```
airborne infut electromagnetic and magnetometer survey
anyox joint vemture group
Hrothgar 2966; Wotan 1 2865; Wotan 2 2867; Wotan 3 2866;
    3 Bears 1-6 3245-3250; Imperial 3432; Metals 3433;
        Oeadwood 1-4 3423-3426; #5 3186; #4 (Fr.) 3185;
            #4 3184; #3 3183; #2/#2 Fr. 2909; #1 3182;
    Iron Cap/Phyllis fr. 3180; Lost Chord fr./Darwin Fr./
                Lake 2903(4); Monkey Fr. 3181
```

 sheena minting division
 103P/5W and \(103 \mathrm{P} / 12 \mathrm{~W}\)
 \(55^{\circ} 27^{\circ} 30^{\circ} \mathrm{N} \quad 129^{\circ} 47^{\prime} 30^{\prime \prime} W\)
 the anyox joint venture
 (Imperial Metals Corporation) \&
 (Procan Exploration (B.C.) Ltd.) ©
 (Genesis Resources Corporation)
 (Fatherlode Syndicate)
 by
 Stephen P. Quin B. Sc., ARSM
 Mining Geologist
 Imperial Metals Corporation
 and
 Robert De Care B. So.,
 Chief Geophysicist
 Quester Surveys Limited
 November 1982

Table of Contents

1. Introduction I
2. The Property II
3. History VII
4. Geophysical Report (Questor Surveys) XI
5. Itemized statement of costs XII
6. Statement of Qualifications XIII
List of Figures
7. Claim Map 1:50,000 III
8. Location Map 1:500,000 V
9. Massive sulphide bodies and prospects 1:50,000 X
10. Claim Map 1:10,000(in pocket)
11. Survey results 1:10,000(in pocket)

I. Introduction

Imperial Metals Corporation, the operator of the Anyox Joint Venture, contracted duestor Surveys limited to fly helicopter borne INPUT Electromagnetic and a total field magnetometer survey of the Joint Venture property.

In June of 1982 a total of 150 km of survey was flown over the property.

```
2.1. The.Claims
```

The Anyox Joint Venture lands consist of 94 contiguous units, comprised of six modified grid blocks, ten two-post claims, and nine reverted crown grants. They were grouped as the "Anyox Joint Venture" in September 1982.
The claims are:

Name of Claim	No. of units	Record No. \quad R	Record Date
Hrothgar	12	2966	1 May
Wotan 1	6	2865	26 Feb.
Wotan 2	12	2867	26 Feb.
Wotan 3	18	2866	26 Feb.
3 Bears 7-6	6	3245-3250 (incl.)) 24 Sept.
Imperial	15	3432	19 April
Metals	12	3433	19 April
Deadwood 1-4	4	3423-3426 (incl.)) 19 April
\# 5	1	3186	11 Sept.
\#4 (Fr.)	7	3185	11 Sept.
\#4	1	3784	11 Sept.
\#3	1	3183	11 Sept.
\#2/\#2Fr.	1	2909	22 April
\# 1	1	3182	11 Sept.
Iron Cap/Phyllis	$F_{r} . \quad 1$	3180	11 Sept.

Lost Chord Fr.
Darwin Fr. 1
7
3181
11 Sept.
Monkey Fr.

Lake
1
2903
10 April

See Figure 1


```
2.2. ritle to clajms
    Title to all the above Ijsted clajms is in the name of
Frocan Exploratjon (B.C.) Ljmited, subject to the joint
venture agrecments. The various agreements give procan
[xploration (B.C.) (td. (henceforth "Procan") a lo0% working
jnterest in the property, subject to the below. Genesis
Resources Corporation henceforth "Genesis"/ has a lo% net
profit interest and the option to purchase a 15% working
interest on or before A\rhoril 30th 1985. The fatherlode
sundicate has a 5% net profits jnterest and a further 2-1/2%
net \rhorofits interest if Genesis fails to purchase its
working interest. Imperial Metals Corporation fhenceforth
"Imperial") has a 20% net profits interest and the option to
purchase a 7-1/2% working interest if Genesis fails to
purchase its 15% working interest. Imperial is the
operator of the property.
                                    I
2.3. Location of Claims
The Anyox Joint Venture Jands are located on Hastings Arm approximately 130 km north of Prince Rupert and 25 km west of the Kitsault Mine. The centre of the claim block lies approximately at a latitude of \(55^{\circ} 27^{\circ} 30^{\prime \prime}\) north and a Iongitude of \(129^{\circ} 47^{\circ} 30^{\circ}\) west (seefigure 2).
2.4. Access to the clajms
The claim area is reached by scheduled ajrline services to Kitsault, 25 km to the east, from Prince fupert
```


and then by heljcopter based in Kitsault. Alternatively there is road access to Kitsault from rerpace while heavy equipment is best barged from Prince Rupert to the abandaned Anyox tounsite.
2.5. Topography and cijmate

The claims are over an area that rises from sea level to 865 m above sea Jevel. The majority of the area js a rounded hill that slopes gently to the south and the the cast with numerous north-south ridges and valleys that make east-west movement very difficult. The lower elevations are covered by extremely dense underbrush that thins out at the higher elevations. There is no tree cover since smelter activity and several forest fires killed all the trees and poisoned the soil.

The climate is typical of the coast mountains with high rates of precipitation that results in heavy snowfall in winter. Heavy fog and mist is common jn spring and fall.
3. History (from Minister of Mines Reports 1898-1936)
3.1. Discovery

In the last decade of the lyth century placer miners investigated the Anyox area making only minor discoveries. However, while prospecting Bonanza Creek, outcropping massive sulphides were discovered in the creek bed which were staked in 1901. Exploration of the area subsequently revealed outcropping massive sulphides on Hidden Creek in 1902 and disseminated sulphides just north of the mouth af Tauw Creek in 1904. Exploration undertaken by Hidden Creek Mining continued erratically until 1908 when Granby Mining and Smelting purchased Hidden Creek. Development commenced in 1909 and production commenced in 1915.
3.2. The Production Years

Ore was produced from the Hidden Creek mine from 1915-1935 and was supplemented by ore from the Bonanza Mine from 1928 until Hidden Creek closed down. Production rose from 462,000 tons in 1914, to a peak of 1,742,000 tons in 1935 with an output of 16 million lbs copper, 143,000 oz silver and 3,600 oz gold in 1914 rising to 37 million lbs of copper, 220,000 oz silver and 2,800 gold on close down.

Initially the ore was smelted directly, but during the second decade of production lower ore grades necessitated the use of a mill. During the 20 years of production some 25 million tons of rock were mined producing 740 million lbs
of copper, 7 million oz of silver and 124,000 oz of gold. Grades averaged 1.55\% copper, 0.28 oz sjlver/ton and 0.01 oz/gold per ton from Hidden Creek and 2.18\% copper, 0. 39 oz/ton silver and little gold from the Bonanza Mine (Grove 1982).

The mine finally shut down in August 1935 , due to low copper prices that had been falling since l930, lower ore grade and bigher production costs. The mine was not worked out. Cominco purchased the mine in 1936.

3.3. Exploration Since Shot oown

There has been sporadic exploration by various parties since 1935 resulting in several new discoveries, namely the Double Ed in Bonanza Creek in 1950 (2 million tons of 1.3\% copper and 0.6% zinc drilled outl, the Redwing in Tauw Creek explored in 1965-1967 (265,000 tons of 1.8\% copper) and numerous relatively unexplored showings widely scattered over the Anyox pendant. There has been no systematic exploration of the pendant as a whole, though Cominco has investigated the surface potential of most of its claim area.

In the spring of 1982 a joint venture agreement was signed between Mitsui Mining and Cominco that resulted in an intensive drilling programme in the Hidden Creek area. Prior to this Imperial Hetals had secured all the remaining
potentiajly favourable land by stakjng asd purchase agreements. Imperial then embarked on an intensive exploration programme of all its lands. Figure if shows the jocation of most of the known massive sulphide bodies and prospects.

HELICOPTER INPUT E.M. SURVEY
 IMPERIAL METALS CORPORATION
 ANYOX JOINT VENTURE AREA
 BRITISH COLUMBIA

FILE NO: 24H35A
 NOVEMBER, 1982

HELICOPTER INPUT E.M. SURVEY TMPERIAL METALS CORPORATION ANYOX JOINT VENTURE AREA BRITISH COLUMBIA

```
FILE NO: 24H35A NOVEMBER, 1982
```

INTRODUCTION 1
SURVEY PROCEDURE 1
MAP COMPILATION 2
DATA PRESENTATION 3
RESULTS 4
AREA OUTLINE
APPENDIX
EQUIPMENT (i)
MARK VI INPUT ${ }^{(R)}$ SYSTEM (i)
SONOTEK P.M.H. 5010 PROTON MAGNETOMETER (iii)
DATA SYMBOLOGY (iv)
POSITIVE ANOMALY SYMBOL (iv)
SELECTED CHANNEL HALF WIDTH LIMIT (iv)
NEGATIVE ANOMALY SYMBOL (v)
ASSOCIATED MAGNETIC PEAK (v)
GENERAL INTERPRETATION (v)
SAMPLE RECORD
HELICOPTER CONDUCTIVITY-THICKNESS/DEPTH NOMOGRAM
DATA SHEETS

This report contains the results of a Helicopter MARK VI INPUT E.M. Survey flown in the Anyox Joint Venture area near Anyox, British Columbia, on June 23 and 25, 1982.

A brief description of the survey procedure is included.

The survey mileage was approximately 150 line kilometres and the survey was performed by OUESTOR SURVEYS LIMITED. The survey aircraft was a Bell 205 Helicopter C-GLMC and the operating base was Stewart, British Columbia.

The area outline is shown on a $1: 250,000$ map at the end of this report. This is part of the National Topographical Series, Sheet Number 103P.

The following were the personnel involved with the airborne survey:

Pilot	- Dan Davis
Navigator	- Bill Smith
Operator	- Keith Higgenbottom
Engineer	Laughin Currie
Geophysicist - Robert deCarle	

SURVEY PROCEDURE

Terrain clearance was maintained as close to 122 metres as possible, with the E.M. Bird at approximately 45 metres above the ground. Rough terrain could be a factor for the helicopter not being at 122 metres. A normal S-pattern flight path using
approximately one half kilometre turns was used. Consecutive lines were flown in alternate directions for the sole purpose of interpreting dipping conductors. This phenomenon will be dealt with later.

A line spacing of 150 metres was used over the entire survev area with an approximate east-west flight direction.

The equipment operator logged the flight details and monitored the instruments. It was the responsibility of the Geophysicist to maintain and check the ground magnetic station, Geometrics G-806, which was recording the daily diurnal changes. The results of these recordings have been included in the final shipment.

MAP COMPILATION

The base map used for navigation and flight path recovery was a photographic transparency at an approximate scale of $1: 10,000$ which was supplied to the contractor by the client. The final map was reproduced at a scale of $1: 10,000$ on stable transparent film from which white prints can be made. A copy of the map layout is located on the map sheet using topographical reference numbers.

Flight path recovery was accomplished by comparison of the 35 mm half frame film with the mosaic in order to locate the fiducial points. Most picked points are between 300 and 900 metres
depending on the difficulty of the area, some picked points are much in excess of this figure.

DATA PRESENTATION

The results of the INPUT survey are presented to the client in the following manner:

- a blank 5 minute photographic base at a scale of $1: 10,000$
- a photographic base showing combined INPUT anomalies, half peak width of channel 2 , conductive overburden, selected targets, skew classification and flight lines
- a clear overlay showing the contoured form of the total magnetic field

See Appendix for a comprehensive description of the interpretation approach used in helicopter INPUT surveys.

QUESTOR's conventional form for presenting the helicopter INPUT data on a base map is as follows and is self-explanatory:

DECAY INTERVAL CLASSIFICATION

* 1 Channel (340 microseconds)
-. 2 Channel (540 microseconds)
- 3 Channel (840 microseconds)
-) 4 Channel (1240 microseconds)
- 5 Channel (1740 microseconds)
- 6 Channel (2340 microseconds)

The survey area is located anproximately 45 kilometres south of Stewart, British Columbia and roughly 5 kilonetres north of Anyox. It is an area which is rugged with mountain peaks in the order of 760 metres high. Drainage is generally northsouth with direction of flow to the south. There are some northeast-southwest trending fault zones which have offset some of the conductors and a close examination of this structural effect should see a number of other offsets which I have not mentioned or indicated in this report.

A limited amount of work has been undertaken within the survey block but because of the ruggedness of the terrain, the amount of exploration is not thought to be great.

The important horizon economically, is the volcanic-metasedimentary contact which seems to coincide with ZONES A3, A19 and possibly A2. A number of deposits have been found to correlate with this horizon, most notably the Hidden Creek, the Bonanza and Redwing deposits. There are others but these are the most important ones. It is in the areas of zONES A1, A2, A3, A15, A16 A21, A22 and A25 where future prospects will be found. All of the conductors located to the cast of this horizon are interpreted to be due to graphite within the metasediments. There is no question, of course, that if it is found that interbedding of volcanics occur within this metasedimentary environment, then any correlation between INPUT conductors and volcanics will up-grade the priorities tremendously.

Volcanic and metasedimentary rocks which underlie most of the Anyox area form a large inclusion in the granitic matrix of the Coast Range complex. The surrounding granitic rocks are generally coarse-grained granodiorites which grade variably between hornblende quartz diorite and leucocratic quartz monzonite. The volcanic rocks in the Granby Bay inclusion consist largely of altered, pillowed, and massive andesites, some crystal tuffs, and massive basic sills. The volcanics have been intruded by small gabbroic plugs and various dykes. The overlying metasediments include thinly striped argillites, colour-banded dark siltstones, dark sandstones, and minor limestone as lenses. The main contact is usually sharply defined, and is apparently conformable, although complicated by involved concentric folding.

It is obvious from the non-correlation between the electromagnetic responses and the magnetics that most conductors are related to the overlying metasediments rather than with the volcanics. This would suggest that graphite is the probable cause of most trends east of zONE A3.

ZONE A3 and as far east as ZONE All appear to be dipping in an easterly direction while ZONES Al2, Al3 and Al8 would appear to be dipping to the west. This would suggest synclinal formation.

Priority targets, in order of importance, for follow-up are ZONES A16, A15, A2, A3 and A25.

The following now is a brief discussion on each of the indicated trends on the INPUT map, labelled ZONES Al to A25.

ZONE Al The isolated anomaly displays a very weak electromagnetic response but is still considered to be due to a bedrock source. It is also a relatively broad response suggesting that the flight line has been flown at an oblique angle. Note the photo lineament closely parallelling the flight line. This may be a fault or shear zone.

Thus, it is possible that the cause of this intercept is due to mineralization contained within the fault zone. Pillow lavas have been described as being the rock types in this area.

A ground reconnaissance survey is recommended.

This conductor may, in fact, extend well to the south. The intercept does appear to be isolated and not associated, whatsoever, with the conductors to the east.

Referring to the geology maps, it will be noted that this zone correlates with or is very close to the volcanic-metasedimentary contact. This is the favourable horizon for economic sulphides in which a number of zones have been located.

This is a very long conductor which traverses most of the survey block in a north-south direction. It would appear to be parallelling the volcanic-metasedimentary contact if not correlating with it.

Dip is to the east with magnitudes between 40° to 60°.

Referring to one of the geology maps supplied by the client, it will be seen that a mineralized showing has been indicated to be in the vicinity of intercept 10050A. This particular anomaly displays quite a strong electromagnetic response. In fact, channel l has deflected completely off the analogue record paper and channel 2 is not far off doing the same.

There are a number of good anomalies or intercepts along this trend but probably the best is intercept 10250B. It displays excellent conductivity and also, has a subtle magnetic feature associated with it. The entire trend seems to be correlating with the flank of a magnetic trend located to the east, again suggesting the correlation with the geological contact.

An area which warrants further work in the field is in the vicinity of intercepts 10250 B and 19020 C .

ZONES

Both of these short strike length conductors display fair to poor conductivity with only A4 having any magnetic association.

Metasediments are the rock types suggesting that graphite may be the mineral source.

All of the anomalies along this trend, for the most part, display very strong electromagnetic responses. In some cases, channel 1 has completely disappeared off the analogue recorder paper. This not only suggests good conductivity but also an extremely wide zone. There is also every indication that a second weaker zone parallels A6 to the west which includes intercept 10050B. The extremely fast decay rate of the transient with no response on channels 4 , 5 or 6 (intercept 10050B) suggests a zone with a limited depth extent, it bottoms out relatively shallow.

According to the geology maps, the entire area is underlain with metasediments. However, interbedding of volcanics with the metasediments is possible in this area, thus, a ground survey is recommended.

ZONE A8

A long conductor which displays fair to good conductivity. It does not have any magnetic association.

There would seem to be some confusion at the extreme north end of A7, the south end of Al4 and all of Al5. The writer speculates that the possibility exists for the A7 to join up with the northern portion of Al4, and the southern portion of Al4 joins up with Als. A ground survey would have to be implemented in order to sort this out.

Intercept 10070 C may be an intercept where future preliminary work could be started.

The indicated trend is a weaker conductor which may be due to graphite. Note the relationship with the metasediments.

One observation made is the lack of a response on the east lines, except, of course, for line l0010E. A possible masking effect from the larger amplitudes of ZONE A7 may be the reason.

[^0]There are a number of minor offsets or what appear to be folding along the conductor. This phenomenon, in all probability, is due to cross-cut faulting which strike northeast-southwest. One such area is between lines 10250 E and 10280 W . There is a noticeable offset at this location and this could be related to a fault zone.

The conductance values are quite high towards the northern portion of the conductor while only minor values have been recorded to the south.

Direction of dip is to the east with magnitudes between 60° to 75°.

ZONE A10
This is a long linear conductor which displays, for the most part, good conductivity. It is roughly parallelling a fault zone which is indicated on one of the geology maps supplied by the client.

This zone is a short strike length situation displaying only fair conductivity. Graphite within the metasediments is the probable cause.

A low priority.

ZONE All

The conductor is also dipping to the east.

It is interesting to note that parts of the conductor do, in fact, correlate with a fault zone while in other areassit does not. This would seem to suggest that we are possibly dealing with two different trends from two different sources.

Also, note the offset between ZONES All and Al7. This could have resulted from a fault zone.

ZONES A12 and A13

As is the case for a number of other zones, All is a long, linear conductor displaying good conductivity. There is no magnetic association suggesting pyrite and/or graphite as the probable cause.

Both of these trends display good conductivity but do lack magnetic association. Again, they appear to be related to metasediments (argillite) which is not the important economic horizon in the search for base metals. If a ground programe realizes the interbedding of volcanics in this area, then further work is definitely warranted.

ZONE Al2 may, in fact, continue well to the north and coincide with zONE Al8.

Direction of dip for both ZONES A12 and A13 is interpreted to be to the west with angles thought to be relatively steep.

Graphite is thought to be the source mineral for both trends which indicates low priority.

ZONE Al4

Note the dip to the east.

A low priority is suggested for this conductor.

ZONE Al5
This zone would seem to be an isolated conductor having a short strike length. It is located between ZONES A2 and A14 and its proximity to the contact between volcanics and metasediments would tend to give the zone support for ground follow-up.

Dip is to the east at approximately 60°.

A ground reconnaissance survey is definitely recommended.

ZONE Al6
zONES A17 and Al8

Its strike length is estimated to be 1000 feet and dip is thought to be to the west at a steep angle.

Referring to the geology maps, it will be seen that the target is completely within volcanics. A ground survey is highly recommended.
The zone is probably the best target within the entire survey block. It displays excellent conductivity, has direct magnetic correlation, in the order of 50 gammas, and is isolated from the longer trends.

Both of these trends are very similar in that they display fair to poor electromagnetic responses with essentially no magnetic association. The only disparity is that they dip in opposite directions, Al7 to the east and Al8 to the west.

As mentioned above, the conductors have little or no magnetic association and, in fact, the strike direction of the conductors does not coincide with the strike direction of the magnetics whatsoever. This would tend to suggest that the source which is the cause of these conductors is not related to the basement (volcanics) at all.

The offsets between Al7 and All as well as A18 and Al3 are, in all probability, due to fault zones.

Low priorities should be given to both zones.

ZONE A19

ZONE A20

A very weak trend which may be a faulted portion of ZONE A3. Refer to the geology map by S.P. Quin, May 7, 1982.

A low priority target.

The two intercepts involved here do not display very good electromagnetic responses, in fact, the anomalies are relatively broad, three channel anomalies. This would seem to indicate either of two things; first, the flight lines are intersecting the conductor at an oblique angle or second, the conductor is at depth.

One thing that is certain, and that is, that the anomalies are correlating with a fault-contact zone with argillite to the west and hornblende quartz diorite and leucocratic quartz monzonite to the east.

A low priority.

ZONES A21,
A22 and A23 These are very weak electromagnetic responses which do not warrant further attention in the field.

ZONE A24
As was the case for ZONE A20, this trend has
intercepts which display relatively broad electromagnetic responses. Flying at an oblique angle to the strike of the conductor is not thought to be the cause of this phenomenon.

Note the coincidence of this weak trend with a fault zone. A high flying altitude may be the cause of the broader responses and this is something that would have to be sorted out on the ground.

Intercept lo390A does look like a legitimate anomaly although the response on channels 5 and 6 may, in fact, be due to compensation (bird motion).

Geologically, the environment here is similar to the area in the vicinity of zONE A20.

A lower priority target.

It would seem that this trend is an isolated situation and not related to ZONE A3 whatsoever. The conductivity is considered fair while there is no magnetic association.

Because the trend correlates with the flank of a magnetic trend, this suggests the association with a geological contact. As a matter of fact, this relationship could very well be, as a close study of the geology maps would appear to indicate this.

A ground reconnaissance survey is recommended in this area.

QUESTOR SURVEYS LIMITED
R.G. de Carte
R. J. deCarle, Chief Geophysicist.

Selected References:

Dolmage, V., 1922, Coast and Islands of British Columbia between Douglas Channel and the Alaskan Boundary, Summary Report, 1922, Part A, Geological Survey of Canada, pp. 9-34.

Minister of Mines and Petroleum Resources, Annual Report for the year ended December 31, 1965, pp. 57-59.

Sharp, R., Osatenko, M., 1978, Regional Geology of the Anyox Area, map supplied to Questor Surveys Limited by Imperial Metals Corporation.

APPENDIX

EQUIPMENT

The helicopter is equipped with a Mark VI INPUT (R) E.M. system and Sonotek P.M.H. 5010 Proton Magnetometer. Radar altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. Thirty-five millimeter half frame cameras are used to record the actual flight path.

BARRINGER/QUESTOR MARK VI INPUT (R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the helicopter. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the helicopter on two hundred and fifty feet of cable, and the received signal is processed and recorded by equipment in the helicopter. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted
field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulsc. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is proportional to the dimensions, the conductivity and the depth beneath the helicopter.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheetlike, surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

The samples or gates are positioned at $340,540,840$, 1240, 1740 and 2340 micro-seconds after the cessation of the pulse. The widths of the gates are $200,200,400,400$, 600 and $600 \mathrm{micro-seconds}$ respectively.

For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time diffexence at two successive sampling points divided
by the \log ratio of the amplitudes at these points.

SONOTEK P.M.H. 5010 PROTON MAGNETOMETER

The magnetometers which measure the total magnetic field have a sensitivity of 1 gamma and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a timeshaxing basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. The precession frequency is being recorded and converted to gammas during the 0.2 second interval when there is no power in the transmitter loop.

For this survey, a lag factor has been applied to the data. Magnetic data recorded on the analogue records at fiducial 10.00 for example would be plotted at fiducial 9.95 on the mosaics.

DATA SYMBOLOGY

The symbols used to designate the anomalies are shown in the legend on each map sheet and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the analog record.

A sample record is included to indicate the method used
for correcting the position of the E.M. Bird and to identify the parameters that are recorded.

All the anomaly locations, magnetic correlations, conductivity-thickness values and the amplitudes of channel number 2 are listed on the data sheets accompanying the final maps.

POSITIVE ANOMALY SYMBOL

A symbol ascribed to spatially represent the position of peak response amplitude from a conventional secondary field direction. The convention is based on the response type most frequently detected with the geometrical configuration of the system.

CONDUCTIVITY-THICKNESS

A numerical value based on a ratio between early and late channel amplitudes. It normalizes the DECAY INTERVAL : CLASSIFICATION against the AMPIITUDE CLASSIFICATION to derive a value based on the temporal rate of decay of the secondary field.

SELECTED CHANNEL HALF WIDTH LIMIT

A planimetric representation of the profile-derived half-width of a positive response. It may also be used to indicate the group half-width of multiple responses.

NEGATIVE ANOMALY SYMBOL

A symbol ascribed to spatially represent the position of peak response amplitude from a reverse secondary field direction(see POSITIVE ANOMALY SYMBOL)

ASSOCIATED MAGNETIC PEAK

A symbol ascribed to spatially represent the position and magnitude of a magnetic susceptibility anomaly proximate to a recognized conductivity anomaly. For purposes of plotting simplifications, only positive monopoles and the positive component of dipolar responses are mapped in this manner.

GENERȦL INTERPRETATION
The INPUT system will respond to conductive overburden and near-surface horizontal conducting layers in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and the anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies but these can be identified by reference to the monitor channel.

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors and produce attractive looking anomalies. With no other information than the airborne results, these must be examined on the ground.

Serpentinized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have fairly large response on channel \# 1 , they decay rapidly and they have strong magnetic correlation. INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25-30\%, very little or no response at all is obtained but as the percentage increases the anomalies become quite strong with a characteristic rate of decay which is usually greater than that produced by massive sulphides.
\therefore Commercial sulphide ore bodies are rare and those that respond to helicopter survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.

CHANNEL AMPLITUDES (P.P.M.)
REFERENCE LEVEL

DISTANCE BELOW HELICOPTER (meters)

$\stackrel{\rightharpoonup}{0} \quad \overline{8}$

FAGE
1
ANOMALY FIIUCIAL CHANMELS HALF WIGTH HW AMFLITUIE SKEW SIG-T ASSOCIATEI MAG MAGNETIC

10010	A	42.23	6	42.09	42.33	0.24	3	1 W	8		
10010	E	42.72	5	42.54			3	1 W	18	42.89	8
10010	C	43.33	3	43.16	43.42	0.25	2		9	43.08	4
10010	[43.89	4	43.78	43.96	0.18	2	1W	5	43.80	3
	-	44.03	4								
10010	E	44.36	4	44.25	44.47	0.22	4	10	4		
	-	44.57	3								
$:^{10010}$	F	44.73	4	44.65	44.80	0.15	1	2 W	19		
\|!	-	45.01	3							45.21	28
10020	A	46.61	4	46.40			2	4E	5		
10020	E	46.91	4				2	1 E	4	46.96	5
10020	-	47.09	3		47.15		2		4	47.21	2
10020	[47.45	5	47.30	47.54	0.24	2	2 E	11	47.58	2
	-	47.65	3								
10020	E	47.89	4	47.74			1	2 E	6	48.03	1
10020	F	48.13	3		48.22		1		7		
10020	G	48.36	3				1		2		
	-	48.55	3								
10030	A	53.39	2				1				
10030	E	54, 55	6	54.37			4	2W	10		
30	C	54.91	4		55.05		3	1W	10	54.98	36
10030	II	55.17	3				2		15		
[10030	E	55.37	2		55.44		1				
[10030	F	55.84	5	55.76	55.95	0.19	4		5	55.86	12
	-	56.18	5								
10030	6	56.58	3	56.43	56.74	0.31	2		4		
110040	A	58.14	3	58.00			1		8		
10040	E	58,50	4				2	1 W	7		
10040	C	58.75	5		58.85		3	$1{ }^{W}$	8	58.87	9
	-	59.04	4					3 E			
10040	I	59.77	6	59.45	59.83	0.39	5	4E	8	59.87	32
	-	59.97	6					4 E			
10040	E	60.41	4	60.20	60.68	0.49	3	4E	7	60.80	12
	-	61.06	3								
10040	F	61.34	5	61.27	61.46	0.18	1		1		
$1]_{10050}$	A	67.65	6	67.49	67.79	0.30	5	2 E	6	67,74	11
	-	68.20	3								
110050	E	68.61	4	68.54	68.67	0.13	2	14	3	68.77	52
$1{ }_{10050}$	C	68.79	4	68.74	68.85	0.11	3	1W	2		
	-	68.97	3								
10050	\square	69.35	3	69,26	69.44	0.18	1		1		
960	A	71.69	3				2		7		
. 60	F	72.72	5	72.52			4	2 E	10		
10060	C	72.83	5		72.93		4	$1 E$	9		
10060	I	73.27	4	73.17	73.34	0.17	4	2 E	5	73,16	67
	-	73.41	4								
10060	E	73.65	3	73.54			1		1		

ANOMALY	FIIUCIAL	CHANNELS	HAl.F LEFT	WIUTH FIGHT	$H \\|$	AMF'L.ITUIE CLASS	SKEW	SIG-T	ASSLCIATEI MAG FOSITION	MAGNETIC VALUE
10060 F	73.86	3		73,93		2		5		
-	74.12	6					4 E			
10070 A	80.24	6	80.15	80.36	0.21	5		10		
10070 E	80.83	6	80.72	80.93	0.22	3	1 W	12		
, 10070 C	81.27	6				5		44	$81+11$	101
$1:-$	81.48	6								
$\square \quad-$	84.35	2								
10080 A	84.83	4	84, 67	84.98	0.31	1	2 E	16		
110080 H	85.30	5	85.21	85.47	0.26	1	2 W	4	85.33	105
10080 C	86.38	4	86.08			2		5		
$[10080$ [86.83	5				2		26		
110080 E	88.17	6				5		26	88.21	48
-	98.48	6								
;10080 F	88.99	5	88.82	$89+13$	0.31	3	2 E	6		
$1]$ -	89.50	5					4 E			
[10090 A	96.35	6	96.20	96.49	0.29	5	4 E	12	96.18	82
	96.61	6					1 W			
${ }^{10090 ~ B ~}$	97.14	3	97.07			1.		1		
10090 C	97.53	5	97.40	97.65	0.25	4	1W	11	$97+64$	4
10090 II	98.99	3	98.84			3		5		
90 E	99.22	5		99.31		4		7		
	99.59	3								
${ }^{-} 10090 \mathrm{~F}$	100.01	6	99.89	100.18	0.30	2	4 E	24		
-10090 6	100.58	3				1		1	100.56	95
110100 A	101.49	3	101.39			1		1		
10100 E	101.76	5				2	$2 E$	10		
${ }^{\text {¢ }} 10100 \mathrm{C}$	102.25	6	102.09			3	3 E	40	102.05	115
10100 [102.49	4		102.58		3	1E	11		
[10100 E	102.85	5	102.78			1		1		
10100 F	103.02	6		103.15		2	2 W	13		
-	103.26	6					2 W			
10100 G	103.56	5	$103+43$			2		10		
10100 H	103.80	4				3		9		
10100 J	104.15	4				2	$1 E$	5		
10100 K	104.30	6				3		14		
10100 L	104.46	3		104.54		2		11		
10100 H	104.65	6				1	1W	33		
10100 N	105.13	4	104.95			2		16		
10100 F	105.59	6	105.41			4	1W	27		
-10100 k	105.87	6	105+72	105.94	0.22	5	2 E	10	105.93	152
-	106.06	6								
10110 A	132.37	6	132.22	132.45	0.23	5	1H	9	132.37	81
-	132.55	6					1W			
10 H	133.42	5	133.32			2		7		
10110 C	133.90	5		134.04		3	16	11		
10110	134.71	3	134.60			1		3		
10110 E	135.07	3		135.28		3		5		
10110 F	135.72	6	135.54	135.88	0.34	3	3 E	28		

AMOMALY	FIIIUCIAL	CHANNELS	HALF LEFT	$\begin{aligned} & \text { WIIITH } \\ & \text { FIIGHI } \end{aligned}$	HW	AMFLITUILE CLASS	SKEW	SIG-T	associatel mag FOSITION	hagnetic value
10110 G	136.14	3				1		1		
10121 A	138.46	6	138.25	138.68	0.43	3	46	23		
10221 E	139.04	S	138.84	139.21	0.37	2	1 E	26	139.14	13
10121 C	139.54	5	139.39			2	1E	6		
10121 II	140.00	3	139.74			3		9		
10121 E	140.29	4		140.36		3		2	140.42	25
-	140.47	5								
. 10121 F	140.88	6				4	1E	12	140.96	7
10121 G	141.06	6		141.25		4		15		
' 10121 H	141.52	3				2		4		
- 10121 J	142.10	6	141.99	142.19	0.20	5	1 E	11	141.95	10
-	142.28	6					1 E			
10121 K	142.48	5	142.40			1	1 E	6		
10121 L	142,70	5		142.78		4		5		
-	142.88	5								
10123 A	19.37	5	19,25	19.47	0.22	4	1 W	7		
-	19.65	3								
. 10123 F	20.51	4				1	2 E	32		
'10123 C	21,24	4	21.06	21,31	0.25	1	4 W	3		
10123 п	22.42	5	22.28	22.53	0.25	2	2W	18		
10123 E	22.96	5				1		1		
23 F	23.41	6	23.27	23.55	0.28	2	3 E	66		
$1 \times 123 \mathrm{G}$	23.90	4	23.81	23.99	0.19	1		1		
10123 H	24.67	3				1		1	24.44	86
10123 J	25.94	3	25.75			1		9		
10131 A	149.89	5	$149+71$			2	1E	8		
10131 B	150.28	6				2		31		
10131 C	150.56	4		150.70		2	1 E	44	150.63	22
10131 II	150.96	6	150.79			2		14		
10131 E	151.22	5		151.30		2		7		
! 10131 F	151.42	5				1		7		
10131 G	151.80	4	151.73	151.87	0.14	1		5	151.81	16
10131 H	152.25	6	152.05			3		13	152.39	15
10131 J	152.71	6				4	2 E	14		
10131 K	153.01	6				4	1E	14		
-	153.36	6					2 E		153.23	168
10131 L	153.62	6	153.48			4	3 E	4		
10131 M	153.86	5		153.92		4	1E	5		
-	154.04	5								
10133 A	27.31	4				1		1		
10133 E	27.61	5	27.43			1	1 E	10	27.67	145
10133 C	28.04	6	27.88	28.17	0.29	2		20		
10133 a	28.38	4		28,48		1	1E	8		
in133 E	28.85	3	28.65	29.03	0.38	1		8		
-	29.19	5					1E			
10133 F	30.67	2	30.51			2				
10133 G	30.97	6		31.08		3	1E	14	30.96	10
10134 A	31.51	3	31.28			1		10		

ANOMALY	FIIUCIAL	CHANNELS	HALF L.EFT	WIITH RIGHT	HW	ARFLI TUIE CLASS	SKEW	SIG~T	ASSDCIATEII MAG FOSITION	MAGNETIC VALUE
10134 E	32.05	6	31.93	32.13	0.19	3	1E	14	32.46	144
10134 [32.51	6	32.43			1	4 E	1		
10134 II	32.80	4	$32+65$	32.90	0.25	1		4		
-	33.04	4					1 E			
-										
10140 A	156.13	6	156.06	156.18	0.12	2	1 W	17	156.23	33
j -	156.26	4								
10140 F	157.54	3	$157+37$			4		7		
\% 10140 C	157.67	6		157.79		4		8		
10140	158.08	6	157.99			4		12	158.26	27
10140 E	158.26	3				4		18		
10140 F	158.68	4	158.62			1	2W	1		
10140 G	159.03	6	158.90	159.17	0.27	3	1E	17	159.16	2
10140 H	159.45	4		159.61		2	1 W	47		
10140 ل	160.23	6	160.07			2	4 E	50		
10140 K	150.60	4				2	1 N	8		
[J										
10141 A	14.42	3				1		6		
[10141 E	15.14	6	14.97	15.29	0,32	1		40	14.90	72
10141 C	15.50	4		15.81		1		6		
10141 II	15.95	5	15.77	16.10	0.32	1	2W	8	15.84	6
10141 E	16.49	3	16.36	16.81	0.44	1		1		
$\mathrm{inc}^{41} \mathrm{~F}$	18.06	6	17.82			4	2 E	16		
41 G	18.21	6		18.29		4	2E	20	18.52	96
,	18.61	6					4 E			
10141 H	19.22	4	$19+01$	19.33	0.32	2	2 E	6		
- 19.49 5 3E										
40172 A	37.22	3				1		1	$37+32$	55
10172 E	38.41	5	38.24			2	1W	9		
10172 C	38.59	6		38.71		3	2 E	15		
-10172	39,04	6	38.95	39.14	0.18	2		35		
10172 E	39,31	3		39.38		2		45	39.32	21
${ }_{10172 \mathrm{~F}}$	39.82	4				1	$2 W$	1		
10172 G	40.51	5	40.38	40.66	0.28	1		83	40.57	31
10172 H	40.92	5	40.77	41.06	0.29	1		201		
10172 J	41.79	6	$41+61$	42.00	0.39	1	4E	40		
10172 K	42.37	3				1		1		
10172 L	42.75	2				1				
$5-$	43.05	3								
\ldots										
10180 A	46.69	6	46.51			1	44	54	46.22	44
10180 B	47.25	6				1	4 E	26	47.38	20
${ }^{1} 10180 \mathrm{C}$	47.90	5	47.57			2		29	.	
10180 II	48.43	6	48.20	48.56	0.36	2	3 E	9	48.47	12
-	48.72	6					2 E			
10180 E	49.06	6	48.91			2	1E	16		
80 F	49.55	6	49.30	49.69	0.38	4	3 W	16	49.35	9
-	49.91	6					4 4			
10180 G	50.46	5	50.34	50.59	0.25	1		3		
-	50.87	3								
10190 A	56.21	4	56.06	56.40	0.33	2	$3 E$	5		

Andmaly		FIIUCIAL	CHANNELS	$\begin{aligned} & \text { HALF } \\ & \text { LEFT } \end{aligned}$	WIITH RIGHT	HW	AMFLITUSIE CLASS	SKEW	SIG-T	associateli mag FOSITION	magnetic VALUE
10190	E	57.00	5	56.87	57.25	0.38	2	2 E	55	57.21	8
	-	57.68	5					2 W			
10190	C	58.11	6	57.97	58.29	0.32	1	4 E	33		
10190	I	58.83	4				1		12	58.48	5
10190	E	59.55	6	59.42			1	2 E	80	59.72	5
10190	F	60.01	4	59,89			1		18		
1:10190	G	60.19	6		60.28		2		23	60.29	9
	-	60.53	6					1E			
$\left[\begin{array}{l} 10200 \\ 10200 \end{array}\right.$	A	63.71	6				1	2 ${ }^{\text {d }}$	7	63.10	31
	-	64.21	6		64.36		1	2 E	55	64.11	16
10200	C	64.73	6	64.55			1		17	65.00	5
$[10200$	II	65,30	5		65.42		2	4 E	12		
	-	65.56	6					3 E			
10200	E	65.92	6	65.75			2		14		
[10200	F	66.23	6		66.27		1	$1 E$	46		
	-	66.44	6								
10200	G	66.90	5	66.76	67.04	0.29	1	1 E	10		
	-	67,30	3								
$\begin{aligned} & 10210 \\ & 10210 \end{aligned}$	A	72.58	3	72.38			1		10	72.50	66
	F	73.07	4	72.90	73.31	0.41	2	2 E	8	73.08	3
[210	-	73.54	5					1W			
	C	73.81	6	73+70	73.96	0.26	2	2 E	60		
	-	74.24	3								
10210	I	75.42	6	$75+16$	75.62	0.46	2	3W	64	75.06	8
$\begin{aligned} & 10210 \\ & 10210 \end{aligned}$	E	76.12	3				1		8		
	F	77.26	3				1		1	77.87	55
$\left[\begin{array}{l} 10220 \\ 10220 \end{array}\right.$		80.46	4	80.26			1	16	25		
	E	81.14	6	80.79	81.27	0.48	2	4 E	44		
	-	81.36	6					1 W			
$\left[\begin{array}{l} 10220 \\ 10220 \end{array}\right.$		81.54	3	81.45			1		7		
	I	82.39	6	81.99	82.58	0.59	3	4 E	24		
	-	82.76	6					3 E			
$\begin{array}{r} 10220 \\ 10220 \end{array}$	E	83.04	6	82.92			1	1 E	7		
	F	83. 32	4		83.38		2	2 E	7	83.52	10
	-	83.57	4					3 E			
. 10220	G	84.37	3				1		1	94.06	66
:10230	A	89.42	3	89.23			1		6	89.76	47
10230	H	90.17	4		90.41		1	4 N	10		
$[10230$		90.75	6	90.64	90.87	0.23	2	2 E	49	90.83	6
-10230	I	91.97	6	91.79			1	4 E	24	91.90	7
$\begin{array}{r} 10230 \\ -10230 \end{array}$	E	92.47	6	92,28	92.57	0.29	1	4 W	63		
	F	92.99	3				1		1		
10240	A	97.92	6	97.71			1	2 W	26		
? 40	E	98.86	4	98.62			2	1 W	26		
10240	C	99.19	6				3	1E	30		
- 10240	II	99.73	3		99.91		3		7		
10240	E	100.42	5	100.24			1		117		
10240		101.06	6	100.79	101.16	0.37	4	4 E	22	101.21	29

ANOM	ALY	FIfucial	CHANNELS	HALF LEFT	$\begin{aligned} & \text { WIIITH } \\ & \text { FIIGHT } \end{aligned}$	HW	AMFLI TUIIE CLASS	SKEW	SIG-T	associateil mag FOSITION	MAGNETIC VALUE
	-	101.27	6					1 E			
10240	G	102.32	3				1		1	102.21	उ8
	-	102.45	3								
10240	H	102.90	3				1		1		
10250	A	108.22	4	108.10			1		5		
10250	F	108.50	6	108.34	108.67	0.34	2	1 E	35	109.47	19
i. 10250	[109.07	6	108.98	109.15	0.18	4		10	109.06	28
	-	109.28	6					2 E			
Γ^{10250}	I	$110+11$	6	110.00	110.22	0.22	3		59	110.28	3
	-	110.45	4					2 E			
10250	E	111.10	3				1		1		
10250	F	111.55	6	111.41	111.68	0.27	1	4W	50	111.42	5
[10250	G	112.20	3				1		5		
10260	A	117.98	3	117.53			1		30		
10260	E	118.76	6	118.39			2		49		
10260	C	119.03	6				3		45		
10260	II	119.22	6				3		34		
$\left[\begin{array}{l} 10260 \\ 10260 \end{array}\right.$	E	119.49	4				2		5	119,65	9
	F	119.84	4		120.15		2		3		
$\begin{array}{r} 10260 \\ 10260 \end{array}$	G	121.14	6	120.69	121,37	0.68	3	4 E	27	121.47	15
T.9260	-	121.53	6					1E			
		121,87	6	121.78			1	1 E	1		
1. 260	」	122.28	6		122.36		1	4E	64	122.43	19
10260	K	122.68	3				1		1		
$\Gamma 10260$	L	122.97	3				1		1		
- 10260	M	123.22	3				1	2 E	1		
$\left[\begin{array}{r}10270 \\ 10270\end{array}\right.$	A	128.17	6	128.01	128.33	0.33	2	1E	21	128.66	86
	E	129.41	3	129.26	129.63	0.37	1		6		
10270	C	129.97	6	129.87	130.07	0.20	3	1E	75		
-10270	II	130.89	6				1	4E	1	$131+13$	23
	-	131.05	3								
10270	E	131.36	3				1		22		
10270	F	131.70	3				1		11		
110280	A	138.46	3	138.01			1		19		
10280	F	139.26	4		139+44		1	4 E	14		
$\bigcirc 10280$	C	139.96	2	139.87			1			139.86	29
- 10280	I	140.33	3	140.11			1		14		
10280	E	140.94	6	140.67	140.91	0.24	3	$3 E$	22	140.99	13
[10280	-	141.01	6					2 E			
		141.81	3				1		22	141.90	50
	-	142.23	6					2 E			
- 10290	A	146.61	5	146.46	146.81	0.35	1	1E	10		
$\therefore 10290$	E	147.56	3	147.47	147.66	0.19	1		1	147.51	57
- 90	C	148.26	6	148.17	148.37	0.20	1		9		
$\begin{array}{r} 1.290 \\ \therefore 10290 \end{array}$	b	148.91	6	148.79	149.05	0.25	1	4 E	7	149.17	6
	E	149.46	5	149,33	$149+60$	0.27	1		23		
	-	149.99	4					4 4			
10300 A		154,77	3				1		1	154,79	19

ANOMALY	FIIHCIAL	CHANNELS	$\begin{aligned} & \text { HALF } \\ & \text { LEFT } \end{aligned}$	WIITH RIGHT	HW	Affilitune CLASS	SkEW	SIG-T	ASSOCIATEI MAG FOSITION	MAGNETIC VALUE
10300 H	156.23	5	156.01	156.38	0.37	2		5		
	156.58	5					3 E		156.70	21
$\begin{aligned} & 10300 \mathrm{~L} \\ & 10300 \end{aligned}$	156.83	4	156.75	156.99	0.24	1	2 E	9		
	157.37	3		157.47		1		1		
	157.59	3								
10300 E	157.88	3				1		1	158.06	21
10300 F	159.90	3				1		1	159.06	5
10300 G	159.10	3				1		1		
$\left\{\begin{array}{l}10310 \mathrm{~A} \\ 10310 \mathrm{E}\end{array}\right.$	155.93	2				1				
	166.38	4	166.19	166.52	0.34	1		3		
$\square^{10310 \mathrm{C}}$	166.85	3				1		1		
	167.16	3								
10311 A	23.75	5	$23+65$	23.85	0.20	1	1 W	B	23.90	4
\bigcirc										
10320 A	172.65	3				1		1		
${ }^{1} 10320 \mathrm{k}$	174.01	4	173,79	174.21	0.42	1		4		
$\left[\begin{array}{l}10320 \\ 10320\end{array}\right.$	174.57	4	174.49	174.71	0.22	1	14	1	174+58	15
	174.93	4					3 E			
110320 10320	175.19	2				1				
10320 E	175.65	3				1		1		
$\prod \quad 21 \mathrm{~A}$	25.89	2				1			25,95	16
10330	183.70	5	183.49	183.83	0.34	3	1 W	9		
i .- -	184.09	4					2 E		184.08	15
$\left[\begin{array}{l} 10340 \\ 10340 \end{array}\right.$	190.64	2				1				
	191.26	4	191.13	191.35	0.22	1	4 E	3	191.22	5
	$191+60$	4					2 E			
$\left[\begin{array}{l}10351 \\ 10351\end{array}\right.$	201.86	2				1				
	204.25	3	204.09	204.35	0.26	1		8		
	204.59	3							204.64	10
$10351 \mathrm{C}$	204.90	2				1				
L										
10360 A	212.12	2				1			211.77	64
, 10360 E	212.92	1				1				
$\square 10360 \mathrm{C}$	$214+94$	1				1				
$\int_{10390 \mathrm{~A}}^{10400 \mathrm{~A}}$	239.41	4				1	2 E	1		
	241.94	1				1				
	243.21	2				1				
10410 A	258.04	3				1				
19410 E	259.00	2				1			258.88	14
- 19010 A	15.36	5				2	35	7		
: 19010 B	15.67	2		15.79		1				
19010 C	17.12	4	17.00	17.27	0.27	2	25	6	16.91	43
19010 II	17.71	6	17.59	17.82	0.24	5		11		

XII

5. Itemized Cost Statement
6. June 21 - 28, 4 days;

Helicopter Borne: INPUT Electromagnetic Survey,
Proton Precession total field Magnetometer Survey

$$
\text { Contract Price } \$ 17,090
$$

2. Mobilization to and from Anyox
$\$ 3,450$
Total Lost $\$ 20,540$
3. Statement of Gualifications
I. Stephen Paul Quin, of 1504 - 1260 Nelson Street, Vancouver, B. C. state that
a) I am a permanent employee of Imperial Metals Corporation with offices at suite $708-744$ West Hastings Street, Vancouver, B. C.
b) I graduated from the Rogal School of Mines, London, Great Britain, with a Bachelor's Honours degree in Mining Geology in 1980.
c) I have been employed by Imperial Metals Corporation and its predecessar, Invex Resources limited, for a period of two gears, since graduation.

NAME
OCCUPATION
EDUCATION

PROFESSIONAL
AFFIIIATIONS

EXPERIENCE

COUNTRIES
WORKED IN
LANGUAGES SPOKEN

PASSPORT :
: ROBERT J. deCARLE
: Chief Geophysicist
: Graduated from Lakehead University in 1967 receiving a Mining Technology Diploma.

Michigan Technological University - B.A.Sc. in Geophysics, 1970.
: Society of Exploration Geophysicists Canadian Institute of Mining \& Metallurgy Canadian Exploration Geophysical Society (KEGS)
: 1965 Summer spent with Noranda Mines Ltd., as underground scram helper.
: 1966 Summer spent with Anaconda American Brass carrying out electromagnetic and magnetic surveys in Ontario.
: 1967-69 Summers spent with Hudson Bay Exploration and Development Co., as a geophysical technician and prospector.
: 1970-
Present Joined Questor Surveys Limited as a Geophysicist. Responsible for reduction of airborne data both in the field and in-house. Also carried out interpretation and report writing.

Became Chief Geophysicist in 1975, responsible for all data reduction personnel, geophysicistts and geologists associated with airborne surveys.
: Canada, United States, South Africa.
: English, French.
: FB 334746 Expires June 16, 1986.

[^0]: In any event, a low priority should be given to this zone.

