REPORT ON

WORK PROGRAM, CHU PROSPECT

June 15 - September 5, 1982

AA GROUP OF MINERAL CLAIMS
(Chu 25-36, 41-52, Ako, Nech, Nech非1, Nech\#2, AA\#1, AA\#2, AA\#3)

Located 6.5 km West of West End of Chutanli Lake

OMINECA MINING DIVISION, B.C.

October, 1982

Revised April 21, 1983

Claims owned by:
 Asarco Incorporated and
 Armco Mineral Exploration Ltd.

CONTENTS

Page
Introduction 1
Location 1
Previous Work 1
Accomodation and Personnel 2
Work Program 2
Diamond Drill Hole $⿰ \sharp 82-1$ - Core Log Summary 3
Diamond Drill Hole \#82-2 - Core Log Summary 5
ILLUSTRATIONS
Figure 1. Location (revised April 21, 1983)
follows p. 2
Figure 2. Geological Section $1+40 \mathrm{~W}$
Figure 3. Geological Section 4+20W
folded in pocket
folded in pocket
Appendix IStatement of Expenditures
Appendix II
Statement of Qualifications
Appendix II(a) (added April 21, 1983)Drill Core Assays, Copper and Molybdenite
Appendix II(b) (added April 21, 1983)
Drill Core Assays, Tungstate, Silver and Gold

Introduction

The Chu property is a molybdenite prospect that is located at the south end of the Nechako Range in Omineca Mining Division, British Columbia. Discovered in 1969, it is owned jointly by Armco Mineral Exploration Ltd, and Asarco Inc. An exploration program of diamond drilling and geological mapping, followed by reclamation work, was funded and directed by Armco Mineral Exploration Ltd. in the period June 1 to September 5, 1982.

Diamond drilling totalled $798 \mathrm{~m}\left(2617^{\prime}\right)$ in two holes. Camp facilities and boxes of drill core were removed from the property. Expenditures exceeded $\$ 100,000$. This report describes the program of work and provides documentation on expenditures in excess of $\$ 33,200$. A statement of exploration expenditures filed on September 7, 1982, applied the latter sum as assessment work to all Chu property mineral claims.

Geological core log summaries for holes $\# 82-1$ and $\# 82-2$ are included as "part: of this report. Appendix I. is a statement of expenditures and Appendix II is a statement of the writer's qualifications.

Location

The Chu mineral property is located at the south end of the Nechako Range in the Intermontane physiographic province of British Columbia. Approximate geographical co-ordinates are $53021^{\prime} \mathrm{N}, 124^{\circ} 37^{\prime} \mathrm{W}$. It is about 6.5 km west of Chutanli Lake and 100 km southwest of the village of Vanderhoof. With the exception of the Kluscus-Ootsa Forestry Road that passes 3 km south of the Chu area, there are neither nearby facilities nor improvements.

Previous Work

Immediately following its discovery in 1969 , the Chu property was explored by Asarco and Rio Tinto Canadian Exploration Ltd. Asarco completed additional geochemical surveys in 1977. Armco commenced work by building an access road in 1979 and carried out diamond drilling campaigns in 1980 and 1981. Late in 1981 Armco conducted technical surveys over much of the property. The 1982 program of diamond drilling was directed to the main molybdenite zone revealed by previous work.

A comprehensive description of geological features, as well as logistics, was included in an assessment report submitted to the British Columbia Ministry of Energy, Mines and Petroleum Resources in October 1981. The interested reader will find information in that report that is not repeated in this account of the somewhat smaller 1982 field program.

Accomodations and Personnel
A centrally located five building tent camp that was constructed in 1981 to service drilling and other work at Chu property was re－occupied during sumer 1982．Personnel included four diamond drillers， a cook，a core sampler and a geologist／manager．Following completion of work，four buildings were removed and the site reclaimed．

Work Program

Two diamond drill holes of NQ－size diameter and aggregate length 798 m （2617＇）were cored in the period June 15 through July 7， 1982. The contractor，G and D Diamond Drilling Co．Ltd．of Surrey and Williams Lake，B．C．，provided a Model Super 38 diamond drill，a small crawler tractor and all necessarytools and ancillary equipment，plus personnel．

The work program was planned and supervised by Philip I．Conley，P．Eng．， manager，and Erik Ostensoe，senior geologist，of Armco＇s staff．Camp maintenance and core sampling duties were ably handled by Pieter Kos who had similar duties during the 1981 field program．

Erik Ostensoe prepared geological＂logs＂of drill cores and determined sampling procedures．Upon completion of field work he prepared vertical sections to illustrate results obtained and compiled technical reports． In addition he removed all drill core and most of the buildings from the property．Cores were transported to the Vancouver area and placed in safe dry storage．Forage crop seeds were spread on drill sites，campsite and road sides to stabilize soils and encourage regeneration：of natural vegetation．All work was completed by early September．

1982 drilling was confined to the eastern portion of the zone of molybdenite mineralization that was explored during 1980 and 1981. Drill hole $\# 82-1$ was intended to fill a＂data gap＂between Sections $0+00$ and $2+80 \mathrm{~W}$ ．Drill hole $\# 82-2$ ，on Section $4+20 \mathrm{~W}$ ，which under cut drill hole $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 81－2 by about 80 m ，was planned to test the continuation at depth of an attractive molybdenite zone that was intersected in hole \＃81－2．（Figure 1）．

Reclamation work was necessitated by reclamation guidelines and cores were removed as a precaution against destruction by natural hazards and vandalism and in order to facilitate access in the future． With the exception of one tent frame structure and the stoutly constructed core storage rack，the camp was completely removed or destroyed．

FIGURE 1. Location of Drill Holes \$82-1 and 82-2. Scale: 1:2500.

Diamond Drill Hole 82-1 - Core Log Summary

Location	$10,092 \mathrm{~N}$ Elevation $9,883 \mathrm{E}$ $1,380 \mathrm{~m}$	not surveyed - relative to collar DDH $80-1$
		at $10,000 \mathrm{~N}$
	elev. $10,000 \mathrm{E}$	

NQ size core Collar bearing 214° azimuth Collar inclination - $47^{\circ} 30^{\prime}$	
$\begin{aligned} & 0-4.3 \mathrm{~m} \\ & \left(0-14^{\prime}\right) \end{aligned}$	Overburden and broken bedrock not recovered.
$\begin{aligned} & 4.3 \mathrm{~m}-82.5 \mathrm{~m} \\ & \left(14^{\prime}-270.5^{\prime}\right) \end{aligned}$	Andesite with porphyritic texture and variable appearances due to mottled effects of alteration which include biotitization, epidotization, chloritization and varying amounts of iron sulphides. Occasional narrow quartz veins. Foliation is weakly developed at 45° to core axis.
$\begin{aligned} & 82.5 \mathrm{~m}-100.2 \mathrm{~m} \\ & \left(270.5^{\prime}-328.7^{\prime}\right) \end{aligned}$	Dense, dark, biotitized andesite with alteration (siliceous and chloritic, minor carbonate veinlets); may be a foliated lapilli tuff horizon. From 94.2m (309') rock in increasingly fine grained and more strongly foliated though not sheared. Distinctive disseminated bright green epidote.
$\begin{aligned} & 100.2 \mathrm{~m}-117.3 \mathrm{~m} \\ & \left(385^{\prime}-397.3^{\prime}\right) \end{aligned}$	At 100.2 m (328.7 ${ }^{\circ}$) contact with a very siliceous, whitish-green coloured, very fine grained quartzite or rhyolite formation. May be a rhyolite crystal tuff unit. Crushed interval at $106.7 \mathrm{~m}-106.37 \mathrm{~m}$ (348'-349') with gougy calcite and disseminated grains.
117.3m-121.1m	Transitional zone between siliceous formation and reddish biotitized argillite unit. Contains a series of black basalt dykes with widths of 0.14 m to 2 m (0.45^{\prime} to 6.55^{\prime}) and contacts at 35° to 45° to core axis.
121.1m-369.4m	Reddish coloured biotitized argillite with stockwork of quartz veinlets. Small amounts of MoS_{2}. Dominant stockwork veinlets parallel foliation. Rock is monotonous except for occasional narrow crushed/pulverized sections. Molybdenite is fine grained and is obscured by folia. Sections 151.18m - 151.73m (496' - 497.8') is strongly sheared, even schistose, and accompanying biotite is coarse grained, dark brown. From 152.40m - 155.45m ($500^{\prime}-510^{\prime}$) fracturing is at 65° to 70° to core axis and quartz veinlets pinch and widen and are ptygmatically crenulated. Quartz veinlet stockwork intensifies from 161.54 m to 167.64 m (530^{\prime} to 550^{\prime}).
	175m - 175.73m (574' - 576.55') altered porphyritic quartz monzonite dyke. Contacts 45° to 50° to core axis. White feldspar phenocrysts up to 1.5 cm in diameter are sparcely scattered.

181.66m - 182.09m (596' - 597.4') mud seam of crushed argillite and vein quartz with MoS_{2} flakes. Followed 182m - 182.9m (597' - 600') by very pale green chloritic alteration of argillite formation - likely retrograde alteration from biotite. This type of chloritic alteration occurs sporadically over narrow widths, commonly with flame textures where chlorite and biotite types meet. QM dykes at 198m - 198.3m (649.5' - 650.5'), 202.45m 206.47m (664.2' - 677.4'), 212.75m - 213.21m (698' - 699.5').

At about 222.5 m (730') rock becomes much darker brown in contrast to reddish brown, and texture becomes more dense and featureless than the foliated texture encountered above. Molybdenite is more obvious in the denser formation, forms seams, occurs with pyrite and epidote in quartz veins. Continues to 234.7 m (770') then reverts to foliated formation. At 241.46 m to 241.52 m (792.2' to 792.4^{\prime}) quartz occurs with much pyrite and strongly magnetic pyrrhotite plus molybdenite. Quartz veinlet stockwork is variable in intensity (ie. number) and "strength" (ie. widths of individual veinlets). From 305.2m to 305.5 m (1001.3' to 1002.35') a mixed zone of pegmatite-like vein quartz and porphyritic fine grained grey dyke material followed at 305.52 m (1002.35^{\prime}) by feldspar porphyritic quartz monzonite dyke that continues to 307.1m (1007.6'). From $307.1 m$ (1007.6^{\prime}) biotite altered argillite continues monotonously with occasional narrow QM dykes, "crackle" altered sections and mixed chlorite/biotite alteration. Crushed but not strongly sheared section occurs from 326.9 m to 327.6 m (1072.5^{\prime} to 1074.8^{\prime}) - MoS_{2} is sheared along with the silicate rock. From 336.8 m to 338.7 m (1105' to 1111.3') quartz monzonite dyke with large, partially resorbed, feldspar phenocrysts. From 360m to 360.4 m (1181^{\prime} to 1182.5^{\prime}) quartz breccia with fine grained pyrite, possibly a case of complete silicification that approaches quartz monzonization. 369.4m (1212')- end of hole.

Diamond Drill Hole \#82-2 - Core Log Summary

Location	10,373.35N	
	9,726.74E	not surveyed - relative to collar DDH 80-1
Elevation	1,399.45m	at $10,000 \mathrm{~N}$
		10,000E
		elev. 1384.2m

NQ size core
Collar bearing 210° azimuth Collar inclination - $52^{\circ} 30^{\prime}$
Reference: Geological Section $4+20 \mathrm{~W}$, folded in pocket of this report
$0-3.66 \mathrm{~m} \quad$ Overburden and broken bedrock not recovered.
(0-12')
$3.66 m-133.2 m$ (12' - 437.2')
133.2m-428.2m
(437.2' - 1405')

Dark green/dark purple coloured feldspar porphyry with tiny fractures filled by chlorite and very fine grained pyrite. Cut by occasional quartz veins and pale green bleaching-type alteration. Feldspar phenocrysts are 2 mm in diameter and very pale green to ivory white coloured. Narrow portions are strongly altered to granitic texture. Quartz-pyrite sections also contain few sphalerite grains, pyrrhotite and chalcopyrite. At $30.48 \mathrm{~m}-33.53 \mathrm{~m}$ (100^{\prime} - 110^{\prime}) similar to above but has coarse fragmental texture and may be a lapilli tuff unit.

47m-49m (154.3' - 160.8') basalt dyke with narrow chilled contacts at 45° to core axis.

Carbonate alteration is present though weakly developed from 49m (160.8'). At 55.3m (181.5') rock becomes strongly biotitized and very dark, almost black, in colour. Irregular sections with fragmental textures may reflect a volcanic breccia origin.
From 68.3m (224^{\prime}) rock colour changes from mainly greenish-grey to mainly purplish-grey. 91.65m to 94.95 m (300.7^{\prime} to 311.5^{\prime}) strongly porphyritic texture with crowded feldspar phenocrysts up to 3 mm in diameter. Carbonate alteration is moderately strong from 96.9 m to 103.6 m (318^{\prime} to 340^{\prime}). 104.4 m (342.6') marks the start of a section of oxidized broken core with much gouge, clay alteration, bleaching, iron staining and faulting that persists to 133.2m (437.2').

At 133.2 m (437.2') contact between broken andesite formation and black strongly sheared/foliated shale formation, including broken sections with rust coatings on fractures.
At 143.2 m (470') prominent foliation (possible bedding) at 42° to core axis. Core becomes more solid below 145.5m (477.5') and is crosscut by narrow carbonate veinlets. Weak traces of biotitization appear at 161.5m (530'). Trace of MoS_{2} at 165.9 m (544.2'). Mixed black and brown colour patterned argillite occurs from 173.7 m to 183 m (570^{\prime} to $60-$). Quartz veinlets
increase in number and width also. MoS_{2} becomes noticeable at about 189m (620') and strengthens along with increase in biotitization and silicification to 219.5 m (720') where quartz veins are up to 4 cm wide. Basalt dyke 223.3m - 223.9m (732.6' - 734.6'). Exact transition from shale to hornfels is difficult to determine; similarly re quartz veinlet stockwork. "Crackle"-type alteration occurs over narrow widths from 250.15 m (820.7') and narrow (0.5 m) quartz monzonite dykes are irregularly present. The section 274.5 m to 278 m (900.5^{\prime} to 911.9^{\prime}) exhibits much crushing and gouge though rock is reasonably competent.
290.5m - 294m (953' - 964.5') - quartz monzonite dyke.
308.6m - 309.5m (1012.5' - 1015.4') - quartz monzonite dyke.
311.9m - 312.2m (1023.2' - 1024.2') - quartz monzonite dyke.

Stronger MoS_{2} mineralization from 317m (1040') occurs in brown stockworked hornfelsed argillite. Wide quartz veins are present though irregular in occurrence and over printed on a persistent fine quartz veinlet stockwork. Dominant alteration is biotitization but chloritization is also prominent. Occasional narrow sections contain $>0.2 \% \mathrm{MoS}_{2}$.
The above formation with MoS_{2} mineralization continues to 428.2 m (1405 ') which is end of hole.

Total Expenditures incurred in excess of \$79,557.39

Erik A. Ostensoe, B.Sc., Geologist

Education:	Completed B.Sc. (Honours) course at University of British Columiba, Vancouver, B.C. in May, 1960. Completed course requirements for M.Sc. degree at Queen's University, Kingston, Ontario in 1966. Thesis incomplete.
Professional Associations:	```Member: Canadian Institute of Mining and Metallurgy; Association of Exploration Geochemists; Geological Association of Canada.```
Work History:	May 1960 through August 1964 - employed by Newmont Mining Corporation of Canada Ltd, as geologist in Granduc Mine area, Stewart, B.C. under direction of D.M. Cannon, P.Eng., and G.W.H. Norman, Ph.D., P.Eng. Summer 1965 - employed as geologist by Mount Billings Venture, a southern Yukon prospecting syndicate. Summer 1966 - employed as geologist by Scud Venture, a northwestern British Columbia prospecting syndicate. October 1966 to June 1978 - employed by Hecla Mining Company of Canada Ltd. and Granduc Mines, Limited (N.P.L.) as exploration supervisor and chief geologist, respectively, under the direction of P.I. Conley, P. Eng. August to November, 1978 - employed on contract basis by Union Oil Company of Canada,Ltd. as geologist in charge of field program at Beaverdell, B.C. April 1979 to September 1982 - employed by Armco Mineral Exploration Limited as geologist, assigned to projects in north-central British Columbia and Yukon under the direction of P.I. Conley, P.Eng.

APPENDIX II(a)

Drill Core Assays Copper and Molyboenite (HOS_{2})

CES PROJECT - MECRARO RANGE, B.C.
 DLAYONI DRILI TOLE 82-1

Siat: June 20, 1982
Finish: June 27, 1982
Core size: NQ
Core Fecovery: +98\%
SEFFie: Split Core
Directioned Survey:
Collar
$61 \mathrm{~m}(200 \mathrm{ft}$.
$146 \mathrm{~m}(480 \mathrm{ft})$
$235 \mathrm{~m}(785 \mathrm{ft}$.
$309 \mathrm{~m}(1015 \mathrm{ft})$.

IDCization:
Eearigg: 2140 (compess)
Letgth: 369.4 (1212 feet
$\frac{\operatorname{sear} \sin 8}{2140^{\circ}}$
-
-
-

$$
\begin{aligned}
& \frac{\text { Incianation }}{-47^{6} 30^{\prime}} \\
& \begin{array}{cccccc}
-500 & \text { (by acid bottle } & \text { Etch) } \\
-480 & " 1 & " & " & " " & " 1 \\
-450 & " 1 & " & " 1 & " 1 & " 1 \\
-440 & 30^{\prime} & " & " & " & " 1
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { Skyple } \\ & \text { Nimber } \end{aligned}$	Heie interval			Copper	Muyberife
	(feer)	(Dfters)		Sper cedt)	Cper (eor)
45001	14-20	4.3 -	- 6.1	0.03	0.003
45002	20-30	6.1 -	- 9.1	0.02	<0.001
45003	$30-40$	9.1 -	- 12.2	0.01	0.004
45004	40-50	12.2 -	- 15.2	0.02	c 0.001
45005	$50-60$	15.2 ${ }^{\text {2 }}$ -	- 18.3	0.02	< 0.001
45006	60-70	18.3-	- 21.3	0.04	< 0.001
45007	70-80	21.3-	- 24.4	0.04	0.007
45008	80-90	$24.4=$	- 27.4	0.03	0.007
45009	90-100	27.4	30.5	0.04	0.003
45010	100-110	$30.5=$	- 33.5	0.02	< 0.001
45011	110-120	33.5	36.6	0.02	0.018
45012	120-130	$36.6=$	- $\quad 39.6$	0.04	0.049
45013	130-140	39.6 -	- 42.7	0.02	0.005
45014	140-250	42.7	- 45.7	0.02	0.006
45015	150-160	45.7	- 48.8	0.02	0.009
45016	160-170	48.8	51.8	0.03	0.003
45017	170-180	51.8	- 54.9	0.04	0.005
45018	180-190	54.9	- 57.9	0.03	0.003
45019	190-200	57.9	- 61.0	0.03	0.025
45020	200-210	61.0	- 64.0	0.02	0.008
45021	210-220	64.0	- 67.0	0.03	0.029
45022	220-230	67.0	- 70.1	0.02	0.008
45023	230-240	70.1	- 73.1	0.03	0.031
45024	240-250	73.1	- 76.2	0.03	0.034
45025	250-260	76.2	- 79.2	0.03	0.048
45026	260-270	79.2	- 82.3	0.03	0.016
45027	270-280	82.3	- 85.3	0.05	0.011
45028	280-290	85.3	- 88.4	0.06	0.013
45029	290-300	88.4	- 91.4	0.03	0.003
45030	$300-310$	91.4	- 96.5	0.03	0.005
45031	$310-320$	94.5	- 97.5	0.06	0.003
45032	$320-330$	97.5	- 100.6	0.05	0.012
45033	$330-340$	100.6	- 103.6	0.05	0.013

$\begin{aligned} & \text { Serifie } \\ & \text { Eurber } \end{aligned}$	(feet)	Crval (meters)	Copper (per cent)	Molybsenite (per ceor)
45034	340-350	103.6-106.7	0.06	0.006
45035	350-360	106.7-109.7	0.07	0.013
45036	360-370	109.7-112.8	0.06	0.022
45037	370-380	112.8-115.8	0.04	0.007
45038	380-390	115.8-118.9	0.03	0.023
45039	390-400	118.9-121.9	0.01	0.008
45040	400-410	$121.9-125.0$	0.02	0.030
45041	410-420	125.0-128.0	0.03	0.042
45042	420-430	$128.0-131.0$	0.03	0.048
45043	430-440	132.0-134.1	0.02	0.056
45044	440-450	134.1-137.1	0.02	0.022
45045	450-460	137.1-140.2	0.01	0.016
45046	$460-470$	$140.2-143.2$	0.01	0.024
45047	470-480	243.2-146.2	0.02	0.056
45048	480-490	146.2-149.3	0.02	0.032
45049	490-500	149.3-152.4	0.02	0.033
45050	500-510	$152.4=155.4$	0.02	0.035
45051	510-520	155.4-158.5	0.01	0.024
45052	$520-530$	158.5-161.5	0.01	0.038
45053	530-540	161.5-164.6	0.01	0.040
45054	540-550	164.6-167.6	0.01	0.051
45055	550-560	167.6-170.7	0.01	0.033
45056	560-570	170.7-173.7	0.02	0.066
45057	$570-580$	173.7-176.8	<0.01	0.063
45058	580-590	176.8-179.8	0.03	0.075
45059	590-600	179.8-182.9	0.03	0.100
45060	600-610	182.9-185.9	0.01	0.082
45061	610-620	185.9-189.0	0.01	0.020
45062	620-630	189.0-192.0	0.02	0.167
45063	630-640	$192.0=195.0$	0.02	0.100
45064	640-650	195.0-198.1	0.04	0.076
45065	$650-660$	198.1-201.2	0.01	0.031
45066	660-670	201.2-204.2	<0.01	0.013
45067	670-680	204.2-207.3	<0.01	0.007
45068	680-690	207.3-210.3	0.02	0.047
45069	690-700	$210.3-213.3$	0.02	0.048
45070	700-710	213.3-216.4	0.02	0.042
45071	710-720	216.4-219.4	0.03	0.038
45072	720-730	219.4-222.5	0.02	0.064
45073	$730-740$	222.5-225.5	0.03	0.063
45074	740-750	225.5-228.6	0.04	0.117
45075	750-760	228.6-231.6	0.03	0.058
45076	760-770	231.6-234.7	0.03	0.040
45077	770-780	234.7-237.7	0.03	0.046
45078	780-790	237.7-240.8	0.03	0.030
45079	790-800	240.8-243.8	0.03	0.038
45080	$800-810$	243.8-246.9	0.02	0.083
45081	820-820	246.9-249.9	0.03	0.050

Snyid	$(f+e t)^{\text {mode }}$	(seiera)	$\begin{aligned} & \text { Copper } \\ & \text { Ser cemi) } \end{aligned}$	Wiybsens: fper cot	
				CHEMEX	General Testis
45082	E20-E30	249.9-253.0	0.05	0.030	
45083	$830-10$	$253.0=256.0$	0.03	0.043	
45084	E40-E50	256.0-259.0	0.03	0.112	
45085	150-660	$259.0=262.1$	0.03	0.018	
45086	E60-E70	$262.1-265.2$	0.02	0.037	
45087	E70-E80.	263.2-268.2	0.03	0.029	
45088	880-890	$268.2=271.3$	0.02	0.042	
45089	190-900	$271.3=274.3$	0.03	0.048	
45090	900-910	$274.3-277.4$	0.02	0.037	
45091	910-920	$277.4-280.4$	0.03	0.060	
45092	920-930	280.4-283.4	0.04	0,120	
45093	$930-540$	$283.4-286.5$	0.06	0.038	
45094	960-950	286.5-289.3	0.02	0.038	
45095	$950-960$	289.5-292.6	0.02	0.038	
45096	960-970	$292.6-295.6$	0.02	0.054	0.050
45097	970-980	295.6-238.7	0.02	0.087	0.098
45098	980-990	258.7-301.8	0.02	0.050	0.038
45099	990-2000	301.8-304.8	0.02	0.060	0.053
45100	2000-2010	304.8-307.8	0.03	0.038	0.048
45101	1020-2020	$307.8-310.9$	0.03	0.054	0.048
45102	1020-1030	$310.9-323.9$	0.05	0.072	0.085
45103	1030-1040	$313.8-317.0$	0.02	0.051	0.060
45204	1040-1030	317.0-320.0	0.01	0.078	0.082
45105	2050-2060	$320.0-323.1$	0.03	0.038	0.043
45106	1060-1070	$323.1-326.1$	0.03	0.050	
45107	2070-3080	$326.1-329.2$	0.02	0.071	
45108	1080-1090	329.2-332.2	0.02	0.048	
45109	2090-1100	$332.2-335.3$	<0.01	0.013	
45110	1100-1110	$335.3-338.3$	0.02	0.051	
45111	1110-1120	$338.3-341.4$	0.02	0.069	
45112	1120-1130	341.4-344.4	0.02	0.064	
45113	$1130-1140$	344.4-347.5	0.03	0.180	
45114	1140-1150	347.5-350.5	0.02	0.117	
45115	$1150-1160$	$350.5-353.6$	0.02	0.125	
45116	$1160-1170$	353.6-356.6	0.01	0.062	
45117	1170-1180	$356.6-359.7$	0.03	0.054	
45118	1180-1190	$359.7-362.7$	0.03	0.112	
45119	$3190-1200$	362.7-365.8	0.02	0.062	
45120	1200-1210	$365.8-368.8$	0.02	0.064	
45121	1210-1212	368.8-371.9	0.02	0.057	

CES PROJECT - MECHARO RANGE, B.C.
 DLAMOND DRILI BDLE 82-2

Start: June 28, 1982
Finich: July 8, 1982
Core Size:NQ
Core kecovery: $+98 \%$
Semple: Split Core

Co-ordinetes: $10,373.35 \mathrm{~N}$ (Not surveyed) 9.726.74 E. " " "

Elevation: $1,399.45 \mathrm{~m}$ " "
Inclination:
Sear1ng:210 (compass)
Length: 428.2 w (1405 feet)
Searing
210° compass
-

Ipcilination

$\begin{aligned} & \text { Samflo } \\ & \text { Nurber } \end{aligned}$	Foit interval		corper Sper cent)	Molybjeni (per cen
	(feet)	(meters)		
	12-550	3.66-167.64	Not	pled
45122	550-560	167.64-170.7	0.01	0.005
45123	$5.10-570$	170.7-173.7	0.01	0.002
45124	570-580	173.7-176.8	<0.01	0.006
45125	5E0-590	176.8-179.8	<0.01	0.005
45126	$590-600$	$179.8-382.9$	0.01	0.008
45127	600-610	182.9- 585.9	0.01	0.008
45128	610-620	185.8-389.0	0.01	0.005
45129	$620-630$	189.0-192.0	0.02	0.011
45130	630-640	152.0.- 295.0	0.02	0.013
45131	660-630	195.0-198.1	0.03	0.024
45132	650-660	198.1-201.2	0.04	0.019
45133	$660-670$	201.2-204.2	0.01	0.018
45134	670-680	204.2-207.3	0.02	0.037
45135	680-690	$207.3-210.3$	0.02	0.044
45136	690-700	$220.3-213.3$	0.03	0.040
45137	700-710	213.3-216.4	0.02	0.017
45138	720-720	216.4-219.4	0.03	0.048
45139	720-730	219.4-222.5	0.05	0.069
45140	730-740	222.5-225.5	0.16	0.030
45141	$760-750$	225.5-228.6	0.05	0.025
45142	730-760	228.6-231.6	0.02	0.033
45143	760-790	231.6-234.7	0.03	0.050
45144	770-780	234.7-237.7	0.02	0.020
45145	780-790	237.7-260.8	0.03	0.027
45146	790-800	260.8-243.8	0.02	0.034
45147	100-810	243.8-246.9	0.03	0.042
45148	120-820	266.9-269.9	0.03	0.045

$\begin{aligned} & \text { Fanje } \\ & \text { Finer } \end{aligned}$	sfeet)	Lerval (mects)	$\begin{aligned} & \text { Copper } \\ & \text { (per }(\operatorname{cop}) \end{aligned}$	Malybseate (per cest)
45198	1310-1320	396.2-402.3	0.04	0.170
45199	1320-1330	402.3-405.4	0.03	0.055
45200	1330-1340	405.4-408.4	0.01	0.057
45201	$1360-1350$	408.4-411.5	0.01	0.065
45202	1350-1360	$411.5=414.5$	0.02	0.064
45203	$1360-1370$	$414.5-417.6$	0.01	0.070
45204	1370-1380	417.t-420.6	0.02	0.157
45205	1380-1390	420.6-423.7	0.01	0.066
45206	1390-1400	423.7-426.7	0.02	0.075
45207	1400-1405	62t.7-429.8	0.02	0.167

APPENDIX II(b)

Drill Core Assays

Tungstate $\left(\mathrm{HO}_{3}\right)$, Silver and Gold

Note: Added to the report April 21, 1983 per request of Chief Gold Commissioner

212 OROOKSBANK AVE NODTM VANCOUVER. B.C CANADA
v7J 2C9
TELFPHONE (EOK) De4-0221 TELEX: 0.3.52597

CERTIFICATE DF ASSAY

TC: ARMCD FINERAL EXPLORATION LTD..
$1780-1055$ W. HASTINCS STREET VANCOUVER. B.C. VGE $2 E 9$

CERT : AE212972-001-1
INVOICE : 18212972
DATE : 2-SEP-BZ
P.C. : NONE

