**ASSESSMENT** 

GEOCHEMICAL

REPORT

GOLD CONTENT SOIL SURVEY

ON THE

GOOD: PROSPECTS: AND: MUCH: PRO: FIT

AND

DAR - MINERAL CLAIMS

GOLDWAY PEAK AREA

OMINECA MINING DIVISION

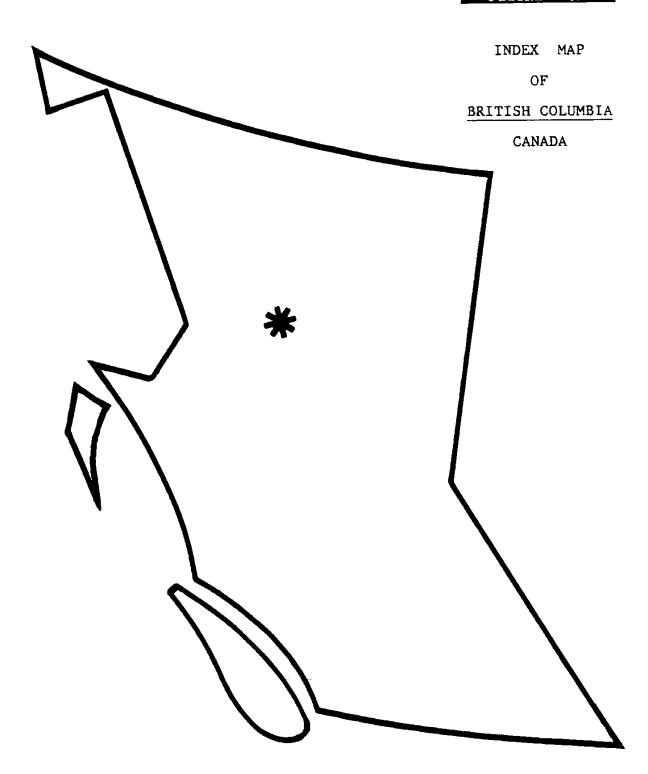
94 D 9 E/W

FOR

DERMOT FAHEY

November 26, 1982

G.E.A. von Rosen, P.Eng.


GEOLOGICAL BRANCH ASSESSMENT REPORT

10,809

## TABLE OF CONTENTS

| Title Page                             | U  |
|----------------------------------------|----|
| Table of Contents                      | 1  |
| *Index Map of B.C                      | 2  |
| Introduction                           | 3  |
| * "Gold Mineral Claim Group"           | 4  |
| Location                               | 5  |
| Topography                             | 5  |
| History                                | 6  |
| General Geology                        | 7  |
| Local Geology                          | 7  |
| Geochemical Survey                     | 9  |
| Grid                                   | 9  |
| Method of Sampling                     | 9  |
| Analytical Procedure                   | 10 |
| Display of Data 1                      | 10 |
| *Fig 🖸 Gold: parts per billion 1       | 11 |
| *Fig 🖸 Gold contour: 30ppb 1           | 12 |
| *Fig 🖪 Goldway Ck: Surficial Geology 1 | 13 |
| Results 1                              | 14 |
| Conclusions 1                          | 14 |
| Recommendations 1                      | 15 |
| Statement of Qualifications            | 16 |
| Appendix 'A' 1                         | 17 |
| Geochemical Analysis Certificates 13-2 | 25 |
| Itemized Cost Statement                | 26 |

## FIGURE "A"



### INTRODUCTION

The writer was commissioned by Dermot Fahey to organize the work described in this assessment report, having summarized historic data in a compilation report for Laramie Mining Corporation dated December 19, 1980, which subsequently was altered slightly and dated November 29, 1981. Recommendations of that report included soil, and stream sediment sampling and analysis for gold. This work was started on a grid straddling Goldway creek valley directly southeast, and below the original BRUCE showings, as well as directly northwest and below the original GOLDWAY prop-The reason for locating this gold-geochemical survey erty. in this position, was to gain information about gold dispersion originating from the known BRUCE or GOLDWAY showings on either side of the valley, or possibly from beneath the glacio-fluvial valley floor cover.

Ralph Nelson and Claudio Verona were instructed to perform the survey, having staked the property and thus being familiar with the topography and the location of the BRUCE veins. The field crew left Mission, British Columbia on the 21st of August, 1982, drove to Johanson lake, hiked along the south side up Goldway creek, established lean—to camp, established grid, and collected the soil samples which they stored in safety of weather. Demobilization to Vancouver occurred when a grizzly appeared and stayed in the environs. A second trip was undertaken, this time a helicopter stationed at Johanson lake was used for mobilization to bring out the samples.

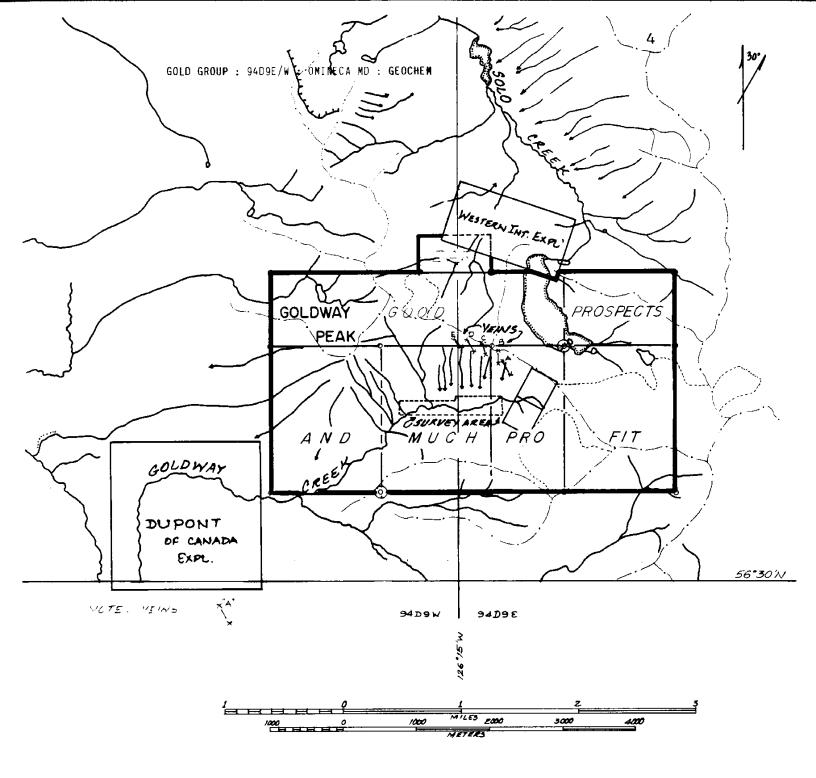



FIGURE B

GEOCHEMICAL SURVEY
"GOLD" MINERAL CLAIM GROUP

GOOD: PROSPECTS: AND: MUCH: PROFIT
DAR: MINERAL CLAIMS
GOLDWAY PEAK AREA
OMINECA MINING DIVISION
9409E/W

## LOCATION & ACCESS

Goldway Peak lies about 9 km southwesterly of Johanson lake. Good access exists to this lake from Vanderhoof, British Columbia. It consists of gravel road which originates at Vanderhoof, passes through Pinchi lake, Germanson Landing, Aiken lake, and has recently been extended by the Department of Mines past Johanson lake, which lies about 340 km northwesterly from Vanderhoof, and about 210 km northeasterly from Smithers, B.C., as the 'crow flies'. An airstrip exists at Johanson lake. Road access to the Goldway Peak property would entail building of a bridge, and following a trail along the western margin of the mountain range. The distance would be about 15 km. Early season work could start on the lower portions of the mountain, progressing higher up the southern slope as the season advances.

## TOPOGRAPHY, CLIMATE, VEGETATION

Goldway Peak rising to 2260 meters is surrounded on the northeast by Johanson lake, to the north by Johanson creek, and to the northwest, and west by the Asitka river valley. The altitudes of these lowlands are around 1200 meters. This 1100 meter relief creates the necessity of a steep road to the gold veins, and the variance of early spring in the valley compared to later field season at the showings. It is fortunate that most of the presently-held property has a southern aspect. As this area is above timber-line, vegetation consists mostly of scrub conifers, and alpine terrain.

### HISTORY OF THE AREA

A flurry of explorational activity during 1946, resulted in the definition of basically three documented properties which can today be pinpointed with reasonable accuracy. Goldway Peak Mines, Limited was incorporated in February 1947, to acquire the Goldway showings. Work during 1947 included geological mapping, the driving of a short adit, trenching, and sampling. In March 1973 the area was restaked as MO 1-20 and optioned by San Jacinto Explorations Limited in February 1974. This area is likely covered by the present PRO and FIT claims.

Springer Sturgeon Gold Mines Limited were prospecting and staked their findings as the Solo property. Work by the company was apparently confined to stripping and sampling. It appears likely that this area is covered by the present GOOD claim.

Goldway Peak Mines, Limited explored the Bruce property in 1947. From a comfortable tent camp located on Goldway creek at the edge of scrub timber, a crew of six men carried on development-work under the direction of the company. Five main veins, named 'A', 'B', 'C', 'D', and 'E' veins, and several other smaller veins were stripped and sampled. (see White, BCDM, AR1947). The presently staked GOOD, MUCH, and PRO claims appear to cover this area. (see Figure E)

## GENERAL GEOLOGY

The general area has received recent attention as a result of the findings of copper deposits around Sustut river. Geological information is described in various formats, and the one referred to here is Open File 342 of the Geological Survey of Canada.

This map named the McConnell Creek Sheet shows the Goldway Peak area to be comprised of Upper Triassic volcanic rocks [uTRv] consisting of basic to intermediate flow, breccia, and tuff; green phyllite and phyllitic schist. The Darb Lake Stock, consisting of Early Jurassic quartz diorite [EJqd] occurs at what used to be called Bruce Lake, a small glacial lake just east of Goldway Peak. Major northwesterly trending faults in the area are the Ingenika fault to the west of the property, and the Dortatelle fault to the easts of the area. Major valleys follow these faults.

### LOCAL GEOLOGY

Particular geology is well described by W.H. White (Report of the BC Minister of Mines, 1947), from which the present is compiled.

White writes: "...shows the local geology and the veins explored during 1947. Goldway Peak and the ridge to the east are made up of andesite and basalt flows, with intercalated beds of breccia, agglomerate, and finely stratified tuffaceous sediments. Most of the rocks are dark green in colour due to metamorphic development of abundant hornblende, and of chlorite and epidote. The major structure is an open anticline, the axis of which strikes about north

### LOCAL GEOLOGY

11

20 degrees west. Within the area [of the BRUCE property] the bedding and flow layers dip from vertical to 50 degrees westward, but to the east the dips become progressively less. Thin-bedded tuff, which forms the a high peak three-quarters of a mile east of the area mapped, dips 30 degrees east.

The volcanic rocks are intruded by a composite stock of quartz diorite and granodiorite which is about 3,000 feet from east to west and 2,000 feet from south to north. The extreme irregularity of the southern and eastern margins of this stock is indicated on Figure [see AR 1947]. In most places the contacts are remarkably abrupt. The quartz diorite is a dark-coloured rock of medium grain characterized by abundant hornblende and about 20% quartz. The granodiorite is lighter in colour and generally coarser in texture than the quartz diorite and in thin section the dark mineral is seen to be green biotite rather than hornblende. Some of the observed contacts are abrupt, others appear transitional; but the general field relations indicate that the granodiorite is the later intrusion.

The five main veins, named the "A", "B", "C", "D", and "E" veins, and several smaller veins are shown...They occur for the most part in the stock, having diverse strikes from north to nearly west....

...The veins consist of slightly iron-stained, fractured quartz characterized in many places by parallel fractures arranged en-echelon, and making a slight angle with the vein-walls...Metallic minerals, only sparingly and locally

LOCAL GEOLOGY

\* \*

present, include fine-grained pyrite and occasional aggregates of small galena crystals. As a rule the metallic minerals are found in zones of drusy quartz associated with the longitudinal and transverse fractures. A very few small grains of gold were found in fractures closely associated with galena..." (end quote White, 1947)

## GEOCHEMICAL SURVEY

GRID

Lines were run in cardinal directions, parallel to Goldway creek valley. Stations were marked at 30 meter intervals; the lines were 30 meters apart. Flagging was attached to scrub vegetation.

METHOD OF SAMPLING

The men were running grid line while sampling. At each station a flag was marked and hung, ground area was cleared of vegetation and organic debris, and a sample of "B" horizon was obtained, and placed in a marked Kraft paper sample bag. Notes were kept of geographic features, whether soil or stream sediment sample, depth of sample, and ratio of coarse, medium, fine material; the quantity of organic material in the sample was noted.

### GEOCHEMICAL SURVEY

## ANALYTICAL PROCEDURE

The 276 samples were delivered to Acme Analytical Laboratory where the samples were dried and 10 grams of the -80 mesh fraction, which had been ignited over night at 600 deg Centigrade was digested hot with dilute aqua regia and the clear solution was extracted with Methyl Isobutyl Ketone. Gold was determined by Atomic Absorbtion from the MIBK extractant with background correction. A Perkins Elmer AA unit was used. The results were given in parts per billion, as shown on the attached copies.

### DISPLAY OF DATA

Three figures are included in this report showing raw data, semi-contoured data, and information regarding surficial geology.

Gold content, in parts per billion, of the soluble portion within the -80 mesh fraction of the soil samples plotted at their grid-collection sites, is shown on Figure 2.

The arbitrarily chosen 30ppb gold content contour is shown on Figure  $\square$ . Zones showing higher values were not outlined with contours.

The field personnel were instructed to record pertinent 'lay of the land' data; this is shown on Figure **E**.

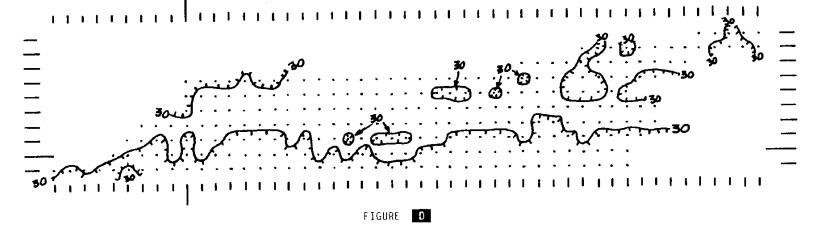
The scale of these figures is identical, which allows cross-referencing the data.

FIGURE C

GEOCHEMICAL SURVEY
GOLD:PARTS PER BILLION

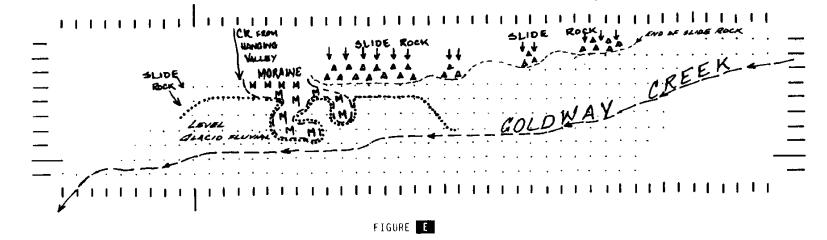
GOOD; PROSPECTS: AND: MUCH: PROFIT

DAR: MINERAL CLAIMS


GOLDWAY PEAK AREA

OMINECA MINING DIVISION

94D9E/W


To accompany report by: Gerhard von Rosen, P.Eng.

GEAREX ENGINEERING mission bo



GEOCHEMICAL SURVEY
GOLD CONTOUR: 30ppb

GOOD:PROSPECTS:AND:MUCH:PROFIT
DAR:MINERAL CLAIMS
GOLDWAY PEAK AREA
OMINECA MINING DIVISION
94D9E/W



GEOCHEMICAL SURVEY
GOLDWAY CREEK: SURFICIAL GEOLOGY

GOOD:PROSPECTS:AND:MUCH:PROFIT
DAR:MINERAL CLAIMS
GOLDWAY PEAK AREA
OMINECA MINING DIVISION
94D9E/W

### GEOCHEMICAL SURVEY

### RESULTS

On Figure D the 30ppb gold content contour line clearly disects the grid length wise in the E-W direction. son with Figure **B** shows that this trend coincides with the location of Goldway creek. Furthermore it appears that gold is contained in the soil samples from the north side of the creek, but not the south. Several clusters of higher gold-content locations occur on the north side (Figure 2). The grid skirts the bottom of the south-facing mountain side and several rock slides were encountered by the field personnel.(Figure 🖹) The writer observes that the southern portion of the grid is probably fed from northerly-facing slopes, in the form of rock slides, while the northern portion has the reverse application. The known BRUCE gold veins are up-hill from the northern portion of the grid.

## CONCLUSIONS

Gold from the BRUCE veins has found its way down into the valley and is definitely showing up in the soils.

A tentative decision can be made that the rock types comprising the mountain side to the south of the grid:

- a) lie too far south to 'feed' the grid, or
- b) do not include deposits of gold comparable to the opposite mountain side.

Little can be said about gold-mineralization occurring under the grid, or even in proximity up-slope to the north, due to the possible source being much higher up-slope.

## RECOMMENDATIONS

This method of surveying can be utilized in other portions of valley bottoms to provide an 'inventory' of probable gold occurrence higher up the mountain sides. Expanding this concept of exploration in length and sampling at regular intervals along the toes of the mountain sides would be cheaper than doing the whole valley, unless to do so would be to explore beneath the valley-bottom veneer. Stream sediment sampling should be performed likewise and with greater regularity.

The source of the gold content shown in this survey is not yet proven to be the BRUCE veins. It is recommended that this be ascertained by standard prospecting, or using modern exploration means.

Respectfully submitted,

G.E.A. von Rosen, M.Sc., P.Eng.

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

16

## STATEMENT OF QUALIFICATIONS

Gerhard von Rosen, P.Eng., the author of this report, has performed this type of survey many times before, and is proficient at interpreting the results.

Ralph Nelson has worked under the direction of the author before, and has been found to be dependable and accurate in his work.

Ralph Nelson was instructed on the performance of this particular venture on August 21, 1982, at Mission, B.C.

The writer is familiar with the property, having studied references, and having compiled a report recommending an exploration program, which includes the present work, on the property. Airphoto study further increased the knowledge of the local terrain.

## APPENDIX 'A'

GEOCHEMICAL ASSAY CERTIFICATES

ACME ANALYTICAL LABORATORIES LTD.

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

1018 - 470 Granville St.,

To: Laramie Mining Corp.,

c/o D.M.Fahey

Vancouver, B.C.

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6

phone: 253 - 3158

File No. 82-1382

18

c.c. Mr. G. Von Rosen, Mission, B.C.

Soi1s Type of Samples \_ GEOCHEMICAL ASSAY CERTIFICATE Disposition.

| SAMPLE No.                                                                                                                                                      | Au                                                                                                                                                      |               |          |          |        |               |                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ON 0 E 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 ON 900 E ON 30 W 60 90 120 150 ON 180 W | 20<br>30<br>15<br>15<br>15<br>30<br>5<br>15<br>10<br>30<br>15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |               |          |          |        |               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 |
| All reports are the c                                                                                                                                           | onfidencial property of clients<br>M.                                                                                                                   | DATE SAM      |          | _        | ct. 26 |               |                                                                                                                                                                                                                                                                                                             |
| DIGESTION:                                                                                                                                                      | ***************************************                                                                                                                 | ASSAYER       | JKIS MAI | 19       | 7      |               |                                                                                                                                                                                                                                                                                                             |
| DETERMINATION:                                                                                                                                                  |                                                                                                                                                         | ASSATER =     | =====    | <u> </u> | 1911   | /<br>======== | <b>3</b> ==:                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                 |                                                                                                                                                         |               | С        | N TOYE,  | ST     |               |                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                 |                                                                                                                                                         | GEAREX ENGINE | FRING m  | nission  | hc     |               |                                                                                                                                                                                                                                                                                                             |

GEAREX ENGINEERING mission bo

To: Laramie Mining Corp.

GOLD GROUP: 94D9E/W : OMINECA MD : GEOCHEM

## ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. 82-1382

Type of Samples \_\_Soils

## GEOCHEMICAL ASSAY CERTIFICATE

Au S AMPLE No. ppb 30S 🗹 0 E 3 5 6 5 5 5 5 5 22 24 5 5 5 26 30 30S 900 E 30S 30 W 30 S 210 W TAN BECAN GOLDWAY CE SUS 

| All reports are the confidencial property of clients All results are in PPM. | DATE SAMPLES RECEIVEDQct191982 DATE REPORTS MAILEDQct271982                            |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| DIGESTION:                                                                   | ASSAYER Line                                                                           |
|                                                                              | DEAN TOYE, B.Sc.  CHIEF CHEMIST  CERTIFIED B.C. ASSAYER  GEAREX ENGINEERING mission bc |

To: Laramie Mining

GOLD GROUP: 9409E/W: OMINECA MD: GEOCHEM

## ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. 82-1382 Soils Type of Samples \_

## GEOCHEMICAL ASSAY CERTIFICATE

Disposition\_

| S A         | MPLE No.       | Au             |             |                        |               |                                                                         |
|-------------|----------------|----------------|-------------|------------------------|---------------|-------------------------------------------------------------------------|
| 30S<br>30S  | 240 W<br>270 W | 15<br>30       |             |                        |               | 1                                                                       |
|             |                |                |             |                        |               | 3<br>4                                                                  |
| 30 <b>X</b> | 0 E<br>30      | 10<br>105∞ ·~⁵ | 500NN       | 15% OKGANICS           |               | 5                                                                       |
| N           | 60             | 95.            | JEONT       | O S OCUMVICS           |               | 6                                                                       |
| ing.        | 90             | 5              |             |                        |               | 7                                                                       |
| )           | 120            | 5              |             |                        |               | 8                                                                       |
|             | 150            | 10             |             |                        |               | 9                                                                       |
|             | 180            | 20             |             |                        |               | 1                                                                       |
|             | 210            | 60 ·           |             |                        |               | 1                                                                       |
|             | 240            | 5              |             |                        |               | 1                                                                       |
|             | 270            | 125            | EEDDAH BEWA | 15% ORCHNICS           |               | 1                                                                       |
|             | 300            | 125            | DARK BRUNN  | 5'L DEGANICS.          |               | 1                                                                       |
|             | 330            | 20             |             |                        |               | 1                                                                       |
|             | 360            | 30             |             |                        |               | 1                                                                       |
|             | 390            | 25             |             |                        |               | 1                                                                       |
|             | 420<br>450     | 5<br>10        |             |                        |               | 1                                                                       |
|             | 480<br>480     | 215 / 1216     | A. PEV      | The following the same | ه ده در رمس ر | 2                                                                       |
|             | 510            |                | UT FROM CK  | 754 MEDIUM, FINE       | - 134 DRECE   | 2                                                                       |
|             | 540            | 10             | C) FROM LR  | G. Jan C.              |               | 1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|             | 570            | 15             |             |                        |               | 2                                                                       |
|             | 600            | 20             |             |                        |               | 2                                                                       |
|             | 630            | 5              |             |                        |               | 2                                                                       |
|             | 660            | 10             |             |                        |               | 2                                                                       |
|             | 690            | 35 /           |             |                        |               | 2                                                                       |
|             | 720            | 20             |             |                        |               | 2                                                                       |
|             | 750            | 20             |             |                        |               | <u>2</u><br>3                                                           |
|             | 780            | 10             |             |                        |               | 3                                                                       |
|             | 810            | 50 ~           |             |                        |               | 3                                                                       |
|             | 840            | 20             |             |                        |               | 3                                                                       |
|             | 870            | 25             |             |                        |               | 3                                                                       |
| 200         | 900            | 5              |             |                        |               | 3                                                                       |
| 30\$        | 930 E          | 25             |             |                        |               | 3<br>3<br>3<br>3                                                        |
| 30N         | 30 W           | 45 ~           |             |                        |               | 3                                                                       |
|             | 60             | 25             |             |                        |               | 3                                                                       |
|             | 90             | 40             |             |                        |               | 3                                                                       |
| 30N         | 120 W          | 45             |             |                        |               | 4                                                                       |

| All r | eports | are | the  | confidencial | property | of    | clients |
|-------|--------|-----|------|--------------|----------|-------|---------|
| All r | esults | are | in P | PM.          |          |       |         |
| DIGE  | STION  |     |      |              |          | ••••• |         |

DETERMINATION:....

DATE SAMPLES RECEIVED Oct. 19, 1982 DATE REPORTS MAILED

ASSAYER

DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER

GHAREX ENGINEERING mission bc

To: Laramie Mining Corp.,

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

## ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6 21

phone:253 - 3158

File No. 82-1382

Type of Samples \_\_\_\_\_Soils

Disposition \_ \_

## GEOCHEMICAL ASSAY CERTIFICATE

Au SAMPLE No. ppb **60N** 0 E 3 4 5 6 55 / 70 -40-35 -. 215 5% OKGANICS TAN COLOUR 50 -40~ 20% DRG BROWN 40 -50-100 -15% CRA. GREY 95~ 95 -20 21 22 23 24 25 26 10's ORG 140~ TAN BEOWN 55 ~ SILT FROM CREEK 28 29 30 60 -55 -45 -**60N** 960 E 30 W **60N** 90 W **60N** 90N 0 E **90N** 30 E 

| All reports are the confidencial property of clients | DATE SAMPLES RECEIVED Oct. 19, 1982                   |
|------------------------------------------------------|-------------------------------------------------------|
| All results are in PPM.                              | DATE REPORTS MAILED Oct. 27, 1982                     |
| DIGESTION:                                           | ASSAYER ()                                            |
| DETERMINATION:                                       | ======================================                |
|                                                      | DEAN TOYE, B.Sc. CHIEF CHEMIST CERTIFIED B.C. ASSAYER |
|                                                      | GEAREX ENGINEERING mission bc                         |

### ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis



To: Laramie Mining

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

82-1382 Type of Samples

## GEOCHEMICAL ASSAY CERTIFICATE

Disposition\_\_

| CLE   |       |          |                |                    |                                          |                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 |
|-------|-------|----------|----------------|--------------------|------------------------------------------|------------------------------|-------------------------------------------------------------------------------------|
| CLE   |       |          |                |                    |                                          |                              | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15            |
| CLE   |       |          |                |                    |                                          |                              | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                      |
| CLE   |       |          |                |                    |                                          |                              | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                      |
| C.C.Z |       |          |                |                    |                                          |                              | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                           |
| C.C.Z |       |          |                |                    |                                          |                              | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                |
| C.C.Z |       |          |                |                    |                                          |                              | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                     |
| C.C.Z |       |          |                |                    |                                          |                              | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                          |
| C.C.Z |       |          |                |                    |                                          |                              | 9<br>10<br>11<br>12<br>13<br>14<br>15                                               |
| C.C.Z |       |          |                |                    |                                          |                              | 9<br>10<br>11<br>12<br>13<br>14<br>15                                               |
| CLE   |       |          |                |                    |                                          |                              | 10<br>11<br>12<br>13<br>14<br>15                                                    |
| CRE   |       |          |                |                    |                                          |                              | 11<br>12<br>13<br>14<br>15<br>16                                                    |
| CRE   |       |          |                |                    |                                          |                              | 12<br>13<br>14<br>15<br>16<br>17                                                    |
| CRE   |       |          |                |                    |                                          |                              | 13<br>14<br>15<br>16<br>17                                                          |
| CRE   |       |          |                |                    |                                          |                              | 14<br>15<br>16<br>17                                                                |
| CLE   |       |          |                |                    |                                          |                              | 15<br>16<br>17                                                                      |
| CLE   |       |          |                |                    |                                          |                              | 16<br>17                                                                            |
| CLE   |       |          |                |                    |                                          |                              | 17                                                                                  |
| CES   |       |          |                |                    |                                          |                              | 17                                                                                  |
| CLE   |       |          |                |                    |                                          |                              | <del></del>                                                                         |
| CRE   |       |          |                |                    |                                          |                              | 18                                                                                  |
| CKE   |       |          |                |                    |                                          |                              | 19                                                                                  |
| CKE   |       |          |                |                    |                                          |                              | 20                                                                                  |
|       | 38 34 | 6.5      |                |                    |                                          |                              | 21                                                                                  |
|       | ~ ~   | •        |                |                    |                                          |                              | 22                                                                                  |
|       |       |          |                |                    |                                          |                              | 23                                                                                  |
|       |       |          |                |                    |                                          |                              | 24                                                                                  |
|       |       |          |                |                    |                                          |                              | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                            |
|       |       |          |                |                    |                                          |                              | 26                                                                                  |
|       |       |          |                |                    |                                          |                              | 27                                                                                  |
|       |       |          |                |                    |                                          |                              | 20                                                                                  |
|       |       |          |                |                    |                                          |                              | 20                                                                                  |
|       |       |          |                |                    |                                          |                              | 25                                                                                  |
|       |       |          |                |                    |                                          |                              | 30                                                                                  |
|       |       |          |                |                    |                                          |                              | 37                                                                                  |
|       |       |          |                |                    |                                          |                              | 29<br>30<br>31<br>32<br>33<br>34<br>35                                              |
|       |       |          |                |                    |                                          |                              | 34                                                                                  |
|       |       |          |                |                    |                                          |                              | 35                                                                                  |
|       |       |          |                |                    |                                          |                              | 36                                                                                  |
| TAN   | CPEU  | Rect. J  | سرد دوسیع      | -                  | و مروضی                                  | -2                           | 37                                                                                  |
|       |       |          | /- / · · · ·   |                    | ے کا | <del>-</del>                 | 38<br>39<br>40                                                                      |
|       |       |          |                |                    |                                          |                              |                                                                                     |
|       | TAN   | TAN GREY | TAN GREY BROWN | TAN GREY BEWW FINE | TAN GREY BROWN FINE                      | TAN GREY BROWN FINE 15°; DEC | TAN GREY BROWN FINE 15°; 022                                                        |

## ACME ANALYTICAL LABORATORIES LTD.

### Assaying & Trace Analysis

6

To: Laramie Mining

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. 82-1382

23

Type of Samples Soils

## GEOCHEMICAL ASSAY CERTIFICATE

C Disposition \_ \_\_\_\_\_

| SAM  | IPLE No.   | Au<br>ppb |                      |              |                                       |                |
|------|------------|-----------|----------------------|--------------|---------------------------------------|----------------|
| 120N | 210 E      | 40        |                      |              | · · · · · · · · · · · · · · · · · · · | ,              |
| 1201 | 240        | 30        |                      |              |                                       |                |
|      | 270        | 35        |                      |              |                                       | <u> </u>       |
|      | 300        | 50        |                      |              |                                       |                |
|      | 330        | 45        |                      |              |                                       | <del> </del>   |
|      | 360        | 80        |                      |              |                                       | ļ              |
|      | 390        | 135       | TAN                  | MED- FINE    | 20% ORC                               | -              |
|      | 420        |           | TAN-BROWN            |              | 20% OF                                | · +            |
|      | 450        | 30        | 77/4 - 8× 64/4       | 1-12-0-1-INE | LUS UKL                               | <del>~</del>   |
|      | 480        | 50        |                      |              |                                       | Ī              |
|      | 510        | 20        |                      |              |                                       |                |
|      | 540        | 10        |                      |              |                                       | <u> </u>       |
|      | 570        | 25        |                      |              |                                       |                |
|      | 600        | 110       | DK - BROWN           | EO% CEARSE   | 10% 563                               | CEEE,K.        |
|      | 630        | 15        | ZA OXUAN             | 00% 000/202  | · 0 3 0 C G                           | CEEEK          |
|      | 660        | 80        |                      |              |                                       |                |
|      | 690        | 40        |                      |              |                                       | ŀ              |
|      | 720        | 25        |                      |              |                                       | Ì              |
|      | <b>750</b> | 30        |                      |              |                                       | ŀ              |
|      | 780        | 5         |                      |              |                                       |                |
|      | 810        | 25        |                      |              |                                       | <u> </u>       |
|      | 840        | 20        |                      |              |                                       | t              |
|      | 870        | 30        |                      |              |                                       | İ              |
| 120N | 900 E      | 25        |                      | •            |                                       | <u> </u>       |
|      | 300 2      |           |                      |              |                                       |                |
| 150N | 30 E       | 5         |                      |              |                                       |                |
|      | 60         | 5         |                      |              |                                       |                |
|      | 90         | 15        | SILT EESM H          | ANGING YALL  | EV CCEEK                              | <              |
|      | 120        | 30        |                      |              |                                       |                |
|      | 150        | 20        |                      |              |                                       | Ī              |
|      | 180        | 15        |                      |              |                                       |                |
|      | 210        | 110       | BROWN!               | 90% COAPSE & | 53 CRG                                | Ţ              |
|      | 240        | <b>60</b> | CREEK SILT           |              |                                       | İ              |
|      | 270        | 145       | GREY                 | 2            | of org                                | <u> </u><br> - |
|      | 300        | 100       | BECWN                | BUY COARSE   |                                       | Ī              |
|      | 330        | 135       |                      | EUY COARE 1  |                                       |                |
|      | 360        |           |                      | 95% COAPSE / |                                       |                |
| 150N | 390 E      | 55        | <b>y</b> = 1 - 1 • 1 |              |                                       |                |
|      | -          |           |                      |              |                                       |                |
|      |            |           |                      |              |                                       | . 1            |

| All reports are the confidencial property of clients | DATE SAMPLES RECEIVED Oct. 19, 1982   |
|------------------------------------------------------|---------------------------------------|
| All results are in PPM.                              | DATE REPORTS MAILED Oct. 27, 1982     |
| DIGESTION:                                           | ASSAYER                               |
| DETERMINATION:                                       |                                       |
|                                                      | , , , , , , , , , , , , , , , , , , , |

DEAN TOYE, B.Sc.
CHIEF CHEMIST
GERTIFIED B.C. ASSAYER

CERREX ENGINEERING mission be

## ACME ANALYTICAL LABORATORIES LTD.

### Assaying & Trace Analysis

To: Laramie Mining Corp.,

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

82-1382

Type of Samples \_\_\_Soils

# GEOCHEMICAL ASSAY CERTIFICATE Disposition

| ON 450 E 150 BROWN 50% COARSE 10% ORG- 480 155 GREY BROWN 75% COARSE 5% ORG- 510 50 540 65 570 40 600 105 DACK BROWN 80% COARSE 30% ORG- 630 50 660 55 690 5 720 70 750 45 780 15 810 10 840 20 870 205 GREY \$ BROWN 75% COARSE 5% ORG- 60N 960 E 15 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 510 50 540 65 570 40 600 105 DACK BEDWN 80% COARSE 30% OEA 630 50 660 55 690 5 720 70 750 45 780 15 810 10 840 20 870 205 GKEY & BEDWN 75% COARSE 5% OEA 900 40 930 25                                                                                |
| 540 65 570 40 600 105 DACK BEDWN 80% COARSE 30% OEA 630 50 660 55 690 5 720 70 750 45 780 15 810 10 840 20 870 205 GREY & BROWN 75% COARSE 5% OEA 900 40 930 25                                                                                       |
| 570 40 600 105 DACK BEDWN 80% COAFSE 30% OEA 630 50 660 55 690 5 720 70 750 45 780 15 810 10 840 20 870 205 GREY & BROWN 75% COAFSE 5% OEA 900 40 930 25                                                                                              |
| 600 105 DACK BEDWN 80% COARSE 30% OEA 630 50 660 55 690 5 720 70 750 45 780 15 810 10 840 20 870 205 GREY & BEDWN 75% COARSE 5% OEG 900 40 930 25                                                                                                     |
| 630 50<br>660 55<br>690 5<br>720 70<br>750 45<br>780 15<br>810 10<br>840 20<br>870 205 GREY & BROWN 75% COARSE 5% OFG<br>900 40<br>930 25                                                                                                             |
| 660 55<br>690 5<br>720 70<br>750 45<br>780 15<br>810 10<br>840 20<br>870 205 GREY & BROWN 75% COARSE 5% OFG<br>900 40<br>930 25                                                                                                                       |
| 690 5 720 70 750 45 780 15 810 10 840 20 870 205 GREY & BROWN 75% COARSE 5% OFG 900 40 930 25                                                                                                                                                         |
| 720 70<br>750 45<br>780 15<br>810 10<br>840 20<br>870 205 GKEY & BEOWN 75% COARSE 5% OEG<br>900 40<br>930 25                                                                                                                                          |
| 750 45<br>780 15<br>810 10<br>840 20<br>870 205 GREY & BEOWN 75% COARSE 5% OEG<br>900 40<br>930 25                                                                                                                                                    |
| 780 15<br>810 10<br>840 20<br>870 205 GREY & BEOWN 75% COARSE 5% OEG<br>900 40<br>930 25                                                                                                                                                              |
| 810 10<br>840 20<br>870 205 GREY & BEOWN 75% COARSE 5% OCC<br>900 40<br>930 25                                                                                                                                                                        |
| 840 20<br>870 205 GREY & BEOWN 75% COARSE 5% CEG<br>900 40<br>930 25                                                                                                                                                                                  |
| 870 205 GREY & BEOWN 75% COARSE 5% OEG<br>900 40<br>930 25                                                                                                                                                                                            |
| 900 40 930 25                                                                                                                                                                                                                                         |
| 930 25                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                       |
| ON 960 E 15                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                       |
| ON 690 E 20                                                                                                                                                                                                                                           |
| <b>72</b> 0 <b>30</b> ′                                                                                                                                                                                                                               |
| 750 40                                                                                                                                                                                                                                                |
| 780 55·                                                                                                                                                                                                                                               |
| 810 15                                                                                                                                                                                                                                                |
| 840 100 BEOWN ST DEGANTS                                                                                                                                                                                                                              |
| 870 240 SECNIN 15% DEGANICS 99% COARS                                                                                                                                                                                                                 |
| 900 40                                                                                                                                                                                                                                                |
| 930 45                                                                                                                                                                                                                                                |
| 960 35                                                                                                                                                                                                                                                |
| 990 65                                                                                                                                                                                                                                                |
| 30N 1020 E 30                                                                                                                                                                                                                                         |
| ION 810 E 40                                                                                                                                                                                                                                          |
| 840 5                                                                                                                                                                                                                                                 |
| 870 80                                                                                                                                                                                                                                                |
| 900 20                                                                                                                                                                                                                                                |
| 930 50                                                                                                                                                                                                                                                |
| 960 40                                                                                                                                                                                                                                                |
| ION 990 E 45                                                                                                                                                                                                                                          |

| All reports are the confidencial property of clients All results are in PPM. | DATE SAMPLES RECEIVED Oct. 19, 1982  DATE REPORTS MAILED Oct. 27, 1982                 |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| DETERMINATION:                                                               | ASSAYER                                                                                |
|                                                                              | DEAN TOYE, B.Sc.  CHIEF CHEMIST  CERTIFIED B.C. ASSAYER  GFAREX ENGINEERING mission bo |

To: Laramie Mining

GOLD GROUP: 94D9E/W: OMINECA MD: GEOCHEM

## ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B. C. V6A 1R6

phone:253 - 3158

File No. 82-1382

Type of Samples Soil & Rock

## GEOCHEMICAL ASSAY CERTIFICATE

Disposition\_ \_\_\_\_\_

| 8 | S A                  | MPLE No.                                                                                |          | Au<br>ppb                        |  |    |     |              | !                               |       |                                |                |                  |                                                                                                                                                                      |
|---|----------------------|-----------------------------------------------------------------------------------------|----------|----------------------------------|--|----|-----|--------------|---------------------------------|-------|--------------------------------|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 210N<br>210N         | 1020 E<br>1050<br>1080<br>1110<br>1140<br>1170 E                                        |          | 35<br>80<br>20<br>15<br>20<br>35 |  |    |     |              |                                 | ,     |                                |                |                  | 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                           |
|   | 240N<br>240N         | 1050 E<br>1080<br>1110<br>1140<br>1170 E                                                |          | 160<br>35<br>20<br>65<br>50      |  | BE | ENN | ,            | •                               | 15 %  | 'CeG                           | <del>-</del> . |                  | 8<br>9<br>10<br>11<br>12<br>13                                                                                                                                       |
|   | 120N<br>150N<br>150N | 0 E<br>0 E<br>420 E                                                                     | R        | 5<br>5<br>5                      |  |    |     |              |                                 |       |                                |                |                  | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 |
|   | All res              | All reports are the confidencial property of clients All results are in PPM. DIGESTION: |          |                                  |  |    |     |              | DATE SAM<br>DATE REP<br>ASSAYER |       |                                |                | 19, 19<br>27, 19 |                                                                                                                                                                      |
|   |                      |                                                                                         | <b>-</b> |                                  |  |    |     | <b>G</b> E A | REX ENGIN                       | CERTI | N TOYE, HIEF CHEMI FIED B.C. A | ST<br>SSAYER   | i                |                                                                                                                                                                      |

## ITEMIZED COST STATEMENT

## DURATION

| August 21-23 : mob-in            |           |
|----------------------------------|-----------|
| August 24-27 : sample collection |           |
| August 28-30 : mob-out           |           |
|                                  | = 10 days |
| Septem 13-14 : mob-in            | •         |
| Septem 15 : helicopter           |           |
| Septem 16-17 : mob-out           |           |
| •                                | = 5 days  |
|                                  |           |
| COSTS                            |           |
|                                  |           |
| FEES: supervision                | \$300     |
| MEALS:                           | 220       |
| CAMP SUPPLIES:                   | 150       |
| LODGING:                         | 190       |
| VEHICLE: 15 days @ \$25          | 375       |
| PROkm: 3200 @ 20¢                | 640       |
| GAS/OIL:                         | 340       |
| SURVEY SUPPLIES:                 | 110       |
| LABOUR: 30 man days @ \$75       | 2250      |
| HELICOPTER:                      | 270       |
| ASSAYS: Acme: 276 samples        | 1179      |
| REPORT: fees                     | 1500      |

## UNIT COSTS

LENGTH OF SURVEY: 8010 meters

COST PER SAMPLE: \$27.99

costs

TOTAL COSTS

200

\$7724