82-#713

Assessment Report for the Soil and Till

Geochemistry Survey

on the

SG and T Claims

(Southern Comfort Group)

Omineca Mining Division

NTS 93 L/1

Latitude 54⁰ 10' N, Longitude 126⁰ 15' W

Owned by Equity Silver Mines Ltd.

Work by Equity Silver Mines Ltd.

By: R.B. Pease, B.Sc.

GEOLOGICAL BRANCH ASSESSMENT REPORT

10,727

TABLE OF CONTENTS

4

、 ^

Pa	age
List of Tables i	ii
List of Figures	iii
Introduction	_
 (i) Location and Access	1 1
(iii) Geochemical Survey1 Geochemistry Discussion	1
(i) Sampling Procedure	3
(iii) Evaluation of Results	3 1
Conclusions and Recommendations 4	1
Statement of Expenditures 5	5
Author's Qualifications6	5

LIST OF TABLES

ł

•

 \mathbb{C}

	Page
Table 1 - Claims Covered by Geochemical Survey	1
Table 2 - Claims in Southern Comfort Group	2
Table 3 - Analytical Procedures	4

LIST OF FIGURES

4

27

 $\left(\right)$

	Page
Figure 1 - Location Map	2
Figure 2 - Copper (Cu) Soil Geochemistry	In Pocket
Figure 3 - Lead (Pb) Soil Geochemistry	11
Figure 4 - Mercury (Hg) Soil Geochemistry	12
Figure 5 - Zinc (Zn) Soil Geochemistry	н
Figure 6 - Silver (Ag) Soil Geochemistry	IJ
Figure 7 - Copper (Cu) Till Geochemistry	ti
Figure 8 - Zinc (Zn) Till Geochemistry	u
Figure 9 - Lead (Pb) Till Geochemistry	n
Figure 10 - Silver (Ag) Till Geochemistry	
Figure 11 - Arsenic (As) Till Geochemistry	п
Figure 12 - Antimony (Sb) Till Geochemistry	

.

INTRODUCTION

(i) Location and Access

The claims are located 39 kilometers from Houston, B.C., along the Equity Silver Mine access road (Figure 1). Access to the claim group was by means of a 4×4 vehicle along an old logging road which branches off the Goosly Lake Equity mine road.

(ii) <u>Claim</u> Ownership and Status

All the claims worked on are wholly owned by Equity Silver Mines Ltd. Table 1 lists the claims on which the geochemical surveys were conducted. For the purpose of filing this assessment, forty claims have been grouped and named the Southern Comfort group. Table 2 lists the claims of the Southern Comfort group. All the claims are the 2-post type.

(iii) <u>Geochemical</u> Survey

Between May 26th and July 8th, 920 soil samples were collected. Between August 18th and September 2nd, 73 till samples were collected.

Name of Claim(s)	Record Number(s)
Tan 1 - 7 SG 3 SG 5 SG 7 SG 9 4	99650 - 99656 54776 54778 54780 54782
SG 18 - 24 SG 29 - 32 SG 34 SG 54 SG 56 T 38	54787 - 54793 54798 - 54801 54803 54807 54809 65522
「 46 - 49 「 51 「 170 - 173	65530 - 65533 65535
170 - 175	02010 - 02051

Table 2

.../2

Name of craim(s) Record Numb	er(s)
TAN 199650SG 7 - 10 $54780 - 547$ SG 19 54788 SG 21 - 24 $54790 - 547$ T 1 - 12 $65485 - 654$ T 17 - 20 $65501 - 655$ T 25 - 31 $65509 - 655$ T 33 65517 T 35 65519 T 37 - 41 $65521 - 655$	83 93 96 04 15 25

Table 1

GEOCHEMISTRY DISCUSSION

(i) <u>Sampling Procedure</u>

Soil Samples were collected from the reddish-brown B horizon, where available, at depths of 15 to 40 centimetres using a mattock. A total of 920 soil samples were collected every 50 metres on east-west grid lines located either 100 or 200 metres apart. Lines were controlled by compass and hip-chain. The portion of the survey conducted on the Gaul claims is not included in this report.

Till samples were collected from light brown C horizon, at depths from 0.5 to 4.0 metres. The till samples were collected by driving a hollow tube sample bit vertically into the ground with a portable gasoline-powered Atlas-Cobra drill. The sample tube retrieves a 15 cm long by 1.5 cm diameter core of till.

The maximum sample depth was 4.0 metres. Attempts were made to drill as deep as possible. If the first attempt at a station was considered unsatisfactory, another try was made. Therefore, in some instances, more than one sample was collected per station. Drilling problems were caused by the bit's inability to penetrate boulders in the till. Most of the samples collected from depths of 3.0 to 4.0 metres are believed to be on or close to the bedrock surface.

A total of 73 till samples were collected every 100 metres on east-west grid lines located 100 metres apart. The same stations as the soil survey were used, however only one section of the soil grid had till samples drilled.

Notes were taken for each soil and till sample regarding line and station; soil composition and colour; stream, road and claim post locations; sample depth; percentage residual and ground slope. Samples were collected in brown kraft paper bags and sent to the Placer Development Ltd. Geochemistry Laboratory in Vancouver for analysis.

(ii) Analytical Procedure

Both the soil and till samples were dried in a hot air sample drying unit at 50°C and then the -80 mesh fraction was sieved out for analyses. The soil samples were analyzed for Cu, Pb, Zn, Ag, and Hg. The till samples were analyzed for Cu, Pb, Zn, Ag, As, and Sb. Table 3 summarizes the analytical procedure used for each element.

...../4

		_	
Та	h	16	्र

Element	Units	Wt. (grams)	Attack Used	Digestion Time	Detection Range	Method
Cu	ppm	0.5	Concentrated HC104/HN03	4 hrs	2-4000	Atomic Absorption
Pb	ppm	0.5	Concentrated HC10 ₄ /HN0 ₃	4 hrs	2-3000	Atomic Absorption Background Correction
Zn	ppm	0.5	Concentrated HC10 ₄ /HNO ₃	4 hrs	2-3000	Atomic Absorption
Ag	ppm	0.5	Concentrated HClO ₄ /HNO ₃	4 hrs	0.2-20	Atomic Absorption Background Correction
As	ррт	0.5	Concentrated HC10 ₄ /HN0 ₃	4 hrs	2-1000	Atomic Absorption Hydride Generator
Sb	ppm	0.5	Concentrated HC10 ₄ /HN0 ₃	4 hrs	2-1000	Atomic Absorption Hydride Generator
Hg	ppb	0.5	Dilute HNO ₃	2 hrs	5-2000	Atomic Absorption Cold Vapour Generator

(iii) Evaluation of Results

a) <u>Soil</u> - The soil geochemistry results are plotted on separate plan maps at a scale of 1:5000, see Figures 2 - 6 inclusive in the pocket at the back of the report. Several anomalous soil samples were determined in copper, zinc and silver. Very few anomalous results were found in lead or mercury. The anomalous areas are in the north-western and central portions of the soil sample grid.

b) $\underline{111}$ - The till geochemistry results are plotted on separate plan maps at a scale of 1:5000, see Figures 7 - 12 inclusive in the pocket at the back of the report. The till sampling was intended to be an orientation survey to determine; one, if the drilling technique would be suitable in this area and, two, to test the central soil anomaly at depth. Several samples were anomalous in copper and silver, however few in lead and zinc, and none in arsenic and antimony. A north-easterly trending zone of anomalous copper values was outlined in the western portion of the till survey grid.

CONCLUSIONS AND RECOMMENDATIONS

The soil and till geochemistry surveys have outlined areas that warrant sub-surface exploration. The area surveyed is south of the two known Equity orebodies. Outcrop is poor in the area, but it is believed geology similar to the host rocks of the orebodies underlie the anomalous zones. It would appear till sampling is a useful technique in exploring glaciated, till-covered terrain.

..../5

STATEMENT OF EXPENDITURES

2.

3.

4.

5.

Salaries, Compensation, Supervision 1.

a) <u>Soil Geochemistry</u>

	R. Pease D. Hanson J. McClintock	May 26, 27 May 26, 27, 31 June 3, 14, 15, 17, 22,	2 @ \$136.70 3 @ \$134.2!	0 \$273.40 5 402.75
	K. Donner	23, 24 June 4, 7, 10, 15, 16, 21, 22, 23, 24, 25, 30, July 7	7 @ \$100.00) 700.00
	P. Bryan	8 May 26, 27, 28, June 1,	13 @ \$ 92.50) 1,202.50
	A. Smith	July 5, 7 May 26, 27, 28, 31, June 1, 7, 9, 14, 16, 17.	12 @ \$ 92.50	1,110.00
		21, 25, 28, 29, 30, July 5, 8	17 @ \$ 92.50	1,572.50
	b) <u>Till Geochemistry</u>			
	R. Pease	Aug. 18, 24, 25, 26, 27, Sept. 2	6 @ \$136 70	820.2h
	D. Hanson	Aug. 18, 24, 25, 26, 31,		
	J. McClintock K. Donner	Aug. 27, 31, Sept. 2 Aug. 18, 24, 25, 26, 27,	3 @ \$100.00	300.0p
	P. Bryan	31, Sept. 2 Aug. 24, 25, 26, 27 31	7@\$92.50	647.5D
	-	Sept. 2	6@\$92.50	555.00
	د.		Sub Total	\$8,389.35
2.	Transportation			1
	3/4 ton Chev 4 x 4 -	34 days at \$40.00/day		\$1,360.00
3.	Analysis of Samples			
	a) Soil samples - 920	0@\$8.30	\$7,636.00	l I I
	b) Till Samples - 73	@ \$8.60	\$ 627.80	
			Sub Total	\$8,263.80
4.	Plotting and Drafting	L		
	15 days @ \$200.00/day		~	\$3,000.00
5.	Report Preparation			
	15 days @ \$250.00/day			\$3,750.00
				/6

1.	Salaries	\$8,389.35
2.	Transportation	1,360.00
3.	Analysis of Samples	8,263.80

- 4. Plotting & Drafting 3,000.00
- 5. Report Preparation <u>3,750.00</u>

TOTAL EXPENDITURES

AUTHOR'S QUALIFICATIONS

I graduated from the University of Waterloo in the spring of 1981 with an Honours Bachelor of Science degree in Earth Sciences. As a student, I spent some 20 months employed in the mineral exploration field. After graduation I was employed as an exploration geologist with Duval International Corporation, Vancouver. Since February of 1982 I have been employed as an exploration geologist with Equity Silver Mines Ltd., Houston, British Columbia.

Robert B. Pease, B.Sc.

RBP:cab

\$<u>24,763.15</u>

STATEMENT OF EXPENDITURES

1

to form part of

ASSESSMENT REPORT FOR THE SOIL AND

TILL GEOCHEMISTRY SURVEY

on the

SG and T Group Claims

Omineca Mining Division

NTS 93 L/1

Latitude 54° 10' N, Longitude 126° 15' W

Owned by Equity Silver Mines Limited

Work by Equity Silver Mines Limited

By: R. B. Pease, B.Sc. 1982 September

STATEMENT OF EXPENDITURES

- 1. Salaries, Compensation, Supervison
 - A. <u>Soil</u> Geochemistry

May 26, 27	20	136.70	273.40
May 26,27, 31	30	134.25	402.75
June 3, 14, 15, 17, 22, 23, 24	70	100.00	700.00
June 4, 7, 10, 15, 16, 21, 22, 23, 24, 25, 30, July 7, 8,	13 @	92.50	1,202.50
May 26, 27, 28, June 1, 3, 4, 9, 10, 28, 29, July 5, 7	12 @	92.50	1,110.00
May 26, 27, 28, 31 June 1, 7, 9, 14, 16, 17, 21, 25, 28, 29, 30 July 5, 8,	17 @	92.50	1.572.50
	<pre>May 26, 27 May 26,27, 31 June 3, 14, 15, 17, 22, 23, 24 June 4, 7, 10, 15, 16, 21, 22, 23, 24, 25, 30, July 7, 8, May 26, 27, 28, June 1, 3, 4, 9, 10, 28, 29, July 5, 7 May 26, 27, 28, 31 June 1, 7, 9, 14, 16, 17, 21, 25, 28, 29, 30 July 5, 8,</pre>	May 26, 27 2 @ May 26,27, 31 3 @ June 3, 14, 15, 17, 22, 7 @ June 3, 24 7 @ June 4, 7, 10, 15, 16, 7 @ Juny 7, 8, 13 @ May 26, 27, 28, June 1, 3, 4, 9, 10, 28, 29, July 5, 7 12 @ May 26, 27, 28, 31 June 1, 7, 9, 14, 16, June 1, 7, 9, 14, 16, 17, 21, 25, 28, 29, 30 July 5, 8, 17 @	May 26, 27 2 @ 136.70 May 26,27, 31 3 @ 134.25 June 3, 14, 15, 17, 22, 7 @ 100.00 June 4, 7, 10, 15, 16, 7 @ 100.00 June 4, 7, 10, 15, 16, 13 @ 92.50 May 26, 27, 28, June 1, 3, 4, 9, 10, 28, 29, July 5, 7 12 @ 92.50 May 26, 27, 28, 31 12 @ 92.50 May 26, 27, 28, 31 17 @ 92.50

B. <u>Till Geochemistry</u>

R. Fease	Aug 18, 24, 25, 26, 27, Sept 2	60	136.70	820.20
D. Hanson	Aug 18, 24, 25, 26, 31 Sept 2	60	134.25	805.50
J. McClintock	Aug 27, 31, Sept 2	30	100.00	300.00
K. Donner	Aug 18, 24, 25, 26, 27 31, Sept 2	70	92.50	647.50
P. Bryan	Aug 24, 25, 26, 27, 31 Sept 2	60	92.50	555.00

Sub Total 8,389.35

1,360.00

3/4 ton Chev 4 x 4 - 34 days at 40.00/day

3. Analysis of Samples

2. Transportation

 A. Soil samples - 920 @ 8.30
 7,636.00

 B. Till samples - 73 @ 8.60
 627.80

Sub Total 8,263.80

..../2

- Plotting and Drafting
 15 days @ 200.00/day
- 5. Report Preparation

15 days @ 250.00/day

Summary of Expenditures

1.	Salaries	8,389.35
2.	Transportation	1,360.00
3.	Analysis of Samples	8,263.80
4.	Plotting and Drafting	3,000.00
5.	Report Preparation	3,750.00

TOTAL EXPENDITURES <u>\$ 24,763.15</u>

3,000.00

3,750.00

R. B. Pease, B. Sc.

6007000N

·_____

.19 N

1 **8 N**

€v- ---

-17 N	51 48 87 81 48 43 58 27 78 450 250 178 160 210 203 133 171 12 410 112 57 63 38 33 38 53 31 17 27	
	$\begin{array}{c} sc \ sc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
L 6 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
. 15 N		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.1 4 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
L1 3 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
: 12 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$5G_{1}$ $5G_{2}$ $5G_{3}$ $7G_{1}$ 0 10 10 10 10 10 10 10	
⊆ ET N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
LION	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
_9 N	$ \begin{bmatrix} 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\ 37\\$	
8 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
- 7 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_6 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
⊥ 5 N	67 18 13 28 19 17 20 36 40 46 70 85 120 45 148 150 211 157 170 186 171 97 250 85 101 73 257 126 980 景瓷荒荒広至。	
L4N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_3N		6005000 N -
:- 2 N	100000000 11 13 16 26 3	5 6 8 8 8 5 5 25 20 49

38 6005000N--

6007000N _____

	८८ ३	5618				•		T170	7171
			MINERAL LEASE		MINERAL LEASE # 1	SG 54			
19N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 20 57 25 [#] 662 19 59 226 44 43 0 0 0 0 0 0 0 0 0 0 0	62 69 67 21 26 0 0 0 0 40 0 18	²⁰ ³¹ ³⁵ ³⁰ ³⁹ ³⁰ ⁴⁶ ⁴⁹ ⁴⁷ ³⁰ ³³ ³³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ι	37 31 24 49 34 29 51 43 26	20
0.1 8 N	25 18 31 17 10 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·				Ĩ.
1 7 N	17 15 39 25 22 16 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Τ'172	T173

	L16 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 30 24 26 7 30 12 21 23 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	15 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	1.1 4 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	L13 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	L12 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	LIIN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	LION	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	L9N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· ·
	L8N	59 26 19 22 16 18 14 10 14 42 11 40 22 18 23 18 49 210 95 45 30 41 27 22 204 255 37 50 27 () $0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	
·.	L 7 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	L6N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	L 5 N	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	L4N 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	_3N		6005000 N -
	L 2 N	BESSEMER ENEE 44 34 30 60 81 60 22 2	
	_ ! N		

LIOS T 4 8 T 4 9

32 13 10 12 14 14 16 20 23 24 8 13

GEOLOGICAL BRANCH ASSESSMENT REPORT

10

L14 S

цIJ

.

•-----

.

1

.

L I 6 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. 15 N	20 15 20 26 20 26 28 35 43 47 57 58 51 49 31 40 33 31 30 28 29 40 36 1/8 29 28 34 24 ²³ 41 62	16 20 16 24 25 24 18 20 32 20
.14 N	16 25 25 21 23 20 22 38 34 37 37 41 49 40 44 36 35 42 32 29 23 35 47 27 11 33 33 25 25 38 86 33 28 23 22 19 15 24 18 24 23 13 11 9 49 17 14 22 333	
L13 N	13 26 19 27 22 20 43 52 40 39 45 26 31 32 36 32 35 31 21 31 28 13 9 29 31 36 32 42 9 7 12 13 24 15 23 17 24 36 11 46 41 31 66 15 18	
12 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_1+N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
LION	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
9 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
7 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
_ 6 N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
∟ 5 N	8 5 4 5 8 6 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 19 27 29 29 26 26 23 31 26 38 30 30 27 44 7 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
L4N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>
_3N	TAN 3 TAN 3	
- 2 N	6 15 17 18 21 16 18 6	\$ 8

_! N

n and a second second

- : ```**`**``**I**`,

· --- · · · · · ·

- ---- -

17 N

6007000N —

τι7ι.

T173

T170

19 N

18 N

T173

T170

T172

10 0 0 0 0 0 0 0 0 0

T171

(_19 N

18N

_17 N

6007000N i de la consecta de l

• _17 N

MINERAL LEASE

5618

563

0.6

0

2.2 O

1.2 0.7 1.2 0 0 0

0.3 0.5 1.5

6007000N -1 2 4 4 1 **1** 2 1 .

0.4 0

 x0.2
 c0.2
 0.3
 0.5
 1.0
 0.7
 0.7
 0.5
 1.8

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

L18 N

_17 N

•_____ / · - - - _

	$\begin{array}{c} scs \\ \hline 0.7 \ 0.8 \ 0.7 \ 1.0 \ 1.4 \ 0.4 \ 1.2 \ 7.3 \ 1.9 \ 2.8 \ 4.8 \ 2.0 \ 1.5 \ 1.5 \ 1.5 \ 1.3 \ 5.2 \ 1.2 \ 2.0 \ 2.4 \ 8.7 \ 2.3 \ 1.1 \ 1.1 \ 2.0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_15 N		
L.14 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
LI3N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
L12 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
LIIN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
LION	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
L9N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
L 8N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
'.7 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
⊑6 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
L5N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
L4N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_3N		N N T N N N T AN 3
L 2 N	BESSEMER CREEN	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

6005000N

					ವರ್ಷದಲ್ಲಿ ಅನ್ನುಗಳುವುದು ಎಂದು ವರ್ಷದಲ್ಲಿ ಎಂದು ಎಂದು ಎಂದು ಸೇವರಿಯಲ್ಲಿ ನೀಡುವಾಗಿ ಮನ್ನು ಇಂದು ಸೇವರಿಯಲ್ಲಿ ಎಂದು ಅವರು ಅವರ ಸಂಭ ವರ್ಷದಲ್ಲಿ ಸಂಭಾತ ಸಾಹಿತ್ಯ ಸಂಭಾನವನ್ನು ಸಂಭಾತ			
				g -				
						۰. ج ق [*]		
					~			
								\bigwedge
					· · ·			NI
			•					
								•
	· · · · · · · · · · · · · · · · · · ·	· · ·						
 :							6 (07000N
i		A TO A THE AND A REAL AND A REAL						
		SC 3	5010	· · · · · · · · · · · · · · · · · · ·				T170 T171
· .				MINERAL LEASE	MINERAL LEASE # 1	5654		
	19N		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 O 57 50 68 51 60 61 91 52 89 61 73	83 77 480 165 110 101 146 99	115 100	
· · · · · · · · · · · · · · · · · · ·	18N	1/12 68 89 95 127 11 00000000000000000000000000000000000	10 160 115 80 123 79 64 80 107 82	46 84 138 103 74 50 28 60 67 60 55 48 50	65 1		ő 6 ⁴	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		89 104 168 93 87 96 8	82 72 85 78 92 71 82 81 106 89		318 ()			T172 T173
	_17 N	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/# () 55			97 57 57 101 81 88 130 92 108
	L.16 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6 19 103 61 51 10 7 6 0 5 6 2 0 5 6 2 0 5 6 2 0	00000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	_15N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 108 144 86 41 80 57 65 55 62 82 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	89 ()	\$ G \$ •		
		133 111 75 83 104 73 95 8.	2 74 75 81 81 95 88 107 83 70 1	24 147 76 65 66 90 86 70 85 100 79 67 101	110 0r		0 0	0 0 0 0 0 0 0
	L14 N	0 0 0 0 0 0 0 0 0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	L13 N	141 97,120 75 62 10 0 0.0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95 37 16 46 93 88 140 96 85 87 264	103 164 650 163 366 19 43 77		·
	LI2N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>158 80 80 70 158 130 101 1</u> 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 57 0 56.31			
	i 1 I N	111 114 89 187 107 108	5 G 2 2 76 106 86 75 87 72 96	57 64 73 69 76 84 66 32 30 29 26	109 0 93	· · · · · · · · · · · · · · · · · · ·		
					() 146 ()		1	
	LION	160 164 157 151 130 87 10 0 0 0 0 0 0 0	$5 \begin{array}{cccccccccccccccccccccccccccccccccccc$	18_100 110 103 164 160 270 113 206 89 90 87 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$:		
	L 9 N	124 175 144 106 201 75 79 0 0 0 0 0 0 0	165 72 123 136 88 185 128 109 152	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233 129 121 168 195 232 190 197 550 610 286 750 750			
		118 143 110 110 121 98 116	6 70 103 85 300 115 106 90 116 364	215 470 346 192 271 233 216 338 255 173 211 260	125 () () () () () () () () () () () () ()			
•		SG9 135 154 246 255 127 144 or		5633	253 520 207 280 183 283 560 376 380 187 259 94			
	'-7 N		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	183 169 148 244 281 236 162 172 113 171 203 225 254	450 580			· · · •
	_6 N	182 169 103 83 201 328 74 8 0 0 0 0 0 0 0	3 102 123 141 85 124 148 0 0 0 0 0 0	176 259 175 189 224 219 241 267 234 141 273 0 0 0 0 0 0 0 0 0 0	83		•	
	∟5N	177 76 93 124 127 138 72 0 0 0 0 0 0	92 89 118 92 151 93 147 188 174	195 254 172 326 312 214 175 124 113 149 330 650 270	435 500 1550 350 242			
•				1130 1130	3110 5500			
	L4N 76 69 152 0 0 0	58 98 93 77 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176 125 197 142 188 167 388 437 890 920 189 190				
	-3N						then JAN3 60	05000 N -
	L 2 N	SSEMER CREET						
		8	•			(//*	7 12 87 63 93 88 108 148	

.

