1981 ASSESSMENT REPORT KITSAULT PROPERTY DIAMOND DRILLING REPORT

٩

÷

MAY 1982 B. FRASER

ŕ

<u>TITLE:</u>	1981 Diamond Drilling Report for Assessment Credit Kitsault Mine
CLAIMS:	Lease M-160
MINING DIVISION:	Skeena M.D.
NTS_REFERENCE:	103 P/6
LATITUDE/LONGITUDE:	55°25N/129°25'W
OWNER AND OPERATOR:	Amax of Canada Ltd.
AUTHOR:	B. Fraser
DATE SUBMITTED:	May 28, 1982

-

•

.

Figure	I Index Map at 1:50,000 Scale	
Introdu	ction	۱
Technica	al Data and Interpretation	1-2
Α.	Geology	2-3
В.	Geochemistry	4
	Table Drill Hole Summary Sheet	5
	1. Molybdenite Distribution	6-8
	2. Lead Distribution	9
	Table 2 Assay Intervals with greater than .030% Pb	10-11
	Table 3 Percent of Ore Grade Sections with greater than .030% Pb	12
	3. Copper Distribution	13
	Table 4 Assay Intervals with greater than .010% Cu	14
	Table 5 Percent of Ore Grade Section with greater than .010% Cu.	15
	4. Iron Distribution	16
Conclus	ions	17
Itemize	d Cost Statement	18
Author':	s Qualifications	19
Appendi:	x I Chemical Analysis	20
Appendi:	x II Down Hole Survey	21
Appendi	x III Recovery and RQD	22
Appendia	x IV Detail Drill Logs	23
Table 6	Kitsault Rock Codes	24
D.D.H. 8	81-1	
Ass	ay	1 A- 3A
Roc	k Description	1B-4B
D.D.H. 8	81-2	
Ass	ay	1A-2A
Rocl	k Description	1B-4B
D.D.H. 8	81-3	
Assa	ay	1A-3A
Roc	k Description	1 8-6B
D.D.H. 8	81-4	
Ass	ау	1A-3A
Roc	k Description	1B-7B
D.D.H. 1	81-5	
Assi	ay	1A-2A
Roc	k Description	1B-3B

Table of Contents (cont.)

D.D.H. 81-6					
Assay				1A-3A	
Rock Desc	ription			1 B-5B	
Figure 2	Drill	Hole Plan at I	:2500	Map P	ocket
Figure 3	Drill	Section 13289E	MoS ₂ Pb, Rocktype	Map P	ocket
Figure 4	Drill	Section 13289E	Fe, Cu, Rocktype	Map P	ocket
Figure 5	Drill	Section 13350E	MoS ₂ , Pb, Rocktype	e Map P	ocket
Figure 6	Drill	Section 13350E	Fe, Cu, Rocktype	Map P	ocket
Figure 7	Drill	Section 11218N	MoS ₂ , Pb, Rocktype	мар Р	ocket
Figure 8	Drill	Section 11218N	Fe, Cu, Rocktype	Мар Р	ocket

Page

INTRODUCTION

Location and Access

Lease M-160 is part of the Kitsault molybdenum property, which is located roughly 150 km northeast of Prince Rupert near the head of Alice Arm. Lease M-160 is 5.5 km southeast of the entrance of Lime Ck. into Alice Arm. The drill locations were within the Kitsault Mine open pit. Access to the drill sites was via well-maintained gravel road from the community of Kitsault.

Physiography

Topography of the Kitsault property is rugged with elevations varying from 975 m. to 450 m. within a 2 km. radius of the drill site. Relief is extreme with valley slopes of the order of 20°-30° modified by swamp covered benches and localized flat areas. The drill holes were collared on a flat bench within the Kitsault Mine open pit at approximately 606 m. elavation.

History

Prospecting of the local area with a focus on silver-lead-zinc occurrences began at the turn of the century. The first serious consideration of molybdenite on the Kitsault property began with an option in 1957 by Kennecott Copper Corporation of claims held by Gunn Fiva, Oscar Flint et.al. Further work led to purchase of part of their claims in 1959 and the remainder in 1961 by Kennco. In 1963, B.C. Molybdenum Ltd. was formed to assume development and production work for Kennecott. Production by B.C. Moly Ltd. extended from 1964 to 1972. The mine site and surrounding claims were purchased by Climax Molybdenum Corporation in 1973. Further work led to a production decision and transfer of ownership to Amax of Canada Ltd. Ore production began in 1981 by Amax of Canada, current operator and owner of the property. Economic mineralization is molybdenite with plans for future recovery of silver from by product lead.

Work Summary

Claim List

Six NQ size wire-line diamond drill holes were drilled from two set-ups at 606 m. elevation. In total 1384 m. were drilled. Object of the program was definition of molybdenite mineralization at depth.

<u>Claim</u> <u>Lease No.</u>		Lot No. Size		Mining Division
Patricia No. 4	M-160	L. 6470	16 Hectares	Skeena

TECHNICAL DATA AND INTERPRETATION

Purpose

The program was designed to test grade and character of molybdenite mineralization at depth. Also tested were the extent and magnitude of the following impurities: Pb, Cu, Fe (indicator element for pyrite, pyrrhotite). Detail geology and its relation to ore was a second aim of the program.

Method

Six NQ size diamond drill holes were drilled from two set-ups using a Longyear 38 drill (see Figure 2). Whole core was logged then split at 3.0 m. intervals and analyzed for MoS_2 , Pb, Cu, Fe by the Kitsault Mine assay lab using a Varian Model AA475 double beam atomic absorption spectrophotomer (see Appendix I). Hole locations were surveyed by Kitsault Mine staff using a AGA Geodimeter 112 and referenced to the mine grid. Down hole orientation was measured using a Pajari (see Appendix II). Bearings adjacent to lamprophyre dikes were discarded due to highly magnetic nature of rocktype. Recovery was measured based on weight of split core, (see Appendix III).

RESULTS AND INTERPRETATION

(Refer to detail logs in Appendix IV and Figures 3-8)

Geology

The area drilled was along the contact of a multiphase intrusive stock with older sediments. The stock was previously classified by Carter as a member of the Alice Arm Intrusives and age dated at circa 50 million years. The sediments are part of the Bowser Lake Group of Upper Jurassic age. Contact metamorphism of the surrounding sediments during intrusion has resulted in an aureole of biotite horrfels which has been recognized at over 300 m. beyond the intrusive contact. The current drilling defined a structurally complex area of multiple faulting, vein emplacement and intrusion. Rocktype identification was macroscopic and followed the following divisions:

- Diorite unit generally medium grey, fine to medium grained biotite quartz diorite containing 10-15% anhedral quartz, 50-70% plagioclase, 10-20% potassium feldspar, 20-30% mafics predominantly biotite with minor hornblende. Texturally the diorite unit tended to be equigranular with a grain size on the order of 1-2 mm. In some sections, foliation was well developed.
- 2) Granodiorite unit-medium grained pinkish grey biotite granodiorite with 10-15% biotite, 10-20% quartz, 30-40% plagioclase, 30-40% potassium feldspar. Texturally the granodiorite unit was weakly porphyritic with subhedral phenocrysts of quartz, plagioclase and alkali feldspar in a finer grained groundmass of the same minerals plus mafics (predominantly biotite).
- 3) Aplite unit pink to creamy aplite consisting of intergranular quartz and feldspar as a fine grained interlocking mosaic with minor biotite and sericite to 5%. Aplite commonly contained disseminated molybdenite and was considered an important source of ore grade.
- 4) Intermineral porphyry unit Distinguished by well-developed porphyritic text. Rocktype consisted of 5-15% porphyritic subhedral 1-3mm phenocrysts of plagioclase, quartz, alkali feldspar, minor biotite in an indistinct leucocratic groundmass. For the most part, the porphyry unit was intrusion breccia and commonly had from 10-50%

sub-angular fragments of all other rocktypes except lamprophyre. This was considered important as molybdenite grade of porphyry was related to character of fragments.

- 5) Lamprophyre fine grained biotite lamprophyre forming post-mineral generally less than 1 m. dikes. Essentially barren of molybdenite, lamprophyre dikes were an important source of dilution of grade.
- 6) Hornfels contact metamorphosed Bowser sediments of Upper Jurassic age. Unaltered sediments are mainly argillite and very fine grained greywacke. Hornfels was recognizable by increase in biotite content and size as well as bleaching of rock from original dark grey to shades of pale green to light grey to cream. This bleaching was easily recognizable on a small scale as vein envelopes.

Alteration on the macroscopic level was broken down as follows:

- Argillic alteration of plagioclase phenocrysts to pale green to chalky clay minerals. Especially pronounced in the diorite unit, strong argillic alteration resulted in an incompetent easily broken rock. Argillic alteration appeared related to faulting.
- 2) Potassic overgrowths of potassium feldspar on phenocrysts potassium feldspar vein envelopes, patchy secondary biotite both as disseminations and as minor vein envelopes. This alteration was dominant in the granodiorite unit. At contacts between granodiorite and diorite, a subjective decision had to be made if biotite was secondary or primary. Better definition of these contacts would require thin section work.
- Phyllic quartz-sericite alteration usually of local extent as vein envelopes on polymetallic galena-sphalerite-pyrite veins. Most easily recognizable in the intermineral porphyry unit. In some cases, phyllic alteration would envelope an inner potassic vein envelope.
- Chloritic alteration of biotite to chlorite and chloritic development along fractures. Chloritic alteration was strongest adjacent to lamprophyre dikes.

Molybdenite mineralization occurs mainly as stockwork quartz-molybdenite \pm pyrite, galena, sphalerite veining. Intermineral prophyry post dates at least one phase of mineralization as indicated by contained fragments of moly veined hornfels, aplite and diorite. Therefore, porphyry has a poorer developed stockwork and lower grade than the aforementioned rocktypes adjacent in the same zone. Molybdenite also occurs coarsely disseminated in aplite. Well mineralized aplite is generally found outside of the granodiorite zones and is an important source of ore grade.

B. GEOCHEMISTRY

Drill core was split and assayed on regular 3.0 m. intervals. To analyze the assay data, each drill hole was then subdivided into sections based on the current .110% MoS₂ cut-off grade at Kitsault Mine and mean grades for MoS₂, Pb, Cu, Fe calculated for each section. This work is summarized in Table 1. Each section was then related to rocktype as recorded in the detail logs (Appendix IV). Impurity elements Pb, Cu, Fe were next considered using levels of significance currently employed at Kitsault Mine and their relationship and affect on "ore" grade MoS₂ sections detailed.

		DRILL H	ULE SUMMARY	SHEET		
DRILL HOLE	INTERVAL (m)	MoS2	<u>Pb</u>	<u>Cu</u>	<u>Fe</u>	ROCKTYPES
81-1	3-84 84-10 5 105-132 132-239.3	.250 .062 .129 .064	.027 .371 .062 .012	.005 .006 .006 .007	1.53 2.92 3.38 3.39	dio, ap, ppy ppy, lp, hf, lp hf, lp hf, lp
81-2	3-54	.141	.013	.003	1.51	dio, ap, ppy
	54-181-4	.047	.011	.003	1.35	ppy, gd, ap
81-3	3-84	.155	.008	.002	1.35	dio, ap, ppy
	84-186	.065	.004	.002	1.58	ppy, dio, ap, gd.
	186-207	.109	.003	.001	1.66	gd, ppy
	207-306.6	.081	.010	.002	1.57	gd, ap, ppy
81-4	3-18 18-60 60-72 72-96 96-123 123-147 147-159 159-233.78	.065 .119 .066 .263 .065 .140 .081 .194	.006 .048 .002 .006 .012 .012 .012 .007 .035	.001 .003 .003 .003 .003 .002 .002 .004	1.77 2.01 1.78 1.72 2.29 1.11 1.19 1.18	dio, ap, ppy dio, ap, ppy, hf hf, ap, ppy hf, ppy, gd gd, ap, ppy, lp dio, ap, gd dio dio, ap, gd
81-5	4-67	.084	.011	.002	1.31	ppy, gd
	67-153.96	.044	.006	.002	1.95	gd, ppy, ap, lp
81-6	3-27	.061	.013	.002	1.56	dio
	27-45	.117	.022	.002	1.39	ppy
	45-268.9	.035	.014	.003	1.46	gd, ppy, ap

Where	dio =	diorite unit
	ap =	aplite unit
	gd ≃	granodiorite unit
	рру =	intermineral porphyry unit
	lp =	lamprophyre unit
	hf	hornfels unit

TABLE 1

١.

1. DDH 81-1

- a. <u>3-84 m.</u> ore grade mineralization occurs in: <u>1)</u> argillic diorite cut by stockwork quartz-moly veins and aplite dikes.
 - 2) intermineral porphyry with a weak qtz-moly vein stockwork but an abundance of mineralized fragments of hornfels and aplite.
- b. 84-105 m. Sub grade mineralization is in stockwork quartz-moly veins cutting bleached porphyry. Porphyry shows strong argillic alteration of plagiochase porphyroblasts and sericitic alteration of biotite. Phyllic alteration of porphyry related to polymetallic galeva-sphalerite-pyrite veining. Most notable of these veins at 87.7-88.2 m at 25° to core axis brings the lead assay for the 87-90 m. section up to 2.35%. Absence of mineralized aplite fragments in this section is distinctive. Grade is further lowered by abundant lamprophyre dikes.
- c. <u>105-132 m</u>. ore grade mineralization as stockwork quartz-moly veins in hornfels. Intrusive hornfels contact is at 110.1 m. with hornfels extending beyond the interval to the end of the hole.
- d. <u>132-239.3</u> sub grade mineralization in weakly developed quartz-moly vein stockwork in hornfels. Lower density of veining in this section as opposed to hornfels above is reflected by RQD which averages greater than 50 as opposed to 25 above.
- 2. DDH 81-2
 - a. <u>3-54 m</u> ore grade mineralization in a mixed zone of quartz diorite, aplite and intermineral porphyry. Porphyry contains abundant frags of diorite and aplite. Both diorite and porphyry units show strong argillic alteration of plagioclase. Granodiorite frags first noted in porphyry at 41.1 m. and increase with depth.
 - b. <u>54-181.4 m</u> sub grade mineralization as poor qtz-moly vein stockwork in porphyry and potassic granodiorite.

DDH 81-3

a. <u>3-84 m.</u> ore grade mineralization in quartz-moly vein stockwork in strong argillic diorite cut by aplite and porphyry. Friable argillic zone extends to 73.1 m. From 73.1-84 m is well jointed biotite rich quartz diorite with pervasive patchy secondary biotite and pyrite. Biotite selvages are common on veins.

- b. 84-186 m. Sub-grade mineralization in potassic quartz diorite and intermineral porphyry to 127.57 m. From 127.7 to 186 m., section is potassic granodiorite cut by intermineral porphyry. Fluorite veining is first noted below 93 m. and abundant throughout the zone. Localized quartz-flooding also common.
- c. <u>186-207 m.</u> Marginal grade mineralization is similar to above in rocktype but alteration shows overprint of argillic alteration associated with faulting at roughly 20° to core axis.
- d. <u>207-306.6 m</u>. Sub-grade mineralization in granodiorite, porphyry and quartz monzonite. Strong potassic alteration. Fluorite veining is common.
- 4, DDH 81-4
 - a. <u>3-18 m</u>. Sub-grade mineralization in foliated quartz diorite. Only minor porphyry and aplite. Strong argillic alteration.
 - b. <u>18-60 m.</u> Ore-grade mineralization in argillic quartz diorite cut by intermineral porphyry and aplite to 45.54 m. contact with hornfels. Remainder of section is hornfels cut by intermineral porphyry.
 - c. <u>60-72</u> m. Sub-grade mineralization in porphyry with minor hornfels and granodiorite. High silica zones as large qtz-kspar veins subparallel to the core axis.
 - d. <u>72-96 m.</u> Ore grade mineralization in hornfels porphyry and granodiorite. <u>Strong qtz-moly veins sub-parallel</u> to core axis. Contact zone of hornfels - granodiorite at 83.43 m abundant aplite dikes 83.78 - 96 m.
 - e. <u>96-123</u> m. Sub-grade mineralization is potassic granodiorite and aplite with minor porphyry and lamprophyre. Aplite shows bleaching from pink to cream adjacent to lamprophyre dikes. Abt. chloritic fractures. First occurrence noted of qtz-fluorite veining at 121.84.
 - f. <u>123-147</u> m. Ore grade mineralization in potassic granodiorite, foliated qtz diorite and aplite. Abundant qtz-fluorite veining and silica flooded zones.
 - g. 147-159 m. Sub-grade mineralization in foliated qtz diorite with patchy biotite. Pervasive silicic and chloritic alteration.
 - h. 159-233.78 m. Ore grade mineralization in mixed qtz diorite and aplite. With minor porphyry to 207 m. Mixed potassic granodiorite and aplite with minor porphyry to 233.78 m. Porphyry dike at 171.85 - 173.89 m. responsible for drop of grade to .085 MoS₂ in 171-174 m. section.

- 5. DDH 81-5
 - a. <u>4-67m</u>. Sub-grade mineralization in argillic porphyry to 28.81 m. and mixed potassic granodiorite and porphyry 28.81-67 m.
 - b. <u>67-153.96 m</u>. Sub-grade mineralization in potassic granodiorite and porphyry. Abundant lamprophyre dikes from 130 m. to 153.96 m.
- 6. DDH 81-6
 - a. <u>3-27 m.</u> Sub-grade mineralization in strongly argillic quartz diorite from 3-12 m. Weakly argillic porphyry from 12-27 m.
 - b. <u>27-45</u> m. Ore grade mineralization in porphyry. Noticeable increase in vein size from the order of mm. in the above zone to cm. in this zone. Qtz-moly veining generally at shallow (0-25°) angles to core axis.
 - c. <u>45-268.9 m</u>. Sub-grade mineralization. Mainly porphyry with increasing potassic alteration to 216 m. From 216-268.9 m, section is mainly potassic granodiorite with abundant qtz-fluorite veining.

LEAD DISTRIBUTION

Lead greater than .030% in ore is considered to be a significant impurity at Kitsault Mine. Using this value as a cut-off, Tables 2 and 3 summarize the distribution of lead within ore grade material. These areas correspond to sections of rock crossed by polymetallic galena-sphalerite -pyrite veins. Of all core drilled, only 18% of ore grade sections correspond to intervals with lead > .030%. In only three cases were the lead grades within these restrictive zones high enough to make the overall lead grade for the ore grade sections higher than .030%. These were as follows:

HOLE	INTERVAL	MEAN LEAD
81-1	105-132	.062
81-4	18-60	.048
81-4	159-233.78	.035

TABLE 2

ASSAY INTERVALS WITH GREATER THAN .030% LEAD

	عقر ا	
DRILL HOLE	INTERVAL	<u>Pb (%)</u>
81-1	3-6 42-45 57-60 60-63 102-105 111-114 114-117 117-120 120-123 159-162 195-198	.040 * .278 * .076 * .080 * .108 .067 * .059 * .073 * .290 * .116 .045
81-2	12-15 33-36 54-57 57-60 165-168	.103 * .034 * .088 .078 .032
81-3	9 -1 2 48-51 207-210 279-282	.030 * .035 * .165 .079
81-4	18-21 27-30 30-33 33-36 45-48 54-57 138-141 159-162 162-165 165-168 189-192 195-198 198-201 219-222	.041 * .122 * .068 * .064 * .245 * .054 * .054 * .031 * .130 * .077 * .031 * .043 * .194 * .033 * .101 *
81-5	10-13 1 15-1 18 1 18-1 21	•035 •060 •035

TABLE 2 (CONT.)		
DRILL HOLE	INTERVAL	<u>Pb (%)*</u>
81-6	21-24	.044
	33-36	.036 *
	42-45	.048 *
	66-69	.071
	105-108	.046
	111-114	.048
	114-117	.067
	171-174	.059
	183-186	.051
	201-204	.146
	204-207	.052
	264-267	.043

* Interval in ore grade section.

		MEAN Pb	INTERVAL LENGTH	LENGTH >.030	% LENGTH >.030
81-1	3-84 105-132	.027 .062	81 27	12 12	15% 44%
81-2	3-54	.013	51	6	12%
81-3	3-84 186-207	.008 .003	81 21	6 0	7% 0%
81-4	18-60 72-96 123-147 159-233.78	.048 .006 .012 .035	42 24 24 74.78	18 0 3 21	43% 0% 13% 28%
81-5	NIL				
81-6	27-45	.022	18	6	33%
			425.78	78	18%

TABLE 3

% OF ORE GRADE SECTIONS WITH > .030% LEAD

.

•

COPPER DISTRIBUTION

Copper > .010% in ore is considered to be a significant impurity at Kitsault Mine. Using this value as a cut-off, Tables 4 and 5 summarize the distribution of copper within ore grade material. There is no ore grade intersection in which mean copper for the whole section achieves a significant level. Within ore grade sections, intervals with greater than .010% copper correspond to only 2% of the total. Of all sections whether in ore or not, in which copper is a significant impurity it is associated 60% of the time with high lead (> .030% Pb) and only 20% of the time with ore grade MOS₂ (> .110% MOS₂). This indicates high copper is a distinct mineral event more related to high lead than molybdenite.

It is therefore likely that high copper concentrations are related to polymetallic galena - sphalerite - pyrite veining.

	INTERVAL (m)	<u>Cu (%)</u>	Cu INTERVALS IN ORE GRADE SECTION	ASSOC. WITH HIGH Pb
81-1	42-45 57-60 159-162 177-180 219-222 228-231	.034 .011 .017 .010 .056 .010	*	* * *
82-2	54-57 57-60 87-90 90-93	.012 .010 .013 .015		*
81-3	207-210	.019		*
81-4	198-201	.010	*	*
81-5	NIL			
°1-6	48-51 201-204 210-213	.014 .046 .011		*

ţ

TABLE 4

ASSAY INTERVALS WITH GREATER THAN .010% COPPER

į

.

HOLE	INTERVAL (m)	MEAN Cu (%)	INTERVAL LENGTH (m)	LENGTH > .010% Cu (m)	% LENGTH * >.010% Cu
81-1	3 - 84 105-132	.005 .006	81 27	6 0	7 0
81-2	3-54	.003	51	0	0
81-3	3 - 84 186-207	.002 .001	81 21	0 0	0 0
81-4	18-60 72-96 123-147 159-233.78	.003 .003 .002 .004	42 24 24 74.78	0 0 0 3	0 0 0 4
81-5	NIL				
81-6	27-45	.002	18	0	0
TOTALS			425.78	9	2

TABLE 5

% OF ORE GRADE SECTIONS WITH >.010% COPPER

* Length of Ore Grade Section

÷.

i.

.

IRON DISTRIBUTION

Iron was analyzed principally as an indicator for sulfide iron in the minerals pyrite, pyrrhotite. Interpretation must take account of the differences in iron oxide content of the principal rock types before a meaningful picture emerges. Lamprophyre dikes contain significant magnetite. Assay sections containing lamprophyre can reach as high as 5-6% total Fe. eg. 81-1; 159-162 m. Hornfels in general has a total iron content in the 2-3% range. What percentage is sulfide iron is difficult to ascertain but for indication purposes, hornfels zones should be separated from lamprophyre and intrusive zones which average 1-2% total Fe. The best way to examine Fe distribution is on section. Sections 4, 6, 8, summarize this data.

1

CONCLUSIONS

- 1. Drill hole 81-1 successfully determined an outer ore contact within the hornfels.
- 2. Drill hole 81-2 successfully determined an inner ore contact within the central intrusive complex.
- 3. Drill hole 81-3 successfully determined an inner ore contact within the intrusive complex.
- 4. Drill hole 81-4 bottomed in ore and did not cross the intrusivehornfels contact to establish an outer ore contact within the hornfels. Further drilling along this north-south section is required to establish the outer ore contact.
- 5. Drill hole 81-5 defined sub-grade material within the inner intrusive complex.
- 6. Drill hole 81-6 defined generally sub-grade material within the intrusive complex.
- 7. Drill holes 81-4, 81-5, 81-6 were set up on a porphyry mass. As shown in this program porphyry is essentially marginal to sub-grade in MoS_2 . The east-west extent of this porphyry unit should be defined from other sections or further drilling.
- 8. Drill hole 81-4 drilled down dip on mineralized veins for much of its length. To avoid sampling bias in this area, further drilling should be roughly at right angles to the orientation of 81-4 which was drilled true north at -65°.
- 9. Lead was the only significant impurity noted in ore grade material. Lead concentrations greater than .030% were limited to narrow zones and related to polymetallic galena-sphalerite-pyrite veining.
- 10. Copper was insignificant as an impurity and copper > .010% was related to polymetallic galena sphalerite-pyrite veining.
- Use of Fe as an indicator for pyrite, pyrrhotite is difficult and as a minimum zones should be separated based on the rocktypes; hornfels, intrusive complex, lamprophyre.

COST STATEMENT

. .

{

тота	L	\$125,223.91
H)	Assistant's wages: Core splitting \$80/day x 40 days	3,200.00
G)	Geologists Wages: Drill supervision, Core logging, report writing \$150/day x 50 days	7,500.00
F)	Assaying 486 samples @ \$10/sample Kitsault Lab.	4,860.00
E)	Survey down hole deviation \$22.50/hr. x 24 hrs.	540.00
D)	Survey hole location \$45/hr. (2 men) x 6 hrs.	270.00
C)	Mobilization and demobilization Vancouver to Kitsault via Rivtow barge	6,110.00
B)	Room and board for drillers. 4 drillers @ 30/day for 28 days	3,360.00
A)	Six diamond drill holes total footage 1384 m.	99,383.91

.

AUTHOR'S QUALIFICATIONS

Bryan M. Fraser

EDUCATION

Graduation from University of B.C. in 1976 with a B. Sc. in Geology.

PROFESSIONAL EXPERIENCE

1970 - 75	Summer field work with Noranda Exploration
	Co. Ltd.,
	L.U.C. Syndicate,
	Candaian Superior Exploration Ltd.,
	McIntyre Mines Ltd.

- 1976 78 Field geologist for Tyee Lake Resources Ltd.
- 1979 Summer field work for United Hearne Resources Ltd.
- 1979 80 Field geologist for J.C. Stephen Exploration Ltd.
- 1981 present Pit geologist for Amax of Canada Ltd., Kitsault Mine.

Bygon From.

APPENDIX I

CHEMICAL ANALYSES

Analysis of diamond drill core by Kitsault Lab follows the procedure below:

1) Split core is crushed then pulverized.

Å

١.,

- 2) 2 g. of pulverized sample is digested using a hot three acid digestion. This involves addition of 10 ml. quantities of concentrated HNO_3 , H Cl and $HCLO_4$ and heating for approximately 1 hour on a hot plate.
- 3) A solution is next prepared by mixing 10 ml. AlCl₃ with 1 drop separan and diluting the above to 200 ml. with distilled H_2O .
- 4) The solution in 3) is added to the digested sample, mixed and allowed to settle.
- 5) Fully prepared samples are run on a Varian Model AA475 double beam atomic absorption spectrophotometer.

APPENDIX II

DOWN HOLE SURVEYING USING PAJARI INSTRUMENT.

•

L.

.

į

18 -- L'instrument l'ajari ne devra jan la être laisse à proximité d'un aimant permanent alors qu'il est en position de blocage, ce qui risquerait de fausser le magnétisme de la boussole, L'expérience a même démontré que le mécanisme de la boussole peut être complètement déréglé au voisinage des tiges de fer fortement simentées que l'on empile souvent près de l'orifice du trou de sonde et qui jouent alors le rôle de puissants aimants feuilletes. Pour éviter ce danger, on aura soin de toujours ranger l'instrument loin du cadre de la surface des qu'on l'a retiré du trou de sonde, Lorsque l'instrument n'est pas bloqué, cette précaution est inutile puisque l'aiguille de la boussole est libre de se déplacer selon l'orientation magnétique du lieu.

Pajari Instrument

For

Determining Inclination and Direction

of Bore-Holes

OPERATING INSTRUCTIONS

1 --- Unscrew container cap and remove two subber sings leaving two subber sings in the bottom of the Container.

2 --- Estimate time required to lower instrument to point where readings are to be taken, allowing for any slight delay which may occur.

3 - To set the timing ring, hold the spherical case of the instrument by the first two fingers and thumb of the left hand with the glass towards the paim of the hand. With the index finger and thumb of the right hand, turn the timing ring anto-clockwise until the line on the ring coincides with the desired time setting mark on the case. Each timing division represents five minutes Turn a little at a time and check with magnifying glass fill lines coincides exactly when the ring is held lightly between finger and the thumb. On later models, holes are drilled in the timing ring and a small capstan bar may be used to make the setting. In practice the mark on the timing ring must be turned a fraction of a marked interval beyond the timing division required. This procedure is necessary as the clutch in the timming mechanism will move backward a fraction of a division before it engages.

4 --- When the proper setting is made, return the ring clockwise until you feel it has come to its extreme clockwise stop and leave it there. This is important and failure of the test will result if this operation is omitted.

 $5 \cdots$ If the timing ring is turned anti-cl-ckwisebeyond the desired mark, then the instrument will not lock until a time period has elapsed corresponding with the extreme anti-clockwise rotation given to the timing ring and the locking time must be noted accordingly. The time setting cannot be set backwards and is determined by the extreme anti-clockwise rotation given to the timing ring.

 $6 \sim -$ Holding the instrument by the apherical case give it a few oscillating motions as you would use to start a watch. This is to ensure that the timing mechanism is in motion. A ticking sound may be heard by holding the instrument to the ear. Tap lightly if compass face does not drop into a floating position when timing has been set.

7 — Holding the bronze container at a slightly downward angle, insurt the instrument in the container with the arrow on the frame pointing inwards so that when the container is in the drift hole the arrow will be pointing towards the bottom of the hole. The compass dial should be upwards when the instrument is placed in the container and it will retain this position by the gimbal arrangement of its assembly.

s — Replace rubber rings and container cap. Tighten with spanners using the hexagons provided. Hexagons on the EX container are $1/2^{-1}$ across the flats to fit a $2/2^{-1}$ spanner and those on the AX are 136^{-1} to fit a 1" spanner. Two apanners of either size should on hand for this purpose. To seal the joint face, a fight fibre gasket is used on the AX container. For the EX container a light smear of "Gasket Goo" is recommended This is a cubber coment, used in automobile work and may be procured at garages or auto-supply stores. Care should be exercised so that the joint faces of the container do not become dented or damaged as it is important that the container must be watertight.

9 - Pipe wrenches should not be used to tighten the containers as the wall may be distorted resulting in damage to the instrument.

10 - Connect up the container case to the drift rods using three 5 ft, lenghts of brass or aluminum alloy rods separating the container case from the steel drill rods so as to prevent distortion of the magnetic field of the compass.

 Ω — When using the AX container, an oversize coupling is used between the first and second aluminum alloy rods so as to keep the assembly in line with the wall of the drill hole. An A to E coupling is required to couple the aluminum rods to the steel rods if the requirement on the job is A size.

12 -- Lower the assembly to the desired point where readings are to be taken and tap the drill rods lightly with a wrench so that the vibrations will liven the compass needle and assist it to findits true magnetic position of repose.

13 ... Allow the instrument to remain at real until approximately ten minutes past the time for which it was set to lock. This is merely a precaution against moving the instrument before it has locked. The locking action is by means of a wedge effect which raises the compass dial so that it is pressed upwards against a brass ring and simultaneously the protractor locking pin is ejected by a gradual movement until it locks in the V groave appusite its plumb position. Time locking action takes approximately ten minutes from the time the wedge first marks contact until final locking is completed. It is advisable to have the instrument placed at the desired point in the drill hole at least ten minutes before locking time and allow it to remain at rest till five minutes past locking time. For example, if the timing ring is set for thirty minutes, then the instrument should be in place within twenty minutes and allowed

to remain at rest until thirty-five minutes have clapsed. This should be the minimum leeway on either side of locking time. Maximum elapsed time for which the instrument may be set is one hour thirty minutes.

11. When five minutes past locking time have elapsed, remove the assembly from the drill hole. On removing the instrument from the container again check to make sure the arrow on the frame is pointing towards the bottom of the hole. If it has been placed incorrectly the reading can still be made but the observed azimuth reading must be corrected 180 degrees.

15 - Read inclination and azimuth angles with the aid of the magnifying glass provided. The inclination angle is observed at the Y notch in which the protractor locking pin is seated. There is a V notch at each degree division of the protractor. To read the azimuth, hold the instrument with the acrow on the frame pointing away from you. There is a line on he brass ring under which the compass dial is locked and the coinciding reading on the compass dial is the magnetic bearing of the drill hole. Corresponding astronomical bearing may be noted depending on the maunctic deviation of the locality. It will be noted readings for inclination and direction may be obtrine i for holes at any angle throughout 360 degrees, consequently horizontal or upper holes as well as down angle vertical holes may be tested with equal accuracy.

16. The instrument remains in its locked position until the timing ring is again rotated anticlockwise. Re-set timing ring and proceed to take the next test.

17 - 1n very deep holes lowering and raising of the instrument may be accomplished in shortertime by using a wire line and drum suitably calibrated to indicate depth. Equipment of this nature is used in oil when surveying and is obtainable from various manufacturers of oil well accessotics. Such an arrangement can only be used in vertical or steep angle holes and the container must have ample clearance within the drill hole. If there is evidence of caving or lose materials in the hole this method should not be used as there is a danger of getting the equipment stuck

18. The instrument should not be left in close proximity to any permanent magnet m its locked position as this may destroy the magnetism of the compass. Experience has shown that the magnetism in the compass of the instrument may healmost totally destroyed by the influence of highly magnetized drill rods when stacked at the drill rollar where they take the form of a powerful laminated magnet. As a precaution against this, remove the instrument away from the drill hole collar immediately the container is removed from the drill hole. In its free position harm to the needle s not imminent since it can adjust itself.

APPENDIX III

RECOVERY CALCULATION

Recovery calculation was made based on weight of core using the following assumptions:

- 1) Volume at NQ core is 5346 cm^3 for a 3-0 m. section.
- 2) Density of Kitsault rocktypes based on previous work is:
 - a. hornfels -2.72 b. diorite -2.64
 - c. aplite -2.56
 - d. intermineral porphyry -2.59
- 3) Assuming exactly one half of core is split for assay, given 100% recovery samples of the above rocktypes should weight:
 - a. hornfels -7270 g.
 - b. diorite -7056 g.
 - c. aplite -6842 g.
 - d. intermineral porphyry -6923 g.

Recovery for a given 3.0 m. section of core

= wt. of core - approximate wt
(gm) - above (gm) x 100

RQD CALCULATION

RQD is a quick measure of the fracture density of a given section of core. The percentage of core greater than 10 cm. for a given section is the RQD index.

APPENDIX IV

DETAIL DRILL LOGS

.

....

÷

.

KITSAULT ROCK CODES

.

1 = -{	36#H-t-A				73年段6
2=D	37-4-12				22=010 Q M
3=60	38=4-0-60				23-11-A-B
4=A	39⇔E0				74)=8X-94
SHIP	4(0=6-61)				255中国·韩行王
6 ~ NEP	4 £ = ∈ 0 + G D				7.6≕A~H~FLT
7=1.	42×L-E1				77=L-A-FLT
8=0B	4341-0-100				28=A-FLT
9=FLT	44中11-6-123				アクキワ民美科
10 = GD = DP	4(5 = 1) - y(1)				30-30
11+60-6	4る…10…ビロー600				83 = 6 - 6V
12	AZ=L-A+)(P				영웅=·카르슈·영원···L
13=13-1.	48=6-L-8-3P-	FL.T			$83 \div FX$
1.4	49#1P-FLT				行业中国人
相关 计中国 电子机	50に約~3(P-63)				8号中村~ 6月~6月
16-1-10-11	51-60-QV				86-41-60-QV
17=3-0	52#00-856				87≈H-QV-A-6D
18-0-IP	53#NEP-60				$8.8 \pm 8 \pm 1$
19=D-A-IP	54#A-L-GD				\$\$ 9 ≈H→S=₿
20 = 0 + 1 + 0P	55=A-60-0P				
21=D-A	56=60-10-086				
$0.5 \approx \Gamma \sim D$	52#0~L~6B				
= 11 - 11 F' - 1.	58#0+A-4				
24-4-11-00	59=00-H-£P				
25=D+FUT	δ0≔A~H-βP				
26=0-00	V () ~ ((= 1 A				
27#4+6D	62=0-6-QV				
28-L-NEP	63-e-(P				
29#H-NEP	る4年80一ドLT				
30 = HQV	65-1-60-FUY				
31=A-H-6D	66⇔D~ t. ≁FLT				
32=0-H- <i>LP</i>	67-0-L				
33=0~1~4~1P	88≈))-F-6A				
34-t-0-H-A	69#BX-15				
32 = 0.0 - 1 - 1.0	70=EX-JP-D				
H = hornfels		ED,	D	=	diorite
A = aplite		QV		=	quartz vein
IP, NEP = intermineral porph	yry:	FLT		=	fault
GD = granodiorit	9	OB		=	overburden
QM = quartz monze	onite	ΒX		=	breccia
L = lamprophyre		ΡY		=	pyrite

.

۲

AMAX OF CANADA LIMITED

DIAMOND DRILL LOGS

81-1 G.Smith/B. Fraser Hele Ne: Logged By: Gaim Se: M-160 Date Legged: Oct 4 - Oct 14/81 13,288.87 E Easting: Minor MoS₂ below 84m Remarks: 11,217.97 N Nerthins: depth, assays by Kitsault Lab. Elevation: 605.05 360° Pajari azimuth at 110.36m probably 2010000 -45° influenced by lamprophyre dike at 1.1 785' (239.3m) 108-110.20m. Azimuth arbitrarily set lenztit Core Size: N.Q. at mean of readings above and below October 3, 1981 ie: 359°20' rather than original Collared: reading of 1°00' October 8, 1981 Completed: Maitland Exploration Ltd., Vernon, B.C. Drilling Co.: Drillers: V. Quesnel, K. Caldwell

Hole survey data method

PAJARI DEPTH AZIMUTH DIP -45° 7.62 m 356°30m 358° 0' 49.39m -45° 357°50' 110.36m -46° 171.34m 357°40' -46° 201.83m 356° 50' -46° 232.31m 356°30' -45°

Byon Frase

HO_E Nº ______

DATE October 4-14/81

LOGGED BY <u>G. Smith/B. Frag</u>

ī

ı.

Ē	PHYSICAL PROPE	PTIES		ALTER	ATION			<u> </u>	M	NESAL	. 24710%			чоск
1 - N E - 1	ROCH CORE RED	ROD	FeS2 SiL	SER	ARE CH	FE_:	VEN STZ%.	MGS.	w0g Pt	ig .	Acces Ci	1	Fe \	FYPE
0-3						<u></u>	<u></u>		· · · · · · · · · · · · · · · · · · ·		·	-		
3-6	2376 34%	-				•		.187	.040		.00	4	1.80	2
6-9	3123 44%	-						225	.005	-		13	1.87	2
9-12	6991 99%	-	-		** ** ***			.257	,008		.00)4	1.59	2
12-15	6083 86%	-						.394	.009		.00	3	1.74	2
15-18	10108 72	-						.324	.011		.00	2	.92	2
18-21	10108 72							.324	.011		.00	2	.92	2
21 <u>-24</u>	6341 91%	-	i					.157	.007		.00	4	1.96	5
24 <u>-27</u>	6197 89%	-	·			<u> </u>		.201	.003		.00	3	1.67	5
27 <u>-30</u>	<u>5637 81%</u>	-						.252	NIL		.00	3	1.87	5
30 <u>-33</u>	6317 91%		 					.067	.008		.00	4 2	2.12	5
33-36	6294 90%	-	1	<u>-</u>				.317	.010		.00	3	1.60	63
36 <u>-39</u>	5856 84%	-	ļ ļ			-		.385	.011		.00	2	1.50	5
39 <u>-42</u>	5668 81%	-	ļ		·	<u> </u>		.148	.012	- -	.00	3	1.75	5
42-45	7172 103	-						.230	.278		.03	4	1.78	5
45-48	7127 102	-	 	··••		.		.244	.011		.00	3	1.12	63
48-51	5788 84%	78		: 		<u>.</u>		.205	.007		.00	3	1.07	63
51 <u>-54</u>	6085 88%	73	 	·• · · .				.190	.011		.00	2	1.15	4
54-57	6446 92%	76				.	· ·.	.235	.012		.00	4	1.94	5
57 <u>-60</u>	6655 95%	71						.260	.076	.	.01	1	1,53	19
60-63	6114 88%	74	; ;					.294	.080		.00	9 .	1.70	2
63-66	6093 87%	40						.377	.025		.00	2	1.23	73
66-69	5146 76%	76	-					.442	.017		.00	2	1.24	14
69-72	6830 102	56						.424	.007		.00	2	.73	4
72-75	6781 98%	44	· ·					.177	.013		.00	3	1.03	63
75-78	5323 77%	64				÷		.172	.027		.00	6	.47	5
78-81	6410 92%	56						.119	.011		.00	4	1.65	5
81-84	5243 76%	16	.			:		.137	.015	:	_00	5	2.32	15
84-87	5837 84%	59		·		·		.042	.010	:	.00	9 /	4.01	32
87-90	6085 86%	28		<u> </u>				.080	2.35	<u> </u>	.00	5	3.34	30
90 -9 3	4626 67%	23		:				.081	.095		.00	34	4.25	37
93-96	6005 87%	31				·		.092	.015		00	6	2.26	5
96-99	6661 96%	18						.037	.013		.00	6	2.48	5
99-102	6210 90%	29	1					.034	.008		.00	6	2.06	5
102-105	6635 96%	31	1					.067	.108		100	6	2.03	5
105-108	5815 84%	33	}					.228	.012		<u>00</u>	53	3.94	37
				-					By	<u>م</u> م	Fran	c		

PAGE 1A

HOLE Nº _____

•.

DATE <u>October 4-14/8</u>1

LOGGED BY <u>G. Smith/B. Fras</u>

Ē	PHT: CAL	PROPE	RTIES			ALTER	RATION						۲۰	NED1		у .		зоск
5.30 10	ROCK CARE COME_WT	REC	RQD	FeS2 S	512	SER	<u>_</u>		FELC	VEIN GTZ%	McS ₂	N 1.3	e _t	ίς.	Acces	ÛĽ	⁻e \	TYPE
108-111	6544	.94%	54							• • • • •	.097		.017			.005	3.94	13
111-114		46%	3%								.088		.067			.007	3.72	1
114 <u>-117</u>	4390	<u>62%</u>	29								.120		.059			.004.	2.32	15
117 <u>-</u> 120	6436	_93%_	40%			·			-		.133		.073			.006	3.16	15
120 <u>-123</u>	6532	90%	30%		· · .		· · ···-				.073		.290			.007	2.97	1
123 <u>-126</u>	6103	84%	7%								<u>.116</u>		.023			.006	2.76	1
126 <u>-129</u>	6600	90%	17%								.095		.007		· ·	.008	3.90	1
12 <u>9-132</u>	5853	<u>82%</u>	12%			<u> </u>					.210		.012			.007	3.70	
132 <u>-135</u>	5851	_80%	20%								.04		.012			.004	2.53	1
135 <u>-138</u>	6946	96 <u>%</u>	24								.105		.014		,	.006	3,46	1
138 <u>-141</u>	5398	74%	21	··							.070		.021			.006	3.28	
14 1- 144	5862	80%	46			·	·	•			.064		.003		•	.006	2.91	1
144 <u>-147</u>	8343	114	61			.	•		.		.065		.012			.009	4.94	13
147 <u>-150</u>	7614	104	63			- -					.010		.005		·	.007	5,96	7
15 <u>0-153</u>	6394	88%	64								.041		.013		<u> </u>	.005	2.76	
15 <u>3-156</u>	6624	92%	37								.093		.005		·	.003	2.35	
15 <u>6-159</u>	7143	98%	78								.072		.021		.	.005	2.46	
15 <u>9-162</u>	5817	80%	26					•·•••·			.033		.116		·•	.017	6.02	13
16 <u>2-165</u>	5078	69%	23								.036		.002			.003	5.88	13
16 <u>5-168</u>	5911	81%	60		.	<u> </u>					,068		.002			.004	2.78	1
16 <u>8-</u> 171	6525	90%	93								.204		.007			.005	3.15	15
17 <u>1-174</u>	6984	95%	52								.048	<u> </u>	.001			.006	3.69	1
17 <u>4-177</u>	6957	95%	70				,				_046		.001			.008	3.62	1
17 <u>7-180</u>	6868	94%	63			····· ·					.050		.001		· ···· -	.010	3.52	1
18 <u>0-183</u>	6258	86%	34	·		•					.075		.005			.008	3.91	1
18 <u>3-186</u>	7102	98%	96								.067		.007			.004	2.38	
186 -1 89	7463	101	63			•	·				.069		.007			.006	2.71	15
189-192	7047	97%	80								.160		.005			.005	2.53	15
19 <u>2-195</u>	6324	86%	80			÷			÷		.041	······································	.003		·	.003	2.14	15
19 <u>5-198</u>	5729	88%	48						•		.077		.045		· · · · ·	.006	1.75	
19 <u>8-201</u>	5587	76%	80	!			•		· ·		.066		.001			.003	1.86	┆╷╵┃ ┟╼ <u>╶</u> ┈┨
20 <u>1-204</u>	6773	93%	50								.102		.002			.005	3.56	
20 <u>4-207</u>	7248	100	95					•			.030		.002			.007	3.38	┟╌╧╌┨
20 <u>7-210</u>	7363	101	86					1			.100		.005			.009	2.78	
21 <u>0-213</u>	6595	90%	87			, , ,			<u> </u>		.044		.003			.004	1.88	┝┿┨
21 <u>3-</u> 216	6365	87%	50					!			.066		.015	<u></u>		.005	3.06	

Bayon Jusses

PAGE 2A

HOLE Nº ____81-1___

DATE __October 4-14/81

LOGGED BY G.Smith/B.Frase:

-	_																
Ê S	- 745 507	3-142	921222 	EE		ALTE	FATIO!	N			1	7	1.592			:	Rock
1	2014 2014	Vit.	PE0	RGD	FeS2 S.L	. SER			FE.:	_072%	Moline William	÷۲	ود	Acces CL		Fe \	TYPE
216-219		7589	104	60	· ··· ··· ···						.085	.001		.()05	2.71	1
219-222		6616	912	77							.056	NIL		.()56	3.66	1
222-225		6311	87%	80				·	-		.031	NIL		•	800	4.12	1
225-228		7451	102	73							.029	.001		.(06	5.84	13
228-231		6698	92%	60			-			•	.049	.007		.(10	4.00	1
231-234		6417	88%	53							.021	.004			06	3.08	1
234-237		5528	76%	86	• • • •		• .				.060	.067	·		04	4.16	13
237-239	.3	6550	100	82		· · ·		-	• •	· · · · · ·	.029	NIL	-		06	3.35	1
				END	OF HOLE	AT 2	39.3	M						·			
	-	- ·		ها د — د							•					•	
						···											
						·					· · ·						
											······						
			<u> </u>									<u>.</u>			••••		
									·•								
		•				-•											{
		<u> </u>			<u> </u>	 <u>_</u> .	-										
	····					_						. <u> </u>					
		·				•_•	•••••••••••••••••••••••••••••••••••••••					·			. .		
~							<u> </u>										
				••				· • ·									
					·· ·				• • • • • • • •								
			<u> </u>						• · · · · ·			·······					
											· •						
							.	•	•					<u> </u>			
			_		<u></u>	. 						······································					
																	
		i				<u>-</u>			<u> </u>			· · · ·					
							<u>.</u>	-			!				;		
	·					<u> </u>	.	- <u></u>					;				
								1									
							·										
									1								
	i											1			1		
				T	1				- ·			R		2			
											ø	1 ag			_		

HOLE NO. ____81-1_____

.

í,

DATE Oct. 4-14/81

PAGE _____1B_____

LOGGED BY <u>G.D. Smith</u>

DEPTH	ROCK DESCRIPTION '
0-3.66m	Broken ground, casing.
3.66-6	Quartz diorite, 10-15% qtz, 70% plag, 5% kspar, 20% biotite, argillic
	alteration is mostly pockets of chalky white plag.
6-9	As above, 2cm aplite dikes with dissem. MoS₂
9-12	As above, increase in py surrounding bio phenos.
12-15	As above, chalky plagioclase.
15-18	15-16.4 As above: 16.4-18.0 Unbleached biotite decreases to 3-5%.
18-21	As above, abt. kspar selvages and zones; 20.7-21.0 fault, gouge bkn @ rt.
	angles to CA
21-24	21-22 Crowded ppv.,40% 1-3mm fspar phenos in 1t gy groundmass;
	22-22.6 Biotite rich zone in ppy, biotite 25%; 22.6-24 Contact @ 30°
	to CA, med gy hnbd bio fspar ppy, frags of gd, hf, ap (104 cm) make up 5%
	of rock.
24-27	Med gy hnbd-bio fspar ppy. 10%-15% pptic fspar chalky argillic alteration
	mafics 3%, frags of ap, gd, hf.
27-30	27-28.4 as above; 28.4-30 alteration mainly silicic.
30-33	As above, pptic fspar 5%, mafics 2%, frags 1-15cm 10%;
33-36	33-35.5 silicic ppv as above: 35.5-36 pink aplite. upper contact @ 35° to C
	strong MoS ₂ , aplite envelopes 4-6cm, hf frags,
36-39	36-36.3 As above. lower contact @ 65° to CA: 36.3-39 med gnish gy ppy. abt.
	frags of ap. hf: ppy weakly mineralized, aplite strongly mineralized,
	frags make up 10% of zone.
39-42	As above.
42-45	As above.
45-48	45-45.3 as above: 45.3-46.3 ppy bleached pale gn, fspar phenos palegn.
	hf frags bleached pale gn; 46.3-48 pink aplite, strong ser. on fractures,
	small sections of str. argillic gd with gn. clay alteration of plag
 1 1 1 1 1 1 1	and lt qy bleached biotite.
48-51	48.0-48.3 aplite as above. lower contact @ 60°; 48.3-49.1 pale gn.
	ppy, lower contact @ 40°; 49.1-51 aplite, excellent moly stockwork.
51-54	51-51.4 aplite as above; 51.4-51.6 ppy dike @ 55°; 51.6-53.7 aplite as abov
	53.7-54.0 med. gy gn ppy, upper contact @ 60°, 10% 1-2mm fspar phenos, 2%
	1-2mm bio phenos, abt frags of ap. hf.
54-57	ppy as above
57-60	57-58.6 ppy as above; 58.6-59.5 dioritic frags in aplitic matrix; 59.5-60
······································	biotite guartz diorite, strongly argillic, str. sericite on fractures.
<u> </u>	
.

DATE ______0ct. 4-14/81

PAGE _____

LOGGED BY G.D. Smith B. Fraser

DELLH	RUCK DESCRIPTION
60-63	Biotite gtz diorite as above.
63-66	63-64.8 qtz flooded qtz diorite, qtz bands to 20cm, with patchy k-spar
	str MoS ₂ ; 64.8-65.5 aplite; 65.5-66.0 qtz flooded pale gn hornfels,
	2ry biotite as reddish bn patches to 2cn.
66-69	66.0-67.1 hf as above; 67.1-69.0 cream to pink aplite minor bleached
	hf frags.
69-72	aplite as above.
72-75 ·	72-73.9 creamy aplite, str sericite on fractures; 73.9-75.0 pale gy
	bleached ppy, upper contact @ 20°, 15% fspar phenos, 2% biotite, abt
	aplite zones 50 2cm.
75-78	75-77.2 bleached ppy; 77.2 - 78.0 med gy ppy mafics 3%
78-81	78-80.2 as above; 80.2-81 str argillic str sericitic ppy, bkn 80.2-80.7
81-84	81-83.3 ppy as above, bkn 81.1 - 81.7, 81.9-84.0p 83.3-84 pale gy bleach
84-87	84-84.4 aplite; 84.4-85.1 bleached hornfels; 85.1-85.6 pale gn bleached
	ppy, biotite completed altered; 85.6-87 biotite qtz diorite, 40% mafics
	mainly biotite minor hnbd., 5% epidote, numerous biotite clots.
87-90	87-87.7 lt. gy hornfels; 87.7-88.2 polymetallic g.v. at 259 to CA, very
	strong py-sphal-gal; 88.2-88.9 lt. gy to lt. gn hornfels; 88.9-89.3
	pale gn. argillic ppy, abt. sericite on fractures; 89.3-90 hornfels as a
90-93	90-90.4 hornfels; 90.4-91.0 ppy; 91.0=91.8 lamprophyre upper and lower
	contacts @ 30°; 91.8-92.7 ppy; 92.7-92.9 lamprophyre; 92.9-93 ppy
93-96	It. gy ppy, chalky argillic fspar 10%, partially bleached biotite 2%,
	sericite_common_on_fractures.
96-99	As above.
99-102	as above.
102-105	As above increasingly bleached.
105-108	105-106.6 ppv as above, 106.6-107.7 lamprophyre, lt, gy near contact
	dk. black near conter; 107,7-108 ppy.
108-111	<u>108-108.1 ppv: 108.1-110.1 lamprophyre; 110.1-111 hornfels.</u>
111-114	Hornfelsdissem.py
114-117	<u>]]4-]]4.72 hornfels;]]4.72-]]5.]2 ppy;]]5.23-]]6.]6 hornfels;</u>
	116.16-116.52 ppy; 116.52-117 hornfels.
117-120	117-117.36 hornfels; 117.36-117.6 ppy; 117.6-120 hornfels
120-123	<u>Lt. gv to drk. gy hornfels</u>
123-126	As above
126-129	<u>As above, very friable</u>
129-132	As Above. Q Z

As above.

As above.

DEPTH

132-135

135-138

138-141

141-144

144-147

147-150

150-153

156 - 159

159-162

162-165 165-168

168-171

DATE Oct. 4-14/81

ROCK DESCRIPTION

Hornfels, dissem. py

PAGE <u>3B</u> LOGGED BY <u>G.D. Smith</u> Frason Hornfels, dk. gn to gy, brown biotite vein envelopes. As above, rock competency increasing. 144-146.3 as above; 146.3-147. lamprophyre, scarce 1-2mm plag phenos. 147-149.86 lamprophyre; 149.86-150 hornfels 150-153.84 hornfels; 153.84-154.04 lamprophyre as above; 154.04-156 hornfels Hornfels, colour variable from green, grey, buff, brown. 159-161 Hornfels as above; 161-162 lamprophyre 162-164.2 lamprophyre, plag less than lmm; 164.2-165 hornfels. Hornfels minor ppy dikes

171-174 Hornfels, dissem, py 174-177 As above. 177 - 180Hornfels, biotite envelopes on g.v.'s 180-183 Hornfels 183-186 Hornfels, minor lt. gy siliceous hornfels. 186.187.44 dark hornfels with aligned pyrite; 187.44-189 ppy with frags. 186-189 of hf, veining decreases in dike implying emplacement after several stages of veining. 189-190.04 ppv; 190.04-192 hornfels. 189-192 192-193.44 hornfels, mettled with black spots; 193.44-194.2 ppy with hf 192-195 frags, dark green felty looking mineral as alteration product of mafics. 195-198 Hornfels 198-201 Hornfels, dissem.py 201-204 Hornfels, py crystals to 2mm Hornfels, very minor ppy, grey to green to black. 204-207 207-210 Hornfels, black Hornfels 210-213 Hornfels, diss. py

213-216 216-219 Hornfels Hornfels, dark green to black 219-222 222-225 Hornfels. 225-226.08 Hornfels; 226.08-226.92 lamprophyre; 226.92-228 Hornfels 225-228 228-231 Hornfels, lt. grey 231-234 Hornfels, diss. py

234-234.68 Hornfels; 234.68-235.72 lamprophyre; 235.72-237 hornfels 234-237 Burgen I rosen

Н	OLE NO81-1		PAGE	<u>4B</u>
	DATE		LOGGED BY	<u> </u>
DEPTH	ROCK DESCRIPTION			
237-239.3	237-239.1 Hornfels ; 23	9.1-239.3 lamprophyre		
	END OF HOLE 81-1 AT 239.3	m		
·				
	·····			<u>.</u>
			·	
			·	
·				
<u></u>				
· <u></u>				
				
·	·····	U		
	·····			
√−−−				
No				
•				
	·····			
				<u> </u>
<u>_</u>				
				<u> </u>
		<u> </u>		

AMAX OF CANADA LIMITED

DIAMONE DRILL LOGS

Hole No:	81-2	Logged By:	: G.Smith/B. Fraser	
Claim Ne: 🗌	M-160	Date Lege	ad: <u>Oct 15-23/81</u>	
Easting:	13,290.79E	Remarks:	Assays by Kitsault	Lab
Sorthing:	11,217.97N			
Elevation:	605.07			
Azimutu: _	<u>East (90°)</u>			
Dip:	-50			
lengtu:	(595') 181.40m			
Core Size:	N.Q.			
Collared:	<u>October 8, 1981</u>			
Completed:	<u>October 11, 1981</u>			
Drilling Co.:	Maitland Explorat	ion Ltd, Ve	ernon, B.C.	
Drillers:	V. Quesnel, K. Cal	dwell		

Hole survey

1

data method -

PAJARI

DEPTH	AZIMUTH	DIP
7.62m	88° om	50°
27.44m	84° Om	50°
57.93m	85° Om	51°
88.41m	85°40m	51°
149.39m	82°40m	51°
179.88m	83°40m	51°

Buyn From

HOLE Nº 81-2

DATE _____0ct 15-23/81

LOGGED BY G.Smith/B.Fraser

Ĩ		PROPE	RTES	İ		ALTER	ATION	<u>.</u>					NER:	41.24TK	DN:		ROCK
	2 ROCK COPE COMP. WI	REC	ROD	FESZ	S.L	SEF	<u>_</u>	Ţ.,	FELL	VE/N GTZ%	Masi	AC 5 PE		Acces	Cu	Fe	TYPE
<u>3-6</u>	4804	l_68 <u>%</u>	23		.						.179	.001			.003	1.34	21
6 <u>-</u> 9	6779	96%	70	 							.295	.007		-	.003	1.00	63
9_12	2 5246	75%	77								.135	,007			.001	0.84	4
12-1	5 5140	74%	50								.093	.103			.004	2.67	48
15 <u>-18</u>	3 5992	84%	95	•					_		.107	.010			.002	0.97	19
18-2	5800	82%	83								.073	.002			.004	1.51	5
21 <u>-24</u>	6874	98%	84								.138	.004			.003	1.38	5
24-23	6255	90%	77								.263	.011			.003	1.50	5
27-30	4476	64%	47								.115	.001			.003	1.74	5
30 <u>-</u> 33	6007	86%	57								.200	.004			.003	1.50	18
33 <u>-36</u>	6914	99%	77								.161	.034			.002	1.50	18
36-39	6342	91%	74								.161	.004			.003	1.64	5
39 <u>-4</u> 2	5378	77%	69		<u></u>						.074	.008			.003	1.61	5
42-45	5 7251	104	86					<u>.</u>			.064	.006			.002	1.79	5
45-48	6173	89%	67						.		.121	.003			.003	1.58	5
48-51	5833	84%	56			-			•		.103	.004			.002	1.51	55
51-54	5307	76%	32						•		.113	.005			.004	1.53	55
54-57	6464	192 %	62								.067	.088			.012	1.37	55
57-60	5246	75%	28								.043	.078		-	.010	1.49	10
60-63	5472	78%	13								.032	.020			.002	1.37	10
63-66	5918	85%	14								.040	.003			.003	1.45	3
66-69	4645	68%	4								.073	.031		· · ·	.002	1.44	3
69-72	5083	73%	32						.		.036	.021			.003	1.24	3
72-75	5791	83%	6								.040	.018		<u>.</u>	.003	1.01	3
75-78	6238	:89%	73								.049	.015			.004	.91	3
78-81	5297	75%	24								.049	.009			.005	1.14	5
81-84	6931	99%	65						:		.050	.019			.008	1.22	5
84-87	6433	93%	40								.028	.000		1	.009	1.68	5
87-90	6423	92%	52	:							.039	.006			.013	1.48	5
90-93	5743	83%	63					_	:		,033	.000			.015	1.39	5
93-96	5996	85%	67						•		.030	.026			.007	1.49	5
96-99	6492	93%	83			i					.038	.000		:	.002	1.29	55
99-10	2 5571	80%	48	_							.020	000			.001	1.46	5
(102-10	5 6332	91%	8								.057	.000			.001	1.77	5
105-10	8 5601	81%	7	i		i					.042	.002			.001	1.55	5
108-11	1 5579	80%	18						: :		.072	.011			.002	1,53	5
·													6	Suga	-Ò	trace	~

PAGE 1A

DATE Oct 15-23/81

Bugo Fresen

I I	i estra	TRES	1	ALTERATION			[/FR1. 767			
	A LIRE REC	ROD	FeSp S.L	SER	·····	VEHA	Mr Sol I		Ag Acces	<u>с</u> и	Fe \	- UT. TYPE :
111-114	5187 74%	8				<u> </u>	.035	_005		.002	1.77	5
114-117	5465 78%	9	* ··· · *·				.140	.008	•	.001	1.80	10
117-120	5746 82%	49					.174	.004		.001	.94	27
120-123	4702_68%	0		· ·		•	.040	.002		.001	1.28	10
123-126	5778_82%	6					.012	.003		.002	2.35	35
126-129	5742 82%	16		.			.040	.003		.003	2.67	35
129-132	4539 65%	9	•				.103	.005		.002	1.82	5
132-135	6006_86%	16	l				.072	.003		.001	1.36	63
135 <u>-</u> 138	4216 61%	4	·		· · · · · · · · · · · · · · ·		.157	.003		.001	1.38	5
138 <u>-141</u>	7733 108	27		<u></u>	·-··· - · · ·		,006	.002		.001	1.25	5
141-144	6149 87%	62	; ; -···				.075	.001		.002	.81	10
144-147	5970 85%	49		·			.030	.018	·	.001	1.05	3
147-150	4925 70%	61	 				.038	.001		.001	1.24	3
150-153	6411 92%	22	•	<u>-</u>			.037	.001		.001	1.15	11
153-156	6717 96%	59					.005	.004		.002	1.62	11
156-159	6531 94%	66	· · · · · · ·	······································	<u> </u>		.078	.003		.001	1.23	3
159-162	6889 98%	54					.010	.004		.001	.98	10
162-165	6263 89%	37	·····	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • •		.015	.019		.002	1.04	5
165-168	6551 94%	63					.053	.032		.002	1.13	5
168-171	6789 98%	88					.032	.009		.001	1.01	63
171-174	7221 104	80	·				.023	.001		.001	.96	5
174-177	5490 89%	7	···· • -··	· - <u></u>			.005	.003		.001	.92	5
177-180	5677 82%	9					.005	.001	_ .	.001	1.00	5
180-181.4	2641 82%	C			,		.002	.001		.001	1.04	_5
	END	OF	DIAMOND DF	ILL HOLE	81-2 AT	181.4	М					
L												
· · · · · · · · · · · · · · · · · · ·	!				·							
	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·									
				!				·				
			ì				;					
				<u></u>								
							i	1		i		- 1

LOGGED BY G.Smith/B.Frase

.

DATE Oct.15-23/81

PAGE 1B

LOGGED BY <u>B. Fraser</u> G. Smith

DEPTH	ROCK DESCRIPTION
0-3	Casing
3-6	3.0-5.2 very broken, mixed aplite and qtz. diorite frags; 5.2-6.0 qtz
	diorite cut by 40mm ppy dike @ 50° to CA with 1-2mm plag phenos.
6-9	Mixed zone, 70% aplite, 20% qtz diorite, 10% ppy aplite cut by numerous
	barren g.v.'s # 30-45° to C.A. dissem. py, mo.
9-12	As above, ppy dikes contain 40% chalky plag to 3mm.
12-15	12-13.6 as above, with occasional hornfels frags to 13cm; 13.6-14.4
····	lamprophyre with hairline calcite veins; 14.4-15.0 mixed ppy. qtz. dio. ap
15-18	15-16.08 as above; 16.08-16.72 aplite; 16.72-18.0 mixed quartz diorite,
	ppy, patches of intense argillic alteration, chalky plagioclase.
18-21	18-19.64 intermineral ppy, 25% 1-3mm plag phenos, alteration varies
	from 5-9 depending on how badly the plagioclase xstals have been altered;
	19.64-21.0 aplite.
21-24	21-21.24 aplite, veins within aplite cutoff by ppy.; 21.24-24 int. ppy.
· · · · · · · · · · · · · · · · · · ·	some sulfide has been washed out of vuggy qtz. veins.
24-27	Int. ppy., frags of aplite and quartz diorite, clots of 2ry biotite.
27-30	Int. ppy., aplite frags, lighter patches of int. ppy where mafics are alt.
30-33	Mixed zone, 74% int. ppy, 18% otz. diorite, 8% aplite.
33-36	Mixed zone, 80% int. ppy, 20% qtz diorite.
36-39	36-36.8 int. pOy, intense argillic, plag altered to pale green and
	creamy clay, biotite bleached; 36.8-39.0 mod argillic int. ppy, med. grey.
39-42	39-39.9 as above 39.9-41.1 highly broken, str. argillic, sericitic int.
	ppy, bleached lt. grey; 41.1-42 med. grey int. ppy, increasing size of
	q.v.'s to 2cm, abt. frags of granodiorite to 4cm., aplite clots to 2cm.
42-45	42-44.2 as above; 44.2-45 med. gy gn int. ppy, peruasive silica, upper
	contact 0 60° to C.A.
45-48	45-45.16 as above: 45.16-47.5 upper contact is 13mm ribboned qtz-mo-py
	vein @ 30° to C.A., bleached lt. gy int. ppy., highly broken with sericiti
<u> </u>	mo gg at 45.9-46.4; 47.5-48.0 med gy. int. ppy
48-51	mixed zone, 80% int. ppy, 20% granodiorite and aplite frags, ppy is
	med gy with 10% pptic fspar, bkn 49.2-49.3
51-54	Mixed zone, as above.
54-57	54-55.1 as above: 55.1-57.0 bleached int. ppy.
57-60	57-57.1 as above: 57.1-57.88 mixed zone, 70% int. ppy, 30% frags of
	granodiorite and aplite: 57.88-60.0 mixed zone. 80% granodiorite, 20% int.p
60-63	60-61.4 as above; 61.4-63 potassic granodiorite. biotite locally to 30%
	an nite on outling that in headers Distribute that is a surplus of the second second second second second second

DATE <u>Oct. 15-23/81</u>

PAGE <u>2B</u>

LOGGED BY <u>B. Fraser</u> G. Smith

DEPTH	ROCK DESCRIPTION
63-66	As Above, bkn 63.0-65.1, bkn 65.5-65.9
66-69	As above, bkn 66.2-69.0, uniform fractures at 5-10cm intervals at 40°to (
69-72	69-69.8 as above; 69.8-72.0 75% strong potassic granodiorite, 5% int. pp
72-75	As above
75-78	as above, weak stockwork occasional widespaced (80cm) strong 1-2mm qt-mo
	veinlets.
78-81	78-78.4 as above; 78.4-81.0 med gn int. ppy, pervasive pale gn. clay
	alteration of plag, dissem, chlorite, 3% weakly altered black biotite.
81-84	Med. gn. int. ppy as above, bkn 82.5-82.7
84-87	84-84.35 as above, 84.35-85.0 50% frags in bleached Lt gn. int. ppy
	85.0-87.0 bleached lt. gn int. ppy, giotite completely altered to pale
	gy. mica, bkn 85.0-86.7, numerous 0-10° shears and gouge from 85.8-86.3
87-90	8787.2 as above; 87.2-90 med gn. chloritic int. ppy, bkn 89.6-90.7
90-93	90-92.1 as above; 92.1-93 bleached lt. gy int. ppy, original meter block
	off by 10' as they indicated a 20' run from 293.5' to 314' ie: 89.48-95.
	Core did not show any lsos so subsequent footages were adjusted, 2cm
- <u>-</u>	fault at 30° to C.A. at 92.44m.
93-96	93-95.2 bleached lt. gy. ppy; 95.2-96.0 alternatiely bleached and med. g
	int. ppy.
96-99	96-97.65 as above, 2 cm fault at 30° to C.A. at 97.35 infilled with rust
·	qtz, carb gouge; 97.65-99 str potassic zone, 50% aplite, 35% int. ppy,
	15% granodiorite frags.
99-102	99.0-99.4 as above; 99.4-101.2 bleached int. ppy, 4 cm. fault, gouge
•	@ 50° to C.A. at 101.0m; 101.2-102 med gn int. ppy.
102-105	As above.
105-108	As above
108-111	As above, moly occurs in generally less than 2mm qt-mo-py veins with k-s
	selvages less than lmm
111-114	As above, 4mm fault infilled with qtz,carb at 60° to C.A. at 111.08m
114-117	114-115.85 as above, bkn throughout; 115.85-117 mixed zone, 80% strongly
	potassic granodiorite with biotite to 35%, 20% med. gn. ppy.
117 - 120	117117.2 mixed zone as above; 117.2-119.75 aplite, upper contact is 2
````````````````````````````````	to 7cm fault zone bounded by upper and lower shears at 50° and 30° to C.
	veinlets sub-parallel to C.A. continuous to 1.5cm calcite infilled fault
	@ 50° to C.A. @ 118m., biotite rich zones and biotite granodiorite
	frags make up 20% of section; 119.75-120.0 potassic_granodiorite.
	Burn From

DATEOct. 15-23/81LOGGED BYB. Fraser U. SmithDEPTHROCK DESCRIPTION120-123120-121.9 potassic granodiorite, bkn. throughout, moly as hairline fractures with pyrite; 121.90-122.60 med gy int. ppy; 122.60-123 potassic granodiorite123-126123-123.73 greenish black biotite lamprophyre, abt. less than .5mm amygdules infilled with dk, gn zeolite; 123.73-126.0 mixed zone, 50% potassic granodiorite, 50% chloritic int. ppy.126-129126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact 0 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals,.129-132129-129.23 biotite lamprophyre as above, lower contact 0 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.132-135132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
DEPTHROCK DESCRIPTION120-123120-121.9 potassic granodiorite, bkn. throughout, moly as hairline fractures with pyrite; 121.90-122.60 med gy int. ppy; 122.60-123 potassic granodiorite123-126123-123.73 greenish black biotite lamprophyre, abt. less than .5mm amygdules infilled with dk, gn zeolite; 123.73-126.0 mixed zone, 50% potassic granodiorite, 50% chloritic int. ppy.126-129126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals,.129-132129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.132-135132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
<ul> <li>120-123 120-121.9 potassic granodiorite, bkn. throughout, moly as hairline fractures with pyrite; 121.90-122.60 med gy int. ppy; 122.60-123 potassic granodiorite</li> <li>123-126 123-123.73 greenish black biotite lamprophyre, abt. less than .5mm amygdules infilled with dk, gn zeolite; 123.73-126.0 mixed zone, 50% potassic granodiorite, 50% chloritic int. ppy.</li> <li>126-129 126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals.</li> <li>129-132 129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.</li> <li>132-135 132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy</li> </ul>
<pre>with pyrite; 121.90-122.60 med gy int. ppy; 122.60-123 potassic granodiorite 123-126 123-123.73 greenish black biotite lamprophyre, abt. less than .5mm amygdules infilled with dk, gn zeolite; 123.73-126.0 mixed zone, 50% potassic granodiorite, 50% chloritic int. ppy. 126-129 126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals,. 129-132 129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as Z-3mm phenos, minor epidote, py on fractures. 132-135 132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy</pre>
<ul> <li>123-126 123-123.73 greenish black biotite lamprophyre, abt. less than .5mm</li> <li>amygdules infilled with dk, gn zeolite; 123.73-126.0 mixed zone, 50%</li> <li>potassic granodiorite, 50% chloritic int. ppy.</li> <li>126-129 126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper</li> <li>contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than</li> <li>0.5mm infilled with dk gn and white alternation minerals,.</li> <li>129-132 129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.;</li> <li>129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags,</li> <li>dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm</li> <li>phenos, minor epidote, py on fractures.</li> <li>132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy</li> </ul>
amygdules infilled with dk, gn zeolite; 123.73-126.0 mixed zone, 50%potassic granodiorite, 50% chloritic int. ppy.126-129126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals,.129-132129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.132-135132-135.0 med gy
potassic granodiorite, 50% chloritic int. ppy.126-129126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals,.129-132129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.132-135132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
126-129 126-128.47 Mixed zone as above; 128.47-129.00 biotite lamprophyre, upper contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than 0.5mm infilled with dk gn and white alternation minerals,. 129-132 129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures. 132-135 132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
contact @ 40° to C.A. with sub-parallel g.v., abt. amydules less than0.5mm infilled with dk gn and white alternation minerals,.129-132129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.;129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags,dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mmphenos, minor epidote, py on fractures.132-135132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
0.5mm infilled with dk gn and white alternation minerals,.129-132129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.;129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.132-135132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
129-132 129-129.23 biotite lamprophyre as above, lower contact @ 30° to C.A.; 129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as Z-3mm phenos, minor epidote, py on fractures. 132-135 132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
129.23-132.0 med. gy mottled int. ppy, 10% granodiorite and aplite frags, dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures.132-135132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
dissem. chlorite, pink potassic clots 304mm, 3% pptic biotite as 2-3mm phenos, minor epidote, py on fractures. 132-135 132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
phenos, minor epidote, py on fractures. 132-135 132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
132-135 132-132.45 ppy as above; 132.45-132.98 aplite frag; 132.98-135.0 med gy
int ppy, bkn throughout
135-138 135-136 med gy int. ppy, strongly broken 135.5-136.0; 136.0-138.0 generally
pale gn str. argillic int. ppy, 60% of zone is very friable, broken zone
at 136.55-138.0 consists of disintegrated rock rather than gouge with
str mo in two 3mm veins sub-parallel to C.A.
138-141 138-140.4 pale gn. argillic ppy as above; 140.4-140.9 pink argillic
granodiorite, very bkn from 140.7-140.9 with associated rusty qtz veins;
140.9 - 141.0 med gy int. ppy.
141-144 141.0-141.98 med. gy. int. ppy, str. argillic; 141.98-144 creamy med.
gnd. granodiorite, chalky feldspar, biotite bleached pale gy to white,
excellent vein stockwork.
144-147 creamy argillic granodiorite as above.
147-150 147-149.56 as above; 149.56-150 chlorite potassic granodiorite, str.
chloritic alteration of biotite, patchy reddish brown alteration mineral
associated with chlorite.
150-153 150-151.2 as above; 151.2-151.71 creamy argillic granodiorite; 151.71-151.86
pale gy friable aphanitic lamprophyre bounded by 30° frac and fault zone;
151.86-152.20 fault zone at 30° to C.A. with bkn. qtz, clay gouge; 152.20-
153 creamy argillic granodiorite biotite completely altered to pale gy
or white mica.
153-156 153-153.4 as above; 153.4-154.05 dk gy lamprophyre, lt gy near margins,
abt $1-2mm$ amydules upper contact at 350 lower contact at 40° $154.05-156$

pink argillic granodiorite, mod to strong potassic alteration, 5% unaltered

biotite.

-

Byr From

H	DLE NO. 81-2	PAGE	48
	DATE0ct. 15-23/81		B. Fraser G. Smith
DEPTH	ROCK DESCRIPTION		
156-159	156-156.35 as above;	156.35-157.45 pinkish tan granodiorite,	str.
	sericitic, str. pota:	ssic, abt. faults sub-parallel to C.A.,	mod.
	chlorite and soft red	ddish brown alteration mineral; 157.45-1	59 potassic
	granodiorite, str. se	ericite, str. py.	
159-162	159-160.10 as above;	160.10-161.0 str potassic mod argillic	granodiorit
	abt pale gn alteratio	on of plag, mod. chlorite; 161.0-162 lt	gy int. py
162-165	162-165 med to lt. g	y int. ppy, abt qtz-carb veins, pale gn	clay,
	alteration of plag, a	as well as dk gn soft alteration mineral	(possible
	zeolitcs), lt. gy phy	vilic zones to 25 cm. generally @ 30° to	C.A. less
<b>.</b>	altered rock is 90% r	mod chl. int. ppy	
165-168	As above		
168-171	168-169.36 as above;	169.36- 169.60 aplite, salmon pink pota	ssic zone,
	abt dissem muscovite	to 1mm; 169.60-171.0 int ppy, banded by	phyllic
	zones.		<u>.</u>
171-174	171-171.5 as above;	171.5-173.85 pale gn str sericitic str a	rgillic int
	ppy, biotite complete	ely altered to pale gy to white mica, con	re continous
	but rock is very fri:	zble; 173.85-174 mottled med. gy biotite	rich ppy,
	15-20% biotite with r	nod chlorite alteration, bkn throughout	
174-177	As above		
177-180	177-178.55 as above;	178.55-180 med gy biotite feldspar ppy,	pptic
	biotite 3%, bkn throu	ughout	<u> </u>
180-181,40	As above		
·····	END OF HOLE 81-2 AT 18	31.40m	<u> </u>
•		· · · ·	
	·		
	• · · · · · _ · · · · · · ·		
			<u></u>
· · · · · · · · · · · · · · · · · · ·	······································		
<u> </u>			<u></u>
			<u> </u>

# AMAX OF CANADA LIMITED

#### DIAMOND DRILL LOGS

Hole No:	81-3	Logard By:	B. Fraser
Claim No:	M-160	Date Loczed:	Oct.24 - Nov.24, 1981
Easting:	13288.43 E	Remarks:	Assays by Kitsault Lab
Northing:	11215.77 N	· · · · · ·	
Elevation:	604.94m		
Azimuth:	180° (south)		
Dip:	-70°		
Length:	306.6		
Core Size:	NQ		
Collared:	Oct. 11, 1981		
Completed:	0ct. 17, 1981		
Drilling Co.	.:Maitland Exploration	n Ltd, Vernon,	B.C.
Drillers:	V. Quesnel, K. Cald	well	

Hole survey

data method -

AZIMUTH	DIP
180°30m	-70°
179°40m	-70°
179° Om	-70°
180°30m	-70°
181°40m	-71°
182° Om	-71°
185° Om	-70°
184°40m	-71°
195° Om	-70°
	AZIMUTH 180°30m 179°40m 179°0m 180°30m 181°40m 182°0m 185°0m 185°0m 184°40m 195°0m

Bym Fran

_

:

## CATE _____Oct 23 - Nov 23/81

LOGGED BY <u>B. Fraser</u>

PAGE

E -	RENDIAL PRO	PERTIES		ALTERAT	TION			T	M	NERAL	JZATIO	·	$\overline{\mathbf{n}}$	арок
( <b>N</b> )	ROCK CORE RE COVE W1	C ROD	FeS2 SIL	SEP .	17 - 1	=	ELL VEIN	MoS -	AU, PE	∴g	Acces	Cu	Fe	TYPE
3 <u>-6.</u> ]	6076_8	g 41						.307	.002			002	0.69	21
6,1-9	7087 1	04 54				•		.368	.002		•	001	0.45	21
9 <u>-</u> 12	6407 9	2 28				•		.318	.030			002	0.68	21
12-15	6071 8	7 74						.195	.004			002	0.96	21
15-18	6604 9	6 47						.184	.001		•	001	0.48	21
18-21	5515 8	1 45	·					.182	.000	+	•	003	1.75	67
21-24	4670 6	8 17						.078	.033			005	1.93	67
24 <u>-</u> 27	6927 10	00 61						.131	.005	•		003	2.54	48
27-30	691 <u>3</u> 16	00 77	·					.113	.003		•	001	.58	63
30-33	6410 94	4 79		<b></b>				.130	.000		•	001	.37	4
33 <u>-36</u>	5561 8	1 60		<b>_</b>				.207	.001			002	1.56	58
36-39	6076_88	B <u>59</u>						.124	.003			002	1.20	21
39-42	7032 10	03 78						.130	.010			001	0.40	4
42-45	5437 79	9 48						.228	.013	-		100	1.17	63
45-48	6562 9	5 74						.099	.008			002	1.94	63
48-51	5971 86	5 19						.147	.035			003	1.78	5
51-54	5844 84	4 60				-		.109	.007		•	002	1.45	5
54-57	7064 10	02 95						.082	.001		.(	002	1.45	5
5 <u>7-60</u>	6218 88	3 75	T					.121	.003		.(	003	1.55	2
60-63	7449 10	06 94						.124	.012		.{	005	1.36	2
63-66	5987 85	5 100						.110	.011		.(	003	1.41	18
66-69	6516 94	4 79						.070	.018		. (	002	1.54	18
69-72	6341 90	) 34						.103	.004		. (	003	1.80	2
72-75	5614 80	0 31						.138	.001		.(	203	2.04	2
75-78	5197 74	4 0						.139	.001		.(	003	2.11	2
78-81	5447 77	7 0						.080	.002	-	.00	025	1.81	2
81-84	5107 72	28						.168	.002		.00	022	1.54	2
84-87	4643 66	24						.034	.019		.00	)4Á	1.84	2
87-90	6250 89	69					;	.064	.010		.00	027	1.79	18
90-93	7506,10	7 96						.080	.003	•	.00	017	1.64	18
93-96	7324 10	5 87						.085	.003		Joc	017	1.56	18
96-99	7001 99	94				-	:	.103	.004		.00	218	1.67	2
99-102	7486 10	6 96						.069	.002		.00	)24	1.88	18
102-105		94						.052	.001	1	100	)23	2.15	18
105-108		89	;					.106	.001		100	015	1.65	18
108-111		90	·····		:	1	1	.108	.002	_	joc	)16	1.35	2
							L		10	By	<b>-</b> - ĉ	Fr.	ree	

1A.

HOLE Nº 81-3

.

DATE _____Oct 23 - Nov 23/81

PAGE

ЗA

<u> </u>								_					·			······	······	
HIJ	F	HYSICAL	PROP <u>F</u>	STIES	Ļ		ALTER		N					N	NER.	4.247.9 <b>.</b>		abok.
Ŭ,		INF WI	PEC	RGD	FeS2 S	5i_	SER	18	S QH	, F	ELL VEIN GTZ5	M.S.	<b>N</b> ² -3	Pt	ļ≏ g	Acces Cu	Fe	TYPE
219 <u>-222</u>	) -	7875	112	99	• •				<b>.</b>			L081		.002	-	.001	1,85	3
222 <u>-22</u> 5	5	7511	107	98	÷ +					-		.167		.002		.002	1.83	26
225 <u>-228</u>	<u>}</u>	7526	107	94								.082	• <b>-</b>	.001		.002	1.53	27
228-231	!	7884	113	97				_				.070		.001		.001	1.45	10
231 <u>- 234</u>		7755	111	100							<u></u>	.063		.002		.002	1.58	10
234 <u>-237</u>		7172	102	91				<del>.</del>	<u> </u>	· •		.050	<b>.</b>	.001		.001	1.72	3
237 <u>-240</u>	)	7382	105	97								.065		.000		.001	2.16	35
240 <u>-243</u>	<u> </u>	8119	115	100	: •							.075		.003		.002	1.85	71
243 <u>-246</u>	 	7625	108	100								.116		.000		.001	1.57	71
246 <u>-249</u>	<u> </u>	6752	96	92					~ <b>_</b>			.070		.006		.002	1.55	3
249 <u>-252</u>		7512	107	100								.112		.011		.002	1.66	5
252 <u>-255</u>		7040	101	54								.098		.001		.001	1.98	10
255 <u>-258</u>		7144	101	49								.091		.005		.001	1.59	3
258-261		7671	109	92								.079		.002		.001	1.28	3
261 <u>-264</u>		6801	96	94								.077		,002		.001	1.19	3
264 <u>-267</u>	·  	7553	107	100	<b>.</b>							.115		003		.001	1.32	71
267270		7545	107	98								.089		.003		.001	1.27	3
270 <u>-273</u>		7149	101	97								.091		.003		.001	1.34	10
27 <u>3-276</u>		7671	109	100	<u> </u>							.138	·	.002		.001	1.24	10
276-279		7107	101	97								.112		.004		.001	1.02	3
279-282		8198	116	98								.059		.079		.009	1.65	10
282-285		7821	111	98								.071		.008		.002	1.80	10
285-288	,	7445	106	85								.070		.002		.001	1.46	3
288 <b>-</b> 291		8006	114	91								.055		.005		.001	1.63	3
291-294	<u> </u>	6898	98	87								.060		.001		.001	1.57	3
294-297		7794	111	82					_			.055		.002		.001	1.82	3
297 <b>-3</b> 00		7990	113	90								.050		.002		.001	1.52	3
300-303		7673	109	94				÷		•		.057	- <u></u> .	.003		.001	1.54	3
303-306		7716	110	97					<b>.</b>			.071		.001		.001	1.51	3
306-306	.6			100		:						1		• • •	<u>-</u>		·	3
					END O	F HO	DLE A	AT 3	06.6	5M	•		:					
		1						~				Ī	· · · · · ·			i		
							<u></u>	• • • • • • •		1					<del></del>			
									· · ·				+				[	
			1						<del>;</del>						i			
			<del>-</del>				<u>.</u>	_				+	<u>`</u>	/-	<u>Zn</u>	- Fr	ran	{
														10	1		-	

<u> 81-3 </u> HOLE RE

DATE Oct 23-Nov 23/81

LOGGED BY

PAGE

B. Fraser

___2A

ſ	-1µ 4.)	Peri JAJ	zz ieg	FTES			ALTER	ATION					M	NERG	LIZATION -	$\overline{\mathbf{n}}$	ROCK
Į	41 1	ROCK (086) COMPM1	980	RGD	FeSp	SIL	SER	ing (r	FECT	VEIN GTZ %-	Mc Size	NU 3 P	:	٦g	Acces Cu	Fe	TYPE
111.	-114	<b>-</b>		88							.050	.(	001		.0019	1.39	18
114 _:	-117			<b>9</b> 8	! • -·· _						.071		005		.0017	1.72	18
117-	-120	-		97							.074		100		.0011	1.25	2
120-	-123		-	98		- <u> </u>					.052	.(	005		.0009	1.04	2
123-	-126	<del>-</del>	-								.033	.(	002		.0009	1.17	61
126-	-129	<b></b>		89							.046		001		.0014	1.24	26
126	-132		-	94				···· • -···			.053	.(	01		.0009	1.19	3
132-	135	7227	103	99							.041	.(	002		.0023	1.60	10
135_	138	6769	98	81							.034		007		.0039	2.35	5
138-	-141	6395	92	63							.072	.(	101		.0020	1.63	5
141_	144	6135	89	77	,						.110	.0	000		.001	1.66	5
144-	-147	6464	93	83	_						.050	.0	01		.0016	1.65	5
147_	-150	6789	98								.054	.0	01		.0017	1.86	5
150-	-153	6699	96	77		-				1	.085	.0	01		.0012	1.26	10
153_	-156	7645	110	98							.032	.0	101		.0014	1.36	5
156-	-159	7459	106	95							.045	.0	29		.0016	1.41	3
159-	162	7677	109	96						-	.067	. C	07		.0014	1.72	26
162-	165	7278	103	100							.070	.0	04		.0012	1.70	10
165-	168	7256	103	97							.097	.0	101		.0018	1.89	10
168_	171	7465	106	95							.064	.0	09		.0013	1.64	10
171-	174	8069	114	92							.061	.0	05		.001	1.17	55
174-	177 ¹	7014	99	93						<b>f</b>	.098	.0	03		.001	1.48	10
177=	180	8632	122	89							.046	.0	00		.002	1.70	10
180-	183	7131	101	96							.058	.0	05	•••••	.001	1.37	55
183-	186	6962	99	99							.056	.0	03		.001	1.68	3
186-	189	7479	108	92							.130	.0	05		.002	1.61	55
189-	192	6999	99	96			··•				.110	.0	00		,000	1.29	10
192-	195	7482	106	87				·····			.045	.0	00		.001	1.82	5
195-	198	7796	111	96						1	.125	.0	06		.001	1.65	5
198-	201	7556	107	100					:		.111	0	04		.001	2.11	55
201-	204	7529	107	81				····			.122	.0	07		.001	1.76	3
.204-	207	7278	103 ₁	<b>9</b> 8	i	1		,			.122	.0	00	i	.001	1.37	3
207-	210	7348	104	92							.078	.1	65		.019	1.28	4
210-	213	7307	104	95			··· •			-	.094	.0	00		.001	1.77	27
213-	216	7953	113	100	:						.066	.0	00		001	1.70	10
216-	219	7516	107	100			······				.033	.0	01		1001	1.64	10
		• • •			<del>.</del>		<u></u>	i	÷						2	- 1	
												6	19	y	a Oin	an	•

HULE NU. 81-3

DATE ____0ct.23-Nov.23/81

PAGE 18

LOGGED BY B. Fraser

٦

DEPTH	ROCK DESCRIPTION
3-6	Broken, ground core (surface rubble) to 3.9m; 3.9-5.1 pink aplite, str.
	moly atockwork, 3cm fault infilled with bkn qtz, moly gouge @ 30° to C.A.
	0 4.8m; 5.1-6.0 mixed zone, 60% argillic diorite, 40% aplite dikes
6-9	6.0-6.1 mixed zone as above; 6.1-8.0 pink aplite; 8.0-9.0 mixed zone,
	60% diorite, 40% aplite.
9-12	As above
12-15	As above
15-18	15.0-16.1 as above; 16.1-18.0 pink aplite, well developed stockwork of
	sub-parallel qt-moly veins ( $< 3$ mm) and occasional ribboned qt-moly to 17mm at $30^{\circ}-45^{\circ}$ to C.A.
18-21	18.0-19.68 aplite as above; 19.68-19.97 dk gy lamprophyre, upper contact
	4-8mm fault gouge @ 15° to C.A., lower contact @ 30° to C.A.; 19.97-20.22
	aplite; 20.22-20.77 greenish-bk lamprophyre, @ 20° to C.A.; 20.77-21.0
<u></u>	pink aplite.
21-24	21.0-22.1 pink aplite; 22.1-22.3 dk gy lamprophyre, upper contact @ 10°,
	lower contact 2cm gouge @ 30° to C.A.; 22.3-23.12 strongly sericitic
<u> </u>	aplite; 23.12-24.0 dk gy lamprophyre, 102mm amygdules infilled with
	white zeolites, upper contact @ 25° to C.A.
24-27	24.0-24.6 lamprophyre as above, lower contact @ 25° to C.A.; 24.6-25.07
	pale gy highly argillic qtz diorite; 25.07-25.33 med gy, friable, lamprophyre
<b>.</b>	upper dike contact 3cm of fault gouge @ 50° to C.A., lower contact
	4cm of fault gouge @ 50° to C.A.; 25.33-27.0 mixed zone, 30% pale gy
	bleached str argillic, str sericitic int ppy, 5% str argillic dio,65% aplite.
27-30	27.0-27.4 mixed zone as above; 27.4-28.13 xenolith rich int ppy 50% frags
······································	of aplite and diorite; 28.13-30.0 pink aplite, 10% argillic diorite frags.
30-33	Pink aplite, excellent moly stockwork
33-36	33-34.03 as above; 34.03-34.67 dk gy lamprophyre, upper contact @ 35° to
<u></u> ,,	C.A., lower contact @ 10° to C.A.; 34.67-36.0 mixed zone, 60% diorite,
	40% aplite.
36-39	As above, 60% med gn to gy wk argillic qtz diorite, 40% aplite.
39-42	Pink aplite, occasional potassic diorite frags.
42-45	42.0-43.26 aplite as above; 43.26-43.88 mixed zone, 60% aplite, 30% argillic
	diorite, 10% int. ppy; 43.88-45.0 med gy. argillic crowded int. ppy,
	25% anhedral porphyritic feldspar 2-3mm, 2% biotite 102mm, feldspars
	altered to very pale gn clay.
45-48	45.0-45.2 as above; 45.2-46.08 mixed zone, 80% aplite, 20% argillic
<u> </u>	diorite; 46.08-48 med gn int. ppy, 10% frags of aplite and diorite less

Byr Firm

HULE NU. 81-3

DATE _____Oct.23-Nov.23/81

28 <u>28</u>

DEPTH	ROCK DESCRIPTION
48-51	48.0-48.33 AS ABOVE; 48.33-51.0 STRONGLY ARGILLIC INT PPY, VERY FRIABLE,
	CHALKY FELDSPARS
51-54	As above
54-57	54.0-56.9 as above; 56.9-57.0 med gnd. med gy to gn argillic qtz diorite
57 <b>-</b> 60	As above
60-63	As above
63-66	63.0-64.96 as above; 64.96-65.20 lt gn argillic int ppy; 65.20-65.35
	argillic diorite; 65.35-65.59 pale gy bleached strongly sericitic int
	ppy @ 35° to C.A.; 65.59-66.0 argillic diorite.
66-69	66.0-66.53 as above; 66.53-67.23 mixed zone, 60% It gy int ppy, 40% qtz
	diorite; 67.23-67.68 med gy gn str. sericitic int. ppy @ 45° to C.A.;
	67.68-69.0 med gnd. argillic qtz diorite, plagioclase variably altered
	to pale gn clay.
69-72	As above
72-75	72.0-73.1 as above; 73.1-75.0 biotite rich phritic qtz diorite, bkn
	throughout in contrast to argillic zone above, patchy secondary biotite
	and pyrite pervasive, biotite selvages common on veins.
75-78	As above.
78-81	As above
81-84	As above
84-87	8484.82 as above; 84.82-85.4 strongly argillic qtz diorite, biotite
	bleached, chalky plagioclase, friable, associated with 2-3mm faults @
	30° to C.A.; 85.4-87.0 biotite rich qtz diorite as above.
87-90	87.0-88.71 as above; 88.71-89.35 med gy int ppy abt 3-5cm frags of qtz
	diorite, aplite and quartz; 89.35-90.0 med gnd biotite qtz diorite.
90-93	90.0-91.22 as above; 91.22-93.0 med gy str. potassic int ppy, abt salmon
	pink aplite frags 0.5-2.0 cm, salmon pink k-spar selvages on barren g.v.'s
93-96	93.0-93.42 as above; 93.42-96.0 med to dk gy med gnd biotite qtz diorite
	abt fluorite veining.
96-99	As above
99-102	99.0-100.47 as above; 100.47 - 100.77 med gy int ppy @ 30° to C.A.; 100.77
	-102.0 biotite rich qtz diorite, weak foliation @ 50° to C.A.
102-105	102.0-104.63 as above, abt fluorite veining; 7cm chill zone of very fine
	gnd biotite @ contact; 104.63-105.0 potassic int. ppy
105-108	105.0-105.23 potassic int ppy; 105.23-105.94 med gnd qtz diorite as above
	2c m chill zone at upper contact; 105.94-106.46 med gy int ppy; 106.46-10
	oty diomits as shows sht fluonite value tot 107 00 100 04 up out 1 mint

ς.

DATE Oct.23-Nov.23/81

DEPTH	ROCK DESCRIPTION
108-111	Qtz diorite, qtz flooded kspar rich areas to 25cm, abt. qt-carb-fluorite
111-114	111.0-111.56 as above; 111.56-111.96 med gy int ppy, upper contact @
	40°, lower contact @ 50°; 111.96-112.8 qtz flooded highly silicic qtz
	diorite; 112.8-113.2 med gy int ppy @ 40° to C.A.; 113.2-113.9 med gy
	highly silicic and potassic qtz diorite, qtz flooding @ lower contact.
114-117	114.0-114.23 med gy int ppy; 114.23-114.49 str potassic. str. sericitic
	qtz diorite; 114.49-115.15 med gy int ppy @ 40° to C.A.; 115.15-116.21
	str silicic potassic qtz diorite, very strong pyritic potassic zone @
	upper contact with dike; 116.21-116.91 med gy int ppy , cut by 4mm fault
	25° to C.A. infilled with gypsum; 116.91-117.0 med gy strongly silicic
	strongly potassic qtz diorite, numerous qtz flooded zones with pink
	potassic diorite frags .
117-120	As above
120-123	As above
123-126	123-124.34 as above; 124.34-124.63 med gy gn int ppy weakly phyllic @
`·	40° to C.A.; 124.62-125.36 qtz diorite as above; 125.36-126.0 quartz
······································	flooded zone with abot kspar, fluorite;
126-129	126-127.57 qtz diorite as above, biotite content 15%; 127.57-129.0 med
	gnd biotite granodiorite, biotite content 7%;
129-132	129.0-129.19 med gy int. ppy 0 40° to C.A.; 129.19-132.0 potassic granodi
	biotite 7%, numerous gypsiferous fractures.
132-135	132.0-132.93 as above; 132.93-133.37 dk gy silicic int ppy upper contact
	@ 30° lower contact @ 15°; 133.37-134.64 potassic granodiorite, 12cm fine
	gnd biotite rich dioritic xenolith @ 133.57m; 134.64-135.0 phyllic pale
	gy int. ppy, phyllic envelopes to 2cm on polymetallic veins @ 0-15° to
	C.A.;
135-138	135.0-136.79 as above; 136.79-138.0 pale yel gn strongly argillic int
t_	ppy, very friable, pale gn clay alteration of plag, abt sericitic fractur
	faulting 0-15° to C.A.;
138-141	As above
141-144	As above to 142.84; 142.84-144.0 med gn to gy argillic int. ppy
144-147	As above, dk gn chloritic fractures
147-150	147.0-148.62 as above; 148.62-150.0 pale gn strongly argillic int ppy.
150-153	150.0-150.94 as above, faulting @ 50±60° to C.A.; 150.94-152.18 strongly
	silicic potassic granodiorite abt fractures lined with selenite (sparry
	gypsum) @ 35° to C.A.; 152.18-153.0 dk gy int ppy with abt aplite and how

Ċ

DATE 0ct.23-Nov.23/81

PAGE <u>4B.</u>

DEPTH	ROCK DESCRIPTION
153-156	153-155.5 as above; 155.5-156.0 potassic granodiorite;
156-159	As above, biotite 10%, 20% of section, dk gy int ppy with aplite frags.
159-162	159.0-160.47 as above; 160.47-161.8 dk gy str sil str pot biotite qtz
	diorite, biotite 20-30%; 161.8-162.0 mixed zone, xenolith rich dk gy ppy,
	abt. absorbed granodiorite frags, ppy is hybrid rock with up to 12% bioti
	granodiorite has biotite 15%
162-165	As above;
165-168	165.0-167.61 as above; 167.61-168.0 It gy bleached zone, upper contact
	@ 35° to C.A., rock types as above;
168-171	168.0-168.08 as above; 168.08-171.0 xenolith rich ppy as at 161.8-167.61,
	abt fluorite veining;
171-174	171.0-171.86 as above; 171.85-172.68 pink aplite; 172.68-174.0 xenolith
	rich dk gy int ppy as above;
174-177	As above, abt gypsiferous fractures;
177-180	177.0-178.87 as above; 178.87-180.0 lt gy silicic int ppy, abt gypsiferou
	fractures
180-183	180.0-180.34 as above; 180.34-182.03 xenolith rich med gy int. ppy, 50%
	frags of aplite and granodiorite; 182.03-183.0 potassic granodiorite;
183-186	183.0-183.56 as above; 185.56-186.0 med gy int ppy, 30% frags of aplite
	and granodiorite;
186-189	As above
189-192	189.0-189.99 as above; 189.99-192.0 argillic potassic granodiorite,
	chalky plag, biotite 15%
<b>192-1</b> 95	192.0-192.24 as above; 192.24-193.43 lt gy str argillic int ppy, biotite
	completely altered to sericite, plag altered to pale gn to cream clay,
	zone centered on 6cm fault infilled with white clay gouge @ 200 to C.A.
	at 192.90m; 193.43-195.0 med gy int ppy, 15% xenoliths of granodiorite
	and aplite, abt. gysiferous fractures and fluorite veining.
195-198	195.0-196.8 as above; 196.8-198.0 xenolith rich int ppy, 40% xenoliths
····	of gd and ap
198-201	198.0-200.1 as above; 200.1-201.0 potassic granodiorite.
201-204	201-201.8 as above; 201.8-204.0 argillic potassic granodiorite, related
	to faulting @ 45-80° to C.A.
204-207	As above, faulting @ 15° to C.A.
207-210	Pink aplite, 6.2cm wide qt-py-sphal-gal vein @ 18° to C.A. at 208.46
· /	with base 15mm fault gouge.

.

DATE 0ct.23-Nov.23/81

210-213 210.0-210.35 as above; 210.35-212.02 potassic biotite granodiorite, biotite 20%; 212.02-212.29 lt gy biotite rich int ppy, biotite 7%, chilled upper contact; 217.29-713.0 potassic granodiorite. 213-216 As above to 215.70; 215.70-216.0 dk gy int. ppy 216-219 Ab above to 216.29; 216.29-219.0 med gnd potassic biotite granodiorite, biotite 20%, abt fluorite veining 219-222 As Above 222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 biotite granodiorite as above; 228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 227.90-228.0 int ppy 228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 302 xenoliths of gd and ap, abt gypsiferous fractures. 231-234 231-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting 0 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 246-243 As above 243-246 243.0-245.70 as above; scarce fine gnd biotite diorite xenoliths 0 243-245 249.0-249.02 as above; 249.02-252.00 med gr int ppy, 30% xenoliths, abt fluorite, cut by *salmon pink muscorite feldspar ppy dike 0 248.15- 248.31 e 55° to C.A. 249-252 249.0-249.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 st argillic granodiorite; friable, abt qt-py veins 255-256 255.0-256.54 as above; 256.94-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-267 As above 264-267 As above	DEPTH	ROCK DESCRIPTION
<ul> <li>biotite 20%; 212.02-212.29 lt gy biotite rich int ppy, biotite 7%, chilled upper contact; 212.79-213.0 potassic granodiorite.</li> <li>213-216 As above to 215.70; 215.70-216.0 dk gy int. ppy</li> <li>216-219 Ab above to 216.29; 216.29-219.0 med gnd potassic biotite granodiorite, biotite 20%, abt fluorite veining</li> <li>219-222 As Above</li> <li>222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 biotite granodiorite as above;</li> <li>225-228 As above to 227.01; 227.01-227.90 aplite; 228.04-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234-237 234.0-234.41 as above; 234.41-234.59 aplite; 234.69-235.21 argillic granodiorite associated with faulting 8 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 kk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>240-243 As above</li> <li>243-246 243.0-234.57.0 as above, scarce fine gnd biotite diorite xenoliths @ 243.827; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A.</li> <li>249-252 249.024.902 as above; 225.025.0 med gy int ppy, 30% xenoliths, abt fluorite veining</li> <li>252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; friable, abt qt-py veins</li> <li>255-258 255.0-256.54 as above; 256.04-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcn, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>264-267 As above</li> </ul>	210-213	210.0-210.35 as above; 210.35-212.02 potassic biotite granodiorite,
<ul> <li>chilled upper contact; 212.29-213.0 potassic granodiorite.</li> <li>213-216 As above to 215.70; 215.70-216.0 dk gy int. ppy</li> <li>216-219 Ab above to 216.29; 216.29-219.0 med gnd potassic biotite granodiorite, biotite 20%, abt fluorite veining</li> <li>219-222 As Above</li> <li>222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 hiotite granodiorite as above;</li> <li>225-228 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int ppy</li> <li>228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting 0 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>240-243 As above</li> <li>243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike 0 248.15-248.31 0 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 57.52-258.0 biotite glamozonite, occasional fine gnd biotite -rich dioritic xenoliths to 1m, biotite selvages on a few veins, biotite 7%</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite glamozonite, occasional fine gnd biotite-rich dioritic xenoliths to 1cm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>264-</li></ul>		biotite 20%; 212.02-212.29 It gy biotite rich int ppy, biotite 7%,
<ul> <li>213-216 As above to 215.70; 215.70-216.0 dk gy int. ppy</li> <li>216-219 Ab above to 216.29; 216.29-219.0 med gnd potassic biotite granodiorite, biotite 20%, abt fluorite veining</li> <li>219-222 As Above</li> <li>222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 biotite granodiorite as above;</li> <li>225-228 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int pgy</li> <li>228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with five gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting 6 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>243-245 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @</li> <li>243-246 243.0-245.70 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining</li> <li>252-255 225.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; friable, abt qt-py veins</li> <li>255-258 255.0-256.54 as above; 253.02-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>258-264 /li></ul>		chilled upper contact; 212.29-213.0 potassic granodiorite.
216-219 Ab above to 216.29; 216.29-219.0 med gnd potassic biotite granodiorite, biotite 20%, abt fluorite veining 219-222 As Above 222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 biotite granodiorite as above; 225-228 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int ppy 228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures. 231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite. 234.0-234.41 as above; 234.4-234.69 aplite; 234.69-235.21 angillic granodiorite associated with faulting 6 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, accasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 246.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 253.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-256.24 as above; 253.02-252.6 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 57.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above 264-267 As above	2 <b>1</b> 3-216	As above to 215.70; 215.70-216.0 dk gy int. ppy
biotite 20%, abt fluorite veining 219-222 As Above 222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 biotite granodiorite as above; 225-228 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int pgy 228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures. 231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite. 234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting 0 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 243-245 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths 0 243.247 243.0-245.70 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-252 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt at-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lom, biotite selvages on a few veins, biotite 7% 255-258 As above 255-254 As above	216-219	Ab above to 216.29; 216.29-219.0 med gnd potassic biotite granodiorite,
<ul> <li>219-222 As Above</li> <li>222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes, 224.92-225.0 biotite granodiorite as above;</li> <li>225-228 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int pcy</li> <li>228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, at gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting 0 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.80-238.80 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-240.243 As above</li> <li>243-245 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths 0</li> <li>243.246 243.0-245.70 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite, cut by *salmon pink muscorite feldspar ppy dike 0 248.15-248.31 0 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy, 253-56-255.0 str argillic granodiorite, friable, abt dt-py veins</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-7%</li> <li>258-261 As above</li> <li>258-264 As above</li> <li>255-256 As above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-7%</li> <li>255-258 As above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-7%</li> <li>258-264 As above</li> <li>258-264 As above</li> </ul>		biotite 20%, abt fluorite veining
<ul> <li>222-225 222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt aplite dikes. 224.92-225.0 biotite granodiorite as above;</li> <li>225-226 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int ppy</li> <li>228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234.0-234.41 as above; 232.4-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting 0 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>240-243 As above</li> <li>243-245 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths 0</li> <li>243.245 243.0-245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike 0 248.15-248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 257.52-258.0</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0</li> <li>biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above, abt fluorite veining</li> <li>258-261 As above</li> <li>264-267 As above</li> </ul>	219-222	As Above
aplite dikes. 224.92-225.0 biotite granodiorite as above; 225-228 As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int pry 228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures. 231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite. 234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 246.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.4 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to Lem, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above	222-225	222-224.31 as above; 224.31-224.92 dk gy qtz diorite, biotite 40%, abt
<ul> <li>As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int ppy</li> <li>228.0-228.17 int ppy; 228.17 228.47 aplite; 227.90-228.0 int ppy</li> <li>228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite</li> <li>with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int.</li> <li>ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic</li> <li>granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0</li> <li>potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre</li> <li>and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-</li> <li>240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>243.0245.70 as above, scarce fine gnd biotite diorite xenoliths @</li> <li>243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-</li> <li>248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,</li> <li>40% int ppy; 253-56-255.0 str argillic granodiorite; friable, abt</li> <li>qt-py veins</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0</li> <li>biotite qtz mozonite, occasional fine gnd biotite-rich dioritic xenoliths</li> <li>to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>258-267 As above</li> </ul>		aplite dikes, 224.92-225.0 biotite granodiorite as above;
<ul> <li>228-231 228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite</li> <li>with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int.</li> <li>ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.</li> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic</li> <li>granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0</li> <li>potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre</li> <li>and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-</li> <li>240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @</li> <li>243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-</li> <li>248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt</li> <li>fluorite veining</li> <li>252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,</li> <li>40% int ppy; 253-56-255.0 str argillic granodiorite; 257.52-258.0</li> <li>biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths</li> <li>to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above, abt fluorite veining</li> <li>261-264 As above</li> <li>264-267 As above</li> </ul>	225-228	As above to 227.01; 227.01-227.90 aplite; 227.90-228.0 int ppy
<pre>with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int. ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures. 231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite. 234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 243-245 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 253.02-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above</pre>	228-231	228.0-228.17 int ppy; 228.17 228.47 aplite; 228.47-229.51 granodiorite
ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures. 231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite. 234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 223.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; z57.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to 1cm, biotite selvages on a few veins, biotite 7% 258-261 As above 264-267 As above		with fine gnd biotite rich dioritic xenoliths; 229.51-231.0 med gy int.
<ul> <li>231-234 231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.</li> <li>234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining</li> <li>252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>264-267 As above</li> </ul>		ppy, 30% xenoliths of gd and ap, abt gypsiferous fractures.
<ul> <li>234-237 234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.</li> <li>237-240 237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>240-243 As above</li> <li>243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining</li> <li>252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; friable, abt qt-py veins</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>264-267 As above</li> </ul>	231-234	231-232.4 as above; 232.4-234.0 med gnd med gy granodiorite.
granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0 potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 240-243 As above 243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to 1cm, biotite selvages on a few veins, biotite 7% 258-261 As above 264-267 As above	234-237	234.0-234.41 as above; 234.41-234.69 aplite; 234.69-235.21 argillic
potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths. 237-240 237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 240-243 As above 243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above 264-267 As above		granodiorite associated with faulting @ 50-55° to C.A.; 235.21-237.0
<ul> <li>237-240</li> <li>237.0-238.81 as above; 238.81-238.90 broken zone. frags of lamprophyre and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite</li> <li>240-243 As above</li> <li>243-246</li> <li>243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A.</li> <li>249-252</li> <li>249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining</li> <li>252-255</li> <li>252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>264-267 As above</li> </ul>	_	potassic granodiorite, biotite 15%, occasional find, gnd diorite xenoliths.
and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81- 240.0 med gy biotite qtz monzonite, 7% biotite 240-243 As above 243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @ 243.82m; 245.70-246.0 granodiorite, biotite 15-20% 246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above. 264-267 As above	237-240	237.0-238.81 as above; 238.81-238.90 broken zone, frags of lamprophyre
240.0 med gy biotite qtz monzonite, 7% biotite240-243As above243-246243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @243.82m; 245.70-246.0 granodiorite, biotite 15-20%246-249granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-248.31 @ 85° to C.A.249-252249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abtfluorite veining252-255252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abtqt-py veins255-258255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenolithsto lcm, biotite selvages on a few veins, biotite 7%258-261As above261-264As above264-267As above		and granodiorite; 238.90-239.81 dk gy int ppy, 10% gd xenoliths; 239.81-
<ul> <li>240-243 As above</li> <li>243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @</li> <li>243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-</li> <li>248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt</li> <li>fluorite veining</li> <li>252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,</li> <li>40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt</li> <li>qt-py veins</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0</li> <li>biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths</li> <li>to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>261-264 As above</li> <li>264-267 As above</li> </ul>		240.0 med gy biotite qtz monzonite, 7% biotite
<ul> <li>243-246 243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @</li> <li>243.82m; 245.70-246.0 granodiorite, biotite 15-20%</li> <li>246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-</li> <li>248.31 @ 85° to C.A.</li> <li>249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt</li> <li>fluorite veining</li> <li>252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,</li> <li>40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt</li> <li>qt-py veins</li> <li>255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0</li> <li>biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths</li> <li>to lcm, biotite selvages on a few veins, biotite 7%</li> <li>258-261 As above</li> <li>261-264 As above</li> </ul>	240-243	As above
243.82m; 245.70-246.0 granodiorite, biotite 15-20%246-249granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-248.31 @ 85° to C.A.249-252249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xencliths, abtfluorite veining252-255252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abtqt-py veins255-258255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenolithsto lcm, biotite selvages on a few veins, biotite 7%258-261As above261-264As above264-267As above	243-246	243.0-245.70 as above, scarce fine gnd biotite diorite xenoliths @
246-249 granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15- 248.31 @ 85° to C.A. 249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above 264-267 As above		243.82m; 245.70-246.0 granodiorite, biotite 15-20%
248.31 @ 85° to C.A.249-252249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xencliths, abtfluorite veining252-255252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abtqt-py veins255-258255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenolithsto lcm, biotite selvages on a few veins, biotite 7%258-261As above, abt fluorite veining261-264As above264-267As above	246249	granodiorite, cut by *salmon pink muscorite feldspar ppy dike @ 248.15-
249-252 249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xencliths, abt fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above		248.31 @ 85° to C.A.
fluorite veining 252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above	249-252	249.0-249.02 as above; 249.02-252.0 med gy int ppy, 30% xenoliths, abt
252-255 252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags, 40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt qt-py veins 255-258 255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0 biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above		fluorite veining
40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abtqt-py veins255-258255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenolithsto lcm, biotite selvages on a few veins, biotite 7%258-261As above, abt fluorite veining261-264As above264-267As above	252-255	252-253.02 as above; 253.02-253.56 mixed zone, 60% argillic gd frags,
qt-py veins255-258255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7%258-261As above, abt fluorite veining261-264As above264-267As above	_	40% int ppy; 253-56-255.0 str argillic granodiorite, friable, abt
255-258255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenolithsto lcm, biotite selvages on a few veins, biotite 7%258-261As above, abt fluorite veining261-264As above264-267As above		qt-py veins
biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths to lcm, biotite selvages on a few veins, biotite 7% 258-261 As above, abt fluorite veining 261-264 As above 264-267 As above	255-258	255.0-256.54 as above; 256.54-257.52 argillic granodiorite; 257.52-258.0
to lcm, biotite selvages on a few veins, biotite 7%         258-261       As above, abt fluorite veining         261-264       As above         264-267       As above		biotite qtz monzonite, occasional fine gnd biotite-rich dioritic xenoliths
258-261As above, abt fluorite veining261-264As above264-267As above		to lcm, biotite selvages on a few veins, biotite 7%
261-264         As above           264-267         As above	258-261	As above, abt fluorite veining
264-267 As above	261-264	As above
	264-267	As above Random

.

•

DATE 0CT.23-NOV.23/81

PAGE <u>6B</u>

LOGGED BY B. FRASER

i.

DEPTH	ROCK DESCRIPTION
267-270	267.0-267.39 as above, 267.39-268.26 argillic potassic granodiorite,
	pyritic-biotite layering @ 35° to C.A.; 268.26-270 potassic granodiorite,
	occasional find gnd biotite rich diorite xenoliths, abt fluorite veins.
270 <b>-</b> 273	270.0-271.87 as above; 271.87-272.19 dk gy int ppy @ 15-20° to C.A.
	1% biotite phenos as 2mm. grains; 272.19-272.92 granodiorite as above;
	272-92-273.0 med gy int. ppy 0 10° to C.A.
273-276	273.0-273.35 as above; 273.35-275.09 granodiorite; 275.09-275.89 med gy
	int ppy, phyllic alteration subparalle! to dike boundaries, upper dike
	contact @ 45°, lower contact @ 20° to C.A.; 275.89-276.0 granodiorite as
	above.
276-279	276-277.52 as above; 276.52-278.4 str sericitic potassic granodiorite,
	muscovite books 2-3mm; 278.4-279.0 potassic granodiorite, biotite 10%
279-282	279.0-281.1 as above; 281.1-282.0 med gy int ppy, phyllic envelopes on
	veins sub- parallel to C.A.
282-285	282.0-283.06 as above; 283.06-283.92 str phyllic int ppy alteration due
	to polymetallic veins @ 10-30° to C.A.; 283.92-285.0 potassic granodiorite
<u> </u>	occasional fine gnd biotite rich dioritic xenoliths.
285-288	285.0-286.32 as above; 286.32-287.52 argillic granodiorite, chalky plagioc
	9cm fault infilled by qtz, carb frags, gypsum, gouge @ 25° to C.A. @
	287.16; 287.52-287.74 lt gy int ppy @ 40° to C.A., 3% biotite; 287.74-288
	argillic potassic granodiorite, chalky plag, pinkish cream colour.
288-291	As above
291-294	As above
294-297	294-294.66 as above; 294.66-297.0 biotite rich granodiorite, 20-25%
	biotite, abt aplite dikes,
297-300	297.0-297.77 as above, 2ry biotite cutting 5cm aplite dike @ 297.63m;
	297.77-300.0 Ootassic granodiorite, biotite 10%, abt qtz-fluorite veins
	with kspar selvages, work patchy, chalky clay alteration of poag∠5% of
	section.
300-303	<u>As above, abt qtz fluorite veining</u>
303-306	As_above
306-306.7	As above
	END OF HOLE 81-3 AT 306.7M
	T

# AMAX OF CANADA LIMITED

#### DIAMOND DRILL LOGS

Eole Ne:	81-4	Locked By-	B. Fra	aser
Claim No;	M-160	Date Logge	d: Nov.	30 - Dec. 10/81
Easting:	13,350.09E	Remarks:	Assayed	by Kitsault Lab
Northing:	11,249.51N			
Elevation:	606.00m			
Azimuth:	360° (North)			
Dip:	-65°			
length: _	233.78m			
Core Size:	_NQ			
Collared:	Oct. 17, 1981			
Completed:	<u>Oct. 21, 1981</u>			
Drilling Co.	: Maitland Explora	ition Ltd	Vernon.	B.C.
Drillers:	V. Quesnel, K. Calc	lwell		

Hole survey data method —

. '

PAJARI

DEPTH	AZIMUTH	DIP	
8.54m	359°30m	-65°	
18.90m	358°50m	-65°	
49.39m	1°30m	-66°	
110.37m	359°30m	-66°	
<b>1</b> 40.85m	Om	-66°	
201.83m	358°50m	-67°	
232.32m	359° Om	~67°	

Bugo Fran

HOLE Nº 81-4

٦

PAGE

1A

DATE <u>Nov. 30-Dec. 10</u>/81

LOGGED BY B. Fraser

----

Ξ	PHYSICAL F	PROPE	RTIES			ALTER	ATION						M	- INERA	LIZATIO		ROCK		
DEP	ROCK CORE	REC	RQD	FeS2	SIL	SER	ARG	СН,	FELD	VEIN	MoS ₂	wo3	Pb	Ag	Acces	Cu	Fe	LADE	
3-6	5842	85	14					1	1		.077	,	.007	•	1	.001	1.31	19	
6-9	6121	89	57						:	• - •	.049		.001	• - ·		.001	1.51	21	
9-12	6477,	93	40					·		• — —	.077		.000			.002	1.66	18	
12-15	5745	83	32	}						1	.076		.022			.001	2.06	18	
15-18	6211	89	62	[							.048	}	001		1	.002	2.30	2	
18-21	7161	102	56						•		.170	j	.041			.001	2.20	18	
21-24	6789	96	80								.076	i	.007			.002	2.69	2	
24-27	6625	94	75							· · · ·	.090	)	.018			.002	1.95	18	
27-30	6787	96	49			-				;	.172	>	.122			.002	1.64	63	
30-33	6558	95	68								.165	, ,	.068			.003	1.37	5	
33-36	6703	97	72			;					.049		.064	_		.003	1.90	70	
36-39	5658	83	24						i		.117		.016		1	.002	2.33	25	
39-42	6119	90	3						Ì		.081		.007			.002	2.00	25	
42-45	6331	93	13						1		.032	_	.008	_		.003	2.82	2	
45-48	5796	79	11							Ì	.181		.245		 	.004	3.58	17	
48-51	6140	84	62								.106	>	.020		-	.002	1.37	1	
51-54	6514	90	38						_		.140		.002		:	.002	1.30	30	
54-57	7002	101	62			:				:	.072		.054			.005	1.66	5	
57 <b>-</b> 60	5496	80	18								.212		.003		i	.002	1.27	75	
60-63	6656	95	78						1		.057		.000			.003	1.78	15	
63-66	7146	102	79			1					.057	t	.000		:	.002	1.47	51	
66-69	7453	102	95			1				: ,	.092		000			.003	1.97	41	
69-72	6269	90	78								059		 008			_003	1.88-	59	
72-75	7007	101	85								.197		009		<u>.</u>	.003	1.68	69	
75 <b>-</b> 78	7289	103	51								.129	İ	.004			.004	2.51	59	
78-81	5609	77	17								.329	k 	.008	ĺ		.004	2.11	14	
81-84	5443	75	13								.408		.013			.004	3.29	1	
84-87	5603	79	0						ĺ		.263		.001			.002	1.19	10	
87-90	5594	80	14					1		]	.299		.000			.001	1.02	27	
90-93	5641	80	13	1							.243		.003			.002	0.194	10	
93-96	4825	68							1		.233		.010			.002	1.01	10	
96-99	5402	78	29		}			}	1	ļ	.034	1	.021			.002	1.61	R	
99-102	6510	93	14				1				.050	1	.014			.002	1.41	10	
02-105	4982	72	13			-					.074		.007			.003	1.32	27	
105-108	5621	81	5	1							.089		.007			.002	0.96	27	
	-	1		1	1	1		•	1		ļ		T	R		Z		1	
													1	-	1				

HOLE Nº _____81-4

2A

DATE <u>Nov.30-Dec.10/81</u>

LOGGED BY

<u>B. Fraser</u>

Ŧ		PHYSICAL	RTIES	ALTERATION						MINERALIZATION					ROC.				
	P S	ROCK CORE	REC	RQD	FeS2	SIL	SER	ARG	CH:	FELD	VEIN 0T7%	MaS2	wo ₃	РЬ	Ag	Acces			TYPE
108-	111	5245	74	8		• ! ;	- <u>+</u> =		-	1		.105		.012			.002	1.08	3
111-	114	5129	73	26					+ !		·····	.047	• <del>_</del> · · · ·	.003			.005	4.52	35
114-	117	4976	-73	20			1		• • • • • • • • • • • • • • • • • • •			.033	•	.020			.006	5.00	11
117-	120	9780	143	27								.091	••	.009			.002	1.18	27
120-	123	7487	107	78			* *			1		.060	<b>.</b>	.012			.004	3.56	20
123-	126	7742	111	99					•			.147		.007			.002	1.09	21
126 <u>-</u>	129	7075	100	97						;		.178		.013			.003	1.27	26
129-	<u>132</u>	9388	133	100								.092		.014			.001	0.85	38
132 <u>-</u>	<u>135</u>	5950	87	100						;		.189		.005		·	.001	0.52	4
135 <u>-</u>	<u>138</u>	7010	102	100					-	:		.113		.001		<b></b>	.001	.77	21
138 <u>-</u>	141	6888	98	100			•			:		.112		.031		· .	.001	1.77	61
141 <u>-</u>	144	7157	103	97						;		.147		.016		: • • •	.001	1.02	10
144-	<u>147</u>	7581	108	89					·			.203		.006			.002	1.56	62
147 <u>-</u>	150	6973	99	97					; 	•		.042		.004		+ <del>-</del>	.002	1.11	61
150 <u>-</u>	<u>153</u>	6666	95	94					ł •	•		.095		.016			.002	1.09	62
53 <u>-</u>	156	8364	119	96	i i i i i i i i i i i i i i i i i i i				·	1		.102		.005			.002	1.40	12
156 <u>-</u>	159	7826	111	99					•			.086		.003			.002	1.16	21
15 <u>9-</u>	162	5250	76	65			·					.144		.130		· · · · ·	.006	1.16	21
162 <u>-</u>	165	7054	101	89						· ·		.232		.07.7		<u></u>	.007	0.85	21
16 <u>5 -</u>	<u> 168</u>	6923	100	74						:		.112		.031		<del></del>	.003	.70	21
168 <u>-</u>	171	6476	95	87					<u>_</u> ,	<b></b>		.218		.000		<b>·</b> •	.001	.50	4
17 <u>1 -</u>	174	7208	102	88						· ·		.085		.028			.003	1.59	63
174-	177	6166	89	89					1			.208		.015			.001	.75	21
17 <u>7 -</u>	180	B539	121	97								.307		.018			.001	1.18	21
180-	183	6901	<b>9</b> 9	63								.357		.008			.001	.87	62
183-	186	7200	105	68					•			.142		.113			.001	.94	21
186-	189	6966	99	75								.415		.009			.002	.86	18
189-	192	6017	85	66					; ;	:		.142		.043			.001	1.06	25
192-	195	6544	93	79								.221		.012			.002	1.54	21
195-	198	6213	88	71			1			1		.155		.194			.001	1,56	2
198-	201	7135	103	67						1		.142		.033			.010	1.12	21
201-	204	<b>61</b> 61	90	48	ļ							.163		.001			.001	.93	21
04 -	207	6155	89	54						ļ		.305		.008			.002	.68	<u> </u>
207-	210	7412	107	56	1		-					.165		.016			.002	.93	38
210-	213	7596	108	85								.137		.002	$\sim$	ļÌ	. <u>003</u>	1.36	3
														I	S	you	Ju	nour	

N٩	81-4
	N۹

.

V.

PAGE ______

### DATE <u>Nov.30-Dec.10/8</u>1

----

	DATE <u>Nov.30-Dec.10/8</u> ]										LO	GGE	ED I	BY	B. Fr	aser				
[	E PHYSICAL PROPERTIES ALTERATION										NERA		)N		20					
	DEP1	ROCK	CORE	REC	ROD	FeS2	SIL	SER	ARG	' СН _Т	FELD	VEIN	Mos2 W	VO3 P	ь ;	Ag	jAcces	Cu	Fe	YPE
213	3-216		6789	96	95					1	*÷		.128	-01	03			.003	1.70	3
216	-219		7863	113	99				<b>-</b>	•	••	·	.178	10	14		• • • • • • •	.002	.99	27
219	-222		7720	110	86				<b></b>	•	·		.190	10	)] ;			.021	1.40	51
222	-225		7219	102	85		-			• • •	•;		.213	0	0		1	.003	1.14	3
225	-228		7490	106	95	 			L		i		.183	_0(	)2			.004	1.91	3
228	-231		7282	103	97								.165	.00	)2			.004	1.98	3
231	-233	.78	7072	101	97						• • • • • • • •		153	.00	)9		÷	.003	1.89	10
						END	OF	HOLE	AT 2	33.78	3									
-											:							•		
_					<u> </u>													:		
_			<u> </u>				_	1									, • • • • • •			
-			·	•	, 	j											1			
_					<u> </u>			:									 			
_											i i				!		ļ			
-			•	•	 												ļ 			
-			<u></u>	   					; •		·				:		<u> </u>			
_					: : :				• • • • • • •		ا 						· ·			
			<b>.</b>			[					·				<b></b>		· · · · · · · · · · · · · · · · · · ·			
-							_										<u> </u>			
_			-		 		_				: 							·		
						  ;		,	·	·						<b>.</b>	ļ			
-								• •	<u> </u>								<u> </u>			
-						1		; ; ;			: i									
-			<u>.                                    </u>				_													
-		<b>_</b> _	; ;																	
-							_											+		
-				ļ				ļ							<del>.</del>		 			
-					! 			.		ļ										
			 				<u></u>	ļ												
-					 			ļ												
-		 	! ;			<b> </b>		ļ	 		   -				-		<u> </u>			; I
_			-				<u>    .                                </u>	<u> </u>					<b>├</b>							
-			<u> </u>	 	<b> </b>			ļ		! 							<b>├</b> ───┤			
		1		ļ	1			1	ł	1		1		:		Zu.	, ,	Z.	-	ļ
															ve	- 0				

ţ

DATE Nov. 30-Dec. 10/81

PAGE 18

ł

DEPTH	ROCK DESCRIPTION
0-3	Casing
3-6	3.0-3.47 med gnd qtz diorite; 3.47-3.75 mixed ppy, dio, ppy dike sub-
	paralle to C.A.; 3.75-4.19 qtz diorite; 4.19-4.56 mixed ppy and aplite,
	ppy bleached palegy; 4.56-5.08 rusty aplite; 5.08-5.56 argillic qtz
	diorite, chalky plag; 5.56-5.81 biotite - fspar-ppy @ 30° to C.A.;
	5.81 - 6.0 aplite with occasional diorite frags.
6-9	6-6.35 aplite as above; 6.35-6.99 mixed aplite and diorite, contact
	sub-parallel to C.A.; 6.99-7.67 med. gy. med gnd. qtz diorite, 15%
	biotite, weakly foliated at 25° to C.A.
9-12	9-9.84 fine gnd qtz dio as above; 9.84-10.14 pale gy biotite feldspar
	ppy, fspar 2-4mm, biotite 1%; 10.14-12.0 pale gy to creamy strongly
	bleached med gnd. qtz diorite, qtz flooded zone from 10.14-11.04;
	11.04-12.0 strongly argillic and very friable with fault gouge at 11.52-11.
	and 11.88-12.56 at 20° to C.A.
12-15	12.0-13.8 str argillic qtz diorite as above; 13.8-14.08 bleached bio-
	fspar ppy as above; 14.08-14.28 med gnd. qtz diorite as above; 14.28-14.56
	pale gy bleached biotite feldspar ppy, fspar 2-4mm; 14.56-15.0 med gy
	med gnd qtz diorite with occasional fine gnd botite rich xenoliths to
	8cm with diffuse margins.
15-18	15-17.63 med gnd. qtz diorite as above; 17.63-17.87 find gnd ( 1mm) qtz
	diorite, foliated @ 20° to C.A.; 17.87-18.0 int. ppy, chalky feldspar
	2-4mm, argillic.
18-21	18.0-18.47 argillic int. ppy as above; 18.47-19.71 med gnd argillic
· · · · · · · · · · · · · · · · · · ·	qtz diorite as above; 19.71-21.0 quartz flooded zone, strong py, biotite
	bleached completedly to sericite in diorite frags between abt 1-2cm g.v.'s
21-24	21-21.23 qtz flooded zone as above; 21.23-21.48 fine gnd argillic qtz
	diorite, mainly dk grey with chalky plag but bleached pale gy with
	phyllic alteration adjacent to lcm g.v.; 21.48-24.0 med gnd. qtz diorite
	similar to above except for grain size.
24-27	24-24.72 dk. gy qtz diorite as above with foliation at 30° to C.A. at
	24.35m; 24.72-27 It gy int. ppy, abt splite, granodiorite but rare
	hornfels frags, frags make up 35%, biotite bleached to sericite in ppy,
	aplite frags show remobilization with patchy phyllic reaction rims.
27-30	27-27.4 int. ppy as above; 27.4-28.4 pink aplite, coarse muscorite to
	2mm and moly to 3mm in patchy disseminations; 28.4-30.0 med to pale gy
	int. ppy, phyllic alteration associated with polymetallic veining, abot.
-	frags of aplite and granodiorite. Burn Processo
<b></b>	

.

DATE <u>Nov. 30-Dec. 10/</u>81

PAGE <u>2B</u>

LOGGED BY B. FRASER

DEPTH	ROCK DESCRIPTION
30-33	Int. ppy., as above
33-36	33-34.66 int ppy as above; 34.66-35.10 quartz vein, upper contact @ B°
	to C.A., lower contact disturbed by shear zone; 35.10-36.0 fault breccid,
	upper contact bounded by chloritic shear @ 10° to C.A., abt chloritic
	slicks sub-parallel to C.A. with moly and pyritic paint.
36-39	fault breccia, zone generally bkn, quartz with potassic margins and
	bkn. diorite in a sheared gouge matrix, major gouge seams at 36.9-37.1,
· · · ·	37.29-37.65, colour cream to pale gy.
39-42	39.0-41.25 fault breccia as above, major gauge seams at 39.43-39.95,
	40.17-40.25; 41.25-42.0 rusty greenish grey strong argillic fine gnd
	qtz. diorite, very friable, waxy green plag (1 mm).
42-45	42.0-43.08 qtz dior. as above; 43.08-44.18 dk gy argillic find gnd.
	qtz. diorite, chalky plag; 44.18-44.88 lt. grey to cream fine fnd qtz
	dio, quartz flooded, strong silica, sericite; 44.88-45.0 pink aplite
45-48	45.0-45.16 pink aplite; 45.16-45.54 greenish gy fine gnd qtz diorite with
	scattered hornfels frags, argillic; 45.54-46.35 lt gy hornfels, silicic;
	46.35-46.85 black hornfels, friable, abt moly slicks, dissem py; 46.85 -
	48.0 lt. gy silicic hornfels
48-51	It gy silicic hornfels, potassic zone from 50.6 -50.8 associated with
	poly metallic veining.
51-54	51-51.19 hornfels as above; 51.19-52.26 quartz flooded zone, dissem moly
	py, patchy biotite, 5% hornfels frags with variable alteration from pale
	gy silicification to k-spar replaced margins, upper contact arbitrary
•	as veins continuous from above; 52.26-53.97 med. gy hornfels; 53.97-54.0
	med gy int. ppy.
54-57	54-56.69 med gy int. ppy, wk argillic; 56.69-57.0 med to lt. gy hornfels
57-60	57-58.14 hf as above, lower contact at 90°; 58.14-60.0 high silica zone,
	abt frags of hf, ppy and gd make up 20%, abt. kspar and patchy biotite
	weak dissem moly py
60-63	60.0-60.31 high silica zone as above; 60.31-60.86 dk gy to bk hornfels,
	contact with ppy below marked by stoping of bk hornfels frags; 60.86-
	62.42 lt. gy int. ppy., younger than ppy below contact marked by high silic
	and k-spar rimming frags of older ppy, biotite 5%; 62.42-63.0 med gy int.
	ppy 15% biotite, only 1% of biotite is fresh looking 1-2mm phenocrysts,
	the rest is chloritic and less than 0.5mm.
63-66	63-63.84 dk gy-bk hornfels, possibly frag, high silica as gtz-kspar
•	veins sub-parallel to C.A.;63.84-65.87 med cy int pov. signilar to porphyry
	13 you Traser

...

DATE Nov.30-Dec10/81

PAGE 3B

DEPTH	ROCK DESCRIPTION
63-66	(con't) 65.87-66.00 contact marked by high silica zone with frags of gd
66-69	66-66.13 contact high silica as above; 66.13-67.25 dk gy-bk hornfels,
	bleached lt. gy for 20 cm from upper contact; 67.25-69.0 mixed zone,
	50% hornfels 50% aplite.
69-72	69.0-69.78 mixed aplite, hornfels as above; 69.78-71.33 med gnd biotite
	granodiorite, frags of aplite and hornfels to 15cm make up 15% of
A	section; 71.33-72.0 dk gy int ppy, upper contact sub-parallel to C.A.
	from 71.33-71.63
72-75	72-73.75 dk gy int ppy, lower contact sub-parallel to C.A. from 72.89-73.75
	73.75-75.0 high silica zone, 40% vein quartz, 30% kspar, frags of gd and
	minor hornfels make up 30%, strong moly as undulating veins sub-parallel
	to C.A.
75-78	75-75.62 high silica zone as above; 75.62-76.67 med to dk gy int. ppy;
	76.67-77.41 med gy granodiorite; 77.41-78.0 upper contact marked by g.v.
	0 50% to C.A., variable med. gn to bk hornfels.
78-81	78-78.14 hornfels as above; 78.14 -79.15 rusty green hornfels, high
	bkn, core recovery as 2-8cm frags; 79.15-79.84 dk gy to bk hornfels;
	79.84-79.52 pink aplite, 10% str. potassic granodiorite; 79.52-81.0
· · · · · · · ·	variable gn to pale gy to bk hornfels, epidote on fractures in green zones.
81 - 84	81-83.43 hornfels as above; 83.43-73.78 contact zone, 50% frags of hornfels
	in granodiorite, 83.78-84.0 potassic granodiorite.
84-87	84.0-86.17 med gnd potassic granodiorite, str pot. alteration as vein
	envelopes, bkn throughout by fractures at shallow angles to C.A., biotite
	15% as 1-2mm hooks, microlitic - abt. 1-3mm cavities, abt pyritic fractures
	86.17-86.58 med. gy int. ppy, 40% absorbed frags of gd; 86.58-87.0
	potassic granodiorite, abt. aplite dikes.
87-90	87-88.55 potassic granodiorite as above; 88.55-89.32 pink aplite; 89.32-
	89.52 high silica zone, 80% qtz, str moly; 89.52 -90.0 pinkish grey pot
	granodiorite.
90-93	90-92.25 granodiorite as above; 92.25-92.73 med gy int. ppy; 92.72-93.0
	granodiorite as above.
93-96	93-95.76 pot granodiorite as above; 95.76-96.0 lt. gy int. ppy, upper
	contact @ 40°, 10 cm biotite rich moly rich zone at contact.
96-99	lt. gy int. ppy, biotite 2% as 1-2mm phenos, groundmass bleached, pervasive
	ser, pot, similar to dike @ 60.86-62.42, abt fractures at shallow angles
	to C.A. coated with moly and pyrite paint.
	Burn Trase

.

DATE Nov. 30-Dec.10/81

PAGE <u>4B</u>

DEPTH	ROCK DESCRIPTION
99-102	99-100.33 Lt gy ppy as above; 100.33-102.0 pinkish grey pot granodiorite.
102-105	102-102.85 granodiorite as above; 102.8503.52 pink aplite, dissem
	moly, py; 103.52-104.72 potassic granodiorite, continuous jointing at
	shallow angles to C.A. gives low RQD although individual core chunks >4";
	104.7-105.0 strongly aplitic potassic granodiorite, aplite dikes make up 30
	minor phyllic alteration as vein envelopes.
105-108	105-107.08 aplitic gd as above; 107.08-108.0 med gnd. It gy biotite
	granodiorite, abt fractures at shallow angles to C.A. coated with dk. gy.
	chlorite and pyrite, aplite where present bleached to cream, patchy
	reddish bn 2ry biotite, biotite 10% as less than 2mm phenos.
108-111	Granodiorite as above
111-114	111-112.01 granodiorite as above; 112.01-112.71 med. gy. int. ppy;
<u></u>	112.71-114.0 rusty black lamprophyre, upper contact at 20° to C.A.
114-117	114-115.42 lamprophyre as above, lower contact at 10° to C.A.; 115.42-117.0
<b></b>	granodiorite with chloritic fractures similar to above.
117-120	117-117.6 granodiorite as above; 117.6-120.0 bleached white aplite, minor
	absorbed frags of biotite granodiorite.
120-123	120-120.16 aplite as above; 120.16-121.51 black lamprophyre, upper contact
	at 10°, lower contact at 12°; 121.51-121.84 med. gy. int. ppy, biotite
	10%, 1% as 1-2mm phenos, 9% ∠ 1mm grains; 121.84-123.0 biotite rich
	med. gnd. qtz. diorite, qplite dikes make up 40% of section, pervasive
	silica as well as abot qtz-fluorite veins, biotite 35-40%
123-126	123-125.21 qtz diorite as above; 125.21-125.67 lt. pinkish grey aplite,
- <u></u> .	irregular salmon pink zone at 30° to C.A. carries fluor, sphal, carb;
	125.67-126.0 biotite rich qtz diorite as above.
126-129	126.0-127.27 qtz diorite as above; 127.27-127.40 biotite granodiorite,
	biotite 7%; 127.40-127.64 qtz diorite with foliation at 80° sub-parallel
	to lower contact; 127.64-129.0 potassic med. gnd. biotite granodiorite, ab
	fluorite in veins.
129-132	129-129.31 granodiorite as above, 129.31-129.93 mixed zone, 50% aplite,
	50% qtz diorite, veining dominantly sub-parallel to C.A.; 129.93-130.61
	high silica, 85% quartz, 15% rocks frags, wk moly, py: 130.61-131.01
	granodiorite as above; 131.01-132.0 aplite.
132-135	Aplite as above, abt qtz fluorite veining
135-138	135-137.59 aplite as above, 137.59-138.0 dk. gy. qtz. diorite.

(

DATE Nov.30-Dec.10/81

PAGE 5B

LOGGED BY B. Fraser

٦

DEPTH	ROCK DESCRIPTION
138-141	138-139.48 qtz diorite as a bore; 139.48-139.94 lt. gy granodiorite,
	absorbed xenoliths of diorite; 139.94-141.0 high silica zone, 75%
	quartz, 20% patchy biotite and k-spar, 5% fluorite.
141-144	141-141.15 high silica zone as above; 141.15-141.78 pale gy to pink
	potassic granodiorite, cut by 150 mm qt-fluor-kspar-biotite vein with
	50mm kspar margins; 141.78-144.0 med gy int ppy, 10% xenoliths of
	gd and aplite up to 15cm.
144-147	144.0-144.71 high silica zone, 85% silica, 15% patchy biotite and
	k-spar, core gnd. @ 144.17; 144.71-145.04 dk. gy int ppy @ 30° to
	C.A.; 145.04-146.26 dk gy qtz diorite; 146.26-146.75 pink aplite;
	146.75-147.Ohigh silica zone, 80% quartz, 20% patchy biotite, kspar and
	fluorite.
147-150	147-147.86 high silica zone as above; 147.86-149.72 qtz diorite, biotite
	patches to 3cm, layering of biotite @ 20° to C.A.; 149.72-150 aplite.
150-153	150-150.17 aplite; 150.17-150.67 potassic qtz diorite; 150.67 - 150.98
	qtz-kspar vein, 85% quartz; 150.98-152.01 qtz diorite; 152.01-152.66
	aplite, 30% diorite frags which show pervasive silica and chlorite;
·	152.66-153 qtz. diorite.
153-156	153-153.36 qtz diorite; 153.36-153.63 aplite; 153.63-155.52 qtz diorite
	biotite content 30-40%, foliation at 35% to C.A., minor levcocratic
	zone with biotite 10% and str. chlorite; 155.52-156.0 aplite
156-159	156.0-156.79 pink to cream aplite with patchy biotite and chloritic
	frags; 156.79-157.32 mixed zone, 30% silicic diorite, 70% pale gy to
	pink strongly potassic gd to ap; 157.32-157.53 dk gy silicic qtz diorite;
	157.53-159.0 lt. gy. argillic qtz diorite, chalky plag, abt aplite dikes.
159-162	159-160.38 argillic qtz diorite as above; 160.38-161.73 creamy aplite,
	bkn from 161.12-161.58 associated with polymetallic veining @ 20° to C.A.;
<u></u>	61.73-162 mixed zone, diorite and aplite, str qt-mo veining
162-165	Mixed zone as above, str qt-mo veining sub-parallel to C.A. from 163.6-165
165-168	165-166.17 mixed zone as above; 166.17-168 aplite
168-171	Pink aplite.
171-174	171-171.85 pink aplite; 181.85-173.89 It. gy.gn.int.ppy. with frags of
	hornfels to 2cm; 173.89-174.0 str pot. zone, 80% aplite, 20% pot altered
	diorite.
174-177	Potassic zone as above.
	BuymeTrace

÷

DATE Nov.30-Dec.10/81

PAGE <u>6B</u>

LOGGED BY <u>B. Fraser</u>

177-180	177-178.28 potassic zone as above; 178.28-179.89 med. gy .qtz. diorite,
	pervasive sil-ser-py alteration of 20% of section associated with qt-
	py-sphal veining; 179.89-180.0 high silica zone, 50% quartz, 50% silicic di
180-183	180-180.38 high silica zone as above, terminated by 27mm g.v. sub-parallel
*	to C.A.; 180.38-182.39 argillic qtz diorite, 3cm qt-mo-kspar vein
	sub-parallel to C.A. from 181.03-182.15; 182.39-182.95 aplite; 182.95-
	183.0 chloritic diorite.
183-186	183.0-183.26 chloritic diorite; 183.26-185.73 aplite; 185.73-186.0 lt.
	gy qtz diorite, med. gnd., biotite 15%
186-189	186.0-186.09 lt. gy. qtz. diorite; 186.09-186.46 med gy int. ppy, 25%
	absorbed frags of aplite and diorite; 186.46-186.81 lt. gy . qtz. diorite
	as above; 186.81-189.0 creamy bleached potassic qtz diorite, biotite totall
	altered to sericite, pervasive potassic alteration, plagioclase altered
	to chalky to pale gn. clay, increase in jade gn. alteration of plag
	toward contact with breccia below, jade green alteration products are
	translucent (possibly zeolites), str. ribboned qt veins with composite
	width 14-37mm sub-paralled to C.A. from 186.81-187.86.
189-192	189-189.27 bleached diorite as above; 189.27-190.37 fault breccia,
<u> </u>	angular frags of creamy bleached diorite in a very fine gnd. med. gy
	matrix of ground rock, competent zone, upper contact @ 10° to C.A.,
	contact of bx. in middle of core sub-parallel to C.A. from 190.37-190.69;
	190.69-191.02 creamy bleached diorite; 191.02-191.14 breccia similar to
	above; 191.14-192.0 creamy bleached qtz diorite.
192-195	192-193.1 creamy bleached qtz diorite, broken rock and gouge 192.11-
	192.39 with recovery 65% and associated sparry gypsum; 193.1-193.98
<u> </u>	creamy bleached aplite; 193.98-195.0 med. gy. gn. argillic qtz diorite,
<u></u>	friable, similar to argillic diorite in 81-3 @ 58.3m.
195-198	Med gy. gn. argillic diorite, friable, occasional rusty fractures to
	197.93; 197.93-198 aplite.
198-201	198-198.31 aplite; 198.31-199.17 med gy. gn. argillic qtz diorite
<u> </u>	199.17-199.57 pink aplite; 199.57-199.82 pale gy.gn qtz diorite; 199.82-
	201 pink aplite, 2cm fault @ 20° to C.A. @ 200.11 infilled with vuggy
	calcite scalenohedra.
201-204	201-201.57 aplite: 201.57-201.83 med. pale gn. argillic gtz diorite;
	201.83-202.65 pink aplite: 202.65-203.15 med-Dale gy gy qtz diorite;
. <u>.                                   </u>	

,

HOLE NO. <u>81-4</u>

DATE Nov. 30-D-c. 10/81

PAGE 7B

LOGGED BY <u>B. Fraser</u>

____

DEPTH	ROCK DESCRIPTION
204-207	204-204.67 argillic diorite; 204.67-205.59 aplite; 205.59-206.08 med. gn.
<u> </u>	argillic diorite; 206.08-206.78 aplite; 206.78-207.0 strongly potassic
	diorite.
207-210	207-207.40 str. potassic diorite; 207.40-207.73 friable, broken, strong
	argillic diorite; 207.73-209.32 aplite, 20% of zone strongly potassic
	grandiorite as absorbed frags, 7 cm of broken, ground, qt-py-gal veined
	aplite @ 218.4-218.47; 209.32-210 med pinkish grey potassic grandiorite
· · · · · · · · · · · · · · · · · · ·	biotite 15%
210-213	Potassic granodiorite as above.
213-216	Potassic granodiorite.
216-219	216-216.69 potassic granodiorite; 216.69-218.56 mixed aplite and
	granodiorite, 80% aplite; 218.56-219.0 med gy potassic granodiorite.
219-222	219-220.8 med. gy granodiorite; 220.8-221.39 pale gy. argillic
	granodiorite; 221.39-222.0 high silica zone, 60% quartz, cut by faulted
	qt-sphal-gal vein of 2cm width at 15° to C.A., mineralization is ground
	with slicks on margins of vein.
222-225	222-222.24 high silica zone as above; 222.24-223.06 pale gy argillic
	granodiorite; 223.06-223.78 high silica zone, 60% quartz, bounded by
	fault planes at 30° to C.A. but 60° to each other; 223.78-225.0
	weakly chloritic med. gnd. granodiorite.
225-228	Chloritic granodiorite as above.
228-231	Chloritic granodiorite as above to 230.81; 230.81-231.0 contact zone
	30% ppy dike parallel to C.A.
231-233.78	231-231.09 contact zone as above; 231.09-231.75 med. gy. int. ppy,
	biotite 1% as 1-2mm phenos; 231.75-232.26 contact zone between ppy
	and gd, contact sub-parallel to C.A. and marked by 5mm quartz zone;
	232.26-232.81 int. ppy., 30% subangular frangs of gd to 15cm rimmed
	by qtz; 232.81-233.53 weakly chloritic granodiorite; 233.53-233.78
	weakly phyllic granodiorite.
	END OF HOLE 81-4 AT 233.78m
	Buyna trace

## AMAX OF CANADA LIMITED

### DIAMOND DRILL LOGS

Hole No:	81-5	Logged By: B. Fraser
Claim No:	M-160	Date Logged: Dec.10 - Dec.16/81
Easting: _	<u>13,349.92E</u>	Remarks: Assays by Kitsault Lab.
Northing:	1],246.71N	
Elevation:	<u>606.03m</u>	
Azimuth: _	<u>180° (south)</u>	
Dip:	-50°	
length:	<u>153.96m</u>	
Core Size:	NQ.	
Collared:	Oct. 21,1981	
Completed:	Oct. 23,1981	
Drilling Co.	: <u>Maitland Explor</u>	ation Ltd., Vernon, B.C.
Drillers:	V. Quesnel, K. Cald	well

Hole survey

í

data method ----

PAJARI

DEPTH	AZIMUTH	DIP
9.15m	180°30m	-49°
30.49m	177°40m	-50°
60.98m	1.80° Om	-50°
121.95m	180°30m	-51°
152.44m	181°30m	-52°

Buyon From

1

HOLE Nº 81-5

DATE <u>Dec.10 - Dec. 1</u>6/81

Ξ-	PHYSICAL	PROPE	RTIES			ALTER	ATION	<u>-</u>					N	UNER/	 Alizatio	)N	-	
UE DE DE	ROCK CORE	REC	RQD	FeS ₂	SIL	SER	ARG	сн	FELD	VEIN OT7%	MoS ₂	wo ₃	Pb	Aç	jAcces	Cu	Fe	TYPE
4-7	6454	92	10			• <u>•</u> •			1		.058		.003			.003	1.37	18
7-10	6629	94	70								.107		.021			.003	1.43	18
10-13	5943	86	45								.113		.035	1		.003	1.35	5
13- <u>16</u>	7194	104	75						1		.100		.023			.001	1.17	5
16 <u>-19</u>	5832		4								.047		.019			.004	1.98	5
19-22	6028	87	0			<u> </u>					.088		.006	•		.003	1.81	5
22 <u>-25</u>	6183	89	26								.036		.004			.001	1.78	5
25 <u>-28</u>	7442	107	<u>    8</u> 0			: • — — • •			: 		.085		.012			.001	1.04	63
28 <u>-31</u>	6764	97	<u>7</u> 2			•	<u> </u>		·		.150		.023	•		.002	1.35	10
31 <u>-34</u>	5756	82	41								.083		.005			.001	1.15	3
34 <u>-37</u>	5515	78	0						<b></b>		.088		.001			.001	1.01	10
37 <u>-40</u>	7090	101	94			i 1 			: ;		.072		.029	<u></u>		.001	1.17	3
40 <u>-43</u>	6624	94	90			•					.147		.001			.002	1.04	3
43 <u>-46</u>	7142	101	81			: : 					.091		.022			.001	1.03	51
46 <u>-49</u>	5750	82	37				·	· <u></u>			.072	·	.006			.001	1.00	3
9 <u>-52</u>	6292	89	56		_				·		.103		.001			.001	1.15	64
52 <u>-55</u>	7124	101	67	i							.095		.001	; 	<b>--</b>	.001	1.12	64
55 <u>-58</u>	6948	100	47			· 	~				.040		.006			.001	1,20	5
58 <u>-61</u>	5322	77	22						: •		.082		.002		•-····	.001	1.59	5
61 <u>-64</u>	6856	99	22						:		.052	·	.001		: :	.001	1.42	5
64 <u>-67</u>	6339	91	53	:					<b></b>		.053		002		<u></u>	<u>,001</u>	1.30	10
67 <u>-70</u>	5263	76	64						····		.040		001		, ;	.001	1.51	35
70 <u>-73</u>	7065	102	92					. <b></b>	·		.045		.001			.001	1.17	3
73-76	7459	107	82	<u>'</u>			·				.060		.001			.001	1.18	11
76 <u>-79</u>	6610	95	66		<u> </u>						.045		.001			.001	1.18	10
79 <u>-82</u>	6247	90	60	······				··		 	.033		.001	! 	ļ	.001	1.06	49
82-85	7137	103	91								.025		.001		 	.001	.8/	10
85 <u>-88</u>	6742	97	85			i i				]	.066		.001			.001	0.87	10
88-91	5537	94	70								.030		.001			.001	0.98	10
91 <u>-94</u>	5435	79	36				÷				.071		.001			.001	1.05	55
94-97	5916	85	60		<b>-</b> -						.130		.001			.001	1.59	10
97 <u>-100</u>	5794	84	21								.017		.001		<b>↓</b> _ <b>↓</b>	.001	1,48	H ₁
0-103	5296	91	54		·	;					.025		100			100.	1.34	5~
103-106	5604	81	10			-					.040		.006		 	1001	1.43	5
106-109	5019	73	4	! •							.043		.010			.002	1.38	5
	- '	ļ	ļ				;		I	ł	:	:		1.	Buy	-0	tas	<u>ب</u>

HOLE Nº

81-5

DATE Dec.10-Dec.16/81

LOGGED BY

PAGE

B. Fraser

-

.

t di V	PHYSICAL PROPERTIES			ALIERATION IVEN									M	INERA				ROCA	
	COMP	Wt.	REC	RQD	FeS ₂	SIL	SER	ARG	. СН,	FELD	QTZ%	MoS ₂	wo ₃	Pb	<u>Ag</u>	jAcces	<u>- Lu</u> - 001	te 1	
109 <u>-112</u>		15147	74 75	5			<del>.</del>	•	<del>.</del>	<u></u>		.05/		002		<u> </u>	1.001	1 14	. 10
112-115		3834	- 55	0			·	,	÷	• •		050	י  ו				003	1 40	10
115-118		5017	75	6	· · ·		<u> </u>		•	· 		055	, 	025			001	1 06	3
118-121		10179	75 	4			· ·		<b>-</b>	· · ·		035	<u></u>	1.035		<u> </u>	.001	1.00	3
121-124		4574	02	0					·	· · · ·		050		.002			100.	1.31	10
124-127		5/20	82	4					· · · · · · · · · · · · · · · · · · ·	• • • • •		.037		.009			.002	1.40	2
12/-130		5/4/	83	0								.035		.002		~ <b>-</b>	.001	1.33	
130-133		6246	90	0					· <u> </u>			.032		.002			.004	5.74	
133 <u>-136</u>		4413	63	3		· · · ·	+			•		.076		.001			.001	1.28	J 
136-139		6052	87	34			<del></del>		<del>.</del>	·····		.023	<u>.</u>	.001			.003	4.27	
139-142		7228	. 104	68					<u> </u>	<u>.</u>		.023		.001			.005	5.70	
142-145		6217	89	53			<u>.</u>					.060		.021			.005	2,07	3
145 <u>-148</u>	<u></u>	6797	98	66	i				<u>.                                    </u>			027		.002	<u> </u>		.003	4.46	+
148-151		7605	109	81				; ;	:		<u></u>	.008		.002			.004	5.74	
-51 <u>-15</u> 3	96	6716	97	90					1	! 		.045		.002	,	 	.001	1.14	
					END	OF	HOLE	AT	153.9	96m								<u> </u>	<b> </b>
		•	: •						-	;						+	ز اجــــــ		<u> </u>
		·	ļ		ļ		·			• • • • • • • • • • • • • • • • • • • •									L
	·• -			•	;		· •	• · · · · · · · ·		, . 						1 			
							: !							· 		<u> </u>			
								, , ,		<b>.</b>						<u></u>			
•		<b></b>					 	<u></u>	<b>.</b>					Ļ,		ļ	:		\ 
								:		, 						<u> </u>			
									1										ļ
		-																	
			1													[			
			i	i k				1											
							1	; ;											
							1				-							- :	
					<b> </b>	•	}	1		1						1			
			<u> </u>				1		+		<b></b>					+			
		- <u> </u>	 			<u></u>	1		+	<u> </u>				††			1		<u>† </u>
		+	<u> </u>				-							ţ		1			
			<u> </u>		╀───┤		<u> </u>	<u> </u>   			<u> </u>		,	<u> </u>		+	<b>∮</b> ∮		
			I		l i				•	1		t l		· · ·	1	But	~ 0	Ina	i I

2A

HOLE NC 81-5

DEPTH

0-4m 4-7

7-10

10-13

13-16

16-19 19-22

22-25

25-28

28-31

31-34

34-37 .

37-40

40-43

43-46 46-49

49-52

DA

NC. <u>81-5</u>	PAGE <u>18</u>
ATE	LOGGED EY <u>B. Fraser</u>
ROCK DESCRIPTION	
Core ground, poor recovery, surface rubble	
4-4.25 argillic diorite,; 4.25-4.72 argil!	ic int. ppy; 4.72-7.00
argillic diorite; surface oxidation extend	is to 13m with abt Fe-stained
fractures, bkn core to 6.5m.	
7-8.12 argillic diorite; 8.12-10.0 tan to	pale gyargillic int. ppy, abt.
xenoliths of diorite minor hornfels make u	up 20% of section, xenoliths
subangular and 1-5cm.	
Argillic ppy as above, scattered xenoliths	s less than Zen, make up 10%,
highly bkn with gouge from 11.99-12.60.	
Lt. gy int. ppy to 15.16, mod argillic; 15	5.16-16.0 med. gy int. ppy,
RQE is low due to dominant jointing at $45^\circ$	<pre>' to C.A. although rock is compet</pre>
Med gy. int. ppy. as above	
Med. gy int. ppy, 15% xenoliths of ap and	gd
22-24.47 med gy. int. ppy, scattered xenol	liths; 24.47-25.0 tan argillic
int. ppy associated with faulting at 40-60	)° to C.A.
25-26.27 tan argillic int. ppy; 26.27-27.3	39 pink aplite; 27.39-28.0
lt. gy argillic int. ppy, abt. polymetalli	ic veins.
28.0-28.81 int. ppy as above; 28.81-29.81	tan argillic granodiorite,
biotite completely altered to sericite, 10	)% aplite dikes; 29.81-31.0
med gy. int. ppy, weakly argillic, upper o	contact 2.5cm fault gg @ 35° to C
31-31.22 ppy as above; 31.22-34.0 pink pot	tassic granodiorite, upper
contact @ 30° to C.A.	
34-35.05 granodiorite as above; 35.05-35.4	40 int. ppy at 30° to C.A.;
35.4-37.0 mixed zone, 40% granodiorite, 30	D% aplite, 20% int. ppy
Argillic potassic granodiorite, minor phy	llic alteration associated
with polymetallic veins, aplite dikes show	w little alteration except
where cut by polymet. veins,	
Granodiorite as above.	
43-43.41 qtz-carb-weak moly-py vein @ 15°	to CA; 43.41-46 granodiorte as a
Granodiorite as above.	
49-49.28 granodiorite as above; 49.28-49.8	88 It gy. bleached granodiorite,
pervasive sericite, silica, sheared; 49.8	8-50.35 fault zone at 55° to C.A.
pale gy. bkn. qtz, gouge, moly; 50.35-50.	76 med. gy. gn int. ppy; 50.76-
52.0 creamy argillic granodiorite.	

52-53.34 granodiorite as above; 53.34-53.60 fault zone at 40° to C.A., 52-55 moly gouge; 53.60-54.0 granodiorite as above, 54.0-54.52 fault zone @ @ 40° to C.A., broken granodiorite, gouge, 54.52-55.0 granodiorite as above -Byon From

DATE Dec.10-16/81

PAGE <u>2B</u>

-----

LOGGED BY <u>B. Fraser</u>

DEPTH	ROCK DESCRIPTION
55-58	Med. gy int. ppy, 15% xenoliths of gd and ap, strong jointing at 50° to CA
58-61	Med. gy ppy as above.
61-64	As Above
64-67	64-64.88 as above; 64.88-66.69 creamy argillic granodiorite, friable,
	fine gnd. biotite rich xenoliths; 66.69-67.0 med. gy.gn. int. ppy.
67-70	67-67.07 ppy as above; 67.07-68.52 argillic granodiorite; 68.52-68.95
	med. gy. gn. int. ppy, upper contact at 15° to C.A.; 68.95-69.18
	argillic granodiorite; 69.18-69.91 med gyish tan lamprophyre, 47% recovery
<b></b>	bkn. ground core near center of dike, upper contact at 10° undulating,
······································	lower contact at 40°; 69.91-70.0 creamy argillic granodiorite, 5% int.ppy
70-73	Argillic granodiorite as above.
73-76	73.0-74.31 as above; 74.31-74.45 dk gy lamprophyre; 74.45-75.86 creamy
	argillic granodiorite; 75.86-76.0 rusty pale gy int. ppy
76-79	76.0-76.47 int. ppy as above: 76.47-77.36 creamy argillic granodiorite;
······································	77.36-77.68 pale gy int ppy, biotite completely sericitized: 77.68-78.56
	granodiorite as above: 78,56-79.0 int. ppy as above.
<u>79-82</u>	79.0-79.19 ppy as above; 79.19-79.88 fault zone, upper contact at 60°
	lower contact at 20°, creamy aplitic frags with intense clay alteration,
	abt, white clay gouge; 79.88-80.32 tan argillic int. ppy; 80.32-80.66
	creamy argillic granodiorite; 80.66-81.06 med. gn arg int. ppy; 86.06-
	82.0 bleached pale gy to tan arg. int. ppy.
82-85	82.0-83.43 int ppy as above; 83.43-85.0 creamy argillic granodiorite.
85-88	85.0-85.62 as above ; 85.62-86.10 tan argillic int. ppy; 86.10-86.51
· · · · · · · · · · · · · · · · · · ·	creamy argillic granodiorite; 86.51-86.75 med gy argillic int ppy;
	86.76-88.0 granodiorite as above.
88-91	88.0-90.58 granodiorite as above; 90.58-91.0 tan argillic int. ppy.
91-94	91-91.59 ppy as above; 91.59-93.17 med gy argillic granediorite, patchy
	secondary biotite, fine gnd. biotite rich xenoliths, pale gn clay
<u>.                                    </u>	alteration of plag; 93.17 - 94.0 pink aplite.
94-97	94.0-94.2 fault zone @ 20° to C.A.; 94.2-95.39 creamy argillic granodiorit
	several 1-3cm ribboned qt-mo veins at 60-70° to C.A.; 95.39-97.0 tan
	argillic int. ppy
97-100	97-97.43 as above; 97.43-100.0 med gy. int. ppy, patchy secondary biotite,
	biotite concentration along fractures, 15% xenoliths of gd and aplite,
	abt. chloritic joints.
100-103	Med. gy wk. argillic int. ppy
103-106	As above. Bygo-Firan
HOLE NO. 81-5

÷

DATE Dec.10-16/81

LOGGED BY <u>B. Fraser</u>

----

DEPTH	ROCK DESCRIPTION
106-109	As above
109-112	109-111.03 wk potassic int. ppy; 111.03-112.0 med gy potassic
	granodiorite, abt. pyritic fractures, potassic alteration as k-spar
	patchy secondary biotite and aplite dikes, strong jointing sub-parallel
	to C.A.
112-115	Granodioríte as above
115-118	115-117.01 as above; 117.01-118.0 pale gy int. ppy, phyllic alteration
	associated with cross-cutting 5cm qt sphal-ser vein @ 20° to C.A.
118-121	118-118.16 ppy as above; 118.16-120.76 med pinkish grey potassic
	granodiorite; 120.76-121.0 pale gy pot int. ppy.
121-124	121-121.123 ppy as above; 121.12-121,68 granodiorite as above; 121.68-
	122.62 ppy as above; 122.62-124.0 granodiorite as above
124-127	124.0-124.93 as above; 124.93-125.82 med gy int. ppy; 125.82-127.0
	granodiorite, 10% ppy dikes
127-130	Potassic granodiorite, 10% ppy dikes
130-133	130-130.73 as above; 130.73-132.87 black lamprophyre, upper contact sub
	parallel to C.A. lower contact at 10°; 132.87-133 granodiorite as above
133-136	Med gy potassic granodiorite
136-139	136-137.03 as above; 137.03-138.55 black lamprophyre, upper contact at
	5° to C.A., lower contact at 28°; 138.55-139.0 med. gy.gn. chloritic grnd
139-142	139-139.42 as above; 139.42-141.98 black lamprophyre with rusty calcite
	fractures at 30° to C.A., upper contact at 25°, lower contact variable
	from 30° to 00°; 141.98-142.0 contact zone.
142-145	142-142.30 contact zone, 50% 1p, 50% gd; 142.30-142.76 creamy strong
	argillic granodiorite; 142.76-145 med gy potassic granodiorite.
145-148	145-145.12 as above; 145.12-145.19 med. gy.gn. chloritic granodiorite;
	145.19-145.41 med gy int ppy; 145.41-148.0 black lamprophyre, upper
	contact at 10° undulating to C.A.
148-151	148-150.45 black lamprophyre, lower contact at 25° to C.A.; 150.45-150.5
	med. gy int. ppy; 150.58-151.0 med. gy potassic granodiorite; abt
	aplite dikes make up 30% of section.
151-153,96	As above.
	END OF HOLE AT 153.96m
······································	
<del></del>	Bugo From

## AMAX OF CANADA LIMITED

## DIAMOND DRILL LOGS

Hole No:	81-6	Logged By:	B. Fraser
Claim No:	M-160	Date Logged:	Jan.26-Feb.7
Easting: _	13,349.92	Remarks:	<u></u>
Northing: _	11,248.06		
Elevation:	605.92m		
Azimuth:	Vertical		
Dip: _	-90		
Length:	268.9m		
Core Size:	NQ		
Collared:	Oct. 23/81		
Completed:	Oct. 27/81		
Drilling Co:	Maitland Explorat	ion Ltd., Vernon	, В.С.
Drillers:	V. Quesnel, K. Ca	ldwell	

Hole survey data method

í

PAJARI

DEPTH	AZIMUTH	DIP
9.76m	318°30m	-89°
52.44m	327°30m	-89°
113.41m	302° Om	-88°
174.39m	301°30m	-88°
235.37m	312° Om	-88°
265.85m	314°4Úm	-88°
J		ſ

Bugantrosen

-----

HOLE Nº

81-6

PAGE

DATE Jan. 26 - Feb. 7/82

LOGGED BY

B. Fraser

-----

Ξ.	PHYSICAL PROPERT	TES			ALTER					N	INER	ALIZATIC	N .	R	·0C
UEP1 (M.	ROCKICORE REC I	RQD	FeS ₂	SIL	SER	ARG	сн,	FELD OTZ%	M052 W03	Pb	Âg	Acces	Cu	Fe	YPE
3-6	6155 89	21				•	1		.077	.024			.001	1.37.	18
6-9	5336 76	35							.053	.006	:		.002	1,53	2
9-12	6256.89	51			1	<b>-</b>			.083	<b>100</b> 3			.001	1.50	2
12-15	5985 85	49	1	· · · · · · · · · · · · · · · · · · ·			· · · -		. 053	.002			.001	1.45	18
15-18	6854 99	82		÷				•	.050	.005			.002	1.70	5
18-21	5618 81	60				_		•	.055	.010			.004	1.51	5
21-24	4274 62	00							.023	.044			.002	1.65	5
24-27	5937_86	21							.093	.010			.002	1.75	5
27-30	6080 88	76							.150	.005			.002	1.53	5
30-33	5626 81	78							.127	.002			.001	1.16	5
33-36	6019 87	55			1	-			.113	.036		···•	.002	1.34	5
36-39	5833 84	33		1				i	.102	:021			.003	1.52	5
39-42	4261 62	18		1					.075	.017	: 		.002	1.44	5
42-45	5559 80	53		!		:			.133	.048		 	.002	1.35	5
45-48	6699 97	61							.027	1020			.003	1.43	5
18-51	5901 85	58					:		.025	.025	; ;	-+	.014	1.51	5
51-54	6438 93	80							.037	.004	:	<u> </u>	.003	1.45	5
54-57	6065 88	68							.078	1001			.002	1,29	5
57-60	7076 102	92			1				.053	.001			.002	1.35	5
60-63	6375 92	93							.050	:001	:		.002	1.44	5
63-66	6940 100	93						·	.038	1005			.002	1,10	5
66-69	6897 100	65		1					.205	.071	-		.003	1.01	5
69-72	6133 89	94			1		:		.037	018			.001	1.14	10
72-75	7532 108	86							.032	025			.002	0.91	55
75-78	7061 102	53							.048	003			.002	1.71	5
78-81	5421 78	14		1					.059	.001	1		.002	1.33	10
81-84	5720 83	22				1			.025	001			.002	1.45	10
84-87	5366 77	15		1	1	-1			.043	026			.001	1.37	10
87-90	4359 63	19		;			1		.043	.004	_		.001	1.57	10
90-93	6237 90	12		<u> </u>					.024	001			.001	1.36	5
93-96	4140 60	27							.057	1001			.002	1.63	5
96-99	6073 88	31							.033	001	_		.001	1.38	10
9-102	5218 75	8					1		.022	001			1.001	1.40	5
102-105	6900 100	30		T	-				.020	1018			.002	1.45	5
105-108	5974 86	48				; 			.032	046			.002	4.20	5
	······································		· T					i			Ċ	By	m C	tros	er

٦A

HOLE Nº 81-6

DATE Jan26-Feb7

LOGGED BY

B. Fraser

.

<u>۲</u>	PHYSICAL PRO	OPERTIES			ALTER	ATION					M	INER			ROC	
UE ⊢ DE ⊢	ROCK CORE RE	EC ROD	FeS ₂	SIL	SER	ARG	CH,	FELD	VEIN QTZ%	MoS2 WO3	РЬ	Αg	Acces Cu	Fe	JTYPE	
108-111	7085 10	02 83				÷	:			.020	.013	3	.0	D1 1.3	23 63	}
111-114	5080 73	3 27			:		, . 			.030	.048	3	.0	34 1.	8 79	1
114-117	4819 70	D 56								.028	.067	7	.0	03 1.2	26 5	
117-120	4167 60	22								.028	.007	7	.0	03 1.3	33 5	
120-123	4796 69	9 4								.049	.001		.0	02 1.2	29 5	
123 <u>-126</u>	5130 74	4 29			-				_	.018	.001		,.0	03 1.4	5 5	
126-129	6747 98	8 73			•					.032	.001		.0	. r <b>r</b>	54 5	
129-132	6082-88	8 86								.013	.004		.0	02 1.3	8 5	
132 <u>-135</u>	6680 97	7 97								.018	.001		.0	02 1.9	3 5	
135 <u>-138</u>	6907 10	00 95								.017	.001		.0	02 1.9	)5 5	-
138 <u>-141</u>	6521.94	4 97						i 		.052	006		.0	D3 1.1	85	
14 <b>1-14</b> 4	7044:10	)2 98								.050	.001		.0	1.7	'8 5	
144-147	7252110	05 89								.018	.008		.0	) <u>z</u> 1.6	7 5	
147 <u>-150</u>	7285 10	05 98		; 	<u> </u>					.028	.002		.0	<u>1.6</u>	5 5	
150 <u>-153</u>	6327 91	1 73			ļ	 				.015	.001		.0	DZ 1.1	9 5	
13 <b>-15</b> 6	7473 10	08 82								.018	.006		.0	02 1.2	' <mark>3 3(</mark>	
156 <u>-1</u> 59	7777 11	12 87		 						.037	.002		.0	1.	8 5	
159 <u>-162</u>	6275 9	1 99								.017	.015		.0	1.:	17 5	
162 <u>-165</u>	6590 95	5 93						i		.062	.002		.0	2 <b>1</b> 1.6	i3 5	
165-168	5524 80	55								.012	.002		.0	02 1.8	37 5	_
168-171	6733 97	7 90		i	!					.090	.028		.0	21.9	54 5	
171-174	7384 10	07 95		İ						.053	.059		0.1	2 1.	53 5	_
174 <u>-177</u>	6588 95	5 90		<u> </u>	;					.022	.001		0.1	<u>11.:</u>	3 5	
177 <b>-1</b> 80	5849 8	5 97								.013	.006		.0	<u> 1.:</u>	37 5	
180-183	8383 12	21 98								.013	.013		.0	o <b>t</b> 1.2	21 5	
183 <b>-1</b> 86	6866 99	9 100								.010	.051		.0	2 1.1	'5 5	
186-189	6225 90	D 83								.038	.002		.0	<u>, 1 1.</u>	<u>59</u> 5	
189-192	6475 94	4 96								.020	.004		.0	<b>11.</b>	⁷ 9 5	_
192-195	6678 96	5   100								.017	.011		0.	<u>11.4</u>	14 10	)
195-198	7490 10	08 100		<u> </u>						.022	.005		0.	D <b>1</b> 11.4	18 10	)
198-201	6920 10	00 100								.027	.001		.0	0 <b>1 1.</b> :	32 3	
201-204	7056 10	92 92								.027	.146		0.	46 1.:	26 10	)
`4-207	5114 74	4 77								.038	.052		0.	ot 0.8	30 16	-
207-210	6746 97	7 74								.022	.027		.0	02 1.0	)4 10	)
210-213	6242 90	) 79								.015	.021		0.	11.0	10 2	Ē
												1	Bego	d n	sen	

2A

PAGE

## DATE Jan26-Feb7

LOGGED BY

PAGE

B. Fraser

:

_

ſ	H. (	PHYSIC.	AL f	PROPE	RTIES			ALTER		<u>-</u>		<u> </u>		<u></u>		NERA		)N	$\overline{\chi}$	ROCi
	DE P (M	ROCK CO	ORE T	REC	RQD	FeS ₂	SIL	SER	ARG	сн,	FELD	VEIN	MoS ₂	wo3	Pb	Αg	Acces	Cu	Fe	TYPE
213-2	216	6	841	98	88				1	1			.035		.009			.001	1.25	10
216-3	219	64	462	93	93				<b>.</b>				.017		.013		· · · · · · · · · · · · · · · · · · ·	.002	1.91	10
219-3	222	63	375	92	94			-	<b>.</b>		•		.058		.004		,	.001	1.35	3
222-3	225	6	129	88	92	·			•			<u> </u>	.015		.004		<u> </u>	.001	0.89	3
225-3	228	6	784	98	100				•		•		.015		.011			.001	1.25	3
228-:	231	6	199	89	95			•	•			-	.027		.010			.001	1.21	3
231-2	234	71	767	112	100				-		:		.025		.016		•	.001	1.25	3
234-7	237	6	185	89	94			:	•	-+			.045		.005			.001	1.64	10
237-2	240	6	571	95	97								.015		.003		-	.001	1.31	3
240-2	243	79	935	114	100								.037		.001			.001	1.41	3
243-2	246	7	164	103	96			_					.048		.003			.001	1.60	3
246-2	249	6	149:	88	96								.033		.002,			.001	1.62	5
249-2	252	.66	562	96	100			1		-			.027		.014			.002	1.52	5
252-2	255	88	398 _j	128	96	;							.062		.006			001	1.48	10
255-2	258	70	042	101	100								.025		.009			003	1.73	10
<u>^58-2</u>	261	64	187	93	95								.020		.008			003	1.70	10(
:61-2	264	77	740	111	100	:		1	1	:	I		.030		.018			001	1.32	10
264-2	267	76	515	110	98	:					-		.030		.043			002	1.63	5
267-2	268.	9 41	117	94	100	:		i				-	.065		.002			001	1.83	5
						END	OF	HOLE	AT 2	268.9				<b>_</b>						
														-						
								1												
			ĺ																	
_																<u></u>				
			ļ	_						:										
	,																	. <u> </u>		
			į			:														
						:			•		•									
												1			-					
		1	ĺ							· · · ·	1									
											]			_						
_								1				[								
									-											
												†								
	、									1						-	1			
	_						<u></u>			†		<u> </u>	1 -1	<b></b>	<u>+</u>					
																1	Big	<u>~</u>	tro	ier

ЗA

HOLE NO. 81-6

. 1 DATE Jan 26-Feb.7/82

PAGE ____18_____

LOGGED BY <u>B. Fraser</u>

- -

0-3m	Surface rubble
3-6	3.0-3.5 as above; 3.5-4.45 It gy inter.ppy, rusty, 25% xenoliths of
	potassic diorite; 4.45-5.10 quartz flooded zone, weak moly, py; 5.1-6.0
	med gy argillic qtz diorite, very friable, grain size 1-2mm, pkg alter
	to chalky clay.
6-9	6.0-7.95 argillic qtz diorite as above; 7.97-8.17 int ppy; 8.17-9.0 med
<u> </u>	gy argillic qtz diorite as above.
9-12	qtz diorite as above, frizble, rusty throughout to 11.98; 11.98-12.0 m
	gy int ppy
12-15	12.0-12.51 med gy int ppy; 12.51-14.91 med gnd argillic qtz diorite,
	friable; 14.91-15.0 med gy int ppy biotite 3% as 1-3mm phenos, fspar
· · · · · · · · · · · · · · · · · · ·	10% as anhedral to subhedral 2-4mm phenos occasionally to 8mm
15-18	Med gy int ppy as above, 2cm vuggy qtz-py-mo sub// to CA from 17.38-17.
18-21	Med gy ppy as above, *at least two phases of similar ppy present, dk
	gy more silicic less argillic ppy crosscuts pale gy argillic ppy at
	18.13 and 18.59m. 28cm and 5cm wide (not true width but // to C.A.) are
	oriented at 25° and 30° to C.A., gtz veins are oxidized and rusty
	throughout, frags of hornfels and aplite make 15% of section, weakly
	argillic to 20.4: 20.4-21 med gy ppy .numerous joints sub//to C.A.
	although rock is competent, 20% xenoliths of potassic gd and dio.
21-24	med gy int ppy as above
24-27	24-25.9 as above: 25.9-27.0 It gy argillic int ppy biotite bleached
	to sericite 1% unaltered biotite, feldspars chalky, 15% xenoliths,
·	size of quartz veins increases to order of cm rather than mm in arg. zo
	It as a subjict int provide the above of 3cm at-mo-ny vein a
27-30	Lt gy gn drgillic int ppy, similar to above, 4.5cm denne-py venne
· · · · · · · · · · · · · · · · · · ·	20° to L.A. at 28m shows for ang of mo rayering indicating movement
	$\frac{dyring emplacement.}{dyring emplacement.}$
<u>_3U-33</u>	30-31.5 same as above, qt-mo verning sub// to t.A. from 50.50 to 51.45m
	31.5-33.0 med gy inter ppy biotite 2% as t-zimm pienos, rspar 10%
	as annedra ( 2-4mm prenos
33-36	As above
<u>    36–39                               </u>	Med gy gn int ppy, potassic phyllic alteration envelopes associated with
<u> </u>	<u>qt-mo-py veining at 15-25 to L.A., in these zones Diotite has gone</u>
	to sericite, otherwise biotite 3% as I-2mm phenos, feldspar 10% annear
	and as clots, grain size $2-8$ mm, $10\%$ of zone yengliths of $00$ , $01$ and $30$ and

HCLE NO. 81-6

DATE Jan 26-Feb7/82

PAGE <u>2B</u>_____

LOGGED BY <u>B. Fraser</u>

DEPTH	ROCK DESCRIPTION
45-48	As above, patchy biotite in potassic zones marginal to veins
48-51	Med pale gy int. ppy, phyllic alteration increasing in relation to
······	polymetallic veining, 20% xenoliths of gd, dio, ap.
51-54	Lt gy gn int ppy, rusty veining
54-57	As above
57-60	Med gy int ppy, occasional diorite frags
60-63	Med gy int ppy, 5% xenoliths
63-66	Lt pinkish gy int ppy, biotite bleached to sericite, unaltered biotite
<u> </u>	1%, increasing potassic alteration
66-69	As above
69-72	69-71.2 as above, patchy biotite along fractures in potassic clots,
	potassic frags and clots make up 40% of section; 71.2-72.0 lt pinkish
	grey argillic granodiorite, biotite 15%, pale yel-gn clay alteration of plag
72-75	72-72.8 as above; 72.8-73.32 aplite; 73.32-73.82 granodiorite as above,
	73.82-74.85 aplite, 74.85-75.0 shear zone, upper contact at 25° to
	C.A., 50% quartz frags, 50% strongly argillic ppy frags;
75-78	75-75.19 shear zone as above, lower contact at 30° to C.A.; 75.19-78
	pale gy gn argillic int. ppy.
78-81	78-80.13 med gy int. ppy, abt. fractures sub-parallel to C.A., 10%
	biotite as 104mm phenos; 80.13-80.9 creamy granodiorite, abt muscorite
	as 1mm phenos, abt weak qt-mo veins at shallow angles to C.A.; 80.9-81.0
	pale gy potassic granodiorite, weak sericite alteration.
81-84	81.0-81.95 as above; 81.95-84.0 pale gy gn int. ppy 5% xeno of pot gd.
84-87	84.0-84.83 as above; 84.83-87.0 mixed granodiorite and ppy, 60% gd,
	40% ppy, large (1 cm) g.v.'s at shallow (10°-15°) angles to C.A.
87-90	87.0-88.0 as above; 88.0-90.0 pale gy gn int. ppy, strong biotite margins on
<u></u>	xenoliths.
90-93	As above.
<u>93-96</u>	pale gy int. ppy, potassic alteration increased.
96-99	96.0-97.84 It gy int. ppy, scattered hornfels frags less than lcm;
	97.84-99.0 xenolith righ pale gy int. ppy, 25% xenoliths of argillic
	potassic granodiorite.
<u>99-102</u>	med qy int ppy; occasional xenoliths of fine gnd biotite rich diorite,
<u> </u>	strong jointing at mod angles to C.A.
102-105	102-103.16 as above; 103.16-105.0 pale gy int. ppy, increased argillic,
	sericitic alteration, 13mm polymetallic g.v. sub// to C.A. from 104.02-104.8
•	- 7

Bugodroom

HULE NU. 81-6

DATE Jan.26-Feb.7/82

LOGGED BY <u>B. Fraser</u>

DEPTH	ROCK DESCRIPTION
105-108	Creamy argillic int. ppy, increasing polymetallic veining.
108-111	108.0-109.0 pinkish tan int. ppy, increasing argillic alteration
	apparently related to polymetallic veining; 109.0-109.44 aplit; 109.44-
L	111.0 int. ppy as above, 25% aplite frags
111-114	111.0-111.19 int. ppy as above; 111.19-111.90 fault zone, broken
	foughly 40% of core lost, int. ppy frags, qtz frags; 111.90-112.45
	quartz vein, weak sphal; 112.45-114.0 fault zone, 60% phyllic int ppy frags
	dominated by polymetallic g.v.'s sub// to C.A. with sub// sericitic shears.
114-117	114.0-114.16 as above; 114.16-117.0 pale gy int ppy, strongly phyllic,
	dominated by lcm polymetallic g.v.'s sub-parallel to C.A. with phyllic envel
117-120	117.0-118.27 as above; 118.27-120.0 med gy int ppy mottled texture due
	to 2-4mm kspar clots, this texture is present in all int. ppy from start
	of hole, occasional aplite frags.
120-123	med gy int ppy, 2% biotite phenos 1-3mm, 25% absorbed frags of aplite
	and potassic granodiorite.
123-126	As above.
126-129	As above.
129-132	As above, 15cm of bkn, quartz veined ppy at 131.06-131.21
132-135	As above, increasing phyllic alteration as 1-2cm envelopes on qt-kspar-py
<u> </u>	veins ( < lcm) sub-parallel to C.A.
135-138	As above, 5-20cm frags of aplite and potassic gd.
138-141	As above
141-144	As above, abt. xenoliths of potassic gd, occasional fire gnd. biotite
	rich dioritic xenoliths, weakly foliated at 143.3m @ 50° to C.A.
144-147	med gy gn int ppy, 2mm anhedral feldspar porphyroblasts overgrow
	fine gnd. biotite rich diorite xenoliths @ 144.2m, this indicates porphyrit
	texture of feldspar in ppy is an overgrowth after frags of country rock
	had spalled off, 2% porphyritic biotite as 1-3mm phenos, 15-20% porphyritic
	feldspar as anhedral 103mm phenos, groundmass of very find gnd chloritic
	biotite and quartzofeldspathic infilling, potassic alteration as veins
	and masses surrounding biotite-rich fractures.
147-150	Int ppy as above
150-153	150.0-150.03 as above; 150.03-153.0 tan argillic int ppy bleached zone
	associated with faulting at roughly 20° to C.A.
153-156	153.0-153.05 as above; 153.05-155.80 argillic potassic granodiorite,
	pale gn clay alteration of plagioclase, massive pyrite as discontinuous
	2-4mm lenses at 153.76; 155.80-156.0 med gy int. ppy
	Buyon Traser

HOLE NO. 81-6

.

÷

(i

DATE Jan 26-Feb 7/82

LOGGED BY <u>B. Fraser</u>

PAGE _____4B

•

۲

DEPTH	ROCK DESCRIPTION
156-159	Med gy int ppy
159 <b>-1</b> 62	As above
162-165	162.0-164.63 pale gy int ppy, rusty 1mm gypsum infilled fault @ 20° to
	C.A. @ 162.98m; 164.63-165.0 tan argillic int ppy
165-168	165.0-166.93 as above; 166.93-168.0 med gy int ppy
168-171	Med gy int. ppy, abot frags of ap and gd, phyllic envelopes on
	qtz-kspar veining sub-parallel to C.A.
171-174	As above
174-177	174-176.53 as above; 176.53-177.0 pale gy gn int ppy, increase in argillic
	and sericitic alteration related to fault slicks from sub-parallel to
	50° to C.A.
177-180	As above
180-183	180-182.34 as ABove, abt frags of ap and gd; 182.34-183.0 med gy gn
	int ppy, phyllic envelopes to 2cm on polymetallic veining sub-parallel
	to C.A., rare angular block hornfels xenoliths, abt xenoliths of ap and gd.
183-186	183.0-185.8 as above; 185.8-186.0 pale yel gn argillic int ppy, faulting
	with chloritic gouge at 15°-30° to C.A.'
186-189	186.0-187.19 as above; 187.19-189.0 med gy gn int ppy
189-192	As above
192-195	192.0-192.16 as above; 192.16-195.0 mixed zone large xenoliths (75cm) of
	potassic gd and aplite make up 70% of section, 30% of zone int ppy with
	strong potassic alteration, strong k-spar-sericite zone from 192.79-193.51
	with discontinuous qt-kspar-fluorite veining, dissem. moly and muscorite
	flakes to 2mm.
195-198	As above, xenoliths 50% of section.
198-201	198-198.21 as above; 198.21-201 quartz-flooded potassic granodiorite, *
	barren 8mm quartz vein @ 8° to C.A. changes to qtz-kspar-fluorite as it
	crosses aplite xenolith @ roughly 200m.
201-204	201-202.01 as above; 202.01-204.0 lt gy int ppy, 10% xenoliths.
204-207	204-204.47 as above, strong + 20mm poly met vein sub-parallel to C.A. from
	204.43-205.06; 204.47-206.40 quartz flooded potassic granodiorite, 50%
	quartz, undulating fault of 3-8mm width infilled with sparry gypsum
	sub-parallel to c.a. from 205.05-206.05; 206.4-207 mixed zone50%
	int ppy, 50% potassic gd. frags
207-210	xenolith rich ppy as above
210-213	As above Buyon France

HOLE NJ. _81-6

ţ

.

. 1 .

DATE <u>Jan 26-Feb 7/82</u>

PAGE

ROCK DESCRIPTION
216.0-217.68 as above; 217.68-219.0 med pinkish grey potassic granodiorite
abt fluorite veining.
As above
234.0-235.11 as above; 235.11 236.0 med gy int ppy; 236.0-237 med gy
granodiorite as above.
As above
As above, scarce frags of bk hornfels to 4cm
243.0-245.61 as above; 245.61-246.0 med gy int ppy, 25% xenoliths of pot
As above
As above, 3-7mm qt-carb-sphal-py-moly vein sub-parallel to C.A. from
249.15-250.10 with associated phyllic alteration.
252-254.39 As above; 254.39-255.0 pink strongly potassic sericitic granod
ite, 8mm fault gouge @ 35° to C.A. @ 254.39m
255-256.6 as above; 256.6-258.0 xenolith rich int ppy,40% potassic
granodiorite and rare hornfels frags ( $\angle$ 2cm).
As above
As above, *unusual 1mm gypsum vein @ 13° to C.A. at roughly 261.5m with
15mm envelope either side of coarse chlorite.
264-266.6 lt gy int ppy fractures infilled with biotite and pyrite;
266.6-267.0 dk gy biotite rich int ppy, abt xenoliths, biotite to 30%
foliation @ 56° to C.A., abt. fluorite veining
As above
END OF HOLE 81-6 AT 268.9M

**...**.















_____