182-400-#10851

GILLIAN MINES LTD.

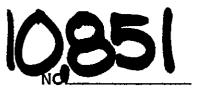
ASSESSMENT REPORT ON A DIAMOND DRILLING,

GEOPHYSICAL AND GEOLOGICAL PROGRAMME

ON THE

GILLIAN WEST GROUP LOYD NORTH CLAIMS

GOOSLY LAKE, B.C.


OMINECA MINING DIVISION

N.T.S. 93L/1W

54° 10' N, 126° 22' W.

Owner and Operator: GILLIAN MINES LTD. 1650 Riverside Drive North Vancouver, B.C. V7H 1V7

MINERAL RESOURCES BRANCH ASSESSMENT REPORT

Prepared by:

J. Paul Stevenson

_ _ _ _ _ _ _

June 7, 1982

- -----

TABLE OF CONTENTS

(

PAGE
Location and Access
Property Location & Claim Map 3
Introduction 4
Appendix A
Appendix B
Certificate of Author
Bema Industries Ltd. Interim Report 21
Recon. Mag. Survey Map Pocket
Vertical Separation Map Pocket
Maximum Amplitude Anomaly Map Pocket
Total Field Magnetic Anomaly Map Pocket

• •

...1


.

LOCATION AND ACCESS

The claims are located 25 miles (32 kilometers) southeast of Houston, B.C. They can be reached via the Buck Flats road from Houston to the property. The claims are situated at Lat. 54°, 10 min. N., Long. 126°, 22 min. W.

CLAIM INFORMATION

CLAIM	Loyd North
UNITS	14
RECORD NO.	239
ANNIVERSARY DATE	February 20th
EXPIRY BEFORE CREDIT	1982
EXPIRY AFTER CREDIT	1984

The 1981 assessment work on the Loyd North Claims began on January 21, 1981. Diamond drilling was initiated on that date, and approximately 7,672 feet of NQ drilling was completed by April 15, 1981. The drilling was done by J.T. Thomas Diamond Drilling Ltd. of Smithers, B.C., at a cost to Gillian Mines Ltd. of \$198,675.50. The invoices of J.T. Thomas Diamond Drilling Ltd. can be found in Appendix A.

A two man field crew conducted a very detailed magnetometer survey over the claims during the late spring and summer commencing June 26, 1981 and terminating August 18, 1981. This survey was conducted by an employee of Gillian Mines Ltd. and employees of Edward Lipsett Ltd. The costs for this survey and the invoices of Edward Lipsett Ltd. which total \$7,082.00, can be found in Appendix B.

Bema Industries Ltd. was contracted to perform a detailed geological study on the results of the drilling and geochemistry. This study was conducted from April 15, 1981 through to August 31, 1981. The cost of this study was \$28,004.35, and a copy of the report of Bema Industries Ltd. accompanies this report.

The diamond drill core was shipped down to the offices of Gillian Mines Ltd. via Canadian Freightways at a cost of \$2,602.64, where it was examined by Bema Industries Ltd. The diamond drill core is currently stored at the offices of Gillian Mines Ltd.

Do not film T.K.

APPENDIX A

_ -----

-

、

(.)

1

•

- ----

....

. C

J. T. HOMAS

DIAMOND DRILLING (1980) LTD.

PH. 847-3531 P.O. BOX 394 VOJ 2N0

SMITHERS, B.C.

To: Gillian Mines Ltd.	Invoice No. <u>81-1</u>
1650 Riverside Drive North Vancouver, B. C.	Property: <u>Houston</u>
V7H 1V7	Invoice Date: <u>February 4, 1981</u>
This is our invoice for diamond drilling above property as per contract.	, and other services on the
Diamond Drilling: Total footage - 2359' Page 2.	. See attached \$ 42305.00
Man and Machine Hours: See attached Pag	ge 3. 2640.00
Tractor Rental: See attached Page 3.	1125.00
Materials Used, Lost or Damaged: See at	tached Page 4. 4235.30
Water Truck: ll days @ \$600.00/day incl room & board	uding fuel and 6600.00
	us 10% 660.00
Coreboxes and Lids: 125@\$8.00	1000.00
IN	VOICE TOTAL \$ 58565.30

The above calculations are agreed to by:

- ----

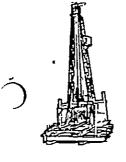
Kilian

Company Representative

J. T. Thomas Diamond Drilling

_ . __ . / __ . _ .

J. T. HOMAS


DIAMOND DRILLING (1980) LTD.

_ SMITHERS, B.C.

PH. 847-3531 P.O. BOX 394 V0J 2N0

					- 2 -				
	DIAMOND D	RILLING:							
	<u>Hole No</u> .	Date	Overbu: <u>From</u>	rden <u>To</u>	Cor <u>From</u>	ing <u>To</u>	Total <u>Footage</u>	Rate	Amount
	81-1	Jan. 21	0	22	22	505	22 483	\$17.00 17.00	\$ 374.00 8211.00
	81-35	24	0	20	20 500	500 607	20 480 107	17.00 17.00 19.00	
)	81-36	26	0	20		500 1000 1247	20 480 500 247	17.00 17.00 19.00 21.00	340.00 8160.00 9500.00 5187.00
							2359'	ġ	\$42305.00

...7

DIAMOND DRILLING (1980) LTD.

SMITHERS, B.C.

PH. 847-3531 P.O. BOX 394 VOJ 2N0

- 3 -

MAN AND MACHINE HOURS:

<u>Date</u>		<u>Gagnon</u>	<u>Peters</u>	<u>Langlois</u>	<u>Rudkavich</u>	<u>Capewell</u>	<u>Drill</u>	<u>Cat</u>
Jan.	20 21	5 10	5	5	5			2 10
	22	2	2	ц.	l		2	
	23	l	2		4			
	24	5	4	4	4	1	3	7
	25		2		1			
	26	3	3	1	1			
	27 28			1	1 1			
	28		1	1	1			2
	29 30		1 1		1 1			
	31		1	2	2			
Feb.	1	9	9	8	2 8			4
		<u></u>	 31	26		- 1		
		35			32	⊥ 	7	25
	Total Total	Man and Cat Hou	Machine rs 25 x	Hours 132 \$45.00/hou	x \$20.00/1 r	nour \$	2640.00 1125.00	
						\$	3765.00	

J. T. HOMAS

DIAMOND DRILLING (1980) LTD.

P.O. BOX 394 VOJ 2N0

PH. 847-3531

SMITHERS, B.C.

- 4 -

MATERIALS USED, LOST OR DAMAGED:

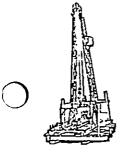
<u>Date</u>	(Quantity	<u>ltem</u>	Cost	Amount
Jan.	22 23 24 25 26 28 29 30 31	1 2 1 1 1 1 1 1 1 1 1 1 1	NQ bit 80% NQ bit 100% Alcomer Alcomer NQ bit 50% Alcomer Alcomer Alcomer Alcomer Alcomer Alcomer Alcomer NQ bit 80% - 100 series Alcomer	\$500.00 500.00 195.00 500.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00	\$ 400.00 500.00 390.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00 195.00
			Subtotal		\$3935.00
			Plus 4% SST on Alcomer		85.80
			Plus 10% on Alcomer		214.50
			Total		\$4235.30

J. T. HOMAS

DIAMOND DRILLING (1980) LTD.

PH. 847-3531 P.O. BOX 394 V0J 2N0

SMITHERS, B.C.


Gillian Mines Ltd. Invoice No. 81-6 To: 1650 Riverside Drive North Vancouver, B. C. Property: Houston V7H 1V7 Invoice Date: <u>April 27, 1981</u> Total footage - 5313. See attached \$ 98092.00 Diamond Drilling: Page 2. 5740.00 Man and Machine Hours: See attached Pages 4 & 5. 5400.00 Tractor Rental: See attached Pages 4& 5. 12656.00 Materials Used, Lost or Damaged: See attached Page 3. 2360.00 Coreboxes and Lids: 295 @ \$8.00 each 15862.50 Water Truck: Gallant Trucking 23¹/₂ days @ \$675.00/day INVOICE TOTAL \$140110.50 The above calculations are agreed to by:

R1_

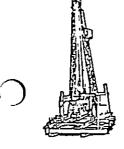
Company Representative

J. T. Thomas Diamond Drilling

J. T. HOMAS DIAMOND DRILLING (1980) LTD.

SMITHERS, B.C.

PH. 847-3531 P.O. BOX 394 V0J 2N0


- 2 -

	DIAMOND	DRILLING:							
	<u>Hole No</u> .	<u>Date</u>	Overbur <u>From</u>	rden <u>To</u>	Co <u>From</u>	ring <u>To</u>	Total <u>Footage</u>	<u>Rate Amount</u>	
	81-37	March 26	0	20	20 500	500 856	20 480 356	\$18.00 ¹¹ \$360.00 18.001 8640.00 20.006 ⁷ 7120.00	
	81-38	30	0	12	12 500	500 700	12 488 200	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	/
	81-39	April 2	0	12	12 500	500 856	12 488	18.00 ¹⁷ 216.00 18.00 ¹⁷ 8784.00 20.00 ¹ 7120.00	/
\subset) ⁸¹⁻⁴¹	5	0	10	10 500	500 600	10 490 100	18.00180.0018.008820.0020.002000.00	,
	81-42	9	0	10	10 500	500 611	10 490 111	18.00 180.00 18.00 8820.00 20.00 2220.00	/
	81-40		0	10	10	315	10 305/	18.00 - 180.00 18.00 5490.00	
	81-43	11	0	10	10 500	500 606	10 490 106	18.00 180.00 18.00 8820.00 20.00 2120.00	~
	81-44	13	0	30	30	416	30	18.00 ^{n.} 540.00 18.00 6948.00	
	81-45	14	0	10	10	353	10 343	18.00 ^{17,} 180.00 18.00 6174.00	
							<u> </u>	\$08002 00	

5313'

_ _- _-

\$98092.00

J. T. HOMAS

DIAMOND DRILLING (1980) LTD.

PH. 847-3531 P.O. BOX 394 V0J 2N0

SMITHERS, B.C.

- 3 -

MATERIALS_USED, LOST OR DAMAGED:

	<u>Date</u>		<u>Quantity</u>	<u>ltem</u>	Cost	Amount
	March		1	NQ bit 90% vibration	\$500.00	\$ 450.00
	April	2 6	1 1	NQ bit 75% Corebarrel assy. (left in	500.00 1038.00	375.00¢ 1038.00
			1	hole) 10' NW casing	133.00	133.00
			l	NQ bit 100% NQ tap	500.00 203.00	500.00 <i>2</i> 203.00
		7 8	6 1	lO' NQ rods NQ bit 90% (reaming)	110.00 500.00	660.00 450.00
			1	NQ reaming shell (reaming) NQ bit 80% (reaming)	500.00	325.00 400.00 c
)		11 12	1 1	NW casing shoe NQ reaming shell	250.00 325.00	n/c n/c
		13	1 1	NQ bit 80% NW casing shoe (reaming)	500.00 250.00	n/c 250.00/
		14 15	1 1	NQ bit 70% NQ bit 60%	500.00 500.00	350.00 <i>C/</i> n/c
		_		•		•

Drilling Additives:

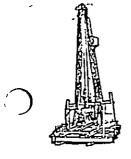
35	Alcomer	195.00	6825.00e
59	50 lb. Quik Gel	8.00	472.00
1	45 gal. Kutwell	225.00	225.00

\$12656.00

Ð

J. T. I HOMAS

DIAMOND DRILLING (1980) LTD.


PH. 847-3531 P.O. BOX 394 VOJ 2N0

SMITHERS, B.C.

MAN A	ND I	MACHINE	HOURS:		- 4 -			
Date		<u>Rogal</u>	Ouimet	<u>Cote</u>	<u>Gillis</u>	Martinelli	<u>Drill</u>	<u>Cat</u> * omitted on tin
March	25 26 27	l	7 5 1	-	76	7 6 2		sheets 6 12 12
	28	l	1	1 1	1 1	2		12
	29	l	l	1	l	1		6
	30	3	3			4		12
	31	1	l	3 1	3			4
April	1	l	1		1			3
)	2	6	5	1	1			4
	3_	l Pickford	ļ	1 2	1			4
	4 [±]	1011014	1	2	2			3
	5	6	6	1	1	6		6
	6	5	5	- 7	1	4		6 2
	7	7	7	7 4	7 4	4 2 7		2
	8	3	4					
	9	6	6	3	3			3
	10	l	l	l	1			
	11	7	7	1	1			5
	12	1	l	1	1			4
	13	6	6	1	1	1		4
)	14	5	5	1	1	2		4
	15 16	3	3	1	1 8	4 8		8
		<u>66</u>	78	<u>33</u>	3 4	56		.20

J. T. HOMAS

DIAMOND DRILLING (1980) LTD.

SMITHERS, B.C.

PH. 847-3531 P.O. BOX 394 V0J 2N0

- 5 -

MAN AND MACHINE HOURS:

Total Man and Machine Hours 287 x \$20.00/hour \$ 5740.00 Total Cat Hours 120 x \$45.00/hour

5400.00**e** \$11140.00

APPENDIX B

.

-

()

 \bigcirc

- - - ---- -

...16

MAGNETOMETER SURVEY COSTS

(excluding Edward Lipsett Ltd. invoices)

Brian Sauer	76 days @ \$90	6,840.00
Travel and accomoda	tion	337.18

TOTAL COSTS

__ __ _ _

\$ 7,177.18

1

EDWARD LIPSETT LTD. 'Serving Vancouver since 1891'	INVOICE
Post Office Box 1239, Station 'A' Vancouver, B.C. V6C 2T1 CANADA	
telephone: 604-9 20:27 519	
Gillian Mines Ltd. 1650 Riverside Drive North Vancouver, B.C. V7H 1V7	September 1, 1981

1.4= \$ 10 A-(18 B-(28-

14 Sulut

Labour - Bela Horvath @ \$102.75 per day field work - Goosly Lake Property 28 days - July 22 to August 18, 1981

Labour - Steve Davies @ \$72.50 per day field work - Goosly Lake Property 19 days - June 29 to July 14, 1981

1,377.50	(160 ?
\$ 4,254.50	

2,877.00

217.50 overdert

EDWARD LIPSETT LTD.

'Serving Vancouver since 1891'

Sost Office Box 1239, Station 'A' Vancouver, B.C. V6C 2T1 CANADA

CS

telephone: 604-9980-5525x 929-7519

INVOICE

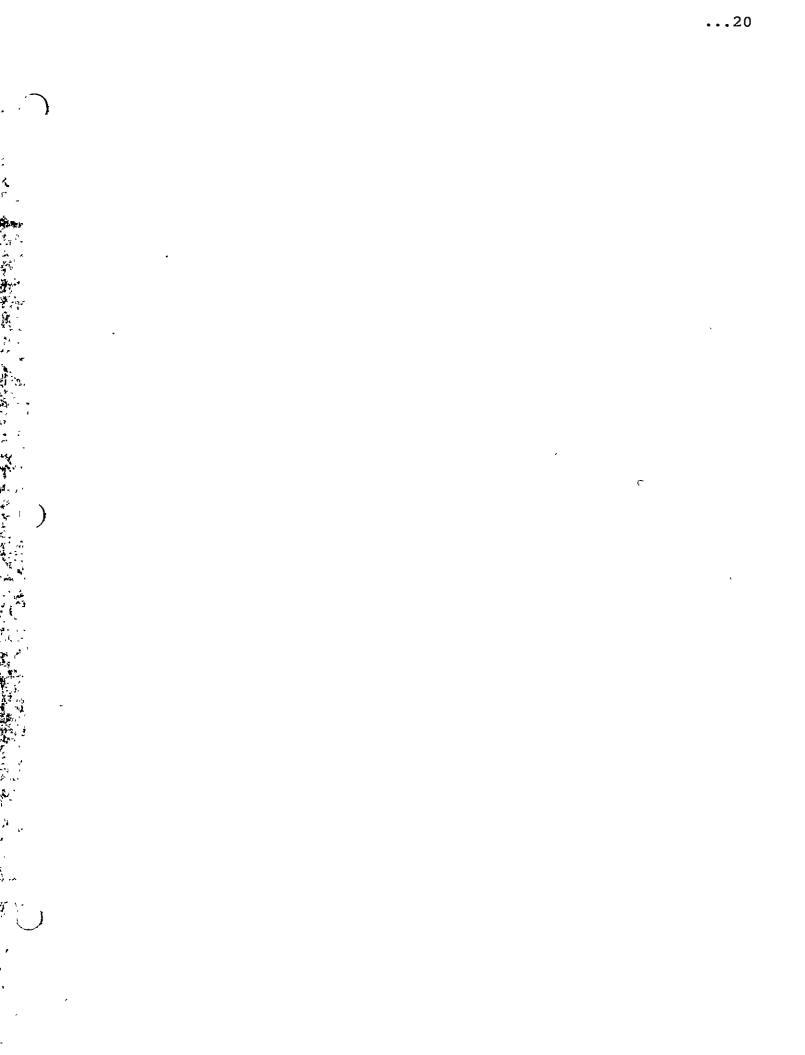
September 1, 1981

Gillian Mines Ltd. 1650 Riverside Drive North Vancouver, B.C. V7H 1V7

Labour - W.D. Andrews @ \$72.50 per day June 3, 4, 5, 1981 core splitting - 3 days 217.50 July 14th to August 18th, 1981 field work - Goosly Lake Property 36 days 2,610.00 \$ 2,827.50

J.

...19


CERTIFICATE

I, J. Paul Stevenson of 1650 Riverside Drive, North Vancouver, B.C. do hereby certify:

- That I have been involved in mineral exploration since 1965.
- (2) That I have been engaged in prospecting and development in B.C., the Yukon and the Northwest Territories.
- (3) That this programme was managed by myself and that the party chiefs were qualified to direct the day to day work.
- (4) That all cost\$ submitted can be verified with receipts and invoices.

Respectfully submitted June 7, 1982.

J. Paul Stevenson, President

INTERIM

REPORT ON THE

GILLIAN MINES LTD. PROPERTY

PARROTT-GOOSLY LAKES AREA, B. C.

- -- -

. .

INTERIM

REPORT ON THE

GILLIAN MINES LTD. PROPERTY

PARROTT-GOOSLY LAKES AREA, B.C.

OMINECA MINING DIVISION

N.T.S.: 93L/1

Owned by:

GILLIAN MINES LTD. 1650 Riverside Drive North Vancouver, B. C. V7H 1V7

Work by:

BEMA INDUSTRIES LTD. 19945 - 56th Avenue Langley, B.C. V3A 3Y2

S. C. Bartlett, B. Sc.

D. L. Dick, B. Sc.

TABLE OF CONTENTS

SUMMARY AND RECOMMENDATIONS

.

ł

L.

•

1.0	INTRODUCTION	1
2.0	DIAMOND DRILL CORE LOGGING	l
3.0	GEOLOGY OF THE DIAMOND DRILL AREA	2
4.0	GEOCHEMISTRY OF DIAMOND DRILL CORE	5
4.1	DISTRIBUTION OF ELEMENTS	7
5.0	GEOLOGY OF KNOWN MINERAL DEPOSITS IN THE AREA	9
5.1	NADINA (SILVER QUEEN) PROPERTY EAST OF OWEN LAKE	9
5.2	PLACER DEVELOPMENT LTD. SAM GOOSLY PROPERTY	
	EAST OF GOOSLY LAKE	10
6.0	ECONOMIC POTENTIAL OF GILLIAN MINES LTD	12
7.0	CONCLUSIONS AND RECOMMENDATIONS	13
8.0	REFERENCES	15

LIST OF FIGURES

Figure 1 -	Кеу Мар	Scale	-	1:250,000 .
Figure 2 -	Property Location Map	Scale	-	1:50,000
Figure 3 -	Diamond Drill Hole and Geological Cross-section Location Plan	Scale	-	1:1,000
Figure 4 -	Diamond Drill Hole Geology Section A-A' Looking Northeast	Scale	-	1:500
Figure 5 -	Diamond Drill Hole Geology Section B-B' Looking Northwest	Scale	_	1:500
Figure 6 -	Diamond Drill Hole Geology Section C-C' Looking North	Scale	-	1:500

____ _

GILLIAN MINES LTD. PROPERTY

PARROTT-GOOSLY LAKES AREA, B. C.

SUMMARY AND RECOMMENDATIONS

The Gillian Property southeast of Houston, B.C. is centred on an alkaline gabbro-syenomonzonite intrusion which crosscuts Lower Cretaceous volcanic and sedimentary stratigraphy. The pluton is one of a group of at least five whose orientation and occurrence suggest structurally controlled emplacement along an east-northeasterly trend between the Nadina (Silver Queen) deposits in the west and the Sam Goosly deposit in the east.

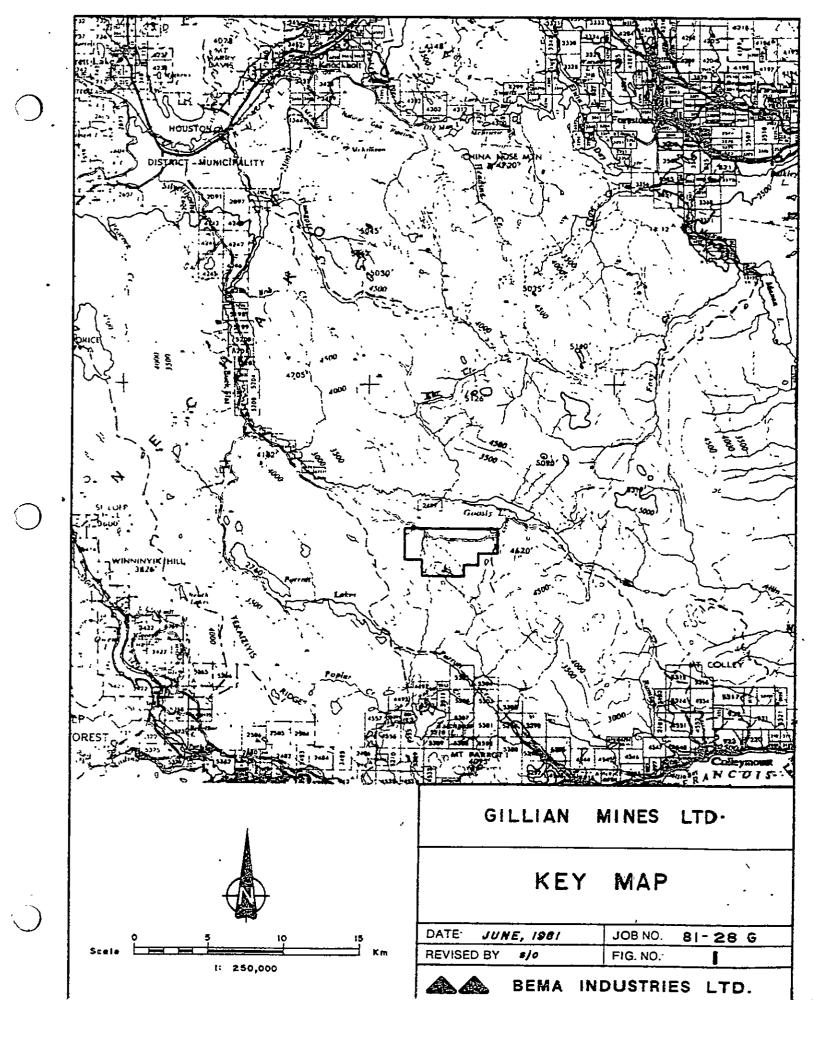
Diamond drilling on the edge of the pluton at Gillian show it to be sill-like. However, the afore-mentioned east-west alignment of plutons of similar age suggest a stock emplacement and on this basis the sill-like aspect of the gabbro is interpreted to be re' ted to an upper lobe development of a steeply plunging stock.

Geochemical analyses of drill core show that a hydrothermal system genetically related to the sill has leached rocks with relatively high backgrounds of copper, lead, zinc and barium. Evidence from diamond drilling indicates that hydrothermal alteration of country rocks increases in the direction from which the sill-like body is interpreted to have intruded.

It is recommended that in future exploration emphasis be directed toward locating structurally controlled mineralization beneath the sill-like appendages and adjacent to the gabbro-syenomonzonite stock.

More specifically an east-west line of holes should be collared along the major east-west lineament approximately 80 metres north of DDH 81-37 to test the theory that movement along this structure prepared the way for the intrusion and subsequent hydrothermal activity related to ore concentration and localization.

Prior to drilling further geological organization, as included in the attached list, is required in order to specifically target the drill program.


The following procedures are required for accurate data control:

- Preparation of a topographic map of the property at a scale of 1:5,000. Topographic maps of the drill area are required at a scale of 1:500.
- 2. A transit survey is required to locate diamond drill holes, claim posts and the flagged reference grid on the topographic map.

- 3. A map of the surface geology of the property with topography should be prepared.
- 4. All drill core should be logged and the drill geology plotted and interpreted. Where necessary sections of the core should be sampled.
- 5. Airphotographs of the property and vicinity should be obtained and studied for structural information.
- 6. A proton precession magnetometer survey intended to outline the gabbro-syenomonzonite intrusion would enhance the exploration program.
- 7. At the completion of the above procedures a study period is required to compile and assess all the available data. This compilation includes such data as:

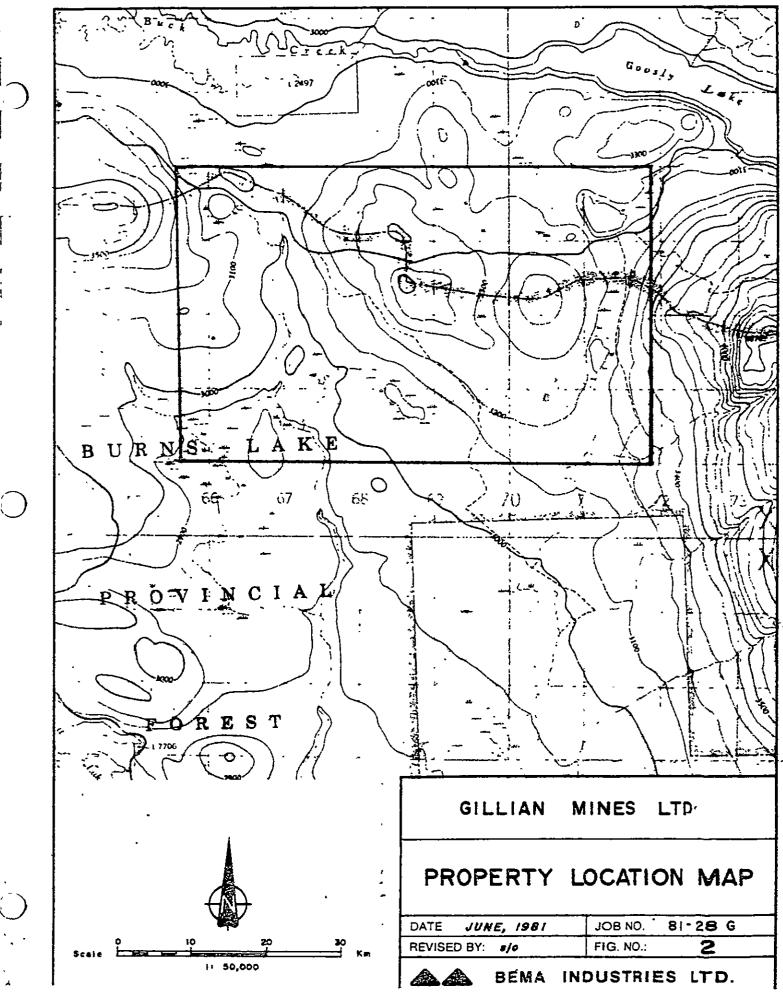
geological mapping drill geology magnetometer survey airphotograph interpretation rock geochemistry.

• •

REPORT ON THE

GILLIAN MINES LTD. PROPERTY

PARROT-GOOSLY LAKES AREA, B.C.


1.0 INTRODUCTION

Gillian Mines Ltd. contracted Bema Industries Ltd. to examine drill core and to interpret the geology of their Parrot Lakes-Goosly Lake area property southeast of Houston, B.C. The purpose of the study was to establish and guide Gillian Mines Ltd. toward an effective exploration program and to develop new exploration concepts as well as recommendations for further work. The information provided in this report is a preliminary summary of the research program to date and is regarded as interim to an on-going comprehensive research program.

In addition to logging drill core a brief visit to the property was made. To enhance the interpretation the regional geology and geochemistry and the characteristics of known mineral deposits in the district were reviewed. Information more specific to the property was provided by Gillian Mines Ltd. in the form of private company reports. This material included geological, geochemical and geophysical map as well as several thousand geochemical analyses of drill core. Personal communication with Dr. B. N. Church of the British Columbia Ministry of Energy, Mines and Petroleum Resources was very helpful.

2.0 DIAMOND DRILL CORE LOGGING

Drill core from twenty of the forty-five holes drilled to date was examined at the Gillian Mines Ltd. office in North Vancouver, B.C. Nineteen of the holes examined were logged using a graphic logging method which emphasizes a graphic record of the core, rather than a descriptive log. Brief descriptions of lithologic units and mineralization accompany the graphic log. Of the holes logged 7 were logged using a rapid log technique which enabled significant sections of core to be recorded in detail and sections of lesser significance to be studied only briefly. The remaining twelve holes were logged by a scanlog technique whereby drill core was scanned rapidly for lithological contacts, alteration, mineralization and significant structural data. A total of 12,406 feet of NQ diamond drill core was logged in 5 days.

 $\langle \cdot \rangle$

3.0 GEOLOGY OF THE DIAMOND DRILL AREA

Before the detailed geology of the diamond drill area is discussed a brief description of the regional setting of the property is provided.

The property lies between the 3,000 foot and 3,500 foot level of a gently rolling, swampy plateau, 2.5 miles southwest of Goosly Lake. The plateau is underlain by two main stratigraphic sequences; a section of Lower Cretaceous, Skeena Group felsic volcanics and argillite and by volcanic flows and pyroclastics of the Upper Cretaceous or Paleocene, Tip Top Hill Volcanic Series. The stratigraphy appears to be gently dipping toward the east forming a simple homocline. Interest is centered on the vicinity of an alkalic gabbro-syenomonzonite intrusion similar to the Goosly gabbro-syenomonzonite stock which has a K/Ar date of 48.8 ± 3.0 M.A. (Eocene). Block faulting, indicated by diamond drill results with orientations inferred from numerous topographical lineaments, is postdated by a late intrusive phase. The entire geological package has been cut by dacitic andesite dyke and sill-like bodies which have been mapped as pulaskite by Church (1969).

In the area of the latest diamond drilling (holes 80-25 to 80-33 and 81-34 to 81-45) the section consists of a basement assemblage of acid volcanic flows and pyroclastics which has been referred to as the lower rhyolite horizon. This unit has been cut in holes 80-30, 81-36 and 81-39 and has been penetrated to a depth of 390 feet (118.9 metres) in DDH 81-36. In each drill hole the unit has a unique appearance and correlation between holes is speculative. In DDH 80-30 the section was examined quite closely and consists of a fourteen foot lower unit of lapilli tuff, from 986 feet to the end of the hole. The rock is composed of light green, subangular acid volcanic fragments, up to lapilli size, in a dark coloured siliceous to argillaceous matrix. Below 990 feet the rock consists of greater than fifty percent fragments, some of which are flow banded. Most of the fragments in the section are approximately 20 millimetres in diameter. In the top four feet of this horizon the unit is comprised of greater than fifty percent matrix and volcaniclastic fragments that are finer grained than the rock below. The lapilli tuff changes upward rather abruptly into massive black argillite and sandy black argillite with thin turbidite layers containing volcanic fragments. These turbidite layers indicate that the section is upright. The argillite unit is ten feet thick. Above the argillite unit is a massive to brecciated felsic volcanic flow. From the bottom the unit consists of a three foot brecciated chill zone with a black siliceous to argillaceous matrix. The middle thirty-five feet of the flow is fairly massive with a spherulitic texture. A few sections are flow banded. The upper fourteen feet of the flow consists of auto breccia with angular, spherulitic and flow banded fragments. A trace of pyrite occurs in graphitic ground mass near the top of the flow. In DDH 81-39 51 feet of light grey, strongly altered, crushed, felsic material occurs below 805

..../3

feet in the hole. An upper section of the unit appears to be autobrecciated but no other textures were recognized. Much of the core is gougy and suggests the presence of a fault. A section from 835 feet to 840 feet contains blotches of disseminated pyrite which amount to less than one percent of the The occurrence of this felsic unit in DDH 81-36 was not thoroughly mode. examined but a scan of the 390 feet of core revealed a complex felsic volcanic stratigraphy of numerous flows and tuffs. The only other occurrence of felsic volcanic rocks on the property is an outcrop located approximately one kilometre west of the present drill area. The outcrop forms a knob west of a large swampy area and has been drilled by two holes, one of which is located at L55E - 51+50S. The outcrop consists of a buff coloured felsic crystal tuff with a devitrified glass groundmass. The unit appears to have been brecciated and fractures are filled with a black siliceous material. In the brecciated portion fractures are three centimetres or more apart. The fractures strike 075 degrees and dip steeply north.

Above the felsic volcanic unit in the vicinity of the most recent drilling is a black argillite member which contains a few clay, silt and thin, well graded sandy layers. Argillite ranges in thickness from 595.5 feet in DDH 81-37 where the lower contact was not cut to 364 feet in DDH 81-36 where the basement volcanics were cored.

Pyrite mineralization is locally abundant in the argillite and occurs in both syngenetic and epigenetic forms. Sulphide is particularly abundant in the northeast portion of the drill area in holes 81-39, 81-41, 81-42 and 81-43. In DDH 81-43 pyrite occurs in fractures over an interval which extends 50 feet below the zone of altered argillite. Below this zone is a 50 foot section containing mainly laminated pyrite. For the most part this sulphide is of syngenetic origin. In the remainder of the hole pyrite occurs mainly as fracture fillings. In DDH 81-39 laminated pyrite occurs in the upper portion of the argillite with related fracture fillings. Deeper in the hole pyrite occurs as coarse masses associated with fracture fillings. Argillite in hole 81-42 contains laminated pyrite near the top of the unaltered unit and fracture and laminated pyrite down deeper in the hole. In DDH 81-41 pyrite occurs sparsely over most of the hole as lamina and as fracture fillings. Near the bottom of the hole, which is in the middle of the argillite unit, pyrite is more abundant. In the other drill holes in the area sulphides occur sporadically and mainly as fracture fillings.

The black argillite grades upward into a massive, bleached zone which is locally laminated and makes subconcordant contact with the gabbrosyenomonzonite above. A few fine grained, light coloured apophyses of the gabbro-syenomonzonite cut the altered section near the contact. The unit has been described by Potter and others as a felsic tuff horizon (referred to as ' "upper rhyolite") and was described as such during core logging. As an alternate interpretation Church suggests that the light coloured zone is

bleached argillite, a hydrothermal effect of the gabbro-syenomonzonite sill. This interpretation seems more realistic in light of the spatial relationship between the unit and the sill.

Below the sill the zone varies in thickness from 47.5 feet in DDH 81-45 to 3.5 feet in DDH 80-32 and in general, thickens to the north and northeast. The general trend of thickening is in the direction from which the gabbrosyenomonzonite sill is believed to have intruded. In several holes blocks of light green siliceous material, possibly altered equivalents of the argillite, occur as large pendants within the gabbro-syenomonzonite sill. In DDH 80-31 a pendant is 96 feet thick and occurs 66 feet above the lower contact. In DDH 80-33 a number of sections of the same material occur over 250 feet including some intervals of altered breccia which may be the result of assimilation of an argillite pendant. In two holes, DDH 81-35 and 81-36, bleached argillite is present above the sill and is 35 feet thick in DDH 81-36. It is possible that the altered material occurs above the sill in other holes but because of the deep weathering in the area, it may have been triconed and cased.

Pyrite mineralization occurs in three forms in the altered argillite. The most common form of pyrite is as fracture fillings, particularly in DDH 81-45 and the upper part of the section in DDH 81-39 adjacent to crosscutting fine grained dykes. In hole 81-39 the bleached zone is intercalated with five fine grained, light coloured dykes which are barely distinguishable. The mineralization occurs as fine to medium grained pyrite in pyrite-calcite veinlets less than a millimetre thick. Pyrite also occurs as massive lamina up to five centimetres thick. In DDH 81-39 four pyrite units up to five centimetres thick occur between 336 and 343 feet. Laminated pyrite is the predominant form in DDH 81-41 and DDH 81-43 and of lesser importance in DDH 80-30, 80-33, 81-37, 81-38 and 81-45. In its third form pyrite occurs as concretionary blobs to five millimetres in diameter. This form occurs in most holes but is particularly common in DDH 81-42.

The oldest intrusive rock on the Gillian property is the alkalic gabbro-syenomonzonite. This differentiated unit intrudes the argillite as a sill and is at least 409.5 feet thick as in DDH 81-35. In DDH 81-35 and DDH 81-36 fine grained altered rock occurs above the sill and may define its true thickness. Alternately this rock may be pendant within the sill as those intersected in several other holes. Except in the vicinity of holes 81-35 and 81-36 all of the area defined by the examined drill holes is underlain by gabbro-syenomonzonite.

In drill core the gabbro-syenomonzonite ranges from a light coloured monzonitic rock in the upper part of the sill to a dark green gabbro in the lower portion. Locally minor amounts of a coarse grained pink feldsparpyroxene rock is present. The texture of the rock varies throughout but coarse equigranular varieties are most common. Fine grained, light coloured chill

margins occur at the upper and lower contacts and adjacent to pendants. Apophyses of the same light coloured material are common in the sediments below the sill. Some cumulate textures are present in glomeroporphyritic masses above the base of the sill.

The mode of the gabbro-syenomonzonite varies with composition but in general the rock is comprised of plagioclase and pyroxene with accessory biotite, magnetite and pyrite. Pyroxene is lightly altered to chlorite, often accompanied by pyrite or magnetite, where moderately fractured or faulted clay alteration of silicates is well developed.

The youngest rock type recognized in the area of latest drilling is the amygdaloidal dacitic andesite unit called pulaskite by Church. The rock is fine to very fine grained with elongate calcite or silica amygdules. It ranges in colour from buff to green and pink. The unit occurs as crosscutting dykes and/or sills and usually disects all units and most structures observed to date. The bodies usually occur as flatly dipping sheet-like masses which range up to 24 feet in DDH 81-36. Several sheets occur within the section and clearly post-date a late block faulting event. A flat lying, continuous sheet occurs consistently along or below the gabbro-argillite contact and cuts the middle of the sill after it passes through a block fault. The intrusion appears to have been very fluid as indicated by the irregular forms the unit obtains. Minor pyrite occurs in some fractured sections associated with coarse crystalline calcite.

4.0 GEOCHEMISTRY OF DIAMOND DRILL CORE

A program of whole rock geochemical exploration was initiated by Gillian Mines Ltd. in an attempt to locate ore by mapping the chemistry of a hydrothermal system believed to have operated on the property. The potential for whole rock geochemical exploration in the Owen-Goosly Lake area was recognized following the work of Church, Barakso and Bowman (1976). The program of systematic sampling of drill core and geochemical analysis for up to eleven elements is modified from the twelve element regional lithogeochemical survey conducted by Church (1972). The results of the Gillian survey are discussed below.

Geochemical analyses were received for 22 of 45 diamond drill holes. Data for sixteen of these holes was plotted on acetate overlays. A vertical scale of 1:500 was used with depth marked in feet. Horizontal scales differed for each element depending on threshold values and spatial limitations between drill holes.

The normal sample interval for drill holes 80-25 to 81-36 was four feet but some intervals are of 3 and 5 feet. Elemental concentrations for each interval were plotted at the midpoint of the interval. Drill holes 80-3, 80-7, 80-10 and 80-23 had one foot sample intervals. For DDH 80-3 the assay values were plotted for each 1 foot interval. In holes DDH 80-7, 80-10 and 80-23, assay values were averaged over five foot intervals and were plotted at the midpoint of the interval.

Drill holes 80-25 to 80-33 and 81-36 were analysed for copper, lead, zinc, silver, gold, barium and in some holes, fluorine. (Only barium values were received for drill holes 81-34 and 81-35.) After reviewing the data, elements believed to show significant variation were selected for plotting. For the drill holes listed above copper, lead, zinc, barium and fluorine were plotted where the results were available.

Drill holes 80-3, 80-5 to 80-7, 80-9 to 80-13 and 80-23 were analysed for copper, lead, zinc, cadmium, silver, gold, fluorine and barium. In addition, portions of some holes were also analysed for mercury, iron and cobalt. With the exception of 80-3, results for only small portions of these holes are available. The elements copper, zinc and barium were plotted for holes 80-3, 80-7, 80-10 and 80-23.

A number of drill hole locations and collar elevations were provided for holes which fell on section lines used for geological mapping. This data was plotted on three pairs of overlay sections using the geological sections as bases. The sections contain the following holes:

Section A-A'	81-37 and 81-3	38, 80-33, 81-3	5, 80-30, 80-31
Section B-B'	80-23, 80-30, 81-39, 81-43,	81-36, 81-40, 81-45	81-41, 81-42,

Section C-C' 80-25, 80-32, 80-29, 81-35, 81-36

A summary of the geochemical data that has been plotted on sections follows:

Elements	<u>Drill Holes</u>
Cu/Pb/Zn/Ba/F	80-30, 80-31, 80-32, 80-33, 81-36 (I/C)
Ba only	81-34, 81-35
Cu/Pb/Zn/Ba	80-25, 80-26, 80-27, 80-28, 80-29
Cu/Zn/Ba	80-3, 80-7 (I/C), 80-10 (I/C), 80-23 (I/C)

NOTE: I/C = incomplete data

No geochemical data was received for the holes on the sections not listed above.

4.1 DISTRIBUTION OF ELEMENTS

The goal of a lithogeochemical study is to recognize systematic variations in elemental concentrations in rocks that will lead to the discovery of ore. To accurately map a hydrothermal system an appropriate number of representative samples must be collected from a significant proportion of the system. There are two readily apparent problems with the Gillian program that reduce the effectiveness of lithogeochemical exploration. The first is a problem of sample distribution. The most effective data received to date is derived from an area measuring 150 metres by 150 metres. This area represents only a very small proportion of the area affected by the hydrothermal system at Gillian. To make the program potentially more effective more sample data is required from a larger area within the system.

The variation of elemental concentrations in the different lithologies present gives rise to a second problem. Within any diamond drill hole sampled and logged copper values are higher in gabbro than in argillite and higher in argillite than in felsic volcanics. This variation is a function of original composition rather than the affect of hydrothermal distribution of copper. Therefore to properly assess the lithogeochemical data available, cores which have been sampled and analyzed must be logged.

LITHOLOGICAL CHARACTERISTICS AND TRENDS

Alkalic Gabbro-Syenomonzonite

In the gabbro unit copper and zinc occur in similar abundances and have similar trends. The average copper value is 50 ppm and the average zinc value is slightly higher at 65 ppm. These averages both compare for corresponding normal values obtained from the study of Church, et al (1976). Copper distribution is slightly more erratic with a number of copper highs occurring in drill zones adjacent to bleached argillite or the altered pendants. There is a slight tendency for average copper values to be higher toward the bottom of the unit possibly reflecting mafic mineral settling during fractionation. An interesting situation exists in hole 80-33 above the large pendant where copper and zinc enrichment occurs in altered and veined rock which may be due to pendant assimilation. Lead values in gabbro 'are consistently low and average 1 to 2 ppm. Barium distribution in gabbro is interesting in that in holes 81-35 and 81-36 values increase toward the upper and lower contacts with bleached argillite probably reflecting the true thickness of the sill in these holes. Fluorine seems to reflect chill zones and possibly fractionation.

Altered Pendants

Zinc and lead values in the altered pendants are erratic and notably higher than in gabbro. The pendants are thought to be altered equivalent of the argillite though they show a slightly lower average zinc content than unaltered argillite. Copper values show a correspondingly lower average value than zinc and in hole 80-31 copper values show no variation from the enclosing gabbro. Anomalous lead values are common in the pendants.

Bleached Argillite Zone

It is difficult to characterize the bleached argillite zone chemically because it is too thin to obtain enough sample information. In general copper, lead and zinc values are significantly less in bleached argillite than in unaltered argillite. This trend supports the observation that leaching has occurred.

Argillite

The copper content of the argillite is very similar to that of the overlying gabbro. Sporadic high values occur in the upper portion of the unit where pyrite tends to be more abundant. Copper values tend to increase downsection from approximately 50 feet above the lower felsic volcanic unit. Lead and zinc average values are highest in the argillite. Both lead and zinc high values occur in the pyritic section of the argillite. Sporadic lead highs also occur in association with calcite in fracture zones. Unlike copper a marked decrease in zinc values occurs from 50 to 130 feet above the felsic volcanic unit. More like copper, lead tends to increase near the lower argillite contact. Barium and fluorine data is incomplete but barium values appear to be less erratic in the argillite.

Felsic Volcanic Unit

Very little data is available from the felsic volcanic section and most of the data is from ore intersection. Copper and zinc values are noticeably low whereas lead values have a high average value of 15 ppm and many erratic highs up to 86 ppb. All lead highs are below the threshold value computed for host rocks by Church, et al (1976). Of interest is the variation of fluorine average values in DDH 81-36. The three zones of similar fluorine content may reflect variation in the felsic volcanic stratigraphy.

5.0 GEOLOGY OF KNOWN MINERAL DEPOSITS IN THE AREA

To establish a more complete exploration model it was decided to research the geological settings of known mineral deposits in the Owen-Goosly Lake area. The Nadina vein camp and the Sam Goosly deposit are two known mineral deposits that occur in the area and are separated by approximately 35 kilometres along a southwest-northeast trend. The deposits are similar in that both are to some degree associated with an intrusion, at Nadina, the Mine Hill microdiorite and at Sam Goosly the alkalic gabbro-syenomonzonite. It is important to note that two other alkalic gabbro-syenomonzonite intrusions occur almost equally spaced along this 35 kilometre trend and that the most eastern body underlies the central portion of the Gillian Mines Ltd. property. These two deposits are regarded as end members of spectrum with the Nadina fissure fillings at one end and the Sam Goosly massive sulphide at the other.

5.1 NADINA (SILVER QUEEN) PROPERTY EAST OF OWEN LAKE

The Nadina vein camp is located east of Owen Lake, 43 kilometres south of Houston, B.C. The camp has been described by Church (1969; 1970) and is comprised of 23 veins which occur in three systems. The veins occur in north-westerly trending tension fractures and northerly trending shears which typically strike 130 degrees and dip 50 to 70 degrees to the northeast. The fractures cut brown volcanic breccias of the Paleocene or Upper Cretaceous Tip Top Hill volcanics.

Stratigraphically the area east of Owen Lake is not well defined but is largely underlain by biotite-hornblende andesite and andesitic dacite flows and pyroclastics of the Tip Top Hill volcanic series. Deep drilling in the Nadina vicinity revealed the presence of felsic volcanics at depths that are probably the equivalent of Lower Cretaceous felsic volcanics at Goosly and Gillian. The section is cut by numerous microdiorite dykes and sills particularly the Mine Hill sill and many younger basalt, feldspar porphyry and pulaskite intrusions.

The mineralized zones consist of cherty quartz-carbonate-barite veins with mineral assemblages of:

- i) pyrite-specular hematite
- ii) sphalerite-pyrite-galena-tennanite
- iii) chalcopyrite-pyrite-sphalerite-bismuthite(?)-tetrahedrite(?)
- iv) sphalerite-pyrite-galena

The veins occur as irregular lenses up to 15 feet wide but usually average between three and four feet wide. Approximately 4,400 linear feet of vein

mineralization has been discovered. The Nadina veins were emplaced at roughly the same time as a set of feldspar porphyry dykes and are postdated by pulaskite dykes equivalent to those observed at Gillian.

Host rock alteration is widespread in the camp and extends for at least one and a half miles in radius of the mine area. Pyrite-kaolinite alteration give rise to limonite-jarosite gossans in the area. More localized wall rock alteration is intense and extends for several tens of feet from the veins. It normally consists of soft buff clay.

Ground preparation at Nadina is related to structural events that produced northwesterly-southeasterly striking faults. This trend coincides air photo lineaments that strike northwesterly-southeasterly and related cross fractures which strike southwesterly-northeasterly throughout the district. Multiple dyking and diatreme dyking may have influenced the locallization of mineralization.

5.2 PLACER DEVELOPMENT LTD. SAM GOOSLY PROPERTY EAST OF. GOOSLY LAKE

The Sam Goosly copper-silver-antimony sulphide deposit is located 35 kilometres southeast of Houston, B.C. about 6 kilometres east of Goosly Lake. Copper-silver mineralization occurs in a pyroclastic unit, mainly massive dust tuff through which are lenticular units of lapilli tuff (Wetherell, Sinclair and Schroeter, 1979). The dust tuff is part of a northeasterly striking, steep westerly dipping section of the Lower Cretaceous, Skeena Group which is wedged between two stocks separated by one to two kilometres. Although mineralization grossly parallels the hosting stratigraphy for almost 2.5 kilometres, in detail sulphides show crosscutting relationships.

The stratigraphic sequence at Goosly has been organized into four subdivisions which strike 015 degrees and dip 45 degrees west (Wetherell, 1979). The lowest unit, the Clastic Division, is composed of a lower polymicitic conglomerate and an upper chert pebble conglomerate. The overlying Pyroclastic Division is a heterogeneous sequence of tuff, breccia and reworked pyroclastic debris. The Sedimentary-Volcanic Division contains well bedded tuff, sandstone and conglomerate and is stratigraphically above the pyroclastics. This unit is believed to be stratigraphically equivalent to the argillite unit at Gillian (Church, personal communication). The uppermost unit, composed of andesitic and dacitic flows, is the Volcanic Flow Division. Two stocks crosscut Mesozoic stratigraphy, a quartz monzonite pluton crops out 300 to 600 metres west of the ore zones and an alkalic gabbro-syenomonzonite intrusion occurs immediately east of the Main Zone. Sparse copper-molybdenum mineralization is associated with the quartz

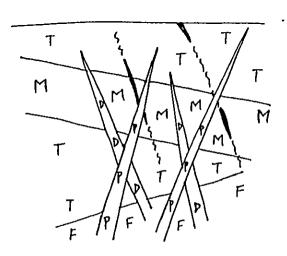
monzonite and silver-bearing veins and a shear zone replacement zone have been reported within the pluton. The alkalic gabbro-syenomonzonite contains magnetite and traces of disseminated pyrite. A selection of both pre-ore and post-ore dykes occur at Goosly. Pre-ore diorite, andesite and quartz latite and post-ore trachyandesite, andesite and quartz latite dykes are reported.

A number of lineaments are apparent in the area. Northeast trends in the tertiary volcanics, also reflected in local drainage patterns are subparallel to cleavage in the Mesozoic rocks. Other orientations between 070 degrees and 125 degrees are reflected by the attitudes of pre-and postmineral dykes.

Two ore zones are present at Sam Goosly, the Main Zone and the Southern Tail. Both zones occur within the Pyroclastic Division. Ore minerals in the Main Zone are fine grained and more commonly occur as disseminations. Veins and local patches of massive sulphides are also present. In the Southern Tail sulphides occur predominantly as veins and locally as disseminations. Mineralization is mostly restricted to a tabular zone of intense fracturing and brecciation that parallels stratigraphy. Less significant quantities of copper and silver sulphides occur throughout the stratigraphic sequence and crosscutting sulphide veins up to 5 metres in width are present in outcrop and drill core. The main sulphide minerals are pyrite, chalcopyrite, tetrahedrite, pyrrhotite, arsenopyrite, sphalerite, magnetite and specularite. An epigenetic origin is indicated by: sulphide rim textures in coarse fragments suggesting a replacement origin, abundant sulphide veins that show crosscutting relationships, a consistency of vein paragenesis and the presence of mineralized dykes within the ore zones.

Pervasive host rock alteration at Goosly consists of sericite, clay, chlorite and pyrite and forms a poorly defined envelope about the mineralized zones. More specific to mineralization are zones of silica, quartzsericite and chlorite. Tourmaline is sometimes present associated with intense sericite alteration. Peripheral to mineralized zones is an assemblage of andalusite-pyrophyllite-chlorite. Late contact metamorphism by the gabbrosyenomonzonite complex has likely altered the original alteration patterns.

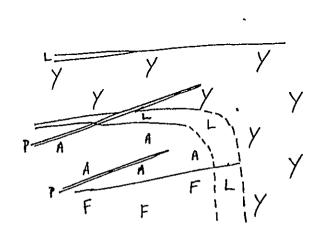
Mineral deposits at Goosly occur in structurally controlled zones probably related to one of the two stocks in the area. Wetherell, et al (1979) suggest that mineralization was nearly contemporaneous with emplacement of the quartz monzonite pluton west of the deposits. Ney, et al (1972), favour a genetic model which includes original concentration by volcanogenic processes followed by remobilization and modification as a result of plutonism. The quartz monzonite shows a positive chemical affinity to the ore and may have been a vehicle for the latter process. However, the deposits are much nearer the gabbro-syenomonzonite which could conceivably have remobilized the


COMPARATIVE GEOLOGICAL SECTIONS

GILLIAN MINES LTD.

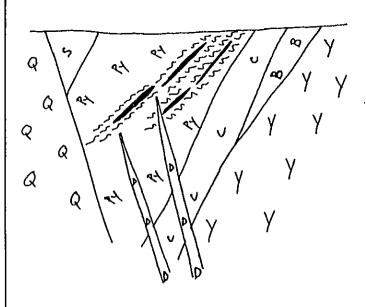
NADINA (SILVER QUEEN)

i


,

LEGEND

- Y = Vein Fault P = Pulaskite
- D = Feldspar Porphyry
- M = Microdiorite
- T = Tip Top Hill Volcanics
- F = Felsic Volcanics


F at Nadina may correlate with F at Gillian

LEGEND

- P = Pulaskite
- L = Leached Zone
- { = Gabbro-Syenomonzonite
- A = Argillite
- F = Felsic Volcanics

A at Gillian may correlate with S at Sam Goosly SAM GOOSLY

LEGEND

- 🖊 = Mineralization
- D = Feldspar Porphyry
- Y = Gabbro-Syenomonzonite
- Q = Quartz Monzonite
- S = Sedimentary/Volcanic Unit
- Py = Pyroclastic Unit
- C = Chert Pebble Conglomerate
- B = Polymictic Conglomerate

original stratiform sulphides by generating a broad hydrothermal system employing ground water.

6.0 ECONOMIC POTENTIAL OF GILLIAN MINES LTD.

The comparison of the Nadina (Silver Queen) and Sam Goosly deposits demonstrates that several circumstances are common to both deposits. Church (1970c) suggested that the two deposits are part of a continuum and that the Nadina system may change at depth to a Goosly-type deposit.

The following affinities are readily discernible:

- 1. Both deposits occur as a result of epigenetic mineralizing processes.
- 2. Structural controls appear to have been most significant. Deposits are oriented parallel or sub-parallel to regional structure trends.
- 3. The mineralization is intimately associated with Upper Cretaceous to Eccene plutonism. The plutons are of a series of chemically similar plutons oriented along a regional structure. Hydrothermal concentrations of metals and alteration of country rocks is evident.
- 4. The deposits occur in or above Lower Cretaceous felsic volcanic rocks. The Tip Top Hill volcanics at Nadina define the highest stratigraphic occurrence of mineralization. Therefore any portion of the stratigraphic section between these units conceivably hosts ore.

With the above ore controls in mind it is apparent that the economic potential at Gillian lies in the possibility of locating epigenetic mineralization in a structurally controlled environment. Drill cores from Gillian show hydrothermal leaching adjacent to the alkalic gabbro-syenomonzonite. Geochemical data from drill core indicate the degree of leaching. The following average metal values have been loosely derived from the graphs plotted and are only approximate.

Rock Metal	Argillite	Argillite Pendant	Bleached Argillite
Cu	55	55	40
РЪ	5	5	1-2
Zn	125	100	75
Ba	500	350	250-300

This data demonstrates that mineral bearing solutions were present at Gillian and it is conceivable that the metals were concentrated in a structural trap. Pyrite fracture fillings in argillite and sporadic anomoulous lead, zinc and copper highs in the gabbro are evidence of a late fracture control for mineralization. The drill data to date indicates that the zone of leaching thickens to the northeast, the direction from which the sill is believed to have intruded. If the sill is a lobe-like configuration of a structurally controlled stock then the apex between the lobe and stock must be regarded as a highly favourable environment for the formation of ore.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Gillian Property southeast of Houston, B.C. is centred on an alkaline gabbro-syenomonzonite intrusion which crosscuts Lower Cretaceous. volcanic and sedimentary stratigraphy. The pluton is one of a group of at least five whose orientation and occurrence suggest structurally controlled emplacement along an east-northeasterly trend between the Nadina (Silver Queen) deposits in the west and the Sam Goosly deposit in the east.

Diamond drilling on the edge of the pluton at Gillian show it to be sill-like. However, the afore-mentioned east-west alignment of plutons of similar age suggest a stock emplacement and on this basis the sill-like aspect of the gabbro is interpreted to be related to an upper lobe development of a steeply plunging stock.

Geochemical analyses of drill core show that a hydrothermal system genetically related to the sill has leached rocks with relatively high backgrounds of copper, lead, zinc and barium. Evidence from diamond drilling indicates that hydrothermal alteration of country rocks increases in the direction from which the sill-like body is interpreted to have intruded.

It is recommended that in future exploration emphasis be directed toward locating structurally controlled mineralization beneath the sill-like appendages and adjacent to the gabbro-syenomonzonite stock.

More specifically an east-west line of holes should be collared along the major east-west lineament approximately 80 metres north of DDH 81-37 to test the theory that movement along this structure prepared the way for the intrusion and subsequent hydrothermal activity related to ore concentration and localization.

Prior to drilling further geological organization as included in the attached list is required in order to specifically target the drill program.

The following procedures are required for accurate data control:

- 1. Preparation of a topographic map of the property at a scale of 1:5,000. Topographic maps of the drill area are required at a scale of 1:500.
- A transit survey is required to locate diamond drill holes, claim posts and the flagged reference grid on the topographic map.
- 3. A map of the surface geology of the property with topography should be prepared.
- 4. All drill core should be logged and the drill geology plotted and interpreted. Where necessary sections of the core should be sampled.
- 5. Airphotographs of the property and vicinity should be obtained and studied for structural information.
- 6. A proton precession magnetometer survey intended to outline the gabbro-syenomonzonite intrusion would enhance the exploration program.
- 7. At the completion of the above procedures a study period is required to compile and assess all the available data. This compilation includes such data as:

geological mapping drill geology magnetometer survey airphotograph interpretation rock geochemistry. .../15

8.0	REFERENCES
U .U	

Church, B.N.; 1969a: "Geology of the Owen Lake Area"; B.C. Dept. of Mines and Pet. Res., G.E.M. 1969, pp. 122-125. 1969b: "Silver Queen (Nadina)"; B.C. Dept. of Mines and Pet. Res., G.E.M. 1969, pp. 126-139. 1969c: "SG (Sam Goosly)"; B.C. Dept. of Mines and Pet. Res., G.E.M. 1969, pp. 142-148. 1970a: "Geology of the Owen Lake, Parrott Lakes, and Goosly Lake Area", B.C. Dept. of Mines and Pet. Res., G.E.M. 1970, pp. 119-125. 1970Ъ: "SG (Sam Goosly)"; B.C. Dept. of Mines and Pet. Res., G.E.M. 1970, pp. 126-128. 1970c: "Silver Queen (Nadina)"; B.C. Dept of Mines and Pet. Res., G.E.M. 1970, pp. 134-138. 1972: "Geology of the Buck Creek Area": B.C. Dept. of Mines and Pet. Res., G.E.M. 1972, pp. 353-363. Church, B.N. and Hutter, J.F.; "Sam Goosly"; B.C. Dept. of Mines and Pet. Res., G.E.M. 1973: 1973, pp. 334-338. Church, B.N., Barakso, J.J. and Bowman, A.F.; 1976: "The Endogenous Distribution of Minor Elements in the Goosly-Owen Lake Area of Central British Columbia"; C.I.M. Bull., V. 69 no. 773, pp. 88-95. Leighton, D.G. and Culbert, R.R.; 1980: "Memorandum Report on the Gillian Property, Houston, B.C."; private report for Gillian Mines Ltd. Ney, C.S., Anderson, J.M. and Panteleyev, A.; 1972: "Discovery, Geologic Setting and Style of Mineralization, Sam Goosly Deposit, B.C."; C.I.M. Bull., V. 65 no. 723, pp. 53-64.

Potter, R.G.; 1976:	"Geological, Geochemical and Geophysical Report on the Gillian Mineral Claims, Omineca Mining Division, B.C."; private report for Gillian Mines Ltd.
Schoeter, T.G.; 1976:	"Mineral Property Examinations"; B.C. Min. of Mines and Pet. Res., Geol. Fieldwork 1976, p.55.
Tipper, H.W. and 1976:	Richards, T.A.; "Jurassic Stratigraphy and History of North-Central British Columbia"; Geol. Surv. Can. Bull. 270, p. 73.
1979:	Sinclair, A.J. and Schroeter, T.G.; "Preliminary Report on the Sam Goosly Copper-Silver Deposit"; B.C. Min. of Mines and Pet. Res., Geol. Fieldwork 1978, pp.133-137.
	"Geology and Ore Genesis of the Sam Goosly Copper-Silver- Antimony Deposit, British Columbia"; unpubl. M.Sc. Thesis, U.B.C. abstr.

•

•

.

x

COORDINATES: INCLINATION: -900	• +17.79 m GROUND ELEV.: N. E. BEARING: Vertical	PROJECT: 81-28G DATE STARTED: April 28, DATE FINISHED: April 28, TOTAL DEPTH: 856'	1981 CLAT 1981 SCAL		·50',	OF 1" <u>1</u> 5 2.8.	7 -10 ^{;=2}	- 5',
ALTERAT'N BUING NATE RING	COMMENTS GILLIAN MINES LTD	DUSTRIES LTD. Rapidlog	AVE. CORE REC'Y/HOLE 100%	NG NG	AL RED		AL K	ED ED
OSECTION CHLORIT CHLORIT CARBONI CLAY SILLCA FRACTUR MINERAL		VE GEOLOGY		SULPHIDE: DRILLING	LINTERV CORE RECOVE	CORE SIZE	SAMPLE INTERVA REC'Y SAMP	ESTIMATED
1"=50'		•			loos	δŇ		
	QZ-CO3							
	159' - 162' Daci 162' DACT-ANDS QZ amyg parallel	tic-Andesite Dyke grn-brn v to contacts. Fn gr toward	w/elongate					4
	margins. Cláy al CA-QZ	t. at contacts. Minor brxx a	at lower			-		
	205.5' DACT-ANDS 205.5' - 218' Da 218' Gábbro alt. for	citic-Andesite Dyke as above l' adj. to dyke.	e.					
	2701 fm gm ghill 2701							
	270' fn gr chill 270' - 309' fn gr border mass w/px phenos where alt some pr DO or BA in frx	r chill zone in Gabbro. Mar- . Locally broken a/Qz-CO3-BP y present in diss and in fry	2 77-14-			C		

ъ

ł.

HOLE NO.: 81-39 COLLAR ELEV.: COORDINATES: INCLINATION:	GROUND ELEV.: N. E. BEARING:	PROJECT: 81-28G DATE STARTED: DATE FINISHED: TOTAL DEPTH:	PAGE NO.; CLAIM: SCALE: LOGGED BY:	2 OF	7	
C I I OM DGY DGY	COMMENTS	IVE GEOLOGY	AVE. CORE REC'Y/HOLE GUIDE SUCCORE REC'Y/HOLE GUIDE AUTOR	ORE OVERED	PLE ERVAL EC'Y	STIMATED
	300' GABR 300' - 308.5' G 22-CO ₃			RECOI	AENH #3	
305 310 315 315 320 320 305 315 315 315 315 315 315 315 31	Puff frags in byke108' FELSIC DYKE308.5' - 312' F to vy fn gr,buff Cut by numerous amounts of Py of tuff the dyke is 14.5'FELSIC DYKE14.5'FELSIC DYKE312' Felsic Tuff 312' Felsic Tuff in dk lam 4" Y16.3'FELSIC DYKE312' Felsic Tuff a vy low bedding 16.3'FELSIC DYKE in dk lam 4" Y18.5'FELSIC TUFF angle sheared Py Y316.3' - 318.5' 318.5' - 323.5' (to 1") dk (orga Frx near contact23.5'FELSIC DYKE Y323.5' - 324.6' blebs & micro fr 25.5'FELSIC TUFF 325.5' - 330' Fe z in micro fr irreg. dk blebs	<pre>f coloured. Fp & Qz in buf gr high & low angle CL-CA vnlts cour in dyke. Near the contact s vy fn gr f - vy fn gr, buf same colour g pole to c/a angle. Vy minor Felsic Dyke - as above but contains frx. Felsic Tuff as above but contains frx. Felsic Tuff as above but contains inic rich?)layers which contains s contain CL. Felsic Dyke as above! CL Frx x w/py. Py is euh or sheared lsic Tuff as above near conta grades downward into silty tw olour and locally contains 11</pre>	oundmass. . Minor t with the lam indicate py occurs ut by high s minor diss tains thin in minor py. w/Py also on frx. act py in off or silt-			

HOLE NO.: 81-39 COLLAR ELEV.: COORDINATES: INCLINATION: Vertical		PROJECT: 81-28G DATE STARTED: DATE FINISHED: TOTAL DEPTH:	PAGE NO.: CLAIM: SCALE: LOGGED BY:	3 OF	7	
ON AL RUBELTS ONATE AL URING AL ONATE AL	COMMENTS	MA INDUSTRIES LTD.	AVE. CORE REC'Y/HOLE		H LA	
SECTI CARL CARL CARL CARL CARL FRACT FRACT FRACT FRACT FRACT		DESCRIPTIVE GEOLOGY	THAINS	LINTERV CORE CORE SIZE	ESTIMATE	
	downwar Fp. Cut CL? Bed 336'-2" diss py & py in QZ frx fillings PY 339'-2" mass led PY BP:CA=20 ^o minor organic material w/py PY 343'-1.5"mass bedded PY worm burrows w/py 335' Tu Tuff? QZ-CO ₃ 58' ARGL 358' - 3	358' Tuffaceous Siltstone - felsi d into silty Tuff? Silt material by numerous micro frx of QZ some ding pole to c/a angle 100.	c tuff grades includes QZ & frx have dusty			· · ·

HOLE NO.: 8 COLLAR ELEV.: COORDINATES: INCLINATION:	B1-39 GROUN N. BEARING:	D ELEV.: E.	PROJECT: DATE START DATE FINIS TOTAL DEPT	ED: HED: H:	CLAI SCAL		4	OF 7		
<u> </u>		BEMA	INDUSTRIES	LTD	AVE. CORE REC'Y/HOLE	\$ LIDES VIDE	RED		AL Y INT.	TED
NO LL JE S S S 60	COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS		IPTIVE GEOLOGY	influx of lt o		SULPH SULPH	& CORE RECOVE	CORE SIZE SAMPLE	LINTERV SAMP	ESTIMATE
-400- -420-	PY on frx PY on frx PY lam PY 1"-2" PY on frx & lam PY PY & Silt rip & Slump 390' PY 4" lam & frx PY on frx diagenetic mass PY lam py 1"-2" lam py 1" Py blobs 2"	360' - 510' A & py frx are	rgillite - freq freq subparallel	influx of lt c	olour clastic					
440	Pý on' frx ·	· · · · · · · · ·	- '. • - • - •	• • • • • • • • • • • • • • • • • • •						
460	PY in worm burrows? PY blobs 2"		'	1						
± 480- - -	РҮ 2" 2" lam ру	-			~					
-510-	РҮ		\bigcirc I							

COLLI COORI INCL	NO.: 81-39 AR ELEV.: DINATES: INATION:	GROUND E. N. BEARING:	PROJECT LEV.: DATE STY E. DATE FIN TOTAL DI	NISHED:	CLAIN SCALI		5 OF	• 7	
		COMMENTS	BEMA INDUSTRIE	ES LTD.	AVE. CORE REC'Y/HOLE	A DES NG	RED	AL.	fint. TED
SECTION	FRACTURING MINERAL	debollocy	DESCRIPTIVE GEOLOG	GY		* SULPHIDES DRILLING INTERVAL	 CORE RECOVERE CORE 	SIZE SAMPLE INTERVI	* REC'Y SAMP. INT ESTIMATED
510 - 520 -		PY	0' - 660' Argillite						
540		PY 554' - 6" diss							
-560-		bed py up to 2% py blue clay alt frx							
_580 - -				<i>.</i> .					
 -600- -		3" Py blob		• • • • • •	·· · · ·			· · ·	· -
620 				•	•				
- 640 - -		630' -2" gran ; cglm w/py	-						
660	\bigcirc		0		•			\bigcirc	

COLLA COORE INCLI	NO.: NR ELEV DINATES INATION	• : : :	39 	PROJECT: 81-28G GROUND ELEV.: DATE STARTED: N. E. DATE FINISHED: BEARING: TOTAL DEPTII:	PAGE N CLAIM: SCALE: LOGGED		5	OF	7	•	,
SECTION		FRACTURING	MINERAL	COMMENTS DESCRIPTIVE GEOLOGY	AVE. CORE REC'Y/HOLE	SULPHIDES DRILLING INTERVAL	CORE	DRE ZE	SAMPLE INTERVAL	SAMP INT. SAMP INT. ESTIMATED	
- ⁰ 		<u> </u>	H AND	660' ARGL 660'-800' Argillite PY blobs 2"			* 11 11	SIC	ESH 1	• • • • •	
- 700 - -				Silt Layer graded upright		•					
-720-				QZ							
							•		· · · ·	· · · ·	
- 780 -											
-800	5							/	0		

COLL COOR INCL	NO.: 81-39 AR ELEV.: RDINATES: INATION:		GROUN N. BEARING:	D ELEV.: E.	PROJECT: DATE STARTI DATE FINISI TOTAL DEPTI	ed: HED:) PAGE CLAI SCAL LOGG	м: Е:		7	OF	7		
	ALTERAT'N HINC HINC	СY	COMMENTS	BEMA	INDUSTRIES	LTD.	AVE. CORE REC'Y/HOLE	e DES	В.Н	ED		г	.TN	ព្ន
SECTION	CHLORITI CARBONAT CLAY SILLCA FRACTUR MTNEPAL	_			RIPTIVE GEOLOGY			IIHAINS	DRILLIN INTERVA	<pre>* CORE RECOVER</pre>	CORE SIZE	SAMPLE INTERVA	SAMP. I	ESTIMATE
800 - 01 - 1 - 810 - 820 - 820 - 830 		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	800 ARGL 805' FELSIC FLOW .835' diss py.41%	fractured. 805 - 856' 1 buff, irreg some sect an strongly alf fault. Hole w/only mod f	Argillite - blk, J Felsic Flow (RhyoJ brxx probably flo re alt and have a t to clay and it a ends in clay. Son frx.	lite?) lt gry co ow brxx Qz & Fp sandy intr tex appears to be lo	olour, weath w/tr py t. Unit is oci of a			<i></i>			* 55	
-840 -			840' minor diss PY Qz frx		i				-					
850 _ EOH 		XX	856'ЕОН	-	I									

HOLE NO.: 81-43 COLLAR ELEV.: +56.7 COORDINATES: INCLINATION: -90	3' +17.29 GROUNI N. BEARING: V	Ε.	TOTAL DEI	RTED: Ap SHED: Ap PTH: 60	oril 29, oril 29, 06'	1981 1981	PAGE N CLAIM SCALE LOGGEF	1"=	50',	OF 1"=1 2.B.	4 LO',	1"=2	25'
O SECTION CHLORITE CHLORITE CARBONATE CARBONATE SILICA SILICA SILICA Z FRACTURING MINERAL MINERAL	COMMENTS	DESCR	INDUSTRIE NES LTD Rapi IPTIVE GEOLOGY	dlog		AVE. CO REC'Y/H 100%	OLE.	SULPHIDES DRILLING	A CORE RECOVERED	CORE SIZE	SAMPLE INTERVAL	REC'Y SAMP. INT.	STIMATED
	0 - Overburden 10' GABR 1t 47' GABR dk 89' Q2-CA frx 102.5' DACT-ANDS QZ frx ' CL-CA frx 183.5' DACT-ANDS 196' GABR CL-CA frx	102.5 - 104' viously-amyg 104 - 183.5'	GABBRO - as de DACITIC ANDES GABBRO	ITE DYKE-a.					100%	N N		S2	

COLI COOI	E NO.: LAR ELEV.: RDINATES: LINATION:		GROUN N. BEARING:	ID ELEV.: E,	PROJECT: 8 DATE STARTE DATE FINISH TOTAL DEPTH	:D: IED:	CLAI SCAL		2 0	or 4		
	ALTERAT'N	_	COMMENTS	BEMA	INDUSTRIES	LTD·	AVE. CORE REC'Y/HOLE	ទួក	E.			A
NOILCAS 280	CHLORITE CARBONATE CLAY SILICA	FRACTUR MINERAL		DESCR	IPTIVE GEOLOGY			SULPHIDE DRILLING TWTE PVDI	L CORE RECOVER	SIZE SAMPLE INTERVAL	& REC'Y SAMP. IN	STIMATED
280 - 0 			280' GABR QZ-CA 290' top of chill		GABBRO-as above	- narrow 2.5'	chill margin		<u></u> (24) (<u>20 08</u>	<u></u>	<u> </u>
			zone 292.5' FELSIC TUFF CL frx	1	FELSIC TUFF-gry- urb silt.	buff, silty, w	ell lam					
-300			300' lam PY 1" 301.5' 3" diss PY 304.5' 1" lam PY									
310		M	306' 1" lam PY									
			lam PY · · · · 315.5' 1" lam PY PY		, · · · · · · · · · · · · · · · · · · ·				· .	. · •		
- 320 -			324' silty turb.			۱ ۰					•	
330 - 	Ç		334' ARGL lam PY 1" PY frx blebs	334 - 340' Al frx zones and w/CA. Immed b graded bed.	RGILLITE-blk gr w d many low angle (belowf numerou	ell lam locally Z filled frx l s soft sed str	ate frx			<u>(</u>)		

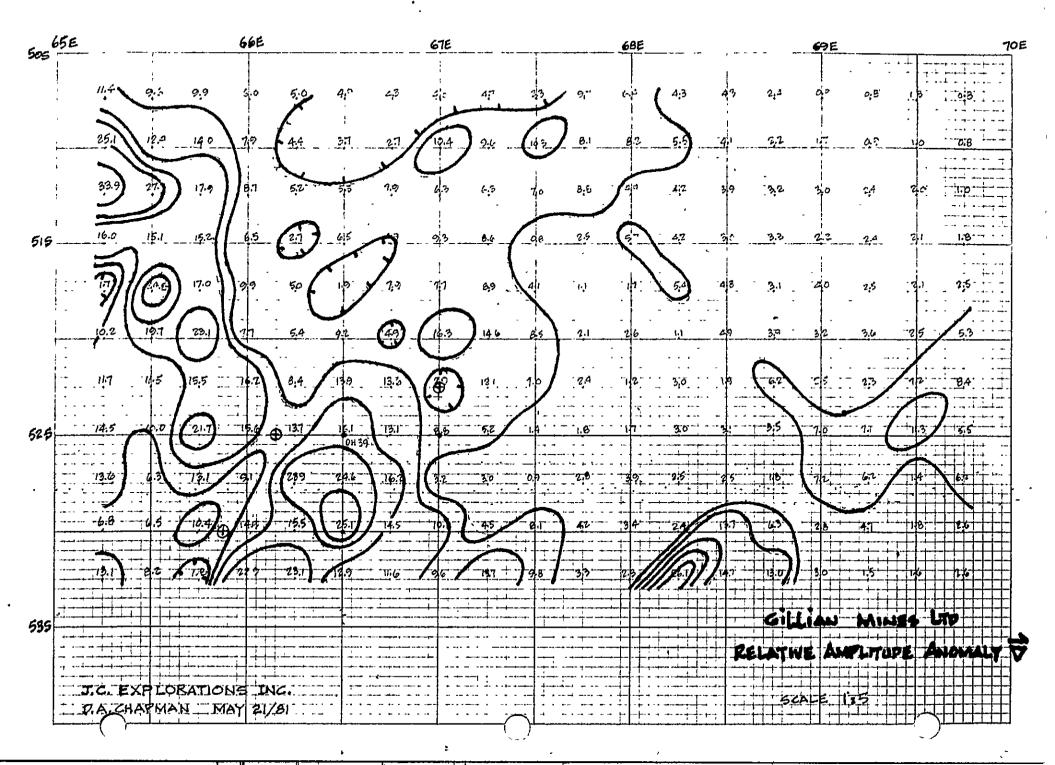
1

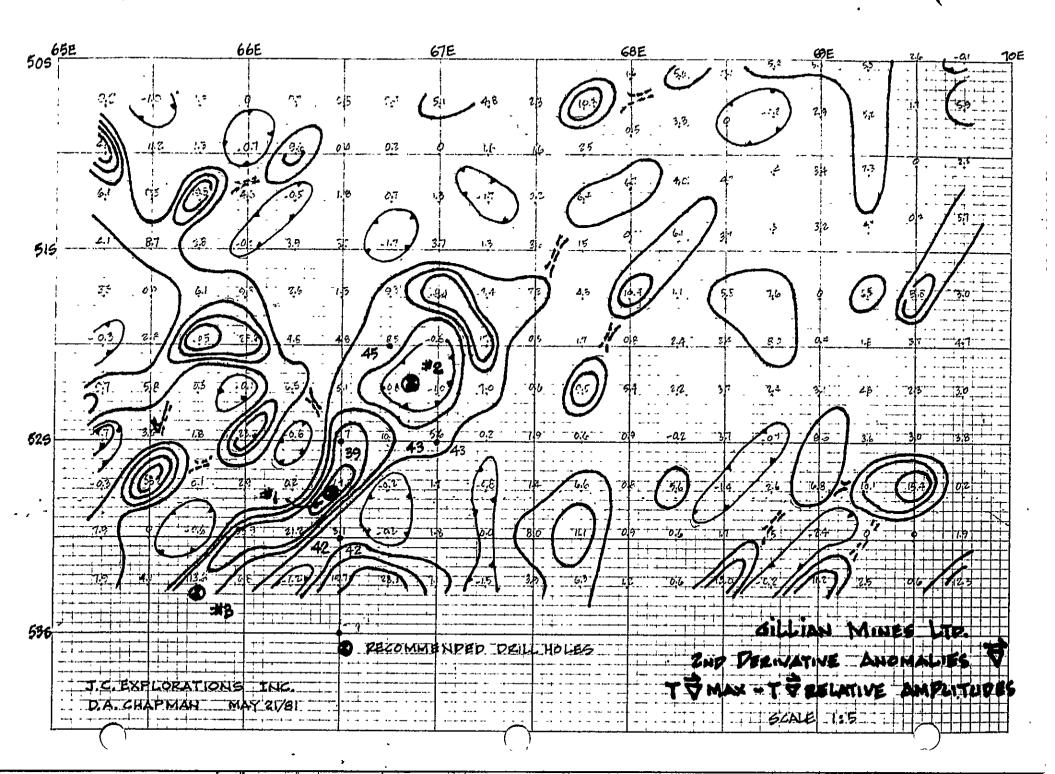
COL COO	e no.: lar ei rdinat LINATJ	EV. ES:	;	-43		GI N. BEARII		ELEV.	: E.		PROJECT DATE STA DATE FII FOTAL DI	ARTED NISHE	;			PAGE CLAI SCAI LOGO	EM: LE:		3	OF	4			
Z	ITE NATE			. 1	COMMEN			В	EMA	INDU	JSTRIE	ES L	.TD·			CORE Y/HOLE	TDEC	NG	RED		Ţ	r Int.		
SECTION	CHLORITE CARBONATE	CLAY	SILICA FRACTURING	MINERAL		<u></u>	•				GEOLO	GY						DRILLING INTERVAL	RECORE	CORE SIZE	SAMPLE INTERVI	SAMP.	ESTIMATED	
340 1 <u>9</u> 1 <u>9</u> 1 360					340' AR 1am PY 1am PY frx PY PY bleb PY in f	s & fr	x	340 -	490'A	RGILLI	TE													
- 380					frx py 391'& 1am PY	392' 1																		
-400					1" 1am 1 BP:CA = PY on f 5-1"-2"	rx	m	,																
- 420 ·		· /,		X	5-1"-2" 432 ' 2"	PY la 'lam P	m Y		• _ •	. • • • •	• • • •			·	-						•		• - •	
- 440					PY					,			ł											
- 460				$\overline{\mathcal{M}}$	PY frx-l PY frx	blebs	••••••					ŭ		•	•									
-480 -490-	Ċ.			Б	PY frx broken c -CA	core g	raph			($\sum \cdot $										$\dot{\bigcirc}$			

. .

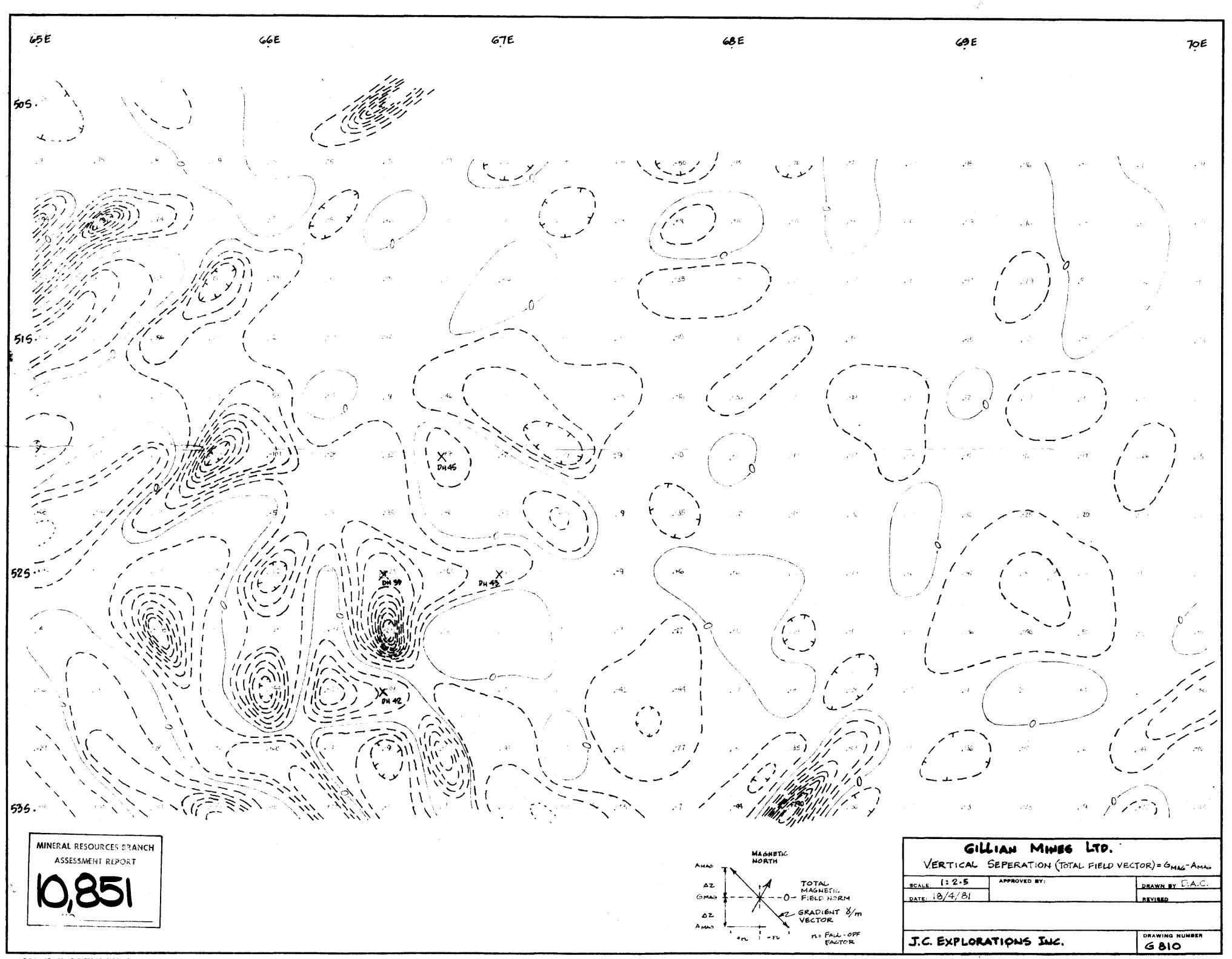
COLL COOR INCI	AR EI DINA' INATI	LEV FES TON	.: : :	43						CLEV.	: E.		DATÉ DATE	START FINIS	ed : Hed :				CLVI SCVI	(M: JE:		4	OF	4			
							MENTS			, 8	BEMA	INI	DUST	RIES	LTD.					Sa	0 4			<u>د</u>	E	 6	
SECTION	CHLORIT CARBONA	CLAY	SILICA	MINERAT	ADOTOES						DESCI	RIPTI	VE GEO	DLÓGY			I			ULPHID:	NTERVA	CORE	ORE	AMPLE	REC'Y	STIMAT	
490				<u> </u>	X		ARGL	-	4	90 -	606'	ARGII	LITE								рн	ж. с.	00	wн	<u>* N</u>	[+}	
500			K			1	core																				
520-			K		AN AN															•							ľ
- 540-				$\langle \rangle$	Actual Sector			-																			
560					Strain and the Strain	5 7 0 1	I	5l		ľ	,																
· · -		·	÷K.	17	1.54										•	•	•	•	•				•				
580-	•		k	X	ŝĸ	clas	tic un	ilt w/s	PYL	•	•••••	•	•••••		'. <u> </u>		-	, - , -	-	• • • •		• -	•			• •	•
-			K		XXX	narr	PY cl ow QZ-	.ay 4" C A					i		9										I		
600-		İ	K	\int	X	PY c		it 5"		-	,																
606 EOH-				ľ		, 606	EOH		;																	•	
-	P							-					\bigcirc	t										\square			
	COLL COOR INCL 490 500- 520- 540- 560- 580- 600- 600- 600-	COLLAR E COORDINA INCLINAT: ALTEI NOLLOS 490 500 520 520 540 550 550 550 550 550 550 550 550 55	COLLAR ELEV COORDINATES INCLINATION ALTERAT NOLLOS 490 500 520 520 540 560 560 560 560 600 600	COLLAR ELEV. : COORDINATES: INCLINATION: ALTERAT'N NOLLOS 490 500 520 540 540 560 560 560	COORDINATIES: INCLINATION: ALTERAT'N NULLO ES 490 500 520 540 540 560 560 560	COLLAR ELEV.: COORDINATES: INCLINATION: ALTERAT'N NULLUCA 490 500 520 540 540 560 560 560 600 600	COLLAR ELEV.: COORDINATES: INCLINATION: ALTERAT'N SN COM ALTERAT'N SN COM ALTERAT'N SN COM ALTERAT'N SN COM SOU SOU SOU SOU SOU SOU SOU SOU	COLLAR ELEV.: COORDINATES: N. INCLINATION: BE/ ALTERAT'N SUBJECT OF COMMENTS ALTERAT'N SUBJECT OF COMMENTS ALTERATION SUBJEC	COULAR ELEV.: GRO COORDINATES: N. INCLINATION: BEARING ALTERAT'N BALTERAT'N COMMENTS COMMENTS COMMENTS S00 500 520 540 540 560 560 560 560 560 560 560 560 560 56	COLLAR ELEV.: COORDINATES: INCLINATION: BEARING: ALTERAT'N COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS S20 520 520 520 520 540 560 560 560 560 560 560 570' PY clay 5" 578.5! 1.5" gran clastic unit w/PY frag 589' PY clay 4" narrow Q2-CA PY clay unit 5" 606' EOH	COLLAR ELEV.: COORDINATES: INCLINATION: BEARING:	COLLAR ELEV.: COORDINATES: INCLINATION: BEARING: ALTERAT'N COMMENTS ALTERAT'N COMMENTS DESCI COMMENTS DESCI COMMENTS DESCI COMMENTS DESCI COMMENTS DESCI COMMENTS DESCI COMMENTS DESCI S20 540 540 540 560 560 560 560 560 560 560 56	COLLAR ELEV.: COORDINATES: INCLINATION: BEARING:	COLLAR ELEV.: DATE COORDINATES: N. E. DATE INCLINATION: BEARING: TOTAL ALTERATION: BEARING: TOTAL ALTERATION: BEARING: TOTAL ALTERATION: BEARING: TOTAL ALTERATION: BEARING: TOTAL ALTERATION: BEARING: TOTAL COMMENTS DESCRIPTIVE GEO 500 500 500 500 500 500 500 50	COLLAR ELEV.: GROUND ELEV.: DATE START COORDINATES: N. E. DATE FINIS INCLINATION: BEARING: TOTAL DEPT	COLLAR ELEV.: GROUND ELEV.: DATE STARTED; COORDINATES: N. E. DATE FINISHED; INCLINATION: BEARING: TOTAL DEPTH: INCLINATION: BEMA INDUSTRIES LTD; COMMENTS COMMENTS DESCRIPTIVE GEOLOGY S00 S12 S12 S12 S20 S12 S20 S21 S20 S22 S20 S32' 2-1" clast units w/PY frags S40 S70' PY clay 5" S60 S70' PY clay 4" arrow Q2-CA PY clay unit 5" 600 PY clay unit 5"	COLLAR ELEV.: GROUND ELEV.: DATE STARTED: COORDINATES: N. E. DATE FINISHED: INCLINATION: BEARING: TOTAL DEPTH: COMMENTS COMMENTS DESCRIPTIVE GEOLOGY 490 ARGL 490 ARGL 490 ARGL 500 File 501 File 502 File 503 File 504 File 520 Size 540 Size 560 Size 560 Size 560 File 570' FY clay 5" 580- Size 580- File 600 File 600 File 600 File 600 File	COLLAR ELEV.: GROUND ELEV.: DATE STARTED: COORDINNTES: N. E. DATE FINISHED: INCLINATION: BEARING: TOTAL DEPTH: DESCRIPTIVE GEOLOGY APO APO APO APO APO APO APO APO	COLLAR ELEV.: DATE STARTED: COORDINATES: N. E. DATE STARTED: DATE STARTED: INCLINATION: BEARING: TOTAL DEFTN:	COLLAR ELEV.: GROUND ELEV.: DATE STRATED: CLAI COORDINATES: N. E. DATE FINISHED: SCAL INCLINATION: BEARING: TOTAL DEPTH: LOG MATERATIN BEARING: DESCRIPTIVE GEOLOGY AVE. CORE REC'Y/HOLE DESCRIPTIVE GEOLOGY 490 500 500 500 500 500 500 500 5	COLLAR ELEV.: GROUND ELEV.: DATE STAFTED: CLAIM: COORDINNTES: N. E. DATE FINISHED: SCALE: INCLINATION: BEARING: TOTAL DETTI: LOGGED I MITERAT'N BEARING: TOTAL DETTI: LOGGED I INCLINATION: COMMENTS OESCRIPTIVE GEOLOCY AVE. CORE INCLINATION: FREC'Y/HOLE GROUND ARGL 490 - 606' ARGILLITE INCLINATION: S22' 2-1" clast Intis w/PY frags S78.5' 1.5" gran 540 570' FY clay 5" S78.5' 1.5" gran S78.5' 1.5" gran S78.5' 1.5" gran 580 Frag S8' PY clay 4" 600 Following 5" Following 5" Following 5" Following 5"	COLLAR ELEV.: GROUND ELEV.: DATE STARTED: CLAIM: N.<	COLLAR ELEV.: GROUND ELEV.: DATE STARTED: CLAIN: CORDINATION: N. E. DATE STARTED: SCALE: INCLINATION: BEARING: TOTAL DEPTH: LOGGED BY: ALTERNT'N BEARING: COMMENTS AVE. CORE ALTERNT'N BEARING: COMMENTS PC COMMENTS COMMENTS COMMENTS DESCRIPTIVE GEOLOGY AVE. CORE SOO HERCINCTOR Fix core SOO SOO Fix core SOO! SOO! SOO! SOO SOO! SOO! SOO! SOO! SOO! SOO SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO! SOO!	COLLAR ELEV.: GROUND ELEV.: DATE STARTEDI: CLAIN: CONDRUMTION: N. E. DATE PINISHED: SCALE: INCLINATION: BEARING: TOTAL DEPTN: LOGGED BY: ALTERNT'N BEMA INDUSTRIES LTD AVE. CORE ALTERNT'N COMMENTS DESCRIPTIVE GEOLOGY AVE. CORE ALTERN'N TOTAL DEPTN: DESCRIPTIVE GEOLOGY BEARING: 500 TOTAL DEPTN: DESCRIPTIVE GEOLOGY BEARING: 520 Total ELEV.: S22'2-1" clast Units w/PY frags 540 S70'. FY clay 5" S78.5'1.5'' gran S78.5'1.5'' gran 540 S78.5'1.5'' gran S78.5'1.5'' gran S78.5'1.5'' gran 560 FY clay unit 5" 606' EOH FY clay unit 5"	COLLAR ELEV.: GROUND ELEV.: DATE STARTED: SCALE: INCLINATION: BEARING: TOTAL DETTI: LOGGED BY: INCLINATION: BEARING: DESCRIPTIVE GEOLOCY NVE. CORE BEARING: DESCRIPTIVE GEOLOCY BEARING: BEARING: 500 Fix core Siz: 2-1" clast Siz: 2-1" clast S20 Siz: 2-1" clast UNITS Siz: 2-1" clast S40 Siz: 2-1" clast Siz: 2-1" clast Siz: 2-1" clast S40 Siz: 2-1" clast Siz: 2-1" clast Siz: 2-1" clast S40 Siz: 2-1" clast Siz: 2-1" clast Siz: 2-1" clast S40 Siz: 2-1" clast Siz: 2-1" clast Siz: 2-1" clast S40 Siz: 2-1" clast Siz: 2-1" clast Siz: 2-1" clast S40 Siz: 2-1" clast Siz: 2-1" clast Siz: 2-1" clast	COLLAR ELEV.1 CROUND ELEV.1 DATE STARFED: CLAIM: COCORDINATION: BEARING: TOTAL DEPTH: LOGGED BY: INCLINATION: BEARING: COMMENTS NEC.V/HOLE NEC.V/HOLE INCLUSTION: OF STARFED: SCORE NEC.V/HOLE NEC.V/HOLE INTERATION OF STARFED: COMMENTS DESCRIPTIVE GEOLOCY NEC.V/HOLE NEC.V/HOLE 490 AGO: AGO: AGO: AGO: AGO: AGO: AGO: 500 STARFED: STARFED: STARFED: STARFED: STARFED: STARFED: 520 STARFED: STARFED: STARFED: STARFED: STARFED: STARFED: STARFED: 520 STARFED: STARFED: STARFED: STARFED: STARFED: STARFED: 540 STARFED: STARFED: STARFED: STARFED: STARFED: STARFED: <td>COLLAR ELEV.: GROUND ELEV.: DATE STARTED: CLAIN: COONDINNTES: N. E. DATE STARTED: SCALE; INCLIMNTON: BEARING: TOTAL DEPTH: LOGGED BY: NUTRRAT'N BEARING: CONMENTS BEARING: CONMENTS CONMENTS BEARING: DESCRIPTIVE GROLOGY BEARING: DESCRIPTIVE GROLOGY BEARING: S20 S00 S22' 2-1" clast S00 S22' 2-1" clast S00 S28.5' 1.5" gram S01 S28.5' 1.5" gram S01 S28.5' 1.5" gram S01 S28.5' 1.5" gram S02 S28.5' 1.5" gram S03 S264 S04 S27 2-1" clast S05 S28.5' 1.5" gram S13.5' 2.5" Prilip gram S13.5' 2.5" Prilip gram S13.5' 2.5" gram S13.5' 2.5'' S28.5'' S28.5'' S28.5'' S28.5'' S28.5'' S29''' S20 Pr</td>	COLLAR ELEV.: GROUND ELEV.: DATE STARTED: CLAIN: COONDINNTES: N. E. DATE STARTED: SCALE; INCLIMNTON: BEARING: TOTAL DEPTH: LOGGED BY: NUTRRAT'N BEARING: CONMENTS BEARING: CONMENTS CONMENTS BEARING: DESCRIPTIVE GROLOGY BEARING: DESCRIPTIVE GROLOGY BEARING: S20 S00 S22' 2-1" clast S00 S22' 2-1" clast S00 S28.5' 1.5" gram S01 S28.5' 1.5" gram S01 S28.5' 1.5" gram S01 S28.5' 1.5" gram S02 S28.5' 1.5" gram S03 S264 S04 S27 2-1" clast S05 S28.5' 1.5" gram S13.5' 2.5" Prilip gram S13.5' 2.5" Prilip gram S13.5' 2.5" gram S13.5' 2.5'' S28.5'' S28.5'' S28.5'' S28.5'' S28.5'' S29''' S20 Pr

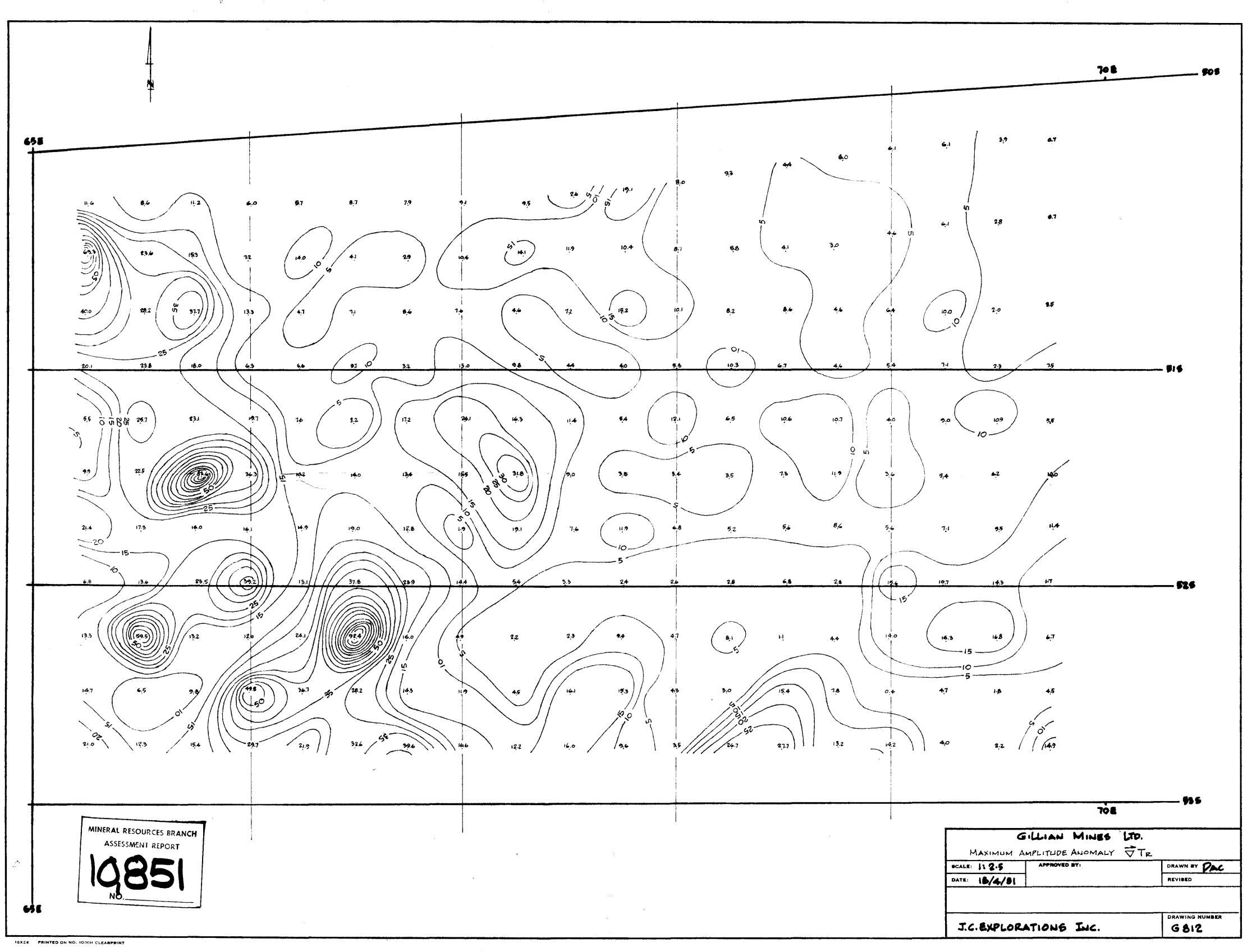
	PROJECT: 81-28G COUND ELEV.: DATE STARTED: April 29, E. DATE FINISHED: April 29, G: Vertical TOTAL DEPTH: 348'	, 1981 CLAIN , 1981 SCALI	E: 1"=	1 OF 50', 1"= S.C.B.	3 =10'	
ALTERAT'N COMMENTS COMMENTS	GILLIAN MINES LTD Rapidlog	AVE. CORE REC'Y/HOLE 100%	NG NG	RED	AL Y TNT	TED
CONCEPTION SECTION CHIORITE COLOGY CLAN CLAN COLOGY CLAN COLOGY C	DESCRIPTIVE GEOLOGY		SULPHI DRILLI DRILLI TNTERV	A CORE RECOVE CORE SIZE	SAMPLE INTERV R REC'	ESTIMATED
-0 -0 -0 -0 -0 -0 -0 -0 -0 -0	ry- 10 - 115.6' GABBRO-as described in previous	scribed in cts.		2001 NQ		
189' DACT-AN	5 189 - 264.2" DACITIC ANDESITE DYKE-as above	· · · · · · · · · · · · · · · · · · ·				
-200- 	204.2 - 280' GABBRO					
QZ-CL on frx		•				

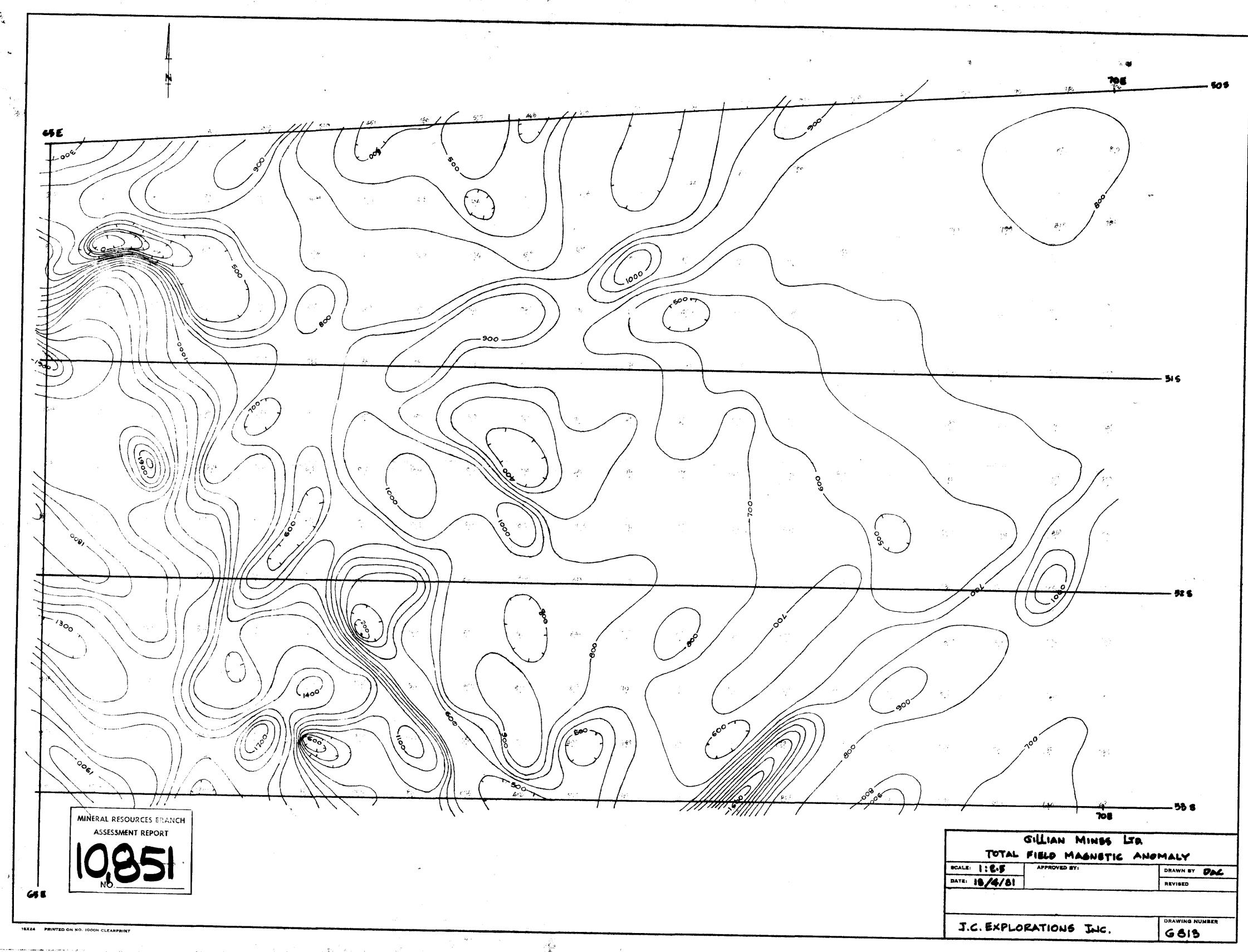

HOLE NO.: 81-45 COLLAR ELEV.: COORDINATES: INCLINATION:	GROUND ELEV N. BEARING:	PROJECT: 81- 7.: DATE STARTED: E. DATE FINISHED TOTAL DEPTH:	CLAIN CLAIN SCALE	1:	OF	3	
ALTERAT'N BILV NULLEN	COMMENTS	BEMA INDUSTRIES L	TD. AVE. CORE REC'Y/HOLE	IDES ING VAL	ED.	JL NT.	<u>а</u>
SECTION SECTION CHLORITE CARBONATE CLAY SILICA FRACTURIN MINERAL GEOLOGY		DESCRIPTIVE GEOLOGY	, , , , , , , , , , , , , , , , , , ,	SULPHII DRILLIN INTERVI CORF	RECOVEI CORE SIZE	SAMPLE INTERVA SAMP. I	ESTIMATEL
280 - 0 - 1 - 290 - 300 - 300 - 310 	280' GABR 1' fn gr chill zone 283' FELSIC TUFF 283 PY ½" CL f PY ½" BP:CA=10° CL-PY frx CA PY 1" clay on frx PY blobs 297' 1" PY w/frx 300' 1" PY in microfrx graded bed below PY tops up300diag. of PY 319' ½" PY318' 1am 1	- 331' FELSIC TUFF-lt gry b rx upper 3' is ground core.	orn a few dk PY lam. PY- Some sects cont silty	<u> </u>			
- 340-		<u> </u>				\bigcirc	

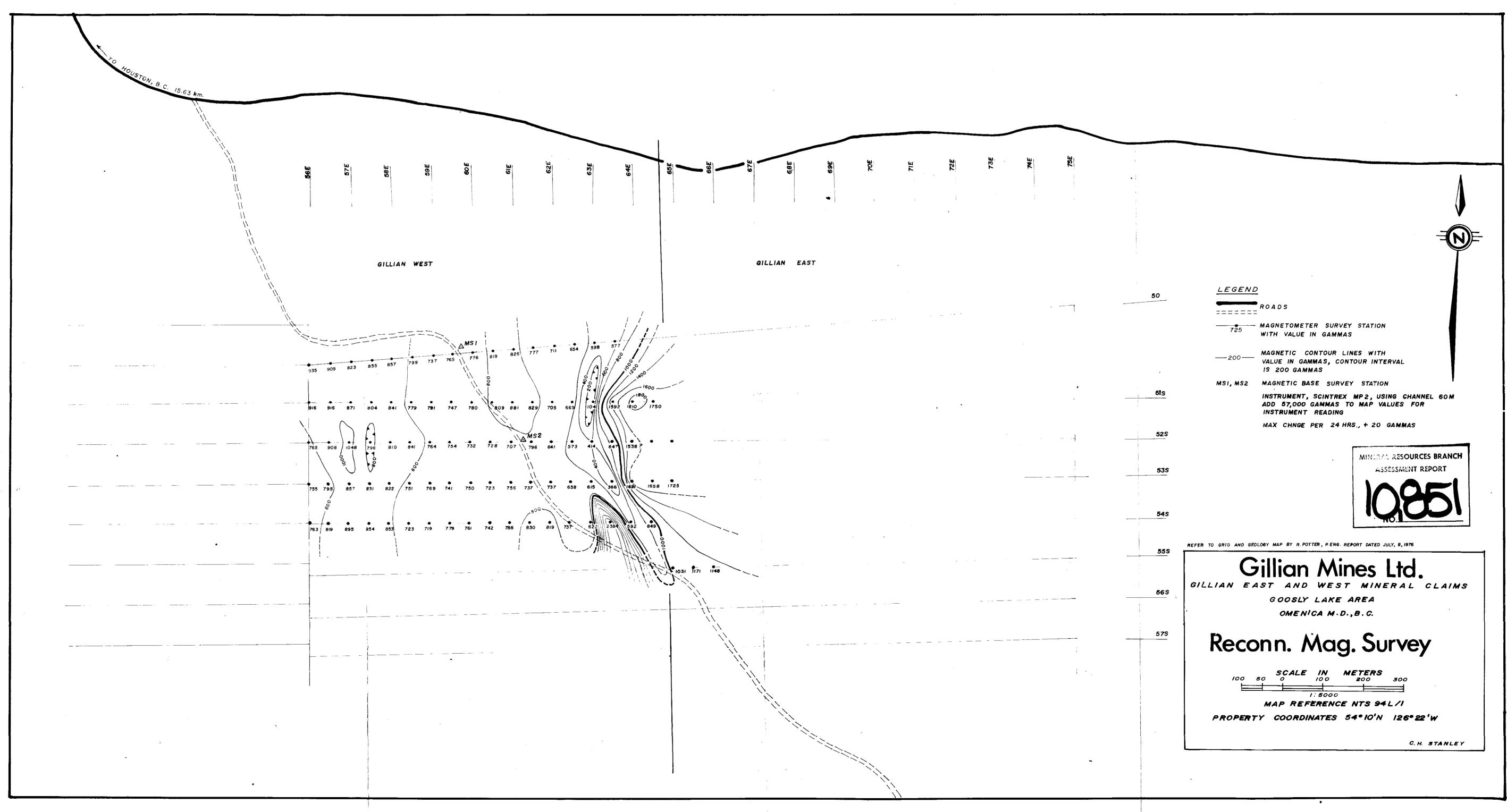

COL COO	E NC LAR RDIN LINA	ele Nyje	v.: S:	31-	45			GROUND N. BEARING:						EV	.: Е.			PRO DATI DATI TOTA	e si E Fi	TARI INIS	TED : SHED		28C					CLA SCA				3	OF g	3	·		
SECTION	E	CARBONATE E	T	FRACTURING	MINERAL	LOGY	C	OM	4EN	ITS							 	UST				.TD	•			λve Rec		ORE		DRILLING	ERVAL	DRE DVERED	CORE SIZE	PLE	SC'Y . INT.	ESTIMATED	
340 - 348 EOH		C	ST ST	FRA	INIM		PY di	b. .ss	AR Leb 2'' EO	s & P	Y Y f	/ fn Tx	1) -			 	GI TE			ле-{	grou	Ind	for	1a:	st f	oot	•		IIAd	A.L.N.I	\$ CC RECC	CORE	SAMP INTE	A REC SAMP.	EST	
		• • •														•	 •	- [.] .					-		•				· · · · · · · · · · · · · · · · · · ·				•			•	
									<u>.</u>								($\overline{\bigcirc}$																\bigcirc			

,








t.

Source and the second se Second seco second sec

1000	RDTNA LINAT	ear). 101'	5: 1:	-9	•		Ν.	D ELEV.: E. Vertical	DATE STARTED: DATE FINISHED: FOTAL DEPTH:	April 29	, 1981 CLA: , 1981 SCA LOGO	E:							
	ALTE PLE	T		UNC			COMMENTS GI	BEMA IN	DUSTRIES LTC).	AVE. CORE REC'Y/HOLE 100%	SES	ING	ED		L	NT.	<u></u>	
SECTION	CHLORITE	CLAY	SILICA	FRACTUI	MINERAL	GEOLOGY	·····	DESCRIPTIN	VE GEOLOGY		I	SULPHID	EE	RECOVER	CORE SIZE	SAMPLE INTERVA	& REC'Y SAMP. I	STIMATEL	
100 - 100		X		$\left\{ \right.$			0 - Overburden 30' DACT-ANDS 40' GABR 51.5' DACT-ANDS 52.7-60' GABR weath QZ-CO ₃	40 - 51.5' GABI	IC ANDESITE DYKE-a R-alt & strly weat ACITIC ANDESITE DY	th.	amyg.			~	NQ	<u>я</u> н	<u>~~0</u>	<u> </u>	
- -200 - 250 - -						「「「「「「「「「」」」」「「「「「」」」」」「「「「「」」」」」」「「「」」」」	Q2-C03 frx	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·							•••.	

COLL COOR INCL	AR DII JN	174 177	ES : ON	• :	▲ ~1	T *1		GROUNI N. BEARING:	D ELEV.: E.	DATE START DATE FINIS TOTAL DEPT	HED:	CLAI SCNL LOGG	М: Е:		4	01	J		
		TER E	TAT T	N	BG			COMMENTS	BEMA	INDUSTRIES	LTD·	AVE. CORE REC'Y/HOLE	10						
0,1		CARBONATE	CLAY	SILICA	LAUTURA	MINERAL	GEOLOGY		DESCR	RIPTIVE GEOLOGY		<u> </u>	SULPHIDES	DRILLING	L CORE LECOVEREI	CORE SIZE	NTERVAL	% REC'Y SAMP. INT	ESTIMATED
300		Ζ			$\overline{\mathbf{N}}$			300' GABR	300 - 337	GABBRO-as above.	•			<u>ha c</u>	 <u> </u>		<u>w</u> ei	0 90	<u></u>
- 320		Ŋ			X		8 I 3	QZ-CA frx											
- ភ្ន		Λ		k	K		】z	323' top of chill zone							ļ ,				
1"=10'		\backslash		k	K		r C	CA-QZ frx											
330		Λ		k	1		Š 3	330' felsic frag					1						
					λ		£2	v/PY						ľ					
-]				K			2 Z	PY in GR rich cone 1"								•			
-				Ì	Ж		- P	337' FELSIC TUFF	337 - 376' lam.	FELSIC TUFF-gry	lam w/local dk	PY bearing							
· 340		Ì		V	/[`	Y)Z frx 342' PY lam											
-		Í				/	β B	SP:CA=15 ⁰ PY clots	· ·										
.]					λ		P P	Y in 2" lam	• • •	· .					•.				
350	, •	_ .	.	./	/ /		¥ 1 •	PY in frx 152.5' fn diss PY		••••••	• • • • • • •	•	•	•	-	. •			• •
· 1					\[¥ 2'	PY											
. {		,	•	K				." PY									·		
- 360					\mathbb{X}			11 ma			ï							ł	
, ,					$\langle k \rangle$		₿ Q;	" PY Z-PY & PY frx				-							
]					个	X	₽ be	ed PY.1" Y 1"											
					K			Y 1"								İ			;
370					1	X	P	· · · ·											
]		Ć)		\mathbb{K}	'k	P) PY			\bigcirc						المر	\mathbf{Y}		
376		Ĩ			1		37	/l' FELSÍC ⁻ TÜFF			-					<u>)</u>			

COLLAR ELEV.: COORDINATES: INCLINATION:	GROUND ELEV.: DATE STARTED: N. E. DATE FINISHED: BEARING: TOTAL DEPTH:	FAGL NO CLAIM: SCALE: LOGGED		UJ [,]	3	-	``
E UNC		AVE. CORE REC'Y/HOLE	DES AG	G	н	NT.	
SECTION CHLORITE CARBONATE CARBONATE CLAY SILICA FRACTURING MINERAL	DESCRIPTIVE GEOLOGY		SULPHIDES DRILLING INTERVAL & CORE	RECOVER CORE SIZE	SAMPLE INTERVA	& REC'Y SAMP. INT SSTTMPTED	
376 - 380 - 390 	376' FELSIC TUFF PY in frx in PY rich lam PY clot, frx 381 -416' ARGILLITE as described in previous 383' several ½'x L' PY frags PY brxx 2' PY brxx 2' PY lam 1'' PY PY lam & frx PY on frx PY clots frx. PY 16' EOH	us holes		<u>.</u>	<u>ун</u>		

COLL	NDINATES:	-43.1 -90 ⁰	1' -13.14 mgroun N. BEARING:	D ELEV.: E. Vertical	DATE STARTED: DATE FINISHED TOTAL DEPTH:		981 CLAI 981 SCAL		50',	1''=10	/ , 1"=	25'
SECTION	CHLORITE CARBONATE CLAY CLAY SILLCA SILLCA	F RACTURING MINERAL GEOLOGY	COMMENTS	BEMA IND GILLIAN MINES LTD DESCRIPTIV		rD∙	AVE. CORE REC'Y/HOLE 100%	\$ JLPHIDES RILLING	VTERVAL CORE COVERED	CORE SIZE Samin	INTERVAL & REC'Y SAMP, INT.	TIMATED
S 0 105="1" 50			0 - Overburden 21' GABR LM frx 42' GABR	0 - 21' Overburg 21 - 42' GABBRO 42 - 80' GABBRO	- fn gr-possib	ly younger d	yke or sill.		100%	NQ		
- 100-			80' GABR	80 - 122' GABBRC	0 - fn gr.							1
- 120 ,01=,,1		/ \	123' GABR 124' FELSIC TUFF PY on frx at igneous contacts 129' GABR	129 - 120' GABBR	RO-fn gr - nume IC TUFF 			t.				
- 130- 140- 			130' FELSIC TUFF 131' GABR 132' FELSIC TUFF 133' GABR 134' FELSIC TUFF 135' GABR 136' FELSIC TUFF 141' DACT-ANDS	133 - 134' GABBR 134 - 135' FELSI 135 - 136' GABBR	to fn gr. C TUFF C fn gr. C TUFF C fn gr. C TUFF	KE — amyg.						9
- 150- - 154-				- (\bigcirc							

COL COL INC	LAR RDI	EL Там	EV ES	.: :				. GROUNI N. BEARING:) ELEV.: E.	DATE STARTE DATE FINISI TOTAL DEPTY	IED:	CL SC	AIM: ALE: GGED		-	UI.			
	E	TER EI			ING			COMMENTS	BEMA	INDUSTRIES	LTD.	AVE. CORE REC'Y/HOL	2 y	2	ļ	2		E.	θ
NOILDASS	CHLORITE	CARBONA.	CLAY	SILICA	FRACTUR	MINERAL	GEOLOGY		DESCR	IPTIVE GEOLOGY			ם בחדם ב א בווד שעדתם	DRILLING	CORE	CORE	SAMPLE INTERVAL	SAMP IN	ESTIMATEI
154								154' DACT(?) 158' FELSIC? DYKE		DACITE(?) DYKE FELSIC(?) DYKE									
-							Y AL	163' FELSIC TUFF 164' FELSIC? DYKE 165' FELSIC TUFF 167' FELSIC? DYKE 169' FELSIC TUFF	164 - 165' 165 - 167' 167 - 169'	FELSIC TUFF-nume FELSIC(?) DYKE FELSIC TUFF FELSIC(?) DYKE FELSIC TUFF	rous CO ₃ .fille	d frx throu sec	glout t						
- 170								171' FELSIC DYKE w/tuff frags frx PY,amyg sect PY on frx	171 - 180'	MIXED TUFFS & DY	KES								
180				K	-\(180' FELSIC TUFF 181' FELSIC? DYKE 182' FELSIC TUFF frx PY	181 - 182'	FELSIC TUFF FELSIC(?) DYKE FELSIC TUFF		· .							
- 190		•	•	-				17X FI 186' FELSIC-TUFF 188' GABR fn gr felsic frags		FELSIC TUFF GABBRO fn gr.	· * ·	·							
200				K				felsic frag 198' FELSIC TUFF 199.5' GABR felsic frags		5' FELSIC TUFF O' GABBRO fn gr							-		
- 210				/		·一···································				\Box	s).		

COL COO	L NO. LAR EI RDINA' LINAT	LEV TES 10N	. : : :	U~ JJ	-	GROUN N. BEARING:	D ELEV	/.: E.	DA DA	TE START TE FINIS TAL DEPT	IED:			CLVI SCVT LOCC	M: E:		С С	UI.	,			
R	UTE I			H		COMMENTS		BEMA	INDUS	TRIES	LTD.		AVE. REC'Y				RED		L.	r Int.	LED	
NOILDESC 210	CHLORITE CARBONATE	CLAY	SILICA FRACTURING	MINERAL	2 CEOLOGY	· .	<u>γ</u>	DESCR	IPTIVE	GEOLOGY					IHATIOS	DRILLI	& CORE RECOVE	CORE SIZE	SAMPLE INTERVI	REC'S	ESTIMATED	
					剧	felsic frags PY in frx									1 •							
220																						
-230	•																					
240						Gouge dk GABR fn gr 244' FELSIC DYKE? w/tuff.frags	, , ,,	C		· · ·			_ ·	· · ·	·		-		,		- `.	
-250 -									•		- ,	·										
260 -					が正成していて	' :					·			·	1						v	
264 -					CT CONTRACTOR OF THE OWNER			•	$\sum_{i=1}^{n}$]	•)			

	OOR NCL	'YK SDII	еця Илтр \тгі(EV. ES: DN:	<u></u>	ور	<u> </u>	GROUN N. BEARING:	ND ELEV.: E.	DATE STARTI DATE FINISI TOTAL DEPT	HED:	L AGE CLAI SCAI 1.0G0	M: .E:		4	Or	1		
		щ	CARBONATE		FRACTURING	RAL	OGY	COMMENTS	BEMA	INDUSTRIES	LTD.	AVE. CORE REC'Y/HOLE	sadi TDES	ING VAL	ERED		E VAL	'Y INT.	ATED
- 2	NOILDES 64	CHL(CAR		FRAC	MINERAL	THE RECTORY		DESCR	IPTIVE GEOLOGY			Ha'INS	DRILL	RECOR	CORE	SAMPLE INTERVAL	& REC' SAMP	ESTIMATED
ŀ	270																		
- 2	80: -							dk DACT-ANDS?									*		
2	- 90						いた成素	tuff frags	. ·	1	ı .								
ľ	- 00				$\left \right\rangle$	And And And And And And And And And And		297-303.5 about 50% frags of tuff? 303.5' DACT-ANDS 307' FELSIC TUFF	303.5 - 307 307 - 315'	7' DACITIC ANDESI FELSIC TUFF	TE DYKE	· · · · · · · · · · · · · · · · · · ·	• • •		•	-		•	-
- 3.	- - 10 - -							315' DACT-ANDS PY in frx	·	DACITIC ANDESITE	DYKE	-,				•			
- 32	20				$\left \right $		通知的目的		-	<u>,</u> 1						.] [\sum		

LOLE COLL COOR INCL	AR B DINA	ele Nte	V.: S:)-3	5	GROUND ELEV.: N. E. BEARING:	FACCECT: 01-200 DATE STARTED: DATE FINISHED: TOTAL DEPTH:	CLAIM: SCALE: LOGCED BY:	ر	Uŀ			
NOILDES24	CHLORITE I		CA	- UNI	MINERAL	GEOLOGY		INDUSTRIES LTD.	AVE. CORE REC'Y/HOLE Sequence AVE. CORE REC'Y/HOLE	RECOVERED	CORE	SAMPLE INTERVAL	& REC'Y SAMP. INT.	ESTIMATED
- 340 - 340 - 350 							РҮ 360' FELSIC DYKE 361' TUFF 360 - 361 361 - 365	FELSIC DYKE FELSIC TUFF						••••
						バ 大 X 国 副 影 間 影 『 い 、 大 X 同 『 影		FELSIC DYKE FELSIC TUFF GABBRO			(-

COLL COOR INCI	AR DIN ,IN)	eli Nati Ati(es: DN;	:				N. BE			LEV.: E.	ום נס	NTE STARTI NTE FINIS DTAL DEPT	IED:		CLA SCA LOGO	IM: LE:		U	Ur	۰.		
	<u> 1</u>	PER			PNT			OMMENTS	4 5		BEMA	INDU	STRIES	LTD.		E. CORE C'Y/HOLE	v u	(h	- A			ĿŢ.	ត្ត
SECTION	CHLORITE	CARBONA	CLAY	SILICA	HOTOHA -	<u>re</u>	CEOLOGY				DESCI	RIPTIVE	GEOLOGY		<u>l</u>		A ULPHTU	RILLING	CORE	CORE S I ZE	AMPLE NTERVAI	% REC'Y SAMP. IN	ESTIMATED
s 400 405="1" 450						人	5 4()	00' GABR			400 - 455	GABBRO			•				<u>*</u> 21	Ŭй	<u>9</u> H	% S	й
1"=10" +							14.1	iff, fn 55' FELS	gr		455 - 461'	FELSIC	TUFF										
- <mark></mark> - 460-				Ń		/-	2'	' PY in I	lam								ŀ						
		•		K			· 46	1' ARGL		4	i61 - 545'	ARGILLI	TE			-							
470 192 1 1				K) ·		PY	in frx	• • • •		· · · · · ·	 - • • •	- , -	• • <u>-</u> •••• •	· · ·	. · ·						•	·· .
- 500- -					/	日本語とないのない		•	•			•											
525- - 540- 545-							53 53	0'gryc 6'ARGL	lay ·		•	Ć	71			-					Ù		

COLI COLI COOI INCI	LAR RDI LIN	е еі .NA7 IA7:	LEV PES	.: : :	u-u			<u> </u>	N. BE			D EL		3.		DAT DAT דסד	E STAR E STAR E FINI AL DEP	SHED: rh:				CT.I SCI	GI. N AJM: ALE: GGED			,	or	1		<u></u>	
N		IATE IAL			JRING	E .	X	СОМ	MENT	s			BE	MA	IN	DUS	TRIES	LTC).			CORE Y/HOLI	R I	DES	AL AL	RED		MI.	Ý ENT.	Q	
NOILJAS 5	CHLORITE	CARBONATE	CLAY	SILICA	FRACTU	MINERAL	, GEOLOGY	5/57	ARGL			1 5/				VE G	EOLOGY							SULPHIDES	TNTERV	% CORE RECOVE	CORE SIZE	SAMPLE INTERVI	& REC'S	ESTIMATED	
560						وتتتحدر البلايلا المستحيرين			DACT ARGL		5	56	62 -	567'	DAC	T-ANDS ILLITI	3														
580 [.]					-																										
600 ⁻ 607- EOH.							in the second second second second second second second second second second second second second second second	607 '	ЕОН																						
- - - - - - -			•					•		• .				، . <i>.</i>		*		- - , -	• - •	• • •	• _						•••			•	
										•	•					1	•. •														
											,			•	-	\bigcirc))			

•

ł

	DLL DOR	AR I	ELE ^V VTES CION	/.: 5: 1:		90 ⁰		NOL SULVEYED GROUN N. BEARING:	DATE STARTED: April 30, 1981 CLAIM: E. DATE FINISHED: April 30, 1981 SCALE: 1"=50', 1"=10', 1"	'=25'
Í	İ]	Γ	<u>y</u>		┟		BEMA INDUSTRIES LTD. AVE. CORE REC'Y/HOLE	
	E 0	NI TE		A	URI	2AL	Ъ	COMMENTS GII		ATED
_	SECTION	CHLORITE CAPBONAT	CLAY	SILIC	FRACTURING	MINEPAL	CEOL CEOL		DESCRIPTIVE GEOLOGY	ESTIMATED
	- 1							0 - Overburden	0 – 42' Overburden	
	.nc=.T 0						一方法にいたかから	42' GABR	42 - 138.5' GABBRO-dk, med gr, fairly mass w/wk frx, chill zone at contact not as altered as in later holes vy fn gr chill zone about 6"	
_10 _13 	0						「た日本語」の正になったないで、			
01="1". -14		K		•				CA-PY 138.5' Felsic Tuff diss PY in dykes diss PY PY frx	138.5 - 149.5' FELSIC TUFF-gry brn fn gr, sil alt where cut by small dykes. Dykes are 4-6" frx w/py, contacts contain some CA amyg.CO3 alt in dykes.	· · · .
					$\left \right $			PY frx PY conc		
15	0	K	ľ					149.5' ARGL	149.5 - 156' ARGILLITE-blk, sooty mass fn gr tr of py contact w/tuff unit is conformable but distinct.	
-	-						A ¥	PY or frx 156' DACT-ANDS PY or frx	156 - 168' DACITIC-ANDESITE DYKE-grn-brn amyg as de- scribed in later holes-buff coloured at lower contact.	
-160	0	$\sqrt{2}$	L		K		j.	CA or frx		
170	0		Ľ		\backslash	X		168' ARGL	168 - 529' ARGILLIA -blk sooty vy fn gr, quite mass	

COLLAR ELEV.: COORDINATES: INCLINATION:	GROUND ELEV.: N. E. BEARING:	DATE STARTED: DATE FINISHED: TOTAL DEPTH:	PAGE NO.: CLAIM: SCALE: LOGGED BY:	
LING	COMMEN'IS BEMA	INDUSTRIES LTD.	AVE. CORE REC'Y/HOLE	
SEC CHI CIA SIL SIL SIL		IPTIVE GEOLOGY	SULPHIDES	LNTERVAL * CORE RECOVERED CORE SIZE SAMPLE INTERVAL * REC'Y SAMP. INT. ESTIMATED ESTIMATED
170 -180 -180 -180 -180 -200	170' ARGL 180' 1" silty layer, turb 189' 2" PY frx lam w/fn diss PY 194' 1.5" lam PY frx PY, PY blebs	RGILLITE - as above.		
-220	PY bleb PY conc worm burrows 242' 2" fn diss			
		· · · · · · · · · · · · · · · · · · ·		
_280 - 	· ·		-	
320		\bigcirc		

_ COO	LAR RDIN	ATE TIO	S: N:				N Bi				JEV.	: Е.	•	Ľ	DATE I	START FINIS DEPT	IED:					CLA SCA	IM: LE: GED	.: ВY:	٢	Ur	4			
NO	ALT		SILICA	URING	GY GY		MENI				B	EMA	<u> </u>	NDU	ISTR	IES	LTD	•				ORF. NOLE						E 2	G	
SECTION	CHLORITE	CARBO	SILIC	FRACT	GEOLOGY			<u> </u>				DESC				ЮGY					·	•		DRILLING	CORE	CORE SIZE	SAMPLE	% REC'Y SAMP T	ESTIMATED	
320 - - 340					10000000000	4	' ÁRG n bur			320) – (460'	ARG	ILLII	ſΕ				+ <u>-</u>			•		2 6 1		4 O W	NE NE	60 m	<u> </u>	
-360					こうないない 人たち ひてんていたい																									
-380 -					ないたとれていたからい	(out		:(, ·											•										
				.		404 '	BP:(CA=15 [°]		• • • •	· ·	• .	• •	• _	• •		•			• .			· `.		•		•	·	· · · ·	
-420-														· .	•															
-440-														-					•											
_460 -														(())	<u> </u>														

COL COO INC	LAR RDJI	וז רמא נידה	LEV 'ES	.: : :		<u>~</u> U	GROUN N. BEARING:	D ELEV.: E.	DATE STARTE DATE STARTE DATE FINISH TOTAL DEPTH	D: ED:	L ANE CLAI SCAL LOGG	M: E:		4	νı	4		-	
		ATE			RING		COMMENTS	BEMA	INDUSTRIES	LTD	AVE. CORE REC'Y/HOLE	្រុះ	មកព	ED		ч	νT.	G	
SECTION	CHLORITE	CARBONATE	CLAY	SILICA	FRACTUR	MINERAL			IPTIVE GEOLOGY			SULPHID	DRILLING INTERVAL	CORE RECOVER	CORE SIZE	SAMPLE INTERVA	REC'Y	ESTIMATED	
470 -480					\bigwedge		470' ARGL	470 - 529' 4	ARGILLITE .								- 	<u></u>	
-				K															;
-500					1			•											
. 520				ľ			5291 532 51 100-04-20	520 522 51	B-1-4-(00) DYWD										
				k	K	X	w/PY or frx	felsic dyke	<pre>Felsic(??) DYKE - unit but cont CA { of DACITE(?) '- ARGILLITE</pre>	- appears to be gr.fn gr buff-g	same as ry-poss								
	• •						·	· . ·	· · · · · · · · · · · ·									· . ·	
												-							
- - 580 -				k	k k		579.5' PY or frx 581.5'	579.5 - 581. 581.5 - 607'	5' Felsic(??) DYKE ARGILLITE	as above		i							
 -600 -				K	\mathbb{A}		, , , , , , , , , , , , , , , , , , ,	·											
607 -EOH -				ľ			607'ЕОН .		\frown										
<u> </u>		Ì							· · ·										ļ

•