

Summary

During the period of July 6 to August 10, 1982, a programme of geological mapping, geochemical rock-chip sampling, and grid soil sampling was carried out on the Norad Claim Group. This programme was designed to determine the extent of copper and silver mineralization on the property.

In 1981, a 20 meter wide chip sample from the main shear zone assayed 4.8% copper and 570 g/t silver. Despite extensive rock-chip sampling, no comparable values were obtained in 1982. 136 rock-chip samples were taken, each over a width of 3 meters. 325 soil samples were also collected.

Geological mapping indicates that copper-silver mineralization is restricted to narrow, calcified and silicified, shear and fault zones. Geochemical soil sample results support this conclusion with narrow, northerly trending anomalies, situated sporadically over the property. The largest anomaly coincides with extensive quartz-feldspar porphyry dyking and associated shears along the dykes peripheries.

Economic grades of copper and silver sulphides have not been proven to exist on the Norad Group. Epigenetic, hydrothermal, metal-bearing solutions were restricted to permeable shear and fault zones. Copper and silver-bearing solution have not penetrated into wall-rock, and therefore the extent of mineralization is limited to small areas. Recommendations are to discontinue further work on the property, however, an extensive lead, soil anomaly should be further investigated.

NORAD CLAIMS

1982 Geology and Geochemistry

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
	 Location and Access Property and Claim Status 	1 1
2.	REGIONAL GEOLOGY	3
3.	PROPERTY GEOLOGY	3,4
	3.1 Geology3.2 Mineralization	3,4 5
4.	GEOCHEMISTRY	6
	4.1 Sampling and Sample Preparation4.2 Results	6 6
5.	DISCUSSION	7
6.	CONCLUSION	8
7.	RECOMMENDATIONS	8
	APPENDICES	

Statement of Qualifications Ι

ΙI Cost Statement

.

Geochemical Results III

LIST OF ILLUSTRATIONS

Drawing No.

Scale

L-6763	Claim Location	1:50,000
G-8007	Geology	1: 5,000
GC-8009	Soil Geochemistry	1: 5,000
GC - 8008	Rock-Chip Geochemistry	1:5,000

1. INTRODUCTION

Copper-silver mineralization in several shear, and fault zones are found on the Norad Claim Group. A particularly wide (75m) mineralized shear zone is exposed in silicified, and calcified, maroon tuffs adjacent to a granodiorite stock. In 1982, a programme of geological mapping, the collection 136 rock-chip samples, and 325 soil samples was undertaken to determine grades and size of these mineralized zones and to locate any favourable lithological horizons for sulphide mineralization. Findings of this programme are discussed in this report.

Location and Access 1.1

The Norad Claim Group consists of four claims; NORAD, NORAD 1, NORAD 2, and NORAD 3, totalling 55 units. These claims are located on NTS 93L-5, and center on latitude 54[°]28'N and longitude 127[°]38'W, approximately 45km southwest of Smithers, B.C. (Dwg. L-6763). Access is restricted to helicopters from Smithers, although a staging ground for camp mobilization to the property is situated at kilometer 18 on the Telkwa River Forestry Road. From this point, it is 22.5km to the claim group.

1.2 Property and Claim Status

	INDEL I		
CLAIM	RECORD NO.	DATE OF RECORD	EXPIRY DATE
NORAD	4086	31 July 1981	1983
NORAD 1	4494	7 December 1981	1982
NORAD 2	4495	7 December 1981	1982
NORAD 3	4666	22 July 1981	1983

The Norad Claim was staked on Riocanex's behalf by J. McClintock and A. Winkler in July, 1981 upon discovery of sulphide mineralization and abundant malachite staining in a

TADIE T

			9 3 ∟-5	
		127°30'		-
	1		54°36'	
	Ś	†)	
-	N	\sim		
	at -			
		(B)		
١				
}	/	$\langle \rangle$		
{				
J-				
<u></u>	ſ	J		
λ	ſ			
3	E Contraction of the second se	~~~~		
کې ک	Land r			
~~ ~~	long of	al	I hh-	
	res .		the lo	
	L.	Yes we		
	SCALE I	50,000		
0	1000	2000 3000	4000 Metres	
	RIO TINTO	CANADIAN EXP	LORATION LTD.	
	<u> </u>			
	L	OCATION	MAP	-
	DATE	DRAWN BY	DWG.	

pyroclastic unit. In early December 1981, after the return of anomalous silver and copper values in a rock-chip sample, the Norad 1 and Norad 2 claims were staked by Riocanex Inc. The Norad 3 claim was staked in July, 1982 to assure ground coverage around the main mineralized showing. Status of each claim is listed in Table I.

2. REGIONAL GEOLOGY

The geology of this region is discussed by H.W. Tipper and T.A. Richards of the Geological Survey of Canada in Bulletin 270. In the vicinty of the Norad Claim Group, the authors have mapped a thick pile of pyroclastics, with interbedded volcaniclastics and flows. These volcanic and volcaniclastic rocks belong to the Telkwa Formation's Howson Facies, included in the Lower Jurassic Hazelton Group. The volcanic and volcaniclastic rocks are intruded by the coeval calcalkaline Topley Intrusions. Disconformably overlying the previous units is the Red Tuff Member of the Nilkitkwa Formation.

Geological mapping by Riocanex confirms the units identified by Tipper and Richards and a regional dip to the northeast concurs with the formation and orientation of the Hazelton Trough.

3. PROPERTY GEOLOGY

3.1 Geology

Much of the Norad Group is underlain by volcanics and volcaniclastics of the Telkwa Formation's, Howson Facies (Dwg. G-8007). In the easternmost section of the claim group, the overlying Red Tuff Member of the Nilkitkwa Formation lies juxtaposed against the Telkwa volcanics along a north-south striking fault. In the southwestern portion of the property is a calc-alkaline batholithic representative of the Topley Intrusions.

The thickness of the Telkwa Formation is exhibited in over 700m of elevation on the Norad Group. Lithologically, the Telkwa Formation consists of maroon, purple, grey, pink, white, and green andesite to rhyolite pyroclastics, with thin-interbedded volcaniclastics. A dark maroon to green andesitic to dacitic, crystal-lithic tuff is predominant over most of the property. Thicknesses of individual units including interbedded flows and volcaniclastics usually range from 0.5 meters to 5 meters. Marker beds, within the Telkwa Formation, were used as mapping guides. The lower most marker on the property is a coarse, conglomerate which is very poorly consolidated except where intruded by a diorite sill. The middle marker is a homogeneous, green andesitic flow. The uppermost marker is a coarse, silicic, rhyolite-tuff with clasts up to 2 cm. Maroon tuffs lie above and below each of these marker units.

Numerous sheared fault zones are observed on the property. Siliceous platy structures characterize these zones, and offset in both strike-and dip-slip motion often accompany the faults. Recessive weathering of fault zones is predominant, and often results in talus slopes which impedes the direct measurement of fault offset.

Two compositionally contrasting series of dykes are seen on the property. The earlier stage of intrusion includes quartz-feldspar porphyry dykes. These dykes, although contemporaneous with the major intrusion to the west, are often seen crosscutting the latter. These dykes are probably a latestage differentiate of the granodioritic to quartz monzonitic parent magma.

The second series of dykes are mafic, lamprophyric dykes which are usually less than a meter wide. These lamprophyric dykes have intruded along the weakened peripheries of the earlier quartz-feldspar dykes, and only rarely are seen crosscutting them. Calcite veining and minor copper mineralization are commonly associated with the lamprophyre dykes.

Both series of dykes strike north to north-north-westerly similar to fault and shear trends.

3.2 Mineralization

Mineralization occurs in two different stages of hydrothermal activity. An early stage of mineralization is characterized by network veining of quartz and gossanous outcrops. Sulphide mineralization consists of pyrite with minor chalcopyrite and galena. Introduction of silica is concentrated in shear zones and in some porous tuff units.

A second stage of sulphide mineralization introduces chalcocite, bornite, and covellite in a calcite gangue. Polished section examination indicates dissolution of chalcopyrite to form bornite and hematite. Chalcocite and covellite form as rims around bornite, and malachite stains most calcite.

To evaluate the Au, Ag and Cu grades, a total of 136 rock-chip samples were collected. Overall, rock-chip samples yielded low-values for Au, Ag and Cu. (Dwg. GC-8008) Individual shears exposed on the Telkwa River did produce narrow, high-grade zones, but had no continuity in width or length.

In the west-central section of the Norad 2 claim, on the Telkwa River, a three meter chip-sample across an epidotized, shear zone assayed 1.99% Cu. Other anomalous shear-related copper showings, exposed on the Telkwa River, assayed .55%, .69% and .50%. Anomalous Ag values; 35.7 g/t, 41.1 g/t and 138.6 g/t, accompany copper values; .25%, .83% and .76%, respectively, in calcite gouge zones near base camp.

4. GEOCHEMISTRY

4.1 Sampling and Sample Preparation

Using chain and compass techniques, a grid of stations at 50m intervals on 150m spaced, east-west lines was established (Dwg. GC-8009). At each station, a "B" horizon soil sample was collected and placed in a kraft paper envelope. These were sent to Vangeochem Labs, where the soil was ovendried at 30° C and then screened to -80 mesh. Over-sized material was discarded. A sub-sample of the screened material was then introduced to hot nitric and perchloric acid, thereafter to be analyzed by an atomic absorption spectrometer for silver, copper and lead. A total of 325 soil samples were collected.

Rock-chip samples were taken over 3m intervals across shear-zones and epidotized maroon tuffs. These samples were sent to Vangeochem Labs for Ag, Au and Cu assay. Lead was ; assayed only for specific samples D8475 to D8512. Gold was analyzed by fire assay techniques, with an atomic absorption spectrometer finish.

4.2 Results

Analytical results of the soil samples for the elements Ag, Cu and Pb are plotted on Drawing GC-8009. Anomalous valuesof these elements are contoured. Anomalous metal levels for the soil samples were based on previous regional geochemical sampling in this area. They are as follows: 1.0ppm Ag, 100ppm Cu and 45ppm Pb.

Generally, the Ag-Cu anomalies are narrow and trend north to northwest, representative of underlying dykes and shears. The most significant Ag anomaly occurs on the eastern half of Norad I. This anomaly is approximately 900m long and 75m wide. This area was mapped as a series of quartz-feldspar porphyry dykes trending northwesterly through Telkwa maroon tuffs. Visible Cu-sulphides are situated on the contacts of these dykes with Telkwa volcanics.

A strong Pb anomaly is present on the Norad claim. The anomaly, open to the north and east, has approximate dimensions of 600m by 300m. A second Pb anomaly occurs on Norad I and is open to the southwest. It has approximate dimensions of 200m x 300m. The cause of these Pb anomalies is not known.

Numerous single and double point anomalies for each of the elements investigated are situated sporadically over the property.

5. DISCUSSION

The 1982 programme was designed to examine Ag-Cu mineralization on surface. Geological mapping and rock-chip sampling indicated that significant Ag-Cu grades were restricted to narrow shear zones along intrusive and fault contacts. Mineralization remained concentrated in these zones and did not invade wall-rock to any extent.

Two stages of mineralization are evident; both of epigenetic, hydrothermal origin. The first stage comprised siliceous, Fe-rich fluids that permeated shear zones and tuff beds. Cu-Ag-Au values are minimal in these gossanous outcrops. The second stage was calcitic and evidently more Cu and Ag rich. These metal-carrying solutions followed a similar path through fracture and gouge zones, but did not occur in the gossanous tuff beds. This would indicate that the earlier silicic stage probably diminished the permeability of the tuff units.

Calcitic, second-stage, mineralization was often identified against dykes and silicified wall-rock. These areas were always highly fractured. This is supporting evidence that these hydrothermal fluids were confined to the fractured areas and when blocked up against impervious units released Cu and Ag metals in a reducing environment. Cusulphides and carbonates were then formed.

6. CONCLUSION

Shear controlled Cu-Ag mineralization occurs within Telkwa volcanics of the Hazelton Group. Regional work indicates this is characterisitic of Cu-Ag mineralization in the surrounding area.

Mapping and prospecting did not expose further significant mineralization of Cu and Ag. Grades, from 3m chip samples across the main shear zone, were generally low. Anomalous, 1981 chip sample results were attributed to narrow (15-25cm) mineralized pockets within this zone. Bornite and chalcocite were present in a sample of the assayed material and were probably Ag-bearing.

A strong Pb soil anomaly in the southeast sector of the original Norad claim was discovered on geochemical data; however, anomalous Ag values were not associated.

7. RECOMMENDATIONS

Due to restriction of Cu-Ag mineralization to narrow shear zones, and the low-grades encountered in the larger silicified zones, no further work is proposed for the Norad Group's; Norad I, Norad II and Norad III. However, the strong Pb soil anomaly on the Norad Claim should be re-examined and recommendations are to close this soil anomaly to the north and east. Riocanex holds this ground until July 1983.

APPENDIX I

STATEMENT OF QUALIFICATIONS

Dan T. Okamoto

- I am a geologist residing at 5963-131 A Street, Surrey, B.C. and am currently employed by Riocanex Inc. of 520-800 West Pender Street, Vancouver, B.C.
- 2) I graduated from the University of British Columbia in May 1982, with a B.Sc. degree in Geology.
- 3) I directed the 1982 geological and geochemical field work carried out on the Norad, Norad 1, Norad 2 and Norad 3 mineral claims under the supervision of J. McClintock.

Dan T. Okamoto

Dan 7 Okamoto

APPENDIX I

STATEMENT OF QUALIFICATIONS

- I am a geologist residing at 32841 Ashley Way, Clearbrook, B.C. and am currently employed by Riocanex Inc. of Suite 520-800 West Pender Street, Vancouver, B.C.
- 2) I graduated from the University of British Columbia in May 1973, with a B.Sc. (Honours) degree in Geology and have practised my profession continuously since that time.
- 3) I am currently an active member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4) I supervised the 1982 geological and geochemical field work carried out on the Norad Claims.

RIOGANEX INC.

John A. McClintock, P. Eng.

APPENDIX II	
COST STATEMENT	
NORAD CLAIMS	
GEOLOGY GEOCHEMISTRY	
diologi, diodilatorat	
GENERAL COSTS	
Food and Accommodation	
4 men, July 6 through August 10,	
144 man days @ \$29.43/day	4,237.92
Riocanex_Equipment	
144 man days @ \$3.00/man day	432.00
	į
Freight	
PWA	454.02
Canadian Freightways	287.08
Report Preparations	500.00
Helicopter	
Okanagan Helicopters	10,145.90
TOTAL GENERAL COSTS	16,056.92
GEOLOGY COSTS	
Salaries and Wages	
$2 \mod 72 \mod 4ave @ $65 00/dav$	1 680 00
2 mon, 72 man days e 903.00/day Ronofits	4,000.00
At 20% of calaries	936 00
AC 200 OF SATALLES	550.00

.

General Costs 8,028.46 $\frac{1}{2} \times 16,056.92$ 13,644.46 TOTAL GEOLOGY COST GEOCHEMISTRY COSTS Salaries and Wages 4,680.00 2 men, 72 man days @ \$65.00/day Benefits 936.00 At 20% of salaries Geochemical Analysis Vangeochem 136 rock-chip samples for Ag, Au, Cu @ \$21.50/ 2,924.00 sample 325 soil samples for Ag, Cu and Pb @ \$4.20/ 1,365.00 sample General Costs 8,028.46 ¹₂ X 16,056.92 TOTAL GEOCHEMISTRY COST 17,933.46 \$31,577.92 TOTAL COST GEOLOGY AND GEOCHEMISTRY

APPENDIX III

GEOCHEMICAL RESULTS

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6 Attention: Report No: 8 2 - 77 - 006 Page 1 of 3 Samples Arrived: July 22, 1982 Report Completed: August 4, 1982 For Project: NORAD GROUP 8601 Analyst: VGC Staff Invoice# 6854 Job# 82 - 107

ſ	Sample Marking	Cu	Pb	Ag			
ļ		ррш	ppm	ppm			
	4001	25	22	0.7		00 -	to Incharack
	02	10	45	0.4		Che di ti l	
	03	34	27	0.7			
	04	12	23	0.4	<i>₽</i>		
	05	12	29	0.7	5		
	06	8	34	0.6			
	08	10	36	0.5		AHC 0.4	5m - 1
	08	26	19	1.0		Protection and a	
	09	13	33	0.7		<u>ICUT</u>	
	10	2	26	0.1			
	11	6	35	0.4			
	12	6	31	0.4			
	13	6	27	0.4			;
	14	10	21	0.4			ŧ.
Ļ	15	2	12	0.3			
	16	9	22	0.6			
	17	20	34	1.9			
	18	12	41	1.0			
	19	31	37	2.2			
Ļ	20	3	20	0.4			
	21	2	14	0.4			
	22	14	244	0.2			
	23	11	32	0.2			
	24	10	141	nd			
F	25	24	13	0.3			
	26	7	24	0.1			
	27	146	179	0.6			
	28	7	20	0.5	1		
	29	6	20	0.3	ĺ		
		8	18	0.3			
	31	10	18	0.4	1		
	32	17	36	0.6			
ļ	33	10	21	0.4	1		
e	34	6	20	0.3			
21-	.35	5	18	0.2			
Z	36	9	16	0.4	1		1
N	37	9	14	0.6			
2	38	10	40	0.7	l I		•
5T	4039	29	12	0.2		[
ž							
R	MARKS						

% Mo x 1.6683 = % MoSz

1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001%

0001% nd = none detected

Signed:

ppm = parts per million

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc.

Attention:

Report No:	82 -	- 77	' -	006	Page	2	of	- 3
Samples Arri	ved:							
Report Com	pleted							
For Project:								۲
Analyst:								

Sample Marking	ppm	ppm	лg ppm			
4040	5	6	nd			
41	27	19	0.2			
42	10	18	0.3			
43	12	35	0.4			
44	6	20	0.4			
45	14	32	0.7			
46	12	29	0.3			
47	9	21	0.4			
48	40	109	0.3			
49	18	68	0.1			
50	51	87	0.8	. ·	,	
51	51	72	0.1	•		
52	46	96	0.7			
53	204	890 🖌	0.8		,	
54	40	104	0.8			
55	21	48	0.2		·· ····	
56	8	17	0.1			
57	6	15	nd			
58	14	28	0.2			
59	47	28	0.5			· · · · · · · · · · · · · · · · · · ·
60	8	19	0.5			
61	19	32	1.1			
62	14	24	0.4			
63	10	23	0.4			
64	8	21	0.2			
65	6	26	0.4			
66	11	23	nđ			
67	19	19	0.1			
68	15	24	0.2			
<u>69</u>	80	26	1.2			
70	106	40	2.4			
71	9	32	0.8			
7 2	24	34	0.8			
73	17	31	0.3		-	
74	14	23	0.6			
75	14	20	0.5			
76	8	26	0.1			
77	10	26	0.5			
4078 🖌	12	32 🦯	0.9			
RKS: V Gengle My	tetted.	/				\mathcal{O}

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

ppm = parts per million

nd = none detected

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc.

Attention:

of 3 Report No: 82 - 77 - 006 Page 3 Samples Arrived: **Report Completed:** For Project: Analyst:

		• *				
Sample Marking	Cu	Pb ppm	Ag			
4079	6	14	0.5			
80	q	20	0.6			
81	70	48	3 1			
82	14	30			*	
02 Q 7	14	24				
0J 0J		<u> </u>				
04		13	0.2			
80 0 <i>c</i>		14	0.2			
80	15	27	0.5			
87	10	21	0.6			1
88		23				
89	8	20	0.2			
80	13	19	0.2			
91	16	58	0.8	1		ļ ;
92	21	26	0.2			
93	9	25	nd			
94	22	27	12.9	1		
95	31	25	3.3			
96	299	50	2.2	-		
97	47	42	0.4			
98	33	65	0.5			
99	6	15	0.4		LEGRE	10
4100	9	32	0.5	JU <u>I</u>	!	The final states of the second
01	29	34	0.8	והו	Alls 05	1 2000 111
02	16	40	0.6	1114	C-1	
03	8	15	0.1		ロビビロ	+
04	44	20	nd			1 7 4 4 4 4
05	15	34	0.4			
06	23	21	1.1			
07	11	51	1.1			
08	4	20	0,3			
09	26	44	0.6	1		
10	23	52	0.4			
11	3	44	nd			
12	12	40	nd			
13	46	89	1.3			
14	20	40	0.1			
15	14	24	0.2			
4116	4	20	0.1			
			I			·
					· :	
					Signed	

% Mo x 1.6683 = % MoS₂

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

TELEPHONE: 986-5211 AREA CODE: 604

lac

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6 Attention:

Report No: 82-77-012 2 Page 1 of Samples Arrived: August 12, 1982 Report Completed: August 25, 1982 For Project: Norad Group Analyst: VGC Staff Invoice#6920 Job#82-148

Sample Marking	Cu ppm	Pb ppm	Ag ppm			
4117	12	24	1.6			
18	8	22	0.4			
19	45	21	20.9 🖌			
20	7	38	1.0		പെല	הובות תובום
21	6	23	0.5			
22	5	40	0.5		DI AIIS	25 1932 11
23	8	43	0.8			
24	139	. 112	0.1		UUBUS	
25	10	21	0.4			
26	18	19	0.2			
27	71	36	3.7			
28	9	20	0.4			
29	18	39	1.7			;
30	21	46	0.1			1
31	14	44 -	0.4			
32	21	23	0.3			
33	26	42	0.1			
34	19	- 26	0.6			
35	22	41	0.4			
36	16	27	0.5			
37	106	31	1.5			
38	14	30	0.4	[ļ	
39	32	26	3.9			
40	11	38	0.8			
41	43	19	0.7			
42	8	42	0.5			
43	194	41	0.4			
44	1160 V	18	17.6			
45	20	46	0.7			
46	18	46	0.9		ł	
47	16	40	0.3			
48	0	25	0.3		1	
49	42	43	4.2		1	
50	3	19	0.1			
- 1 <u>J1</u> 21 52	<u>+0</u>	22	0.0	<u> </u>	İ	··
54 57	21	43	0.0	1		
54	21	26	0.4			
4155	2		nd nd			
4400		- "				1

REMARKS:

Signed;

nd = none detected

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

1 ppm = 0.0001%

ppm = parts per million

.

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc.

Attention:

"RINTING LTD.

ASTER

Report No: 82-77-012	Page	2	of	2
Samples Arrived:				
Report Completed:				
For Project:				
Analyst:				

°¢.

Sample Marking	Cu DDM	Pb	Ag			
4156	6	13	0.2			
57	32	46	. 0.4			
58 59	8	29	0.4			
	10	25	0.4			
61	40	56	0.7			,
62	18 16	46	0.7			
64	10	48	nd			
4165		44 .	nd 🧹			
				1		
						·
						2
			,			
			-			
	ļ	,				
MARKS:						
					Signed:	
to x 1.6683 = % MoS ₂ 1 Troy	y oz./ton = 34.2	8 ppm	1 ppm = 0.00	01% r	nd = none detect	ppm = parts per mille

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6

Attention:

Report No: 82 - 77 - 005 Page 1 of 3 Samples Arrived: July 22, 1982 Report Completed: July 30, 1982 For Project: NORAD GROUP Analyst: VGC Staff Invoice# 6848 Job# 82 - 105

			T			· · · · · · · · · · · · · · · · · · ·	
	Sample Marking	Cu	Pb	Ag			Clocat.
\vdash	4501	2					+ INICLIPIALS
	4301	2 1 A	24	0.2			10 2000
	02	14 17	24 91	0.1			
	04	0	26	0.1		· ·	
	05		19	0.2		~ _	
-	05	10	21	0.2		The second	
	07	8	21	0.1			GOTATIO
	08	9	20	0.5		$[U]_{U}$	in the second second
	00	0	16	0.1		I INI A	IG DI KON TINI
	10	4	10	na		11/100	1982 11/1
	10	37	19	0.2			
	12	40	14	0.2			
	17	40 5	30	1.4			
	13	5	22	0.3			
	14	10	19	0.2			
	15	13	17	0.1			
	10	0	21	nd			
	17	8	18	0.2			
	18	3	18	0.1	* -		
	19	24	32	2.4			
	20	6	16	0.1	<u> </u>		
	21	6	21	0.4		1	
	22	1	14	nd			
	23	76	122	1.1			
	24	40	45	1.1			
	25	33	21	0.2		1	
1	26	202	250	0.7	1		1
	27	70	186	0.1			
	28	21	50	0.3			
	29	4	10	0.2			
	30	26	41	0,5		1	
	31	23	39	1.1			
	32	2	19	0.2			
	33	25	42	0.4	5		
	34	2	20	0.3			
5	35	76	124	2.2			
ž	36	2910 -	950 🖍	1.9			
z	37	40	51	0.3			
с с	38	1960	22	1.2			
5	4539	360	53 🤳	0.9			
4	8				1		

REMARKS:

Vanalyes repeated + Chicked O.M. /

Signed .

% Mo x 1.6683 = % MoS₂

% MoS₂ 1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001% nd = none detected ppm All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

ppm = parts per million

TELEPHONE: 986-5211 AREA CODE: 604

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc.

Attention:

Report No: 82 – 77 – 005 Page 2 of 3 Samples Arrived: Report Completed: For Project: Analyst:

						T
Sample Marking	Cu	Pb	Ag			
4540		1 <i>1</i>	0.6			
4040	40	2.44	0.0		1	
41	4(10	0.1		ł	
42	24	10	na			
43	13	13	0.1			
44		10	0.7			
45	2	18	0.6			
46	11	30	0.5		[
47	8	34	0.2			
48	12	98	nd			
49	16	79	0.2			
50	6	43	0.3			
51	25	48	0.3		1	
52	19	49	0.1			i i
53	16	40	0.2			,
54	20	43	0.2			
55	32	61	nd		1	
56	23	40	0.1	1		
57	19	40	nd			
58	12	34	0.2			
59	9	55	nđ			
60	17	60	nd			
61	900	123	nd			
62	45	55	0.2			
63	48	156	0.2			
64	75	83	0.4			
65	261	230	0.8			
66	24	46	nd			
67	5	35	0.2			
68	19	93	nd			
69	5	21	nd			
70	14	19	nd		1	
71	2	18	nd			
72	13	5	0.2		-	
73	13	34	0.2			1
74	18	30	0.2	l		
75	10	29	0.1	†	1	
76	24	24	0.3			
77	46	102	2.7			
4570	0	23	0.4			
45/8		· · · · ·			-	

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

nd = none detected

Signed:

ppm = parts per million

TELEPHONE: 986-5211 AREA CODE: 604

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6 Attention: N 90 77 005 - 7

• Specialising in Trace Elements Analyses •

Report No: 82 - 77 - 005 Page 3 of 3 Samples Arrived: July 22, 1982 Report Completed: July 30, 1982 For Project: NORAD GROUP Analyst: VGC Staff Invoice# 6848 Job# 82 - 105

	Cu	Pb	Ag			
Sample Marking	ppm	ppm	ppm			
4579	21	25	0.2			
80	25	26	0.2			•
81	10	41	0.3			
82	33	83 .	0.5			
83	12	31	0.1			
84	9	25	nd			
85	1	25	0.3			
86	1	26	0.1			
87	2	19	0.1			
88	14	20	0.1			
89	4	24	0.1			
90	8	33	0.3			
91	35	19	nd		-	
92	5	25	0.2			
93	45	23	0.6			
94	28	195	0.6			
95	81	74	1.4			
96	15	32	1.5			
97	4	13	0.1			
98	20	29	2.4			
99	9	31	0.1		•	
4600	12	43	0.2			
01	10	29	0.4			
02	29	46	0.7			
03	14	23	0.2			
04	10	31	0.4			
05	27	34	0.3			
06	4	17	0.3			
07	19	25	0.5			
08	44	90	2.8			-
09	100	73	0.7			
10	18	45	0.4			
11	7	34	nd			
o 12	1	20	nd			
	34	24	nd			
2 14	12	35	0.2			
4615	90	68	0.7			
			ľ			
1. 1.						
21	[

REMARKS:

% Mo x 1.6683 = % MoS₂

1 ppm ≖ 0.0001%

Signed:

ppm = parts per million

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6 Attention: Report No:82-77-009Page 1of 2Samples Arrived:August 11, 1982Report Completed:August 18, 1982For Project:Norad GroupAnalyst:VGC StaffInvoice #6905Job#82-146

٠,

		I PD	A P	
Sample Marking	maa	maa	maa	(runt to sap).
4616	8	33	0.6	- Charles Grazes
17	9	32	0.7	
18	3	24	0.2	
19	10	30	1.9	
20	9	28	0.7	
21	16	51	1.5	
22	137	24	5.7 🖌	
23	305	136	3.3	
24	130	44	0.5	
25	15	21	0.3	
26	9	47	0.6	
27	18	60	0.2	
28	46	72	0.2	
29	30	46	0.2	
30	130	81	0.3	
31	16	60	0.5	
32	29	100	0.5	
33	26	96	0.5	
34	17	43	0.2	
35	86	1880	1.7	
36	33	314	0.7	
37	15	95	0.2	
38	19	152	0.7	
39	6	23	nd	
40	3	25	0.1	
41	48	22	0.3	
42	22	22	0.3	
43	19	31	0.8	
44	4	16	0.1	
45	7	13	0,5	
46	11	22	0.1	
47	18	25	0.6	
48	96	49	0.5	
49	189	116	0.4	
50	23	48	0.9	
51	12	29	0.2	
52	0	20	0.4	
55	15	18	na	
4034	13,	10 +	0.1 /	

REMARKS:

Signed:

nd = none detected

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

ppm = parts per million

TELEPHONE: 986-5211 AREA CODE: 604

Specialising in Trace Elements Analyses

•

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Riocanex Inc.

Report No82-77-009	Page 2	of ²
Samples Arrived:		•
Report Completed:		
For Project:		
Analyst:		

Attention:

4655 56 57	3 12	12	07	1	
58 59	3 2 2	14 22 12 13	0.2 0.3 1.6 0.4		
4660 /	3	13	0.2		
					-
			-		
	-				

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6 Attention: Report No: 82-77-010Page 1 of 1Samples Arrived: August 12, 1982Report Completed: August 18, 1982For Project: Norad GroupAnalyst: VGC StaffInvoice #6905Job#82-149

	שממ	mag	$\sim \sim $	Acart	to das	61.
8351	1180	8.1			1 0	
52	395	1.9				
53	314	5.1				
54	690	3.3				
55	126	2.6				
56	720	2.5			1	
57	185	0.4				
58	196	0.7				
59	120	nd				
60	1140	1.5				
61	1750	8.2				
62	1710	7.5				
63	43	0.2				
64	155	0.7				
65	1840	4.4				
67	405	0.7				
68	316	0.7				
69	44	0.3				
70	900	2.7				
71	250	0.7				
72	400	0.4			T	
73	1000	1.0	-			
74	1150	0.8		•		
7 5	70	0.5				
76	31	0.4				
77	10	0.1				5
78	8	0.1				
79	4	0.1				
80	4	nd				
81	40	0.1				
82	18	0.6				
83	1000	3.5				
84	7600	138.6 🗸				
85	2490	35.7 /				
86	214	23.3				
87	900	4.2				
88	990	9.6				
8389	750	10.9				

Au data will be sent at a later date

Signed;

nd = none detected

1 ppm = 0.0001%

TELEPHONE: 986-5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V6C 2V6

Attention:

Report No: 82-77-011Page 1 of 1Samples Arrived:August 12, 1982Report Completed: August 18, 1982For Project: Norad GroupAnalyst: VGC StaffInvoice #6905Job# 82-150

Sample Marking	Cu	Ag		24	14	1 to
	ppm	ppm	(C- GUN	LIBA	nce) ·
8390	6	0.3			9	
91	15	0.1	•			
92	14	0.2		'		
93	312	0.9				
	860	2.5				
95	750	2.0				
96	23	0.3				
97	910	20.8				
98	1010	nd	1			
99	1840	2.7				· .
400	1300	0.9				
01	18	0.3				
02	369	1.9				1
03	2700	3.7				· ·
04	326	2.3				
05	1000	30.7 -				
06	1040	8.4				
07	3480	3.8				
08	1200	2.2	[
09	960	1.1				
50	118	0.1				
52	1460	0.1				
53	127	0.4				
54	116	nd				
55	114	0.6				
56	90	0.3				
57	146.	0.2				
58	5500	0.6				
59	2650	0.3				
60	1540	nd				•
61	6900	0.8		İ	1	
62	930	0.4				
63	19900	2.9		i		
64	2250	7.7				
	33	nd				
8466	700	1.1				
•						
					•	-
	1		{			.

REMARKS:

PUINTING LTD.

STER

Au data will be sent at a later date.

Signed:

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

nd = none detected ppn

ppm = parts per million

NORED Sicil **TELEPHONE: 986-5211**

AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc. Suite 520 - 800 W. Pender St. Vancouver, B.C. V/6C 2V6 Fire Assays with AAS Finished

Report No	o: 82-	-77-0	13	Page 1	1,	of	2
Samples A	rrived:	Augu	st 19,	1982			
Report Co	mpleted:	Sept	. 1, 1	982			
For Projec	ct:	-		Job No		82-	-149
Analyst:	Assayer	r: D.	Chiu	Invoice	No.	69	944

Sample Marking	Au					Ì	
Sample Warking	ppm						
8351	-014						
52	- 007						
53	-014]					
54 🗸	-007						
55 🗸	.014						
56	- 027						
57	<.007					h	
58 🗸	2-007		ſ	are	PULLIE		
59	2.007						-
60	<.007			N1 877	L EN	11.1	1. A.
61	.014					Eni	
62	.027			I DEC	130 U L-		
63	<.007		· · · ·				1
64	<. 007						
65	.007						
67	<.007						
68	2.007						
69	2.007						
70	<.007						
71	< .007						
72	.007						
73 ✔	.007						
74 🗸	.007				-		
75 1	.007						
76	.007						
77	.007						
78	.007						
79	.007		••				
80	.007						
81	.007						
82	.014					1	
83	<.007						
84	.096						
85	<.007						
86	.007						
87	.007				2.0		
88	.014						
89	.007						
90	.014						
8391	.014			l		L	
원문생4곡~5. ·	:.	. :		Re	gistered	Provincial	Assayer
					Signed:		

% NO X 1.5(83 = % WOS2

ppm = parts per million nd = none detected Air values are balieved to be correct to the Ecol knowledge of the analyst based on the method and instruments used.

TELEPHONE: 986-5211 AREA CODE: 604

Ccrtificate of Geochemical Analyses

-IN ACCOUNT WITH-

Attention:

Riocanex Inc.

Report No:	82-77-013	Page 2	of	2
Samples Arriv	ed:			
Report Compl	leted:			
For Project:		Job No.		
Analyst:		Invoice N	о.	

• Specialising in Trace Elements Analyses •

Fire Assays with AAS Finished

Sample Marking	Au ppm					
8392	.007	-				
93	.014					
94	.007	The second second second second second second second second second second second second second second second se		1		₽.
95	.027]			
96	.021					,
97	.041					
98	.007					
99	.048					-
8400	.014					
01	.007					
02	.027					
03	.048					
04	.007					
05	.062					
06	.027					
07	.048					
08	.171			1		
8409	.069		·	•		•
8451	.014					international de la construcción de la construcción de la construcción de la construcción de la construcción de
52	.021					
53	.014					
54	.075					
55	.014	1		I		
56	.007					
57	.007		L			
58	.007					
59	.021		1			
60	.034	· ·	·.			
61	.027					
62	.007	-				
63	.021	· ·				
64	.055		1			
65	.007					
8466 🗸	.014					
						······································
· ·						
•	ł			-		
AARKS:		<u> </u>	<u> </u>			
······································				1	Registered	I Provincial Assave
				-	Signed:	

TELEPHONE: 986-5211 AREA CODE: 604

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc. Suite 520 - 800 W. Pender jSt. Vancouver, B.c. V6C 2V6 Attention:

ASSAYS

• Specialising in Trace Elements Analyses •

Report No:82-77-016Page1of2Samples Arrived:Aug.25,1982Report Completed:Sept.16,1982For Project:IVORADJob No.82-167Analyst:Assayer:D.ChiuInvoice No.6987

Sample Marking	Cu	Pb	Мо	Au *	Ag *	UNCAD
	%	%	%	ppm	mqq	150000
8410	.01			.007	1.639	
11	.01			.014	2.523	
12	.01		· · · ·	<.007	0.542	
13	.01			.151	0.603	
14	.01			.007	1.502	
15	.06			.014	3.554	
16	.02			.014	2.935	
17	.01			<.007	1.776	
18	.03			<.007	2.462	
19	.04			.082	3.210	
20	.79			.007	14.188	
21	.56			.007	13.433	
22	.02			.007	0.610	•
23	.01			.007	0.747	ł
24	.01	·		2.007	1.159	
25	.01			2.007	1.364	
26	.01			2.007	1.090	
27	.01		·	.007	0.542	
8469	.07			.007	0.610	
70	.01	·		₹.007	0.816	7
71	.09			.007	1.502	
72	.02			.007	0.679	
73	.04	· · ·	·	.007	0.542	
74	.01			1.007	1.022	
75	.01	.01		2.007	0.542	
76	.01	.01		2.007	0.747	
77	.01	.01		.007	0.679	
78	.01	·	.20	2.007	0.610	
79	.01	.01		.007	0.816	
80	.01	.02		.007	0.747	
81	.04	.01		2.007	0.610	
82	.05	.02		.027	0.522	
83	.01	.01		<.007	0.610	
84	.06	.02		.007	1.296	
85	.02	.02		.014	1.220	
86	.02	.02		.062	1.035	
87	.02	.01		.007	0.853	
88	.04	.01	· ·	.048	0.775	
8489	.04	.01		.021	1.076	
AARKS:		· · · · · · · · · · · · · · · · · · ·		Register	ed Priving	ial Assayer
* bby Fire	assay				- Cimpode	1 ATI
					Signed:	

TELEPHONE: 986 5211 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Riocanex Inc.

82-77-016	Page	2	of	2
ved:				
leted:				
	Job No	o .		
	Invoic	e No) .	
	82-77-016 red: leted:	82-77-016 Page red: leted: Job Na Invoic	82-77-016 Page 2 red: leted: Job No. Invoice No	82-77-016 Page 2 of red: leted: Job No. Invoice No.

Attention:

Assays

	· · · · · · · · · · · · · · · · · · ·					
Sample Marking	Cu	Pb	Au *	Ag *		NORAD
		70	ppm	<u>ppm</u>		
8490	.01	.01	.027	0.590		
.91	.01	.01	.048	2.146		
92	.01	.01	.007	1.433		
93	.01		.007	0.542		
	40		.014	0.603		
95	.05		.021	0.733		
96	.01		.007	.0473		
97	.02		<.007 ○	0.542		
98	.01		.007	0.816		
99	.32		.041	5.376		
8500	.14		.027	2.373		
01	.10	. 	.233	1.618		
.02	.24		.021	3.408		
03	.01	.02	.021	1.930		į
04	.44	.02	.075	5.959		
05	.07	.01	.055	1.385		
.06	.01	.01	.007	1.159		
07	.01	.02	• .069	1.920		
08	.01	.01	.027	5.185		
09	.50	.04	.007	3.833		
10	.01	.01	.405	0.555		
	.83	•04	.014	41.473		
8512	.01	.02	.014	2.112		
				···		
			• · · ·			a second second second
	•					
						1
	· · ·	•				$Y = -2\pi M_{\rm eff} + 2\pi M_{\rm eff}$
						-
· · · · ·						
REMARKS: * hv fire .	SSAV			i T	Registere	Provincial Accover
by fille a				r	CET STOLET	A I I UVIICIAI ASSAYCI
			-		Signed:	

% Mo x 1.3583 = % MoS₂

VETER PRINTING LTD.

All values are billieved to be correct to the best knowledge of the allalyst based on the method and instruments used.

1 ppm = 0.0001%

ind = none detected

1 Troy oz./ton = 34.28 ppm

ppm = parts per million

NORAD 3		NORAD 1		
				as on
	8000			GEOLOGICAL BRANCH ASSESSMENT REPORT
				10,892
LOWER JURASSIC	7 - DIORITE SILL - COurse - grained, abos felaspars + hornblande large rounded clasts, up to 30cm.	10 - SANDATINE - SILTATANE - WILLANDLESEL, about teldspor grans 16 - CONGLOMERATE - brown; peorly consolidated, silly	N.T.S 93 L/5	RIO TINTO CANADIAN EXPLORATION LTD.
NILKITKWA FM.	TELKWA FM. 6 - CRYSTAL-LITHIC TOFF - Lughe grey-brown to unaroon, well con- solidated and silicified	matrix; grandiarite + Sumacrous Classs vy to 30 cm. 1a = marcou Cristal Lithic Tubb - Green to Moroon;		NORAD CLAIMS
9 - LAMPROPHYRE DYKE - Dh , maßic groundmass, shin bladed bern- blende phenocrysts . HID SINEMURIAN TO EARLY PLIENSBACHIAN	 -RMYOLITE TOFF-BRECCIA - Bright Emerald green to white Silicic matrix; flow-banded clasts up to B cm -MARDOW ERVSTAL-CITMIC TOFF - Enterbedded volcanic flows 4 this volcaniclastic units, mardon & green; apidolized 	SYMBOLS sil - failer - faile faile 	SCALE 5000 0 100 200 300 400 Metri	BATE LORAWN BY LOWI
TOPLEY INTROSIONS - 195 - 205 M.M. 8 - GRANDDIDRITE BATHOLIM AND QUARTE - FELOSPRE PARPHURY DYKES	3 - ANDESITE FLOW - Brown to green , homogeneous -10 m snith 2 -MARDON (RYSTAL-WITHIC TUFF - incerbedded volcanic + debris tiow; epidotized	1 - treni + plunge () - outerop of slickemides	CONTOUR IN TERVAL 500	OCT 1982 J.A.M./ed.s G 8007

