
82 - 356 - 10864

A Diamond Drill Report on the ROX GROUP Property (Cedar Creek, Ernest 1, Lilly 1, Lor, Ang, Rocky, Harriet, Nancy, Toucan and Cliona claims) located in the Likely Area, Cariboo Mining Division Map M93A/12E Latitude 52°37N and Longitude 121°35W for Raymond A. Cook (owner and operator) by Raymond A. Cook B.Sc., M.Sc., Geology May 8, 1982

TABLE OF CONTENTS

I. INTRODUCTIONpage	1
Propertypage	1
Location and Accesspage	1
Historypage	1
Summary of Work Performed page	2
Core Storage page	2
II.RESULTSpage	2
III.INTERPRETATIONpage	3
IV.CONCLUSIONSpage	4
APPENDIX I (Cost Statement)page	5
APPENDIX II (Qualifications)page	6
APPENDED Drill Reports and Assays	

í

.

.

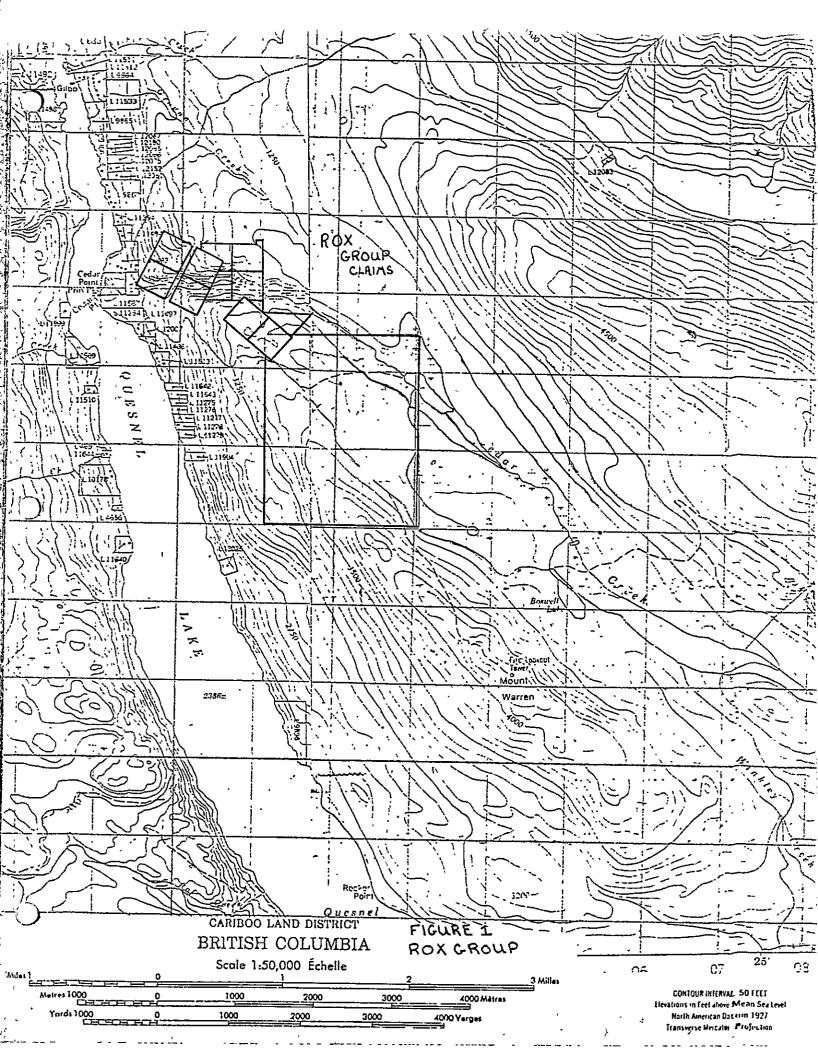
.

I. INTRODUCTION

An exploration diamond drill program was performed to test the continuity and character of a rediscovered 1923 polymetallic-gold showing located within Cedar Creek canyon.

Property

The claims included in the Cedar Creek property, hereafter called the ROX GROUP, are located in the Quesnel Lake area of the Cariboo Mining Division, British Columbia. The claims are held by Raymond A. Cook and include:


<u>Claim</u>	Record No.
Cedar Creek 1	979
Cedar Creek 2	980
Cedar Creek 3 🧹	981
Cedar Creek 4	982
Ernest 1 v	1002
Lilly 1	1003
Cliona 🕓	1238
Lor v	1240
Ang 🕤	1239
Rocky -	1241
Harriet -	1242
Nancy -	1243
Toucan 🖌	1244

Location and Access

The property is situated approximately 6 to 13 kilometers southeast of the town of Likely, British Columbia. Likely is some eighty-three kilometers from One Hundred and Fifty Mile House by a good partially paved gravel road. The ROX GROUP is accessible throughout its entire length by a good partially paved gravel road from Likely which leads to Cedar Creek dam at the southern end of the property (Figure 1).

History

Cedar Creek was initially prospected in 1862 and subsequently worked intermittently for placer gold from 1865 until the present day. The early years were

most productive until the turn of the century when production and interest declined. In 1921 finds of placer gold on Cedar Creek's upper benches in good paying quantities created a new gold rush to the area. Coincident with the rediscovery of placer gold was the examination of local bedrock for the lode source of the placer finds. In 1922 John Creagh discovered and worked auriferous polymetallic structures in Cedar Creek canyon (Wonder Group). Samples from the Creagh showing were assayed resulting in economic values. In 1933 Creagh's Wonder Group was optioned by Premier Gold Mining Company Limited whose investigations resulted in the dropping of the option the following year.

In 1979 the former Wonder Group showing was rediscovered by R. Cook with subsequent exploration mapping and sampling of the showing and the local host volcanics. Good auriferous polymetallic values were obtained.

In June 1981 a limited diamond drill survey was performed to test the continuity of the Cedar Creek canyon polymetallic showing at depth (Figure 2).

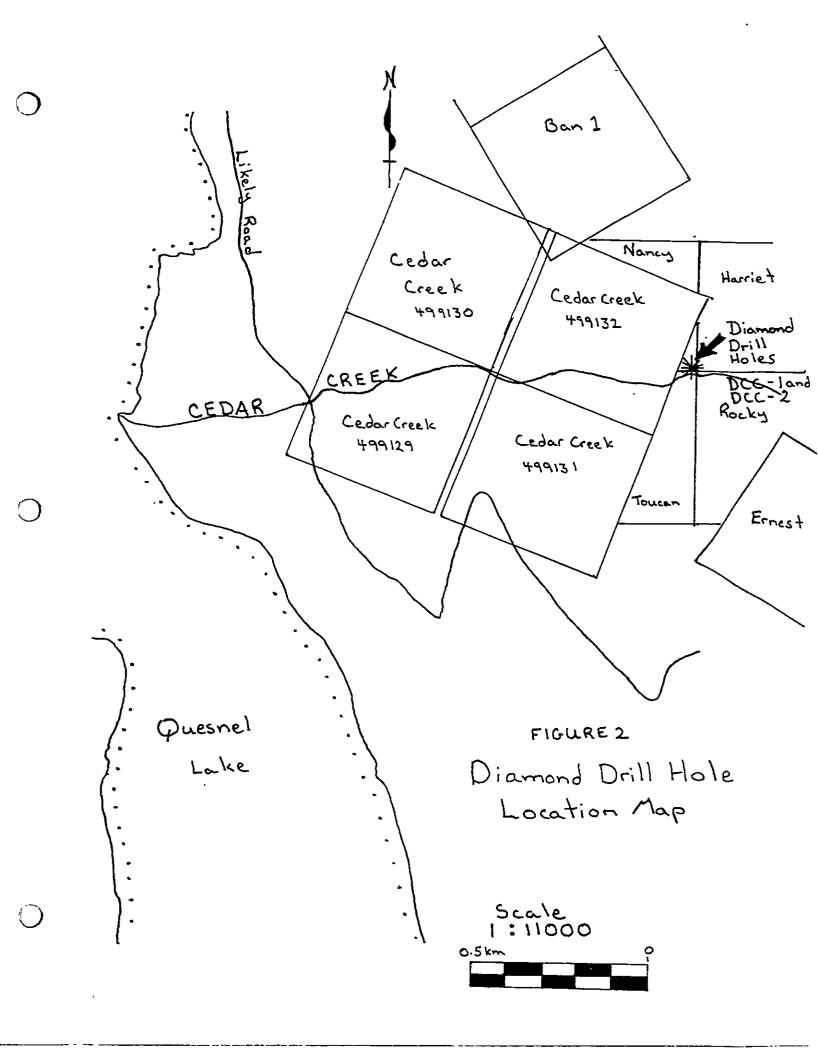
Summary of Work Performed

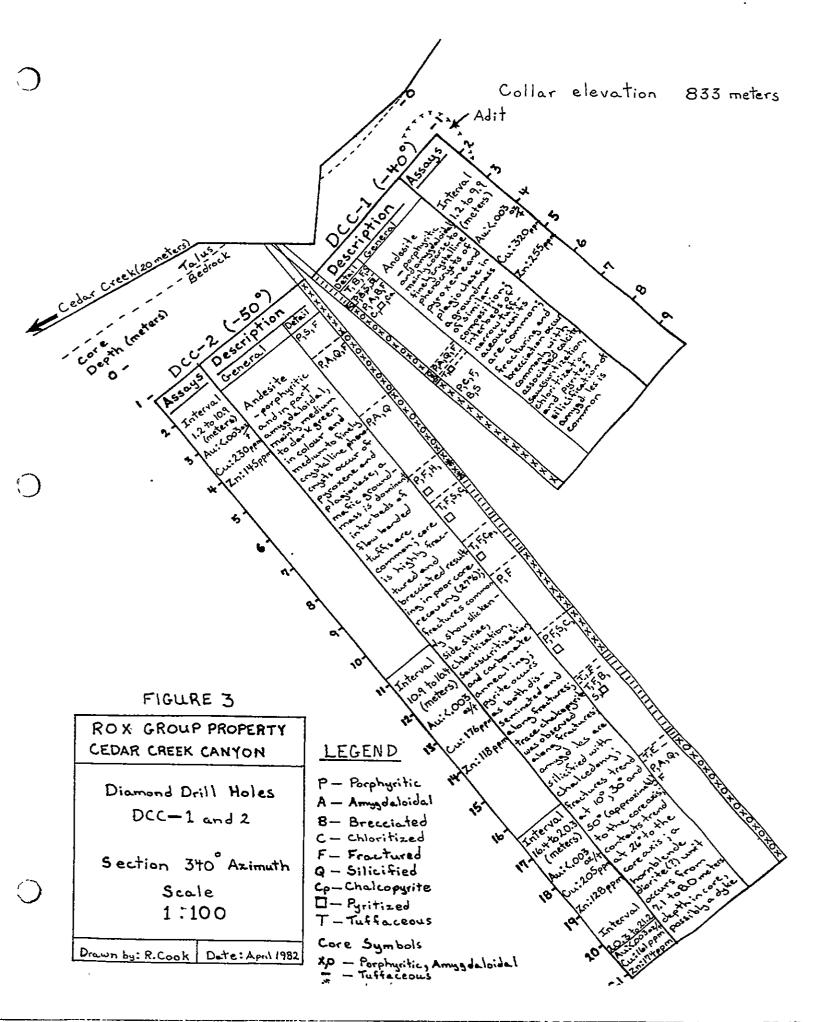
Diamond drilling was performed from the 2nd to the 20th of June 1981 using a JKS Winkie diamond drill with a 2.5 centimeter (1 inch) diameter core capacity.

Two holes were drilled from the same staging, hole DCC-1 at -40° and hole DCC-2 at -50° , both holes were collared at the same 833 meter elevation and drilled at azimuth 340° (Figure 3). Drill hole DCC-1 was terminated at 9.9 meters depth by the shearing and loss of a bit downhole. Drill hole DCC-2 was terminated at 21.2 meters depth due to difficult drilling and the belief that the projection of outcropped mineralization had been tested at depth.

Core Storage

Split core is stored at the residence of R. Cook in Calgary, Alberta.


II. RESULTS


Diamond drill reports and a certificate of assay are appended.

Diamond drill holes DCC-1 and DCC-2 because of their proximity and similar geology will be described collectively.

The host lithology is mainly porphyritic andesitic volcanics. The andesites are in part amygdaloidal dependent on the proximity to the chill margins of the lava flows, mainly medium to dark green in colour and medium to finely crystalline

2

phenocrysts occur of pyroxene and plagioclase in a groundmass of similar composition. Interbeds of finely crystalline flowbanded welded tuffs are common. The core is highly fractured and brecciated throughout resulting in very poor core recovery (27%). Fractures characteristically show slickenside striae, chloritization, saussuritization and carbonate annealing by calcite and dolomite. Fractures trend at 10° , 30° and 50° (approximately) to the core axis while lithologic contacts are at 26° . Amygdules are silicified with chalcedony as are some associated hairline fractures and a pink colouration suggests slight felsitization. In core DCC-2 at approximately 8.0 meters depth hornblende phenocrysts commonly occur suggesting a narrow hornblende diorite dyke.

The mineralization of the cores is sparse with pyrite and pyrrhotite occurring as disseminations and along fractures. Trace chalcopyrite was observed in carbonate annealed fractures.

Assays obtained were the result of rock flour analysis collected continuously in conjunction with the coring. Assay results are disappointingly low when compared to the anomalously high auriferous polymetallic values of the overlying outcrop.

III. INTERPRETATION

Strong alteration and frequent fracturing of the host volcanics has resulted in the difficult drilling, poor recovery and inconclusive interpretation of cored results from drill holes DCC-1 and DCC-2.

The general composition of the cored andesites is identical to that exposed along Cedar Creek canyon to the east and west although less competent, more highly altered and much more frquently fractured and brecciated. Fractures intersected in coring of 10° , 30° and 50° (approximately) to the core axis coincide with the three sets of structural attitudes predominant in outcrop; 1. a north 50 to 70 degrees east trend dipping between 50 to 65 degrees southeast, 2. a north 25 to 70 degrees west trend dipping between 30 to 76 degrees northeast and 3.a north 55 to 65 degrees east trend dipping between 35 to 65 degrees northwest. The first trend parallels the main zones of polymetallic mineralization, the second set of attitudes parallels the regional trend and zones of lithologic contact, the last trend corresponds to the tension fractures associated with the regional trend. All three sets of trends were observed in the cored volcanics although none indicated strong auriferous-base metal associations.

3

The substantial chloritization, saussuritization and carbonate deposition along fractures coupled with the silicification and felsitization(?) of amygdules observed in the core suggests the migration of both hydrothermal and low temperature solutions in large quantites. The drill hole assays demonstrate very low values in gold and base metals when compared to the economic values of the adjacent polymetallic showing. The metallic concentrations of the main showing are however podiform in nature with adjacent hostrock possessing very low values characteristic of leached host volcanics and abundant barren alteration minerals, the latter characteristics exist in the drill core. A base metal trend, although slight, exists in the drill core with copper and to a lessor extent zinc values decreasing downsection away from the surface polymetallic occurrences.

The presence of hornblende diorite dyke exposed to the east of the polymetallic showing and intersected in core DCC-2 at 8.0 meters depth suggests a local heat source for the generation of metal bearing hydrothermal solutions and associated hostrock alteration.

IV. CONCLUSIONS

1. Anomalously high gold, copper and zinc values were not obtained from the exploration drill holes DCC-1 and DCC-2.

2. Economic auriferous polymetallic deposits exposed in local outcrop were not detected at depth due to their elimination by; (a) erosion and obscured position by talus coverage, (b) structural termination either by fault offset and/or folding, (c) lack of ore mineral persistence below the exposed structural position on the north slope of Cedar Creek canyon.

3. Uncharacteristically strong alteration, fracturing and brecciation occur within the drilled hostrock, features uncommon to the massive andesites exposed to the east and west of the main showing.

4. The disappointing assay results and lack of sulphides from drill cores DCC-1 and DCC-2 are taken in the context of a highly faulted and altered locality where information on structural and geochemical controls must be understood prior to dismissing the exposed mineralizations persistence. Further work is therefore clearly warranted.

4

APPENDIX I

COST STATEMENT - ROX GROUP

Exploration expenditures from June 3, 1981 to June 19, 1981

	<u>Name</u>	Work	<u>Dates Worked</u>	<u>No. of Days</u>	Salary/Day	Value
	R. Cook	Geologist, part-time driller	June 3 to 19	17	200	3400
	H. C. Cook	Drillers helper, Expeditor	June 3 to 19	17	125	2125
	H. Cook	Cook	June 3 to 19	17	100	1700
	S. Moore	Drillers helper	June 3 to 7	4	125	500
\bigcirc	S. Stonard	Part-time driller	June 11 to 19	9	125 Subtotal	<u>1125</u> 8850

GENERAL EXPENSES

 (\cdot, \cdot)

١

1

Accomodation (17 days @ \$16.00/day)	272
Food (\$12.00/man/day)	768
Transportation (truck rental)	300
Drill costs (gas, oil, 4 bits-IEX, 1 shoe-EW, 3 drill rods 10)	1040
Assays	60
Report compilation (5 days @ 150/day)	750
Subtotal	3120

TOTAL: 12040

Raymond A. Cook

DETAILED LABOUR STATEMENT

<u>June</u> 3, 1981 <u>June</u> 12, 1981 Prepared Cedar Creek Canyon Drill ahead DCC-2(4.2 meters) diamond drill site, trenching 10 hrs ₩4mx3.3mx2.7m - 10 hrs 2 men - 10 hrs 2 men - 10 hrs <u>June 13, 1981</u> June 4, 1981 Drill ahead DCC-2 (3.9 meters) -Walked in diamond drill, 9 1/2 hrs pumps(3 hp + 5 hp), hose, tools - 10 hrs Expedite fuel, oil grease 3 men - 10 hrs 3 men - 9 1/2 hrs <u>June 5, 1981</u> <u>Ju</u>ne 14, 1981 Walked in drill rods (60 meters), Drill ahead DCC-2 (1.1 meters) casing (20 meters), bits, grease, spare 2 hrs parts, tools, fuel - 9hrs Bit cut, fish for bit - 7 1/2 hrs 3 men - 9 hrs2 men - 9 1/2 hrs <u>June 6,1981</u> June 15, 1981 Staging built, setup drill, pumps, - 2 1/2 hrs Fish for bit, retrieved - 5 1/2 hrs Drill ahead casing (1 1/2 meters) - 1 hr Drill ahead DCC-1 at - 40° (2.7 meters) - 4 1/2hrs 2 men - 8 1/2 hrs 2 men - 8 1/2 hrs 3 men - 8 hrs June 16, 1981 June 7, 1981 Drill ahead DCC-2 (1.6 meters) -Drill DCC-1 (5.7 meters) - 10 hrs end hole - 3 1/2 hrs Bit cut, fish for bit - 2 hrs Breakdown equipment to move -Fuel, oil carried in 6 1/2 hrs 3 men - 12 hrs 3 men - 10 hrs June 8, 1981 June 17, 1981 Fish for bit - 8 hrs Walked out ; drill, pumps,tools -Abandoned DCC-1, reset staging -50° to drill DCC-2 - 4 hrs 8 1/2 hrs 3 men - 8 1/2 hrs 2 men - 12 hrs <u>June 18, 1981</u> <u>June 9, 1981</u> Walked out; rods, casing, tripod, Drill ahead casing (1 1/2 meters) - 1 1/2 hrs tools, hose - 9 1/2 hrs Drill ahead DCC-2 (3 meters) - 8 hrs 3 men - 9 1/2 hrs 2 men - 9 1/2 hrs <u>June 19, 1981</u> June 10, 1981 Walked out; grease, oil, tools, Drill ahead DCC-2 (4.6 meters) - 11 hrs cleaned site, burned and buried 2 men - 11 hrs garbage - 7 hrs 3 men - 7 hrs June 11, 1981 Carburator, gasket repairs, changed over and broke in new motor - 11 hrs 2 men - 11 hrs

Access to the Cedar Creek diamond drill site was by a steep winding 1.6 kilometer pathway that includes an elevation change of 155 meters.

* Times approximated

APPENDIX II

Qualifications

I, Raymond A. Cook have been practising my trade as a geologist since 1973.

I am an honours B.Sc., in Geology from the University of Alberta, Edmonton 1973 and an M.Sc., Geology from the University of British Columbia, Vancouver.

In applying my profession I have worked with Eldorado Nuclear, Cominco, Terra Mines Ltd., Union Carbide and Crowdis Oil Consultants in mineral and oil-gas exploration and underground development.

I have worked on research projects in geology for the University of Alberta, Edmonton, Alberta and the University of British Columbia, Vancouver, British Columbia.

I have worked privately on interests of my own in British Columbia and the Northwest Territories since 1975.

I hold interest in the property described in this report and I supervised and directed all exploration activity.

Raymond A. Cook

Raymond A. Cook, B.Sc., M.Sc., Geology

DIAMOND DRILL LOG

1

Ċ

.

LAT/LON	PROPERTY: ROX G				COVER	Y: 25%			
DIP: -4	10 ⁰ .	HOLE NO: DCC-1				LOGGED BY: R. Cook			
P)N: 833 meters	COMMENCED: June 3				e 1 of			
AZIMUTH			ne 7						
DEPTH (meters)	DESCRIPTIC	N	SAMPLENO	FROM	TO	DIFF	ASSAYS		
0 to 1.2	Casing set								
1.2 to 2.4	Andesite- Tuffaceous, sli	ghtly porphyritic,	DCC-1 0-20	1.2	9,9	8.7	Cu:320 ppm,Zn:255ppm		
	finely crystalline phenocry	sts of pyroxene					Au:<.003 oz/ton		
	and plagioclase; groundmass	80%; massive;							
	fairly abundant fracturing,	annealed by calcit	2						
	calcite; saussurtization is	common adjacent							
	fractures; brecciation asso	ciated with frac-							
	tures; trace pyrite along f	ractures.							
2.4 to 2.5	Andesite- Porphyritic, amy	gdaloidal, light					Ta		
	to medium green; coarse to	finely crystalline							
	plagiclase and pyroxene phe	nocrysts; abundant							
	silicification and slight f	elsitization; minor							
	occurrences of fracturing;	trace pyrite.					and the second second		
	······								
2.5 to 5.2	Andesite- Medium to dark g	reen; generally as							
	above; increased fracturing	and brecciation							
	annealed mainly by calcite;	fair chloritizatio	Ŋ						
	throughout and slickenside striae along fracture planes; trace to fair pyrite								
	along fractures.								
,									

DIAMOND DRILL LOG

 \bigcirc

;

LAT/LON	$G: 52^{\circ}35'/120^{\circ}31'12"$	PROPERTY: ROX GROUP			····	RECOVERY: 25%			
DIP: -40									
		HOLE NO: DCC-1				LOGGED BY:R. Cook Page 2 of 2			
	<u>)N: 833 meters</u> : 340 ⁰		June 3	· · · · · · · · · · · · · · · · · · ·	Page	2 C OT	2		
AZIMUTH DEPTH (meters)			June 7	<u> </u>		DICC			
			SAMPLEN.	FROM	<u> </u>	DIFF	ASSAYS		
<u>5.2 to 5.5</u>	Andesite- Porphyritic and		·						
	description as above with a		; -			ļ			
ļ	ion and felsitization of ho	strock.							
					<u>. </u>				
5.5 to 5.6	Andesite- Tuffaceous to sl								
	medium green; fine to very				_ .				
ļ	pyroxene and plagioclase ph								
	ization, silicification and	felsitization							
	weakly present; abundant (6	%) finely crystal-					Rea		
	line pyrite and pyrrhotite	along fractures.					Andreas		
5.6 to 9.9	Andesite- Porphyritic; med	ium to dark green					Ż.		
	in colouration; coarse to f	inely crystalline					Q		
	phenocrysts of dark green p	yroxene and white					The second se		
	plagioclase; fairly abundan	t patches of							
	chlorite; fracturing fairly	abundant increasin	9				······································		
	at 6 meters; saussertizatio	n and silicificatio	h						
	increasing with fracturing;	minor pyrite;	<u> </u>		<u> </u>	<u> </u>			
	fractures at 55 ⁰ to core axis.					┼──┥			
			1			┼┈┤			
						┟╸┈╸┥			
			·····			╂	······		
		<u></u>			<u>-</u>				
لI									

 \bigcirc

				<u>LU</u>	<u>~</u>			
LAT/LON	G: 52 ⁰ 35 6"/120 ⁰ 31 12"	PROPERTY: ROX GROUP				RECOVERY: 27%		
DIP: -5	i0 ⁰	HOLE NO: DCC-2			LOC	LOGGED BY: R. Cook		
ELEVATIO		COMMENCED:	June 8		Page	1 of	3	
AZIMUTH	: 340 ⁰	FINISHED:	June 19			<u></u>		
DEPTH (meters)	DESCRIPTIC	N	SAMPLEN	FROM	то	DIFF	ASSAYS	
0 to 1.2	Casing set					<u> </u>		
1.2 to 3.0	Andesite- Porphyritic; me	dium to dark green;	DCC-2_0-	1.2	10.9	9.7	<u>Си: 230ppm; Zn: 145ppm</u>	
-	medium to finely crystallin		36		 		Au: <	
	augite and plagioclase, por	phyritic texture;						
	minor chlorite al <mark>on</mark> g fractu				 			
	of host rock is common adja	cent fractures;						
	fractures have slickenside							
	annealed by calcite; massiv							
			l					
3.0 to 5.0	Andesite- Amygdaloidal; me	dium to dark						
	green; generally as above w							
	exhibiting silicification (chalcedony) and						
	felsitization (pink coloura							
	hairline fractures annealed					Ta		
	trace chalcopyrite.							
5.0 to 7.1	Andesite- Amygdaloidal wit	h increased			1		A.	
	silicification and felsitiz	ation of hostrock;			<u> </u>		le le	
	pyroxene and plagioclase ph					٢		
	increasing in size and abun	•			ļ			
			ļ) 			
7.1 to 8.0	Andesite- Medium green; al	teration of pyroxen	¢		<u> </u>	 		
] Jabundant.hornblende.phenoc	<u>rysts:minor pyrite.</u>						

()

		JIANOND L			<u> </u>			
LAT/LONG: 52°35 6"/120°31 12" PROPERTY: F			ROUP			RECOVERY: 27%		
							BY: R. Cook	
ELEVATIO	ELEVATION: 833 meters COMMENCED: J				Page	e 2 of	3	
AZIMUTH	2404	FINISHED: Jui	ne 19					
DEPTH (meters)	DESCRIPTIC	N	SAMPLEN	FROM	TO		ASSAYS	
8.0 to 9.3	Andesite- Mainly tuffaceou	<u>s; medium green;</u>						
	pnly finely crystalline ph	enocrysts are						
	present, groundmass 90%; in	<u>creased disseminat-</u>						
	ed pyrite; increased fractu	<u>ring with sassurti-</u>				<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	ation and chloritization co	mmon						
9.3 to 10.5	Andesite- Abundant calcit	<u>e annealed hairline</u>				<u> </u>		
	fractures: slight saussurti	zation of contacts;						
	increasing_felsitization_an	<u>d slight silicifica</u>			·			
ļ	tion; fair disseminated pyr	<u>ite; trace chalco-</u>			<u> </u>	<u> </u>		
	pyrite in fractures; fractu	<u>res are mainly at</u>						
Į	10 ⁰ and 55 ⁰ to core axis.				<u></u>	<u> </u>		
10.5 to 12.5	Andesite- Porphyritic, me	<u>dium to dark green;</u>	DCC-2 36-	10.9	16.4	5,5	Cu: 176ppm; Zn: 118ppm	
	abundant medium to finely c	rystalline	54			<u> </u>	Au: <.003 oz/ton	
	pyroxene and plagioclase ph	<u>enocrysts; pyroxene</u>	·		-			
I	has reaction rimming; trace	disseminated						
ļ	<u>pyrite; minor calcite annea</u>	led fractures.	···					
12.5 to 14.0	Andesite- Light_to_medium	green; generally	ļ					
L	as above with abundant calc	ite in fractures;	 		·	<u> </u>		
	fair_saussuritization; mino	r_but_increased					2	
	brecciation; fair patchy ch						<i>S</i>	
	to minor disseminated pyrit	-					l vy	
							•	
							· · · · · · · · · · · · · · · · · · ·	

DIAMOND DRILL LOG

T T TOND		ĻŪ	<u> </u>	·		
PROPERTY: ROX GROUP			RE	RECOVERY: 27%		
DIP: - 50°. HOLE NO: DCC-2			LOGGED BY: R. Cook			
COMMENCED: Ju	ne 8		Page	e 3 of	3	
FINISHED: Ju	ne 19, 198	1				
<u> </u>	SAMPLENO	FROM	TO	DIFF	ASSAYS	
akly porphyritic;						
to very finely			-			
f dark green pyrox-						
ground mass dom-						
pepper colouration;						
nd trace pyrite.						
ight to medium	DCC-2 54-	16.4	20,3	3,9	Cu; 205ppm; Zn; 128ppm	
abundant calcite	67				Au: < .003 oz/ton	
recciation; strong						
s; trace to minor						
thologic contact					······································	
ures at 55 and 30					Ramond A. Cook	
us; medium to dark						
crystalline pheno-						
gioclase in dominant						
air calcite along	· · · · · ·			+		
	<u></u>		_ <u> </u>			
d amygdaloidal;	DCC-2 67-	20.3	21.2	0.9	Cu: 161ppm; Zn: 174ppm	
rse to very finely	70				Au: .003 oz/ton	
silicified.						
	PROPERTY: ROX GR HOLE NO: DCC-2 COMMENCED: Ju FINISHED: Ju ON akly porphyritic; to very finely f dark green pyrox- ground mass dom- pepper colouration; nd trace pyrite. ight to medium abundant calcite recciation; strong s; trace to minor thologic contact ures at 55 and 30 us; medium to dark crystalline pheno- gioclase in dominant air calcite along	PROPERTY: ROX GROUPHOLE NO: DCC-2COMMENCED: June 8FINISHED: June 19, 198ONSAMPLENDakly porphyritic;to very finelyf dark green pyrox-ground mass dom-pepper colouration;nd trace pyrite.ight to mediumDCC-2 54-abundant calcite67recciation; strongs; trace to minorthologic contactures at 55 and 30us; medium to darkcrystalline pheno-gioclase in dominantair calcite alongd amygdaloidal;DCC-2 67-rse to very finely70f altered pyroxene	PROPERTY: ROX GROUPHOLE NO: DCC-2COMMENCED: June 8FINISHED: June 19, 1981ONSAMPLEN: FROMakly porphyritic;to very finelyf dark green pyrox-ground mass dom-ground mass dom-pepper colouration;nd trace pyrite.ight to mediumDCC-2 54- 16.4abundant calcite67recciation; strongs; trace to minorthologic contactures at 55 and 30us; medium to darkcrystalline pheno-gioclase in dominantair calcite alongd amygdaloidal;DDCC-2 67-20.3rse to very finely70f altered pyroxene	PROPERTY: ROX GROUPRE-HOLE NO: DCC-2LOUCOMMENCED: June 8PageFINISHED: June 19, 1981ONONSAMPLEND FROM TOakly porphyritic;Imageto very finelyImagef dark green pyrox-Imageground mass dom-Imagepepper colouration;Imagend trace pyrite.Imageight to mediumDCC-2 54- 16.4abundant calcite67recciation; strongImages; trace to minorImagethologic contactImageures at 55 and 30Imageus; medium to darkImagecrystalline pheno-Imagegioclase in dominantImageanygdaloidal;DDCC-2 67-20.321.2Tse to very finelyf altered pyroxeneImage	PROPERTY: ROX GROUPRECOVERHOLE NO: DCC-2LOGGEDCOMMENCED: June 8Page 3 ofFINISHED: June 19, 1981Page 3 ofONSAMPLEND FROM TOakly porphyritic;Image: Constraint of the second	

1

- ANALYTICAL CHEMISTS

CHEMEX LABS LTD.

212 BROOKSBANK AVE NORTH VANCOUVER. B C CANADA V7J 2C1 TELEPHONE (604)984-0221 TELEX 043-52597

C

- GEOCHEMISTS

• REGISTERED ASSAYERS

ERTIFICATE	OF	ANALYSIS

TO : COOK, RAY	CERT. # : A8113323-001-A
#7-3843 W. 4TH AVE.	INVOICE # : I8113323
VANCOUVER, B.C.	DATE : 04-SEP-81
V6R 1P8	P.O. # : NONE

Sample description	Ргер code	Cu maa	Zn		
DCC-1-0-20	207	320	255	 	
DCC-2-0-36	· 207	230	145	 	
DCC-2-36-54	207	176	118	 	
DCC-2-54-67	207	205	128	 	
DCC-2-67-70	207	161	174	 <u> </u>	

Raymund A. Cook

Hart Brogler Certified by .

CHEMEX LABS LTD.

- GEOCHEMISTS

212 BROOKSBANK AVE NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE (604)984-0221 TELEX 043-52597

TO : COOK, RAY #7-3843 W. 4TH AVE.

. ANALYTICAL CHEMISTS

VANCOUVER, B.C.

V6R 1P8

CERTIFICATE OF ASSAY

- REGISTERED ASSAYERS

CERT. #		:	A811 3323-001-A
INVOICE	#	:	I8113323
DATE		:	04-SEP-81
P•O• #		:	NONE

Sample description	Prep code	Au oz/t	 	 	
DCC-1-0-20	207	<0.003	 	 	
DCC-2-0-36	207	<0.003	 	 	
DCC-2-36-54	207	<0.003	 	 	
DCC-2-54-67	207	<0.003	 	 	
DCC-2-67-70	207	<0.003	 	 	

Raymond A. Look

٦.

Registered Assayer, Province of British Columbia