82-#750 - 10748

GEOCHEMICAL REPORT

on a

SOIL SAMPLING SURVEY

over the

SIL 2 CLAIM

TAWEEL LAKE AREA KAMLOOPS MINING DIVISION

BRITISH COLUMBIA

Ĵ		
	Sil 2 Claim	: 17 km S80 ⁰ W of Clearwater, B.C. : 51 [°] 37'N Latitude 120 [°] 17'W Longitude : N.T.S. 92 P/9
	Written for	: Simon A. Jutras Owner and Operator Box 1930 Salmon Arm, B.C. VOE 2TO
	Written by	: Dale E. Wallster Geologist 206 - 414 East 10th Ayenue Vancouver, B.C. V5T 128
	Dated:	: November 10, 1982 GEOLOGICAL BRANCH ASSESSMENT REPORT
<i>n</i>)		10,748

د ا د ا

TABLE OF CONTENTS

 $\langle \rangle$

Ũ

	PAGE
SUMMARY	1
CONCLUSIONS	2
RECOMMENDATIONS	3
INTRODUCTION AND GENERAL REMARKS	4
PROPERTY OWNERSHIP	4
LOCATION AND ACCESS	5
PHYSIOGRAPHY & TOPOGRAPHY	5
HISTORY	6
GEOLOGY	6
GEOCHEMICAL (SOIL) SURVEY	7
CONCLUSIONS	8
STATEMENT OF QUALIFICATIONS	9 [,]
REFERENCES	10
AFFIDAVIT OF EXPENSES	11

APPENDICES

.

APPENDIX	"A"	ANALYTICAL METHODOLOGY
APPENDIX	''B''	GEOCHEMICAL DATA FROM SOIL SAMPLES (NORTH GRID)
APPENDIX	"C"	GEOCHEMICAL DATA FROM SOIL SAMPLES (SOUTH "MAG" GRID)
APPENDIX	ייםיי	GEOCHEMICAL DATA FROM ROCK SAMPLES

• - -

FIGURES

.

Figure	1	Location Map							
Figure	2	SIL 2 Claim - Survey Area							
Figure	3	Geochemical (Soil) Survey							

 \odot

Ę

 \bigcirc

SUMMARY

The SIL 2 Claim is located to the immediate east of Taweel Lake, approximately 17 kilometers S80^OW of Clearwater, B.C. S.A. Jutras, of Salmon Arm, B.C., is the owner of the claim.

On August 15, October 4 and 5, 1981 and July 31 and August 1, 1982; 190 soil samples were collected from the B horizon. These samples were sent to Acme Analytical Laboratores (Vancouver, B.C.) and were analyzed for Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Ba, W, and Au. Results of these analyses are appended.

Soil sampling was completed over 2 grids. The southern grid had previously been used for a ground magnetometer survey. This geophysical survey outlined several magnetic anomalies.

CONCLUSIONS

It is recommended that further geochemical sampling be conducted particularly in the southwest quadrant of the property. This sampling should extend the present south "mag" grid and detail the intrinsically anomalous areas within this grid. The extension of the grid should be to the north, south and east. Several "long lines" stretching across the entire property may serve to find other potentially anomalous zones. When the extension geochemical surveys are completed, statistical manipulation of the data should be applied in order to define anomalous values. The potential overlap of magnetic anomalies and geochemical anomalies may serve to outline drill targets.

-2-

RECOMMENDATIONS

- Grid lines should be cut (N-S Baseline with E-W crosslines) on the southwest quadrant of the property.
- 2. The property should be geologically mapped.
- 3. The soil sampling program should be extended. Samples taken should be analyzed by Inductively Coupled Argon Plasma (ICP) for Mo, Cu, Pb, Zn, Ag, Mn, Fe, As, Ba, W, Sb, and Th, and by specific extraction and atomic absorption instrumental techniques for Sn, Hg, and Au.
- 4. The gound magnetometer survey should be extended.
- 5. Based upon results of the above work, trenching, further geophysics or drilling may be recommended.

GEOCHEMICAL REPORT

ON A

SOIL SAMPLING SURVEY

OVER THE

SIL 2 CLAIM

TAWEEL LAKE AREA - KAMLOOPS MINING DIVISION

BRITISH COLUMBIA

INTRODUCTION AND GENERAL REMARKS

Soil sampling was conducted on the SIL 2 Claim during the periods August 15, 1981, October 4-5, 1981 and July 31 and August 1, 1982. This report discusses the survey procedure and implications of geochemical data obtained.

The report was written on behalf of Simon Jutras, the owner and operator of the claim.

Information in this report is based upon the author's direct participation in the field work, a review of the pertinent geological reports available, and data from geochemical analyses.

PROPERTY AND OWNERSHIP

The property consists of one mineral claim, staked in accordance with the modified grid system of the Province of British Columbia, and described as follows:

CLAIM NAME	NO.OF UNITS	RECORD NO.	DATE RECORDED
SIL 2	20	1996	August 14, 1979

These claims are owned and operated by Simon A. Jutras

of Salmon Arm, B.C.

An attempt to verify the legal status of these aforementioned claims was not an objective of this report, and thus any verdict of their nature is beyond the scope of this report and the knowledge of the author.

LOCATION AND ACCESS

The SIL 2 Claim is on map N.T.S. 92 P/9 and has geographical coordinates are 120⁰17' West longitude and 51⁰37' North latitude. The claim lies to the immediate east of the Taweel Lake, approximately 17 kilometers S80⁰W of Clearwater, B.C.

Access is by an unimproved (4-wheel drive) road following the Lemieux Creek valley from Highway 24 near Little Fort, B.C. (distance approximately 26 km.) or by forest industry haulage roads originating at Clearwater, B.C. (distance approximately 20 km.)

PHYSIOGRAPHY AND TOPOGRAPHY

The property is located at the northern edge of the Thompson Plateau - a physiographic division of the Interior Plateau System. The terrain is relatively flat although erosion, perhaps along Fault zones, has resulted in some moderate dissection of the property. Elevations on the property vary from a topographic high of approximately 1340 meters a.s.l. to a low of approximately 1220 meters a.s.l. at Taweel Lake.

-5-

The property is covered with coniferous forests and logging has and is occurring to the immediate north and northeast of the property.

HISTORY

In 1924, A. Olson of Mount Olie, reported an occurrence of silver-lead ore at the head of Lemieux Creek. A sample of this assayed 0.04 oz Au/ton, 2.05 oz Ag/ton, 0.2 % Cu, and 20% Pb. No further data pertaining to exploration or development work, conducted prior to that of the present owner has been found. However, old workings (costeans, collapsed adits, etc.) are evident in the vicinity of the property.

Recently the property has had ground geophysical surveys (proton precession magnetometer) conducted. This work was sponsored by Simon Jutras, the present owner.

GEOLOGY

In the vicinity of the SIL 2 Claim, Campbell and Tipper (1971) have indicated the presence of Triassic sedimentary rocks (black shale, argillite, phyllite, black limestone and siltstone) in fault contact with Triassic augite andesite flows, breccias, tuffs, greywackes, and grey limestone.

These sedimentary and volcanic rocks are cut by Cretaceous quartz monzonite, quartz diorite, and granodiorite intrusions.

Potential targets for exploration projects on the property include syngenetic massive sulphides and epigenetic veins hosted by the sedimentary and volcanic units or porphyrytype mineralization associated with the intrusive rocks.

-6-

Ground magnetic surveys (ref. Mark, 1981) on the property have considerable variations in magnetic intensities. These are interpreted as being the result of a change in lithology from sediments to volcanics.

GEOCHEMICAL (SOIL) SURVEY

Soil samples were collected from the B horizon at stations (either 15 or 30 meters apart) located on east-west lines spaced 100 meters apart. Fluorescent flagging, with the grid coordinates marked thereon, was placed at each station.

The samples were collected from 2 grid areas (Figure 2). The grid on which the ground magnetic survey was conducted was extended and utilized for soil sampling. 143 samples were collected from this area (Appendix C). 43 samples were collected from a grid located at the northwest corner of the property. (Appendix B).

The B horizon samples were placed in Kraft sample bags and submitted to Acme Analytical Laboratories (852 East Hastings Street, Vancouver, B.C.) for analyses (cf. Appendix A)

Geochemical data (Appendix D) obtained from rock samples taken from historic workings near the property and data outlined in the 1924 Minister of Mines Annual Report indicate that zinc, silver, and gold are the major targets for exploration. Copper and lead are of secondary importance. Arsenic, barium, boron, and cadmium (as indicated in the semi-quantitative spectrographic analyses - Appendix D) appear to be "indicator elements". After ICP analyses were performed it was evident that

-7-

molybdenum, iron, and tungsten may also be potential indicator elements. As well, after the initail analyses it was evident that results listed in Acme File 81-1096A were incorrect for LM3-210E to LM3-480E. Therefore these samples were reanalyzed. (Acme File 82-0813)

Several intrinsically anomalous values are noted, especially on the south grid (eg. 204 ppm Cu, 227 ppm Pb, 5.8 ppm Ag, 2670 ppm Zn, 426 ppm As, etc.) On the north grid the most obvious anomalous value is 7.4 ppm Ag.

CONCLUSIONS

It is recommended that further geochemical sampling be conducted particularly in the southwest quadrant of the property. This sampling should extend the present south "Mag" grid and detail the intrinsically anomalous areas within this grid. The extension of the grid should be to the north, south, and east. Several "long lines" stretching across the entire property may serve to find other potentially anomalous zones. When the extension geochemical surveys are completed statistical manipulation of data should be applied in order to define anomalous values. The potential overlap of magnetic anomalies and geochemical anomalies may serve to outline drill targets.

Respectfully submitted,

Dale E. Wallster

November 10, 1982

STATEMENT OF QUALIFICATIONS

I, DALE E. WALLSTER, of the City of Vancouver,

Province of British Columbia, do hereby certify:

- (1) THAT I am currently a self-employed consulting geologist with offices at 206-414 E. 10th Avenue, Vancouver, British Columbia.
- (2) THAT I am a graduate of the University of Western Ontario, 1979, and hold a Bachelor of Science Honours degree in Geology.
- (3) THAT since 1977 I have pursued my profession in geology. I have been employed as a geologist, actively involved in the search for mineral deposits in the Canadian Shield and the Western Cordillera of both the United States and Canada.
- (4) THAT I am the author of this report titled, GEOCHEMICAL REPORT on a SOIL SAMPLING SURVEY over the SIL 2 CLAIM. This report is compiled from my observations and references cited.
- (5) THAT I consent to the use of this report either in its entirety, or in part, only by written permission.

Deletter

Dale E. Wallster Geologist.

VANCOUVER, B.C.

November 10, 1982

REFERENCES

Annual Report, Minister of Mines, B.C., 1924, p.B152 (1925)

- CAMPBELL, R.B. and Tipper, H.W. (1971) Geology of Bonaparte Lake Map Area, B.C. Geol. Survey of Canada, Memoir 363
- MARK, D.G. (August, 1981) Geophysical Report on a Ground Magnetic Survey over the SIL 2 Claim - Taweel Lake Area, Kamloops Mining Division, British Columbia.

MARK, D.G. (February, 1981) Geophysical Report on a Ground Magnetic Survey over the SIL 2 Claim - Taweel Lake Area, Kamloops Mining Division, British Columbia.

AFFIDAVIT OF EXPENSES

The geochemical (soil) program was conducted on the SIL 2 Claim, Kamloops Mining Division, to the value of the following:

FIELD:

3 man crew, 5 days @ \$400.00/day	\$ 2000.00	
Vehicle and gas	350.00	
Lodging and meals	300.00	
Survey Supplies	50.00	
	2700	.00

REPORT:

Geochemical Analyses 18 Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, and As by ICP @ \$4.50/analyses

- 1 Cu, Pb, Zn, Ag, Au, and Co assay @ \$24.00
- 125 Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, and As by ICP @ \$4.90/analyses
- 18 Au @ \$3.25/analyses
- 18 Ba @ \$2.00/analyses
- 1 Cu, Pb, Zn, Ag, Au, Cd, As assay @ \$31.50
- 47 Mo, Cu, Pb, Zn, Ag, Mn, Fe, As, Ba, and W by ICP @ \$5.50/analyses 1102.00

COMPILATION

Geologist -	- 1	dav	0	\$200.00	/dav	200.00
000105400			<u> </u>			

Total

4002.00

\$

Respectfully submitted

DALE E. WALLSTER

November 10, 1982

APPENDIX A

-

بر

ANALYTICAL METHODOLOGY

- -

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6

Telephone : 253 - 3158

GEOCHEMICAL LABORATORY METHODOLOGY - 1981

SAMPLE PREPARATION

1. Soil samples are dried at 60°C and sieved to -80 mesh.

2. Rock samples are pulverized to -100 mesh.

Geochemical Analysis for Ag*, Bi*, Cd*, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sb*, V, Zn

0.5 gram samples are digested hot dilute aqua regia in a boiling water bath and diluted to 10 ml with dimineralized water.

All the above elements are determined in the acid solution by Atomic Absorption.

* demotes background correction.

Geochemical Analysis for Au

10.0 gram samples that have been ignited overnite at 600^oC are digested with hot dilute aqua regia, and the Clear solution obtained is extracted with Methyl Isobutyl Ketone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 5 ppb direct AA and 1 ppb graphite AA.)

Geochemical Analysis for Au, Pd, Pt, Rh

10.0 - 30.0 gram samples are subjected to Fire assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au, Pd, Pt, and Rh are determined in the solution by Atomic Absorption.

Geochemical Analysis for As

0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml. As is determined in the solution by Graphite Furnace Atomic Absorption.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

Geochemical Analysis of Hg

Digestion

A .50 gram sample is digested with aqua regia and diluted with 20% HCl.

Determination

Hg in the solution is determinated by cold vapour AA using F & J Scientific Hg assembly. An aliquot is added to stannous chloride-hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it determined by AA.

Oxalic Acid Leach of Rock, Soil & Silt Samples

A .50 gram sample is digested hot with 10 mls 5% oxalic acid solution. The oxalic acid will dissolve Fe and Mn from their oxided of M - 1 fraction (but not from magnetite & ilmenite) limonites and clays. The following metals are analysed by atomic absorption : Cu, Zn, Pb, Ni, Mo, Fe & Mn.

Cold HC1 Acid Extraction

A .50 gram sample is leached with 10 ml 5% HCl solution at room temperature for 2 hours with ocasional shaking. Copper is dissolved from the organic and surface layers of clay fractions.

EDTA Extraction

A .50 gram sample is leached at room temperature for 4 hours with 10 mls of 2.5% EDTA solution.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

Geochemical Analysis for Barium

0.1 gram samples are digested with hot NaOH and EDTA solution.

Ba is determined in the solution by Atomic Absorption.

Geochemical Analysis for Uranium

0.5 gram samples are digested with hot aqua regia and diluted to 10 ml.

Aliquots of the acid extract are solvent extracted using a salting agent and aliquots of the solvent extract are fused with NaF, K_2CO_3 and Na_2CO_3 flux in a platinum dish.

The fluorescence of the pellet is determined on the Jarrel Ash Fluorometer.

Geochemical Analysis for Tungsten

1.0 gram samples are fused with KCl, KNO_3 and Na_2CO_3 flux in a test tube, and the fusions are leached with 10 ml water. W is in the solution determined by ICP with a detection of 1 ppm.

<u>Geochemical Analysis for Fluorine</u>

0.25 gram samples are fused with sodium hydroxide and leached with 10 ml water. The solution is neutralized, buffered, adjusted to pH 7.8 and diluted to 100 ml. Fluorine is determined by Specific Ion Electrode using an Orion Model 404 meter.

Geochemical Analysis for Tin

1.0 gram samples are fused with ammonium iodide in a test tube. The sublimed iodine is leached with dilute hydrochloric acid.

The solution is extracted with MIBK and tin is determined in the extract by Atomic Absorption.

Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

Multi Element Analysis by ICP

Digestion of Sample

0.5 gram samples are digested with hot aqua regia for one hour and the sample is diluted to 10 ml. The diluted sample is aspirated by ICP and the analytical results are printed by Telex, either in percent or ppm as shown.

<u>Please Note</u>: This digestion is partial for Al, Ca, La, Mg, P Ti, W and very little Ba is dissolved.

Report Format

H0/22N 385ØW EGC

BURN # 1 GE16 15:46 3FEB1981

IS 1357

MO	CU	РВ	ZN	AG	NI	CO	MN	FE%	AS
3.92	41.5	9.ØØ	136	- 332	15.3	5.7Ø	312	3.167	5.73
U	IS	TH	IS	CD	SB	BI	V	CA%	P%
4.11	.371	.424	1Ø73	.96Ø	1.94	4.51	52.7	1.1Ø7	.2Ø6
LA	IN	MG%	BA%	TI%	B	AL%	IS	IS	W
22.1	3.5Ø	.2589	.Ø184	.ØØ14	Ø5	1.72Ø	Ø	3.Ø6	.276

*0/M1 EGC

3URN # 1 1358	1 GE16	15:48	3FEB:	1981					
.563	29.3	34.6	171	.154	33.4	11.5	794	2.536	8.77
3.57	.ø44	2.79	765	1.Ø8	.635	4.25	54.8	.6452	109
6.42	2.88	.6008	.Ø252	.Ø753	37	1.944	Ø	2.32	- 61

Code :

HO, *O, EGC	Computer Intructions.
/22N 3850 W	Sample Number.
/M1	ACME Geochem standard for quality control.
15:46 3FEB1981	Time and Date of Analysis.
BURN # 1 GE16	Geochem Computer Program.
IS	Internal Standard.

Assaying & Trace Analysis 852 E. Hestings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

Interpretation of Results

Stamdard M-1 is a certified geochem standard used to monitor the results. M-1 has the following analysis.

Мо	:	in	ppm	M1	2.	ppm
Cu	:	in	ppm	M1	28.	ppm
РЬ	:	in	ppm	M1	38.	ppm
Zn	:	in	ppm	M1	180.	ppm
Ag	:	in	ppm	M1	0.3	ppm
Ni	:	in	ppm	M1	32.	ppm
Со	:	in	ppm	M1	12.	mag
Mn	:	in	ppm	M1	800.	ppm
Fe	:	in	%	M1	2.5	%
As	:	'in	ppm	M1	8.	ppm
U	:	in	ppm	M1	3.	ppm
IS	:	Int	terna	il St	andard.	
Th	:	in	ppm	M1	3.	ppm
IS	:	Int	terna	l St	andard.	
Cd	:	in	ppm	M1	2.	mqq
Sb	:	in	ppm	M1	3.	ppm
Bi	:	in	ppm	M1	2.	ppm
٧	:	in	ppm	M1	54.	ppm
Ca	:	in	%	M1	0.62	%
Р	:	in	%	M1	0.11	%
La	:	in	ppm	M1	8.	ppm
In	:	in	ppm	M1	2.	ppm
Mg	:	in	%	M1	0.67	%
Ba	:	in	%	M1	0.023	%
Ti	:	in	%	M1	0.07	%
В	:	in	ppm	M1	12.	ppm
A٦	:	in	%	M1	1.9	%
IS	:	Int	erna	l St	andard.	
IS	:	Int	erna	1 St	andard.	
W	:	in	ppm	M1	1.	ppm
	MCUPZANCMFAUSHSCBVCPLIMBTBAISS WCPZANCMFAUSHSCBVCPLIMBTBAISS	MO Cu Pb Zg No Mo Fas U Sb Sb V Ca P Ln Mg Ba I S S V Ca P Ln Sb I S S V Ca P S I S S V Ca S S I S V Ca S S V Ca S S S V Ca S S V Ca S S V Ca S S V Ca S S S V Ca S S S V Ca S S S V Ca S S S S S S S S S S S S S S S S S S	Mo : in Cu : in Pb : in Ag : in Ni : in Co : in Co : in Mn : in Fe : 'in IS : in IS : in Cd : in Sb : in Cd : in Sb : in Cd : in Ng : in Mg : in Ba : in Mg : in Ba : in Sb : in La : in Mg : in Sb : in In Sb : in In Sb : in Sb : in In Sb : in In Sb : in Sb :	Mo : in ppm Cu : in ppm Pb : in ppm Ag : in ppm Ag : in ppm Ni : in ppm Co : in ppm Mn : in ppm Go : in ppm Mn : in ppm U : in ppm IS : Interna Cd : in ppm IS : Interna Cd : in ppm Sb : in ppm Ca : in % P : in % La : in ppm In : in ppm Mg : in % Ba : in % Ba : in % IS : Interna IS : Interna Mg : in % Ba : in % IS : Interna IS : Interna Mg : in % IS : Interna IS : Interna IS : Interna W : in ppm	MO:in ppmM1Cu:in ppmM1Pb:in ppmM1Ag:in ppmM1Ag:in ppmM1Ag:in ppmM1Ni:in ppmM1Co:in ppmM1Co:in ppmM1Mn:in ppmM1Fe:in %M1JS:InternalStTh:in ppmM1IS:InternalStCd:in ppmM1Sb:in ppmM1Bi:in ppmM1Ca:in %M1La:in ppmM1Mg:in %M1Ba:in %M1Ba:in %M1IS:InternalStIS:InternalStW::in ppmM1	Mo : in ppm M1 2. Cu : in ppm M1 28. Pb : in ppm M1 38. Zn : in ppm M1 38. Zn : in ppm M1 80. Ag : in ppm M1 0.3 Ni : in ppm M1 32. Co : in ppm M1 800. Fe : in ppm M1 800. Fe : in % M1 2.5 As : 'in ppm M1 8. U : in ppm M1 3. IS : Internal Standard. Cd : in ppm Sb : in ppm M1 2. V : in ppm M1 2. V : in ppm M1 2. V : in ppm M1 2. Mg : in % M1

Notes:

1. Zinc over 5000 ppm interferes on W channel.

2. Iron over 1. % interferes on In and Sb channel.

Monitoring of Results:

If analysis of standard M-1 is different than the certification, then compensate (add or subtract) samples appropriately.

Standardization:

Complete set of USGS standards, Canadian Certified Reference Materials and 72 specpure metals from Johnson Matthey.

APPENDIX B

¥)

GEOCHEMICAL DATA FROM SOIL SAMPLES (NORTH GRID) Mo, Cu, Pb, Zn, Ag, Mn, Fe, As, Ba, W

ICP GEOCHEMICAL ANALYSIS

.

2

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNOS TO H20 AT 90 DEG.C. FOR I HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,AI,Ti,La,Ma,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppm. SAMPLE TYPE - SDIL a / n 11

DATE	RECEIVED AV6 7 1982	DATE REPORTS	MAII	.ed//	19.16/1	32 ASSA	YER	AL-DI	DEAL	N TOYE,	CERTIFIE	D B.C.	ASSAYER
				D.E.	(/ . WALLS	STER F	ILE # 8	32-0777					PAGE#
	SAMPLE #	MO pipm	CU Ppm	РВ ррм	ZN ppm	PDW VQ	MN PPm	FE X	AS PPm	BA Ppm	M M		
	NG1 0 NG1 30E NG1 60E NG1 70E NG1 120E	1 2 1 2 2	15 14 14 20 20	11 43 16 17 14	204 207 72 95 125	.7 1.9 1.1 .7 .5	257 167 111 190 212	2.98 3.53 2.11 2.87 4.00	11 57 13 18 12	146 139 109 85 122	NNNNN		
	NG1 150E NG1 180E NG1 210E NG1 240E NG1 270E	2 3 1 2 3	26 25 8 57 15	22 22 14 24 31	135 132 134 121 123	1.3 1.3 2.2 .7	225 187 420 616 197	3,42 4.02 2.11 2.93 3.27	25 36 7 16 15	138 134 105 230 75	222222222222222222222222222222222222222	ı	
	NGI 300E NGI 330E NGI 340E NGI 390E NGI 420E	2 2 2 3 1	14 31 13 19 45	22 38 15 18 32	180 177 130 129 109	.65545 .45	153 534 193 203 254	3.76 3.71 3.05 3.85 3.58	20 23 15 20 21	131 220 104 100 118	2 2 2 2 2 2 2 2		
	NG2 240E NG2 270E NG2 300E NG2 330E NG2 340E	2 1 3 3 2 2	17 15 28 24 24	14 19 23 22 22	88 109 130 137 132	.8 .5 .7 .9	146 218 441 273 283	3.99 2.09 3.02 3.40 3.27	13 9 17 30 29	80 111 159 198 137	NNNN		
	NG2 390E NG2 420E NG3 0 NG3 30E NG3 40E	3 1 2 3 2	48 8 29 28 15	31 19 12 29 37	192 122 241 222 210	1.0 .5 1.3 1.4	426 195 390 591 473	3.83 2.83 4.93 4.08 3.50	30 8 76 27 23	252 102 133 120 90	พพพพ	1	
	NG3 90E NG3 120E NG3 150E NG3 240E NG3 270E	1 3 2 2 2	13 10 25 25 43	25 17 21 15 25	163 154 121 106 106	7 1.0 .5 .6	800 665 408 369 205	2.82 2.54 3.65 3.26 3.77	12 16 21 13 21	166 112 108 144 112	2222		,
	NG3 300E NG3 330E NG3 340E NG3 390E NG3 420E	1 2 2 1 2	10 19 17 53 10	7 30 10 5 7	102 386 133 83 23	4 9 2.0 2	166 540 218 160 180	3.37 3.45 4.79 1.24 .31	7 25 19 2	68 208 88 110 32	25222		
	STD A-1	1	29	36	171	. 4	913	2.69	12	269	2		

i

D.E. WALLSTER FILE # 82~0777

SAMPLE #	MD	CU	68	ZN	AG	MN	FE	AS	8A	M
	Ppm	PPm	Wdd	PPIN	ppm	Ppm	X	Þþm	BA	Mdd
NG4 0 NG4 30E NG4 60E NG4 90E NG4 120E	NNONG	34 33 18 17 18	31 24 34 24 20	223 19B 153 121 170	.8 .4 7.4 .5	436 257 388 329 290	4.18 4.15 2.76 2.47 3.11	49 38 32 14 21	133 143 99 74 117	NNNNN
NG4 150E NG4 180E NG4 240E NG4 270E NG4 330E	2 2 1 2 1 2	25 47 15 26 20	23 26 19 22 11	142 259 106 94 116	.4 1.8 .3 .2	271 422 154 413 233	3,43 3,84 2,96 3,33 3,98	24 35 15 20 13	87 182 118 135 65	NNNNN
NG4 360E	2	18	25	183	.4	199	3.78	26	111	2222
NG4 370E	2	24	24	189	.6	255	3.54	22	117	
NG4 420E	2	7	14	109	.4	169	2.57	11	74	
STD A-1	1	31	36	177	.4	955	2.01	11	283	

ł

.

-

 $\langle \cdot \rangle$

PAGE# 2

.

i.

ι

1

APPENDIX C

GEOCHEMICAL DATA FROM SOIL SAMPLES

(SOUTH "MAG" GRID)

Mo, Cu, Pb, Zn, Ag, Ní, Co, Mn, Fe, As, Ba, W, Au

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 phone:253 - 3158

<u>^-</u>

Disposition_

File No. 81-1614 A

Type of Samples ______

÷.

GEOCHEMICAL ASSAY CERTIFICATE

To: Mr. Dale Wallster,

Vancouver, B.C.

V6C 1K2

430 - 890 W. Pender St.,

1

· · · · · · · · · · · · · · · · · · ·		·				<u> </u>	<u> </u>				
SAMPLE No.	Мо	Cu	РЬ	Zn	Aq	Ni	Co	1 Mn	Fe%	As	
LM1 330 E	i २	25	18	274		25	1.0	105			
360	2	1 10	1 1/	172		<u> </u>		195	3./	3/	<u> </u>
390	<u> </u>	1 12	14	172		1 15		1 230	1 2.4	23	2
420		-! <u>1-3</u> 1 2	1/	⊥ <u>10</u> 0_ ⊥ 125	<u><u></u>+<u>↓</u>•<u>∠</u>.</u>		12	1/2	<u> 2.4</u>	- 11	3
480		21	17	147	<u> </u>		<u> 8 </u>	+167	<u> 2.0_</u>		4
540	28	<u> </u>	$\frac{1}{12}$	14/		34		<u>; 2/0</u>	3.0	23	5
555	<u> </u>	<u> </u>		204		54	1_20_	18790	4.2_	<u>165</u>	<u> </u>
570	<u> </u>		- 14		1-1-2-	58_		11118_{-}	13.1	35	
585		22	1 17	103	1.1.5	64	1-18_	1008	3.5	40	8
600		1 50		141	8	44_	16	<u>-¦505</u> _	1_3_0_	. 27	9
615	<u> </u>	24	20	218		58	<u> 19 </u>	1243	-3-8		
630		10	1		- <u>1-U</u>		15	$+196_{-}$	3.5_	33	
645	2	10			╎┻╝	1/	<u>15</u>	<u> </u>	3.2	24	
660	2	<u>+ 10 </u>		155	/	15		<u> 373 </u>	1.9	19	13
675		10	<u> </u>	<u> 288.</u>		16_	7	1214	2.1		14
690	1 2	1 10		1 37/			12	-680_	2.0_		
705	<u>/</u>		10			13	8	<u> </u>	1.6	13	10
720		<u>1 40 </u>		1308	1.2	46		+280_	3.3	48	1/
(¥ 750 F		1. <u>20</u>		480	<u></u>	41	12	1 252	2.7		18
	<u></u>			313		32	10	<u> 257_</u>	<u> </u>	54	
		<u></u>			├ ────		····	<u> </u>	Ì		20
LM2 210 E	2	22	0	125			10				- 21
240	2	18	12	120		34		1.203_	2.5	14	
270	3	11	10	126				203		20	
300	1 1	6		100	2	12		131	3.6	_21	24
330	1 7	14	12	102		25	Ö	-3/8-	_ <u></u>		
360	1 3	30	10			<u>20 °</u>	<u>-</u>	284_	2.5	18;	20
390	2		0	122		3/	-12	45/	2.9	_22_	20
420	3	22	12	126			- <u>8</u>	404	2.2	13	20
450	2	26	<u>1</u> 2 12	107				240	3.3		29
480	2	13	17	120			- 13	522	-2-/		
510 1	2	27	12	120				400 1	3.3		
525	-1-2	61	10	1/5		<u></u>	10		-2.8		
540	2	37	<u> </u>	110	-13		- <u>18</u>	- 696	-3-5		
555	12	35	16	260	/	<u>- 43 </u>	4 1 c	360_	-2.9	- 24	
570	2	73	1/	1/10	2 2	<u>-44</u>	<u> 10 </u>		<u></u>	_23_	35
585_F	5	140	21	- 140-	10		<u>_</u>	-527-	<u> 2 </u>		
600_F	7	122	21	522	-+-0	-03			-3-8-1	<u>43</u>	30
LM2_615_F	9	45	12	120	16		-1-0				
				-1-1-1-1-1	<u> </u>		13	-805-1		24	
		<u> </u>			<u>-</u>	<u> </u>		·			
All reports are the conf	idencial pro	perty of	clients			DA	TE SAMP	LES RECE	EIVED 0	ct. <u>10</u> ,	1981
DICECTION.						DA	TE REPO	RTS MAIL	\mathbf{ED} 00	ct. 21,	, 1981
) }			************				•	<u>^!/</u>	 		
CETERMINATION:						AS	SAYER	<u></u>	<u>ר ע</u>		

DEAN TOYE, B.S. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone:253 - 3158

To: Mr. Dale Wallster

81-1614 A File No.

Soils

GEOCHEMICAL ASSAY CERTIFICATE

Type of Samples ____ Disposition_

SAMPLE No. Мо Cu ΡЬ Zn Αq Ni Со Mn Fe% As LM2 630 E .7 2.9 L 2.2 3.1 <u>660</u> 19_ <u>3.2</u> .3 2.4 .1 2.6 .1 2.0 .1 2.6 $\perp 112$.2 3.0 LM2 810 E ł LM3 240 E 1.1 1.8<u>569 | 1.1</u> 3.0 2.4 .223 2.7 1.1 2.9 149 2.8 <u>358</u> 2.9 152 530 1.0 2.6 _30 1.5 5.0 124 .6 2.8 T 1.2 2.3 795 E 1.4 4_0_160 LMY <u>360 E</u> 3.0 .390 3.1 2.2 2.4 ł 16 | 192 2.1 2.6 2.7 2.2 $\overline{31}$ 3.1 g .1 <u>530</u> 2.3 2.7 .600 _8 2.5 1 2.7 : 182.0 .28 .62 .660 .13 2.4 <u>648</u> Т 29 327 LM4___675_E 3.0. .63 All reports are the confidencial property of clients DATE SAMPLES RECEIVED__Oct. 10, 1981 All results are in PPM. Oct, 21, 1981 DATE REPORTS MAILED_____ 'VGESTION:..... , XV

DETERMINATION:.....

DEAN TOYE, B Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

ASSAYER

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone:253 - 3158

3

To: Mr. Dale Wallster

File No. 81-1614 A

Type of Samples Soils

31

GEOCHEMICAL ASSAY CERTIFICATE

Disposition _____

					1		· · · · · · · · · · · · · · · · · · ·				<u> </u>	<u></u>	
SA	AMPLE No.		Мо	Cu	РЬ	7n	Aa			Mm	T-9		
LM4	690 E	!	2	12	24	349	<u>1 AY</u>	<u>i</u> 24		277	<u> </u>	AS AC	
	720		1	111	20	5075	<u> ···</u>	1 2		5//	- 3.1	40	┼───┼╧
	750 :	,		<u> </u>	1 10	1009	18-	1 2	20_	_ <u>+</u> 373_		34	2
	780		<u> -</u> 22	21	1 25	1338	+-•₽	-43	<u> 18</u>	422_	2.5_	42	
<u> </u>	810 F	I	2	1 24	1 35	115/	<u>-</u> -•₽	22	<u> </u>	289	3.9	<u> </u>	4
	<u> </u>			24	14	150	<u> .5</u>	3/	<u> </u>	167	1.9	20	5
<u> </u>		—+		<u> </u>		·	. <u> </u>		_ <u> </u>		_	<u> </u>	<u> </u>
I M5	120 E	- <u>'</u>		+		0.00	<u> </u>	$\frac{1}{1}$		<u> </u>	<u> </u>	<u> </u>	
	450 1		<u></u>	<u> 1/</u>	<u> 40_</u>		 . 4 _						
	480		<u></u>	<u> 14</u> 22		1220	<u> </u>	-32	14	215	- 2.6	<u> 17_</u>	9
[510			1 22		+11/	<u>├</u> └-	-3/	13	475_	-2.7	<u> 23</u>	
	540		1	10	10. 10	+1/9_		- 25			-2-2-	23	
	570					123	<u>∤</u> ↓	-19	9	<u> 1988 </u>	-2.0	<u> 10 </u>	
	<u> </u>			<u>i 10 </u>		1200	<u> </u>	+29	_ <u> _13_</u>	-347		<u> </u>	13
	630 1		<u> </u>	<u> 15_</u> 11	29	548	<u> </u>	32	14	1278	-↓3.1_	<u> 153 </u>	
	660				40	1513	<u> </u>	+23	8	135_	-2-4-	<u> 128 </u>	<u> 15</u>
	<u></u>			<u>' 20 .</u>		202	<u> </u>	$\frac{1-3}{1-3}$	11	+203_		<u>į 129 </u>	10
	720		<u>4</u>	16	30	18/3		+1.08		<u> 398</u>	4.2	_231	$\frac{1}{10}$
()	750	<u>'</u>	- <u>८</u>		48_		<u>-1-6</u>	+ 33	12	296	<u> - 2.6</u>	80	81
<u>.</u>	<u>780 F </u>	<u> </u>	<u></u>		1.14	1346		53	12	227	<u> 2.8 </u>	32	1 19
	810 E			14	18	-1381	-1-0-	4_40	11	-i 187	-2.9	30`	20
	<u>-010-c</u>	-+-	4	28	-13-	+544	5	73	17	+354—	-3.2		
	<u> </u>		_4	29		+384	-1-0-	-67	14		-2-6-	- 26	22
	900		4 /	20	-14 - 14	$\frac{1210}{200}$		-50	- <u>}-11</u>	+166	2.7	27_	23
	930			29	20	289	<u></u>	54		218_	-2.5	- 18	
	960		5	20	10	100		44		1209	2.7		25
	990 F	<u>i</u>	10	204	26	1249	<u>_</u>	4	-+ 10	1276	2.8		26
1 M6	420 F		1	11			5-8	1165	- <u> </u>	1902	5.1	_158	2/
	450			 /0	<u> </u>	1355	0	28_	13	1652	2.3	24	28
	480	—†-	1	<u>40</u> 52	_/1	1405	1.0		<u> </u>	345	2.9	_127	29
	510	—i-	- <u>-</u>	_ <u>57</u> 7	<u> </u>	104		39	- <u> /</u>	1337	2.1	11	30
	540 1	<u></u> -	2	15				20		1013	1.6	11	31
	570 i		2 (11	10	114/	<u>_</u>	151		1314	2.4	15	32
	600		77	126	227	105		31		1361		40	33
	615		12	26	10	485	5.5	46		1761	10.0	_225	34
	630		0 1	32	16	600	4	107		1/21	3.0	61	35
	645		2	10	<u>10</u>	1260				383	2.7	_42_	
	660		<u> </u>	21	22	200	_ <u>-</u>	43		286	2.4	28	37
LM6	675 F	— ; -	21	62	12	222		/5_ 		+191	-3.3	64	38
				_04		<u></u>	3	_58_	- <u>8</u>	-1 <u>9</u> 61	-3.3-		
		<u> </u>		!		!				!			40
All rep	orts are the con	fidenci	ial pro	perty of	clients				DATE SAMI	PLES REC	EIVED	<u>Oct.</u> 1	0, 1981
All resu	ults are in PPM.								DATE DEM	DTCM		0.ct 3	1 1091
∕ ˆ`\GEST	10N:				-				DATE REPL	KIS MAI	LED!	ک_دلکا	707 ⁻

DETERMINATION:

ASSAYER QUI

DEAN TOYE, BSC. CHIEF CHEMIST CERTIFIED B.C. ASSAYER To:Mr. Dale Wallster

ACME ANALYTICAL LABORATORIES LTD. 14

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 phone:253 - 3158

File No. __81-1614 A____

Type of Samples _____

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_____

4	SAMPLE No.		Мо	Cu	РЬ	Zn	Ασ	Ni	C0	Mn	Fe%	Δc	
-	_LM6690_E	 	5	18	q	419	Δ	56		2/0	21	25	
	705	<u>.</u>	4	80	39	316	1.2	78	22	1267	34	145	
-	720	! !	6	48	29	382	5	80	21	i 585	3.2	140	3
4	735	1	4	36	22	524	.8	81	18	451	3.1	68	4
┟	750		4	35	23	436	.7	133	13	281	3.6	60	5
┟	<u>780</u>		3	_26	6	486	.3	49	14	470	2.6	17	6
┟	810	· ·	3	_20	11	271	6	60	10	179	2.4	19	7
ŀ	840		<u>5</u>	35	12	_228	4	<u> </u>	14	214	2.8	32	8
ŀ	<u></u>		/	19	16_	178	6	41	11	199	2.5	20	9
f	900	<u> </u>	<u>5</u>	<u> </u>	13	240	3_	44	12	261	2.2	18	10
F	960		<u>5</u>	26	20	304_	6	82	16	423	3.3	82	
	990		<u>0</u>	23	<u>20</u> 10	203	0	<u> </u>		198	2.7	31	12
Γ	1M6 1020 F		2		17	170	<u>9_</u> _	<u>-04</u> クフ		324		38	13
E		i				173.			_!	201	_2.2	I I	<u> </u>
L												I	15
L							[
Ļ	~!											· <u> </u>	18
1		!											19
-		ļ											20
-										1			21
-													22
-				<u> </u>				• • • • • • • • • • • • • • • • • • • •					23
													24
									_ <u></u>				25
ſ		<u> </u>	i				·		<u> </u>				20
			!		†		—						
			i										20
_						i	1				·		30
									1				31
1_													32
-				ļ									33
		<u> </u>											34
·													35
		<u> </u>									!		36
			 }	<u> </u>	!		 _				ļ		37
-							— - 		┥				38
Γ						— · · - †			i	·	— 		
-		<u>+</u>	4	1				<u>т</u>	<u> </u>		1		
	All reports are the con	nfiden	cial prop	erty of	clients				DATE SAMP.	LES RECE	IVED_0	<u>ct. 10</u>	, 1981
	All results are in PPM.	•						Ē.			ED 0	-+ 01	1001
ſ	GESTION:	******		0	vaa bu va n ee e				UAIL KEIU	NIS MAIL		~~~L	
$\left \right\rangle$	DETERMINATION:							ŀ	ASSAYER	(KU.		
									=				==========
										DEAN	TOVE		
1										CH	IEF CHEMIST	5.3C.	
										CERTIFI	ED B.C. ASS	AYER	1
L													l
		••											ل

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. 81-1096A

;

To: Mr. Dale Walster, 430 - 890 W. Pender St., Vancouver, B. C. V6C 1K2

Type of Samples _ Soils

GEOCHEMICAL ASSAY CERTIFICATE

Disposition_ Sil #2 Claim Re-run SAMPLE No. Mo Cu РЪ Zn Ag N1 Co Mn Fe 🕺 As Au Ba LM3 -210E 2.... - 7 .1 1.6 .005 270a 42_ 58.... 2.2 .005 270ь _3 .1 1.6 .005 .300 . I .005 5. 1.4 .010 1.5 .005 2.2 .005 ___ 49 1.7 .005 - 450 .1 1.5 .005 -480 1.8 .005 ŧ .5 2.8 .005 .3 2.3 ; :.005 <u>570</u> -8 1.9 .005 615 11.1 446 1 3.7 .005 .630 .49 13_ 4.... . 56 __ 12_ 4.5 252 ,005 4.7 _14 3.7 .005 640 1.2 33 12 3.2 .005 LM3 -: 275 .7 2.4 .005 ; i ł ι All reports are the confidencial property of clients Aug. 19, DATE SAMPLES RECEIVED. All results are in PPM. Aug. 25, 1981 DATE REPORTS MAILED DIGESTION: ASSAYER ÓETERMINATION: DEAN TOYE, B Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

852 E. HASTINGS, VANCOUVER B.C. PH:253-3158

TELEX:04-53124

ICP GEOCHEMICAL ANALYSIS

.

A .500 GRAN SAMPLE IS DIGESTED WITH 3 NL OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 NLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Ng,A1,Ti,La,Na,K,N,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppa.

DATE RECEIVED AND 11 DAT	E REPORTS	MAILED	a	19 20/2	ASSAYE	R_D	Sug	DEAN	TOYE,	CERTIFIED	B.C.	ASSAYER
	1	DALE WAL	STER	FILE #	82-0813	RE-	RUN FILE	# B1	1096			PAG
SAMPLE #	MD PPm	CU PPM	PB PPm	ZN Ppm	AG PPm	MN Ppm	FE %	AS PPm	BA PPM	W PDM		
LM3-210E LM3-270AE LM3-270BE LM3-300E LM3-330E	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24 14 9 12 48	25 23 18 17 26	175 243 248 146 198	.5 .8 1.7 2.1	1280 670 246 650 548	2.76 3.76 2.59 3.07 3.53	16 35 14 17 37	110 137 78 108 136	2 2 2 2 2	; ; ;	
LM3-360E LM3-390E LM3-420E LM3-450E LM3-450E LM3-480E	м N M N N N	11 20 39 12 9	15 16 17 11 16	99 97 183 43 97	• 5 • 2 • 4 • 4	146 236 224 378 150	3.49 3.43 3.37 1.91 3.60	13 17 39 16 27	84 88 120 84 104	- 222222	 	
LM3-510E LM3-540E LM3-570E LM3-600E LM3-630E	N N N N N N N N N N N N N N N N N N N	17 13 14 24 42	13 25 21 33 47	109 268 231 505 674	.5 .3 .9 .4	267 237 610 462 277	2.88 2.43 2.00 3.62 4.31	23 123 14 81 266	77 106 100 102 110	2 2022		
LM3-660E LM3-690E LM3-720E STD A~1	83 - 2 1	132 18 7 30	51 40 23 39	2033 550 234 171	3.7 1.1 .7 .4	1823 271 667 951	3.45 3.14 2.56 2.71	414 38 40	203 89 129 277	5222	 	

AGE# 1

APPENDIX D

{ }

GEOCHEMICAL DATA FROM ROCK SAMPLES

To: Mr. Dale Walster, 430 - 890 W. Pender St., Vancouver, B. C. V6C 1K2 ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6

Telephone:253 - 3158

File No. 81-1096

Type of Samples _____ Rock

Disposition

ASSAY	CERTI	FICATE
-------	-------	--------

No.	Sample	Cu %	РЬ %	Zn %	Ag oz/ton	Au oz/ton	Co %		No.
1	Tawell	.09	.01	2.70	.61	.010	.01		1
2									2
3					<u> </u>				3
4									4
5									5
6									6
7									7
8									8
쒸									9
<u>אר</u>									10
11									11
12									12
13									13
14									14
15									15
16									16
17									17
18									18
19						_			19
20									20
	eports are the confide	ential property of	[°] clients,		1	DATE SAMPLES R DATE REPORTS M ASSAYER ()	ECEIVEDA	ug. 19, 198 ug. 25, 198	1 1
						DI	EAN TOYE, B CHIEF CHEMIST	.Sc.	

To:Mr. Dale Wallster, 430 - 890 W. Pender St., Vancouver, B.C. V6C 1K2 ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone:253 - 3158

File No. 81-1614 B

Type of Samples <u>Rock</u>

Disposition_____

No.	Sample	Cu%	РЬ%	Zn%	Ag oz/ton	Au~ oz/ton	As%	Cd%	No.
1	TAWEEL 2	. 18	.01	.01	.52	.690	25.10	Trace	1
2									2
3									3
4				1					4
5									5
6									6
7								<u> </u>	7
8									8
9									9
\mathbb{V}					1				10
11							·	<u> </u>	11
12									12
13								<u> </u>	13
14							·		14
15								<u> </u>	15
16							<u> </u>		16
17					<u> </u>		<u> </u>		17
18									18
19				·			·		19
20					1				20
All r	eports are the confide	ential property of	clients.		 [D	ATE SAMPLES R	ECEIVED	0ct. 10, 1	.981
О					D	ATE REPORTS M SSAYER	IAILED	0ct. 22, 1	.981
1						CE	EAN TOYE, CHIEF CHEMIS RTIFIED B.C. AS	- B.Sc. T 5AYER	

ASSAY CERTIFICATE

C	CHEM	EX L	ABS L	TD.	212 BROOKSBAI NORTH VANCOU CANADA TELEPHONE. AREA CODE TELEX. 0	NK AVE. VER,B.C. V7J 2C1 985-0648 604 43-52597
• ANALYTICAL CHEN	AISTS • GEO	CHEMISTS	• REGISTERED #	ASSA YERS		
	ERIFICA	TE OF AS	SSAY		CERTIFICATE NO	o. 33828
P.O. Box 19	30				INVOICE NO.	263 62
Salmon Arm,	B.C.				RECEIVED	June 29, 1978
ATTN:					ANALYSED	July 5, 1978
SAMPLE NO. :	% Copper	X Lead	Zinc	oz/ton	oz/ton	
4 Rocks	0.03	0.12	1.34	1.82	0,024	·
						<u> </u>
·		<u> </u>				
)						
·····						
				<u> </u>		
			<u> </u>			
						- <u>, </u>
	·	_				
		•				
J						
		-			<u>~</u>	
	\			Idt	1	
CTA,	MEMBER			1175	4100115	2

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: *,* 984-0221 AREA CODE: 604 TELEX: 043-52597

· ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: S.A. Jutras Box 1930 Salmon Arm, B.C. VOE 2TO

ATTN:

ſ

CERTIFICATE NO.	SP O	971
INVOICE NO.	3202	6
RECEIVED	Aug.	13/79
ANALYSED	Aug.	20/79

SAMPLE NO. :	Lower Concentration Limit (PPM)	i-sample		` 1	
Antimony	50	50			
Arsenic	50	10,000			
Barium	5	200			
Beryllium	5	200			
Bismuth	5	50			
Boron	20				
Cadmium	20	150			
Calcium	0.05%	27			
Chromium	10	20			
Cobait	10	20			
Copper	1	700			
Gallium	5	700 bel			
Germanium	20	bel			
	50	hal			
Iron	0.05%	77			
Lead	5				
Magnesium	0.02%	0.17			
Manganese	5	700			
Molybdenum	10	700 1-1			
Nickel	5	DCI			
Niobîum	50	<u>10</u>			
Silver	1	5			
Strontium	, 2	10			
Tellurium	200	10			
Thorium	200	DCI b -1			1
			<u> </u>	<u></u>	
Trianium	10				
Vanadium	5	70			
Zinc	20	BCL			
Zirconium	30	> 10,000			
		SEMI QUANTITATIVE SPECT	ROGRA	PHIC ANALYSES = 25100 ppm	
		5000 ppm = 2500-10000 ppm	20 ppm	= 10-50 ppm	
		1000 ppm = 1000-4000 ppm	10 ppm	= 5-20 ppm	
	·	000_ppm000_ppm		= 2–10 ppm	
	•	500 ppm = 250–1000 ppm	2.000	# 1_4 ppm	
~~		200 ppm = 100-400 ppm	1 ppm	= 0 5 – 2 ppm	
)		100 ppm = 50-200 ppm	bcl	= below concentration limit	
		Ranges for Iron, Calcium & Magnesi	um are rep	orted in %	

MEMBER ' CANADIAN TESTING ASSOCIATION

CERTIFIED BY:

.

ALTAIR aratting services 1rd.

												- 11, 20, 355	. 48,71, 465	. 52, د اوما	- 7, 10,157	- 15,9,147	- 11 - 15 Y	۲۰۱3b, ۲۲ ^{7,} 485	. 26, 18, 744	. 10, 11, 268	. 62,13,39X	۱۹، ۲۰, ۴, 8، ۰ ۱۰ - ۲۰۰۶ - ۲۰		- 35,23,436	• 26,6,486		
										i)		- 17,40,306	. 14,15,220	. 33,17,117	- 23, 16, 179	10, 12, 123	- 10, ie; 200	15,29,548				. 35,36, }873	. 16,48,991	++5, hi, 02 -	- 14, 18, 30, - ,	- 28,13,544	
	1) 1) 11	• •						•		- 19, 14, 104	. 20, 12, 99	- 17, 15, 298	23, 22, 27	14, 16, 192	8,13,172	6,9,167	. 9 , 19, 2 12 . 20 , 21 , 221	- 12, 16, 219 PIC, 21, 8	- 11, 11, 215 	000 (B /	· /1, 21, 327/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 12,24,349	، H, 20,569	- 30, 18,338	31, 35,157	· 24,14,150	
TAWEEL				·	· ×4,25,175	. 4, 14, 250	. 29، 12، 269	.12,17,146	48, 42, 198	1.11.15,94	20,16,97	39, 19, 193	. 12, 11, 63	- 4,16,97	. 17, 13,109	13,25,268	14, 9, 378	· 24,33,505	· (2,30, 1)30	. 28, 35, 1016	- 132, 530	012 101, 81	· 7, 23, 234	, 17, 22, 414	, 16,24,452	25 39 538	
LAKE										- 10, 14, 172,	13,14,160	. 13,14,125		- 21, 17, 147		· 63, 12, 1, 264	. 77, 14, 111	141,71,280 .	2 . 24,20,213	. 10, 25, 155	. 10,36,288	- 10,12,186	- 26,11,480 - 40,22,308	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	د لر		
					. 22,8, 135	· 18,12,128	. 11, 19, 136	- 6,9,100	- 14,13,102	· 30,18,142	1 . 10,9,122	. 23, 12, 136	- 16,13,107	- 43, 17, 130	. 27, 13, 139	911,51,75 . 10,151,75	. 73, 14, 148 . 35, 16, 260	. 133, 11, 522 . 149, 21, 95	45,13,130	. 70,19,125	. 39,19,132	- 40 17 146	· 22,16,180			• 60, e	

L M 3

X

LM 2

IJ

SOIL GEOCHEMISTRY

SIL 2 CLAIM

TAWEEL LAKE - KAMLOOPS M.D., B.C.

· Cu, Pb, Zn in p.p.m. (____ Magnetic anomaly === Road

0

meters

GEOLOGI CAL BRANCH ASSESSMENT REPORT