sulphide Nickel %	Total Rock Nickel %	Sulphide Ni as % of Total Ni
81-1	98701 B	2180 (664)	0.05	0.19	26
81-2	98702 B	2220 (676)	0.08	0.22	36
81-3	98703 B	2280 (695)	0.06	0.23	26
81-4	98704 B	2350 (716)	0.04	0.22	18
81-5	98705 B	2340 (713)	0.04	0.23	17
81-6	98706 B	2380 (725)	0.08	0.23	35
81-7	98707 B	2420 (738)	0.07	0.21	33
81-8	98708 B	2440 (744)	0.09	0.21	43
81-9	98709 B	2320 (707)	0.11	0.23	48
81-10	98710 B	1940 (591)	0.07	0.23	30
81-11	98711 B	1500 (457)	0.09	0.21	43
		Averages	0.07	0.22	32

TABLE 1

5.0 Discussion

The total rock nickel values obtained in the samples under discussion range from a low of 0.19% to a high of 0.23%. The average total rock nickel content of the samples is 0.22%.

The so-called sulphide nickel content of the samples is obtained by a well-tested method of exposing the samples to a weak acid leach. In this procedure, the sulphides are dissolved while the silicates remain unaffected. The nickel associated with sulphides such as pentlandite and millerite goes into solution and is assayed. The sulphide nickel content of the subject samples ranges from a low of 0.04% to a high of 0.11%. The average sulphide nickel content is 0.07%.

On an average, therefore, the sulphide nickel constitutes 32% of the total rock nickel. In the most favourable case, the sulphide nickel constitutes 48% of the total rock nickel. This refers to sample site 81-9 where the total rock nickel is 0.23% and the sulphide nickel is 0.11%.

6.0 Conclusions and Recommendations

Site 81-9 contains the highest sulphide nickel component of the samples taken in the present program and is therefore a logical site from which to obtain additional samples for metallurgical testing. However, past experience indicates that other factors such as degree of serpentinization of the host rocks and size of the sulphide particles impose additional constraints on recovery of nickel by standard methods. For the above reasons, one additional site is suggested for follow-up sampling. This is site 81-11 which is located on the old railway grade and is readily accessible. In this site, the total rock nickel is 0.21% and the sulphide nickel is 0.09%, or 43% of the total.

-3-

Respectfully submitted, DOLMAGE CAMPBELL & ASSOC. (1975) LTD.

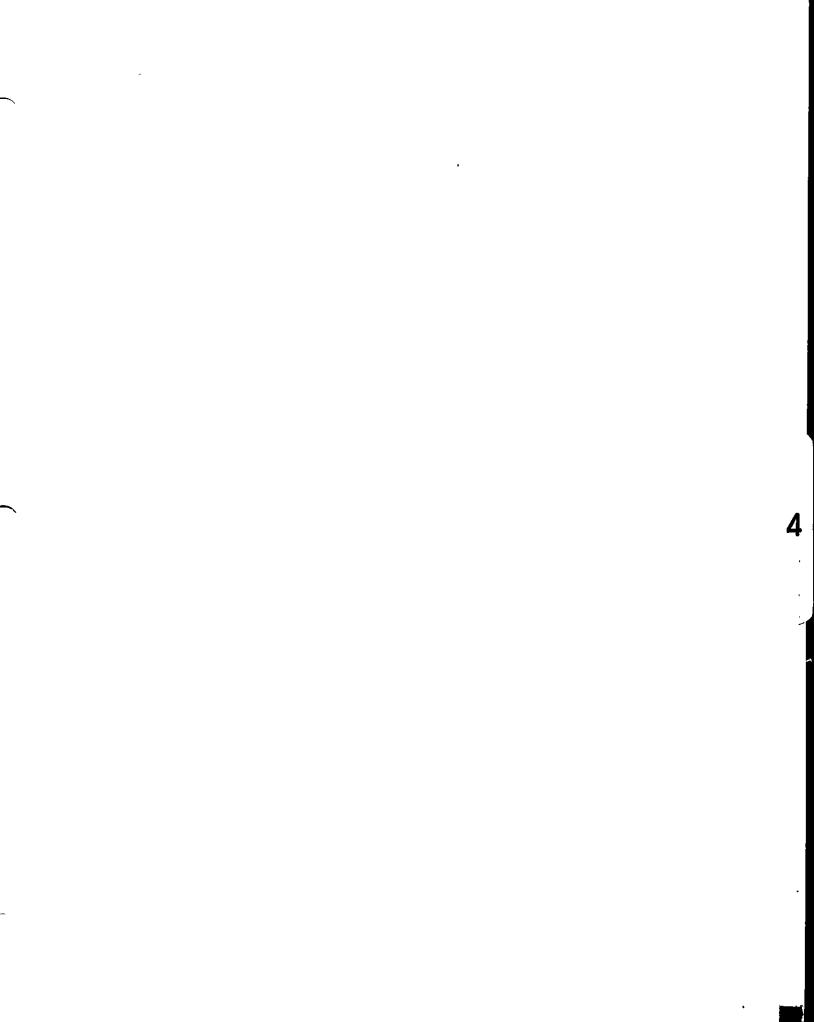
Joseph A. Chamberlain, P. Eng./Ph.D.

Vancouver, B.C.

V6E 2E9

CHEMEX LABS LTD.

212 BROOKSBANK AVE NORTH VANCOUVER, B C CANADA V7J 2C1 TELEPHONE (604)984-0221 TELEX 043-52597


TO: Dolmage Campbell & Associates Ltd., Ste. 1000 - 1055 W. Hastings St., ANALYTICAL CHEMISTS . GEOCHEMISTS . REGISTERED ASSAYERS CERTIFICATE OF ASSAY CERT. INVDIC

CERT• # : A8114472-001-A INVDICE # : I8114472 DATE : 17-DCT-81 P•0• # : NONE

Sample	Prep	NI NI	sulf			
description	code	2	*			
98701	208	0.19	0.05			
98702	208	0.22	0.08		~~	
98703	203	0.23	0.06			
98704	208	0.22	0.04			
98705	208	0.23	0.04			
98706	Ž 03	0.23	0.08			
98707	203	0.21	0.07			
98708	203	0.21	0.09			
98709	208	0.23	0.11			
98710	208	0.23	0.07	-	-	
98711	208	0.21	0.09	·- ·- ·	~-	
					• _	
						-
						-
			····· · · · · · · · · · · · · · · · ·			-
						·
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			, ,			 -
						 -
			·····			
			·····			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·)	
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			 -
			· · · · · · · · · · · · · · · · · · ·		n A A	

1

SECTION 4

STATEMENT OF COSTS

(1) FIELDWORK:

 $\left(\right)$

<pre>(a) October 5-6, 1981: (Site Selection) Meals and accommodation</pre>
<pre>(b) October 24-26, 1981: (Sampling & Access) Meals and accommodation \$129.86 Equipment Rental: Cobra Packdrill (\$60.00/day X 3 days) 180.00 Chainsaw (\$15.00/day X 3 days) 45.00 Explosives</pre>
<pre>(c) November 28, 1981: (Helicopter) Meals and accommodation \$4.05 Equipment Rental: Cobra Packdrill (\$60.00/day X 1 day) 60.00 Transportation: Helicopter charter (Rotortech invoice attached) 75.00 4X4 Truck 3/4 ton 261 miles (419 km @ 22¢/km) 92.18 Wages: Driller/blaster (P. Hall) 1 day @ \$200.00/day</pre>

STATEMENT OF COSTS (Continued)

(1) FIELDWORK (Cont.) (d) <u>December 4-5, 1981</u>: (Landing Site) Meals and accommodation. \$64.18 Equipment: 2 chainsaws 40 X 5-gal shipping barrels. . . 160.00 Transportation (4X4 truck 3/4ton) 263 miles (423 km @ 22¢/km).93.06 Wages: Supervisor (P. Hall) -1 day @ \$200.00/day. 200.00 Field Assistant (G. Neumann) 1 day @ \$150.00/day. 150.00 \$834.98 FIELDWORK TOTAL: = \$5,097.39 (2) METALLURGICAL RESEARCH: (A-MIN-TECH invoices) 17 February 1982. \$1,977.53 17 May 1982 (telephone) 2,266.00 \$4,243.53 METALLURGICAL TOTAL: = \$4,243.53 (3) REPORT AND MAP PREPARATION: (3 days @ \$200.00/day). \$600.00 Reprographics and stationery. 25.26 \$625.26 PREPARATION TOTAL: = \$625.26 TOTAL THIS REPORT = \$9.966.18

-_ _ - ----____ . -----_____ _____ - - - - - - -----_ _ _ _ ---------------- ------ m • . ______ _ ------+ ----____< 7 _____ 4-----------____ ____

-- -- -

2

A-MIN-TECH RESEARCH LTD.

A Minerals Technology Service

Flotation, Hydrometallurgy Research & Testing

1

ĺ

INVOICE

PROJECT BR-1

Date: 17 February, 1982

To: Border Resources Ltd., 412 Granville Square, 200 Granville Street, Vancouver, B.C., V6C 1S4

For:

1.	Professional services re metallurgical work on serpentine samples supplied and as per attached activity record #9	\$1400.00
2.	Outlays as per attached invoices and bills: To Guy S. Palmer, photographer To Chemex Labs Ltd. Inv. # 42723 To Chemex Labs Ltd. Inv. # 18114306 To Dolmage Campbell & Associates Ltd. Inv. # 5438 To General Testing Laboratories Inv. # 01074 To Chemex Labs Ltd. Inv. # 18110881 For xeroxing and supplies (binders) \$16.08, \$5.35, \$7.95	33.75 56.00 66.00 120.00 66.40 206.00 29.38
	Total	\$1977.53

()

	DOLMAGE CAMPBELL & ASSOCIATES (1975) LT CONSULTING ENGINEERS	D. SUITE 1000-1055 W. HASTINGS STREET VANCOUVER. CANADA V6E 2E9 TELEPHONE (604) 681-2345
	BORDER RESOURCES LTD. 4547 West 5th Avenue Vancouver, B.C.	
	V6R 1S6 Attention: Mr. G.W. Hornby	Statement
	- <u></u>	CONSULTING SERVICES
		Invoice No.: 5473 invoice Date: Nov. 9, 1981 Month of: SeptOct., 1981
	COQUIHALLA NICKEL PROPERTY	
	SITE EXAM, MEETINGS AND REPORTS	
	Dr. J.A. Chamberlain (3-1/2 days @ \$400) (Site, Oct. 5-6)	<u>\$1,400.00</u> \$1,400.0
\bigcirc	<u>TYPING</u> (1-1/2 hrs. @ \$10)	
	EXPENSES	
	Oct. 8 J.A. Chamberlain Oct. 17 Chemex Labs Ltd. Oct. Photocopies	61.54 153.45 2.25 217.24
	TOTAL THIS INVOICE	\$1,632.24
	Less advance of October 5, 1981	1,000.00
	BALANCE OF PAYMENT	\$632.24
0		-
E. & D. E.		

SERVICE CHARGE OF 2 % PER MONTH CHARGED ON OVERDUE ACCOUNTS.

`

,

CRTECH HELICOPTERS LT S766 - 72nd Avenue, Surrey, B.C. V3W 2F Telephone: (604) 591-7174 MS TER TER TER THT REPORT Date. Nov. 3	A/C Reg. No. 122 A/C Type Bell 226/22 Pilot F. 2-1/c1 CHARTERER Barder Resources OPERATION HRS. 0PERATION 175-		By the chartering of the noted services or the algoing of this Fight Report the Chartering of the noted services or the algoing of this Fight Report the Charter acknowledges that all conditions associated with the A.T.C., which is available for examination at the oilies of NOTONTECH HELICOPTERS LTD. Remarks	Charterer's Signature Pilot's Signature FUEL & OIL COMPANY - HRS. FLYING REVENUE SUPPLIED BY CHARTERER - HRS NON REVENUE
QUAN. PART NO	DESCRIPTION AIN FILTRE The -	AMY PARTS S S CHA 207 P NORTI 4200 2270	م النبي من عمر المتحد (127 من من من من من من من من من من من من من	ORBAU
- Are	7 Fatundo		Halk 669-3616 EL MILEAGE SERIAL NO DESCRIPTION OF WORK MCMD-21"1 4 Chan Check' Spende	AMOUNT Bunch
ALL ESTIMATES ARE FOR LABOUR COMPANY DOLS NOT ASSUME ANY I LEFT FOR REMINS, STORAGE OR	Set Carb	I HEREBY ACK	NUTHORIZE THE ABOVE WORK TO BE DO	TOTAL PARTS 74 GC

	REPRO HARBO 1112 W LOWER 1818 CO	ODUCT UR CENT , PENDEF MALL, BI DRNWALI Lst. ST., M	ENTALL II L ST., VAN	FICES OUVER, B ICOUVER, I. VANCOL ICOUVER, INCOUVER	JVER, E B C. 8, B.C.		SED RE			RI OL_C INTIN	TION	S	W	AIT DEL		CUSTO	R	REN 1112 W VANCOUN	ICTION TING AITTAN PEND VER B	68 NCE TO Er St	E 251
\mathcal{O}			u	9.1	5							X									
		7 7	 j./.	all						-		·				I 		5,2, 			
		/		<u>669</u>									S	DEL, BY	JP EY 	S/0	1	SHIPPIN 3 MAIL 3 AIR MAIL			5
	DERED B	Y		<u>669</u>	<i>.</i>	361	6			OTE INVOICE		NPAYMENT	S				<u> i</u>) AIR EXPR		() PRE	PAID
	INTS TO							Ne, Of Orig.	No Prints of Each			RIPTION				SQ. FT			<u> </u>		
									5			FRAME	PR	EFOLD	7	5	_/		 		
				<u> </u>															╂──	_	
O R	IGINALS TO		<u> </u>							WHITE		PI A181		1.8					┨───		
╞										WHITE PRINT	STD.	PLAIN PLASTIC	56	LB					┼—		
\vdash		·				·· —				SEPIA MYLAR	STD. ERASABLE	REV FACE UP WHITELA SEPIA BLACK	R RE	v						+	
\vdash								l		1860	002 003 0015 BOND	VELLUM	FA	ČE UP					+		_
S E	DEPT.	DUE	IN	τυο	RUN	TRIM	٥c			2080 SPLICE	BOND										
Ē		DATE								XEROX 7000/IBM	\$%x11 \$%x14	BOND	, RE	DUCED ME SIZE					+		
	1860									7000/18/	8/2x14	TRANS		ME SIZE					╆──		
-	Film		1							·								 	<u> </u>	\neg	
\bigcirc	XEROX 7000									PROJ. PAPER	KODA BRO	K1554 PHOTO VE	E2.						<u> </u>		{
Ť	SUB CONT.		.1	L							xC5	CONT-Tran		OJ THIN STD					<u>†</u>		
	1	SPEC	IAL INS	TRUCT	IONS					FILM	TONE COPYLINE CRONAR	ACU-NEG HI-SPEED	CO						<u>† </u>		
t	ICOLLATE	: ()c	ERLOX	() TRIM	ſ) BIND							_						1	Ţ	
(I FOLD	េរទា	TAPLE	() PUNCH			HOLES			-		-									
	ATTACHS					SAME SIZE				AUTO POSITIVE	PAPER FILM	REV. FACE UP	MA FR								
										FILM POS. CONTACT PROJ.	FACE UP REV.	Crenatiex Cesyline Cronar Clea	1 8.90	RRO G]		
										WASH OFF	AUTO POS	CONTACT		οιέςτ							
											S.T.F	<u>,</u>			N VE	PAN					
										No. Of Print One. of Ea		SIZ	E	34e			ZE		<u> </u>	-	
												$\downarrow \downarrow$		<u>–ť</u>	_/				่่่่่่−−		
											+				A			ļ	┨──	\rightarrow	
													\ <u>k</u>	$(\dot{\gamma})$	/						
												. 	$\left \right $	\mathcal{K}		_ <u>.</u>			┣		
										SUB	<u> </u>	<u>-1,~</u>							┣		
										CONTRA QUOTED	ст		<u>∖</u> D∕€∎∺					TOTAL	3		
											SALES TAX I	`		<u></u>			-	ES.T.	1-7	3	$ \leq $
														17				SUB TOTAL		千	-+
)										PROVINCI	AL SALES TA	X NO						PROV TAX			
1											DR OVERTIM								╞───	34	
	INVOICE	NUMBER	QU.		СК	LLED		<u></u>		- I	TERMS NE	T 30 DAYS						DELIVERY			~
ח						ATE		4									ł	PAV THIS		<u> </u>	

78. NEVILLE CROSBY INC. 872 RICHARDS STREET, VANCOUVER, B C V68 3A7 .1 _____DATE_ 19. ORDER NO ._ SOLD TO_ ADDRESS. SHIP TO_ 0384 - A ADDRESS. BUYER SALES REP. WHEN SHIP HOW SHIP TERMS 6.37HW 0.38TX 23 95 /00 Koi 5ac 6.75 ST)YA 20.00TCA 44 13.25 CH Ø 25 30 12.04.81 SIGNATURE 010164 0170 - A **D** D92 4.05H* 0.24 T X 4.29 ST 50.50TCA 46.21 CH Canada Postes Canada Receipt Reçu Post Office Timbre à date Date Stamp du bureau

Reçu en paiement

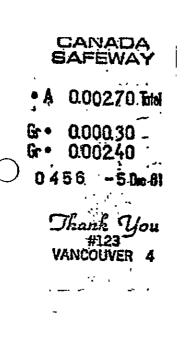
d'affranch is soment

41<u>-16-</u>020 (5-72)

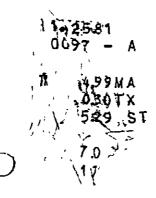
d'articles

Received in

\$


Signature

647470 SIN, SUCC "A"


18 XI 1981

MANCOUVER B.C.

payment for Postage Supplies

c

,	5 × 3	9 4 3 т

01.3.0.82

TX

ſλ

B & B SEYMOUR RENTALS

A DIVISION OF DESTOBEL ENTERPRISES 1 TO 154 RIVERSIDE DRIVE • NORTH VANCOUVER, B.C. V7H 1T9 Phone: 929-4080

RENTAL AGREEMENT

	DATE			
	TIME O		28 AM	17
-	TIMEIN	1		
PHONE NO	TO BE I	RETURNED ON		<u></u>
		ANTE TRA	10000	NT.
		· · · · ·		┼──
			ļ	-
				┢
	E. & O.E.	ТАХ		
	ן	DELIVERY		ļ
is not return-		PICK-UP	1	
e equipment		CHURCH AND		
	1	ł	1 2.14	4
of the equip- any kind will		DEPOSIT BALANCE	50	1-
	PHONE NO 	TIME IN PHONE NO TO BE I PHONE NO TO BE I PHONE NO TO BE I E & OE E & OE is not return- e equipment ne. Sundays	TIME OUT	TIME OUT

IWe, the undersigned, do hereby rent and accept the above listed equipment and acknowledge that it is in good working condition and agree to pay a stipulated rental and agree to take care of all the said equipment and to use it in a proper manner and agree that in the event any of the rented equipment is lost or destroyed belogs it is returned, to promptly pay to the company the full value of such rented property in cash, and it damaged of indired in any way. To pay an amount equal to the reasonable cost of repairing the same and further do hereby exonerate. The minimum data save harmless the company from all claims or itabilities to all parties for damage or loss to melus or any possibility and save harmless any of the other terms, hereof, the company may at once take possession of said rented equipment wherever the same may be found and remove the same, and the company or its agents shall in no way be liable for all y chains, for damages or injury in the removal of said equipment. The renter declares to have examined the thich, safety chain and all connections of said ental equipment to any are included and and encound or value is and e and encound or any restain and all connections or injury in the removal of said equipment. The renter declares to have examined the thich, safety chain and all connections of said rental equipment to more weak restrict and and encound or said equipment to the removal of said equipment. of said rental equipment to motor vehicle and to have received it in a secure condition.

It is understood that the rental commences as of the date hereof and ends only when the rented equipment is returned or delivered at the office or shop of the said o

aup<u>ma</u>r nusi e returned clean. 18440 CUSTOMER'S SIGNATURE

CASH PAYMENT ON RETURN OF GOODS UNLESS OTHERWISE ARRANGED

STOCKFORMS #1007-4 RENTAL AGREEMENT

B	& B	SEYMO	UR	RENTAL	S
154 RIVER	A DIVIS	ION OF DESTOR	BEL ENT	ERPRISES L1. NCOUVER, B.C.	. V7H 1T9

	-	-	-	-		•		•		-				-	
Phon	f	•	•	,	g	2	į	9	L.	Z	t	n	Å	0	

	/ RENT	AL AGREEMENT			
ADDRESS	l'are			1 <u>6</u> 67	7
	······································		TIME	N	
CAR LICENSE	DRIVER'S LIC.	PHONE NO.	TO BE	RETURNED	4
$-\epsilon_{ij}$	NEMEN AND OTHER PRO			RATE	AM
KE PA	In COBRA			1	21
			·		
······					
		\frown	-0-		
		tan			
	<u> </u>		E. & O.E.	ТАХ	
PLEASE TAKE	NOTE:		1	DELIVERY	
An extra charge	will be made if the equipr	ment is not return-		PICK-UP	
leaves our prem	I will be charged from the lises until it is returned in rental days. In case of fa	to same Sundays		CHARGES	26
ment notify us i	above is complied with.	int of any kind will		DEPOSIT BALANCE DUE RED	21
i Me the undersi	nned do beroby contract and				\overline{pev}

if We, the undersigned, do hereby rent and accept the above listed equipment and acknowledge that it is in working condition and agree to pay a stipulated rental and agree to take care of all the said equipment and to use it proper manner and agree that in the event any of the rented equipment is lost or destroyed before it is returned, to pre-ily pay to the company the full value of such rented property. In cash, and if damaged or injured in any way. To pu-amount equal to the reasonable cost of repaining the same and further do hereby exonerate, indemnify and save harn: the company from all claims or liabilities to all parties for damage or toss to mefus or any person, persons or proper any way arising out of or during the use of said equipment. It is agreed that upon failure to pay rent or if default is mau any of the other terms, hereof, the company may at once take possession of said rented equipment wherever the sa-may be found and remove the same, and the company or its agents shall in no way be liable for any claims, for damage injury in the removal of said equipment. The renter declares to have examined the hitch, safety chain and all connect of said rental equipment to motor vehicle and to have received it in a secure condition.

It is understood that the rental commences as of the date hereof and ends only when the rented equipment is reed or delivered at the office or shop of the said company.

CASH PAYMENT ON RETURN OF GOODS UNLESS OTHERWISE Equipment must be returned clean. 15230 ARRANGED CUSTOMER'S SIGNATURE 1. 60

STOCKFORMS #1007-4 RENTAL AGREEMENT

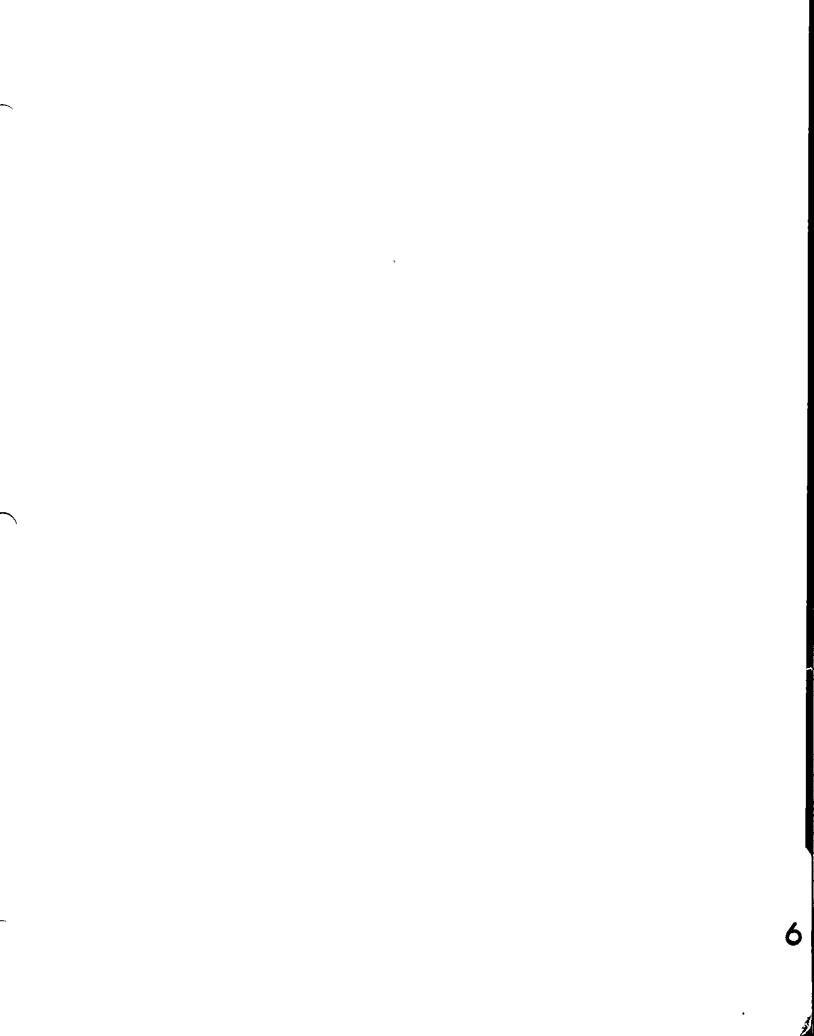
ŝ

CUSTOMER'S CO

CUSTOMER'S COPY

BIBLIOGRAPHY

Chamberlain, J.A. <u>Nickel Distribution in Coquihalla</u> <u>Ultramafic Belt</u>. August 30, 1969.


> <u>Geological Report - Coquihalla Property</u> May 2, 1971

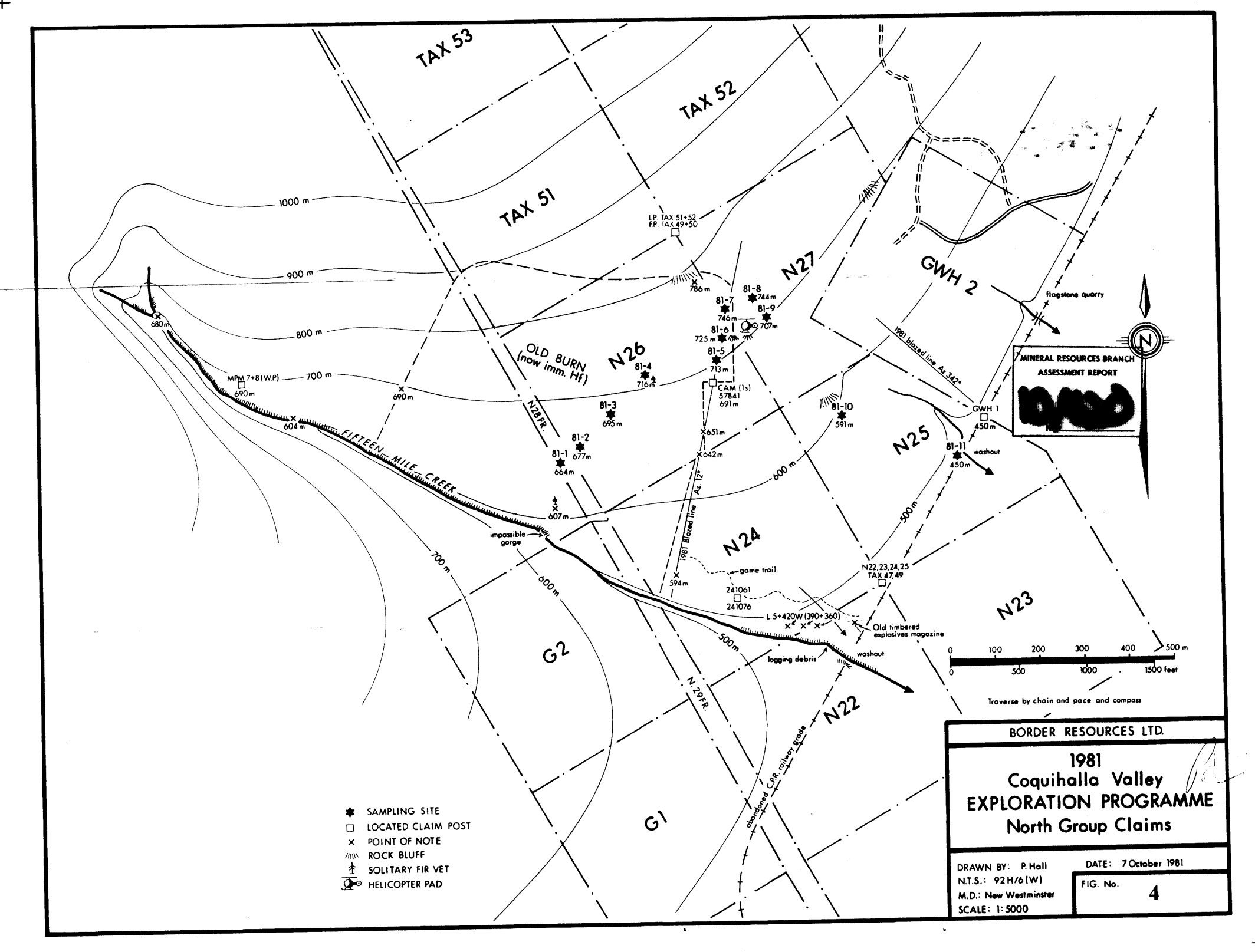
Ŧ

<u>Nickel Distribution in the Coquihalla</u> <u>Ultramafic Complex, Progress Report No.2</u> August 28, 1971.

<u>Geochemical Programme, Coquihalla Property</u>. September 2, 1972.

Hall, P.S. <u>Assessment Report - Based on Costs of</u> <u>Sample Collection for Metallurgical Research.</u> May 22, 1981.

STATEMENT OF QUALIFICATIONS


I am a graduate of the University of British Columbia in Resource Geography.

I have worked in all phases of mineral exploration and as a Mineral Lands Manager with B.C. mining companies since 1969.

I participated in the performance of the fieldwork about which this report is based and can attest that the costs listed herein are both reasonable and correct.

Vancouver, B.C. 21 May 1982

P. Hall, BA

