GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT ON THE HIT 1-3 AND MISS CLAIMS LOCATED IN THE SIMILKAMEEN MINING DIVISION N.T.S. 92-H-10E Latitude: 49°41'North; Longitude: 120°32'West Owned and Operated by CANADIAN NICKEL COMPANY LIMITED

> E. J. Debicki District Geologist B.C. and Yukon Canadian Nickel Company Limited 80 - 10551 Shellbridge Way Richmond, British Columbia V6X 2W8

September, 1982

GEOLOGICAL BRANCH ASSESSMENT REPORT

10,962

4

Table of Contents

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	1
	2.1 Location, Access, Physiography	1
	2.2 Property Definition	2
	2.3 Previous History	2
	2.4 1982 Exploration Program	2
3.0	REGIONAL GEOLOGY	3
4.0	PROPERTY GEOLOGY	. 3
	4.1 Geological Units	3
	4.2 Structure	4
	4.3 Alteration	5
	4.4 Mineralization	5
5.0	GEOCHEMICAL SURVEYS	6
	5.1 Rock Geochemical Survey	6
	5.2 Soil Geochemical Survey	7
6.0	GEOPHYSICAL SURVEYS	7
	6.1 Altimeter Survey	7
	6.2 Magnetometer Survey	8
	6.3 VLF-EM Survey	8
7.0	CONCLUSIONS AND RECOMMENDATIONS	8
8.0	REFERENCES	10
9.0	STATEMENT OF EXPENDITURES	

10.0 AUTHOR'S QUALIFICATIONS

.

Appendices

Appendix A - Analytical Results Appendix B - Rock Sample Descriptions

<u>Maps</u>

Map 1 - Property Location Map Map 2 - Claim Map

· • •

Figures

(Back P	ocke	ts)		
Figure	1	-	Geology, Grid and Claim Compilation Map	Scale 1:5,000
Figure	2	-	Geology and Rock Sample Location Map, HIT/MISS Detail	Scale 1:2,500
Figure	3	-	Soil Sample Locations, HIT/MISS Detail	Scale 1:2,500
Figure	3a	-	Soil Sample Results: Au, HIT/MISS Detail	Scale 1:2,500
Figure	3ъ	-	Soil Sample Results: Ag, HIT/MISS Detail	Scale 1:2,500
Figure	3c		Soil Sample Results: As, HIT/MISS Detail	Scale 1:2,500
Figure	3d	-	Soil Sample Results: Cu, HIT/MISS Detail	Scale 1:2,500
Figure	3e	-	Soil Sample Results: Mo, HIT/MISS Detail	Scale 1:2,500
Figure	3f	-	Soil Sample Results: Pb, HIT/MISS Detail	Scale 1:2,500
Figure	3g	-	Soil Sample Results: Zn, HIT/MISS Detail	Scale 1:2,500
Figure	4	-	Altimeter Survey, HIT/MISS Detail	Scale 1:2,500
Figure	5	-	Magnetometer Survey, HIT/MISS Detail	Scale 1:2,500
Figure	6	-	VLF Radem Survey, HIT/MISS Detail	Scale 1:2,500
Figure	7	-	Geology and Rock Sample Location Map, HIT Detail	Scale 1:2,500
Figure	8		Soil Sample Locations, HIT Detail	Scale 1:2,500
Figure	8a		Soil Sample Results: Au, HIT Detail	Scale 1:2,500
Figure	8ь		Soil Sample Results: Ag, HIT Detail	Scale 1:2,500
Figure	8c		Soil Sample Results: As, HIT Detail	Scale 1:2,500
Figure	8d		Soil Sample Results: Cu, HIT Detail	Scale 1:2,500
Figure	8e	-	Soil Sample Results: Mo, HIT Detail	Scale 1:2,500
Figure	8f	-	Soil Sample Results: Pb, HIT Detail	Scale 1:2,500
Figure	8g	-	Soil Sample Results: Zn, HIT Detail	Scale 1:2,500
Figure	9		Magnetometer Survey, HIT Detail	Scale 1:2,500
Figure	10	-	VLF Radem Survey, HIT Detail	Scale 1:2,500

. .

1.0 SUMMARY

The HIT 1-3 (16 units) and MISS (15 units) claims, located 25 kilometres north of Princeton, B.C. in the Similkameen Mining Division were staked in 1981 by Canadian Nickel Company Limited (Canico). Access to the property is by the Summers Creek Road from Highway 5.

Geologically the HIT/MISS claims is underlain by a moderate to steeply dipping north-south trending sequence of Triassic-Jurassic Nicola Group volcanics, volcanoclastics, sediments and synvolcanic diorite intrusives. Minor copper mineralization is associated with small fracture zones. On the east side of the property, a 2200 metre long by 100-800 metre wide highly altered, bleached, white to rust coloured, pyritic zone is representative of an alteration cap of an epithermal system or outer halo of a porphyry system. The eastern edge of this alteration zone is marked by downslope displaced soil geochemical values up to 153 ppb Au, 8.4 ppm Ag, 289 ppm As, 574 ppm Cu, 440 ppm Pb, 437 ppm Zn.

Previous work by Canico in 1981 consisted of prospecting, gridding, geological and geochemical surveys. The 1982 field program (May 28 - June 20) completed detailed evaluation of two portions of the property. Gridding, prospecting, geological, geochemical and geophysical surveys confirmed 1981 results. Future work will consist of diamond drilling.

2.0 INTRODUCTION

This report covers the work done on the HIT 1-3 and MISS claims between May 28 and June 20, 1982. A crew of six completed the program from a base camp situated east of the property.

2.1 Location, Access, Physiography

The HIT/MISS claims (31 units) are located 25 kilometres north of Princeton, B.C. (Map 1). The claim group is centered on Missezula Mountain.

Access to the eastern portion of the claim group is by the Summers Creek Road from Highway #5 (Princeton - Kamloops Highway). Other access roads to the west side of the property include a forestry access road from Dry Lake and along a power line road to Missezula Mountain or via the Adonis Mines road to the southeast side of Missezula Mountain.

The claims cover the summit, 1658 metres above sea level, and eastern slopes of Missezula Mountain, to the Summers Creek Valley, 944 metres above sea level. Total relief is 714 metres. The HIT 1 and MISS claims cover rolling, heavily glaciated terrain typical of the Thompson Plateau. The HIT 2 and 3 cover a steep east-facing valley slope with gradients up to 30-40 degrees. The claims are heavily wooded and outcrops are scarce except on the steeper valley slope areas. Portions of the property have been marked out for future logging.

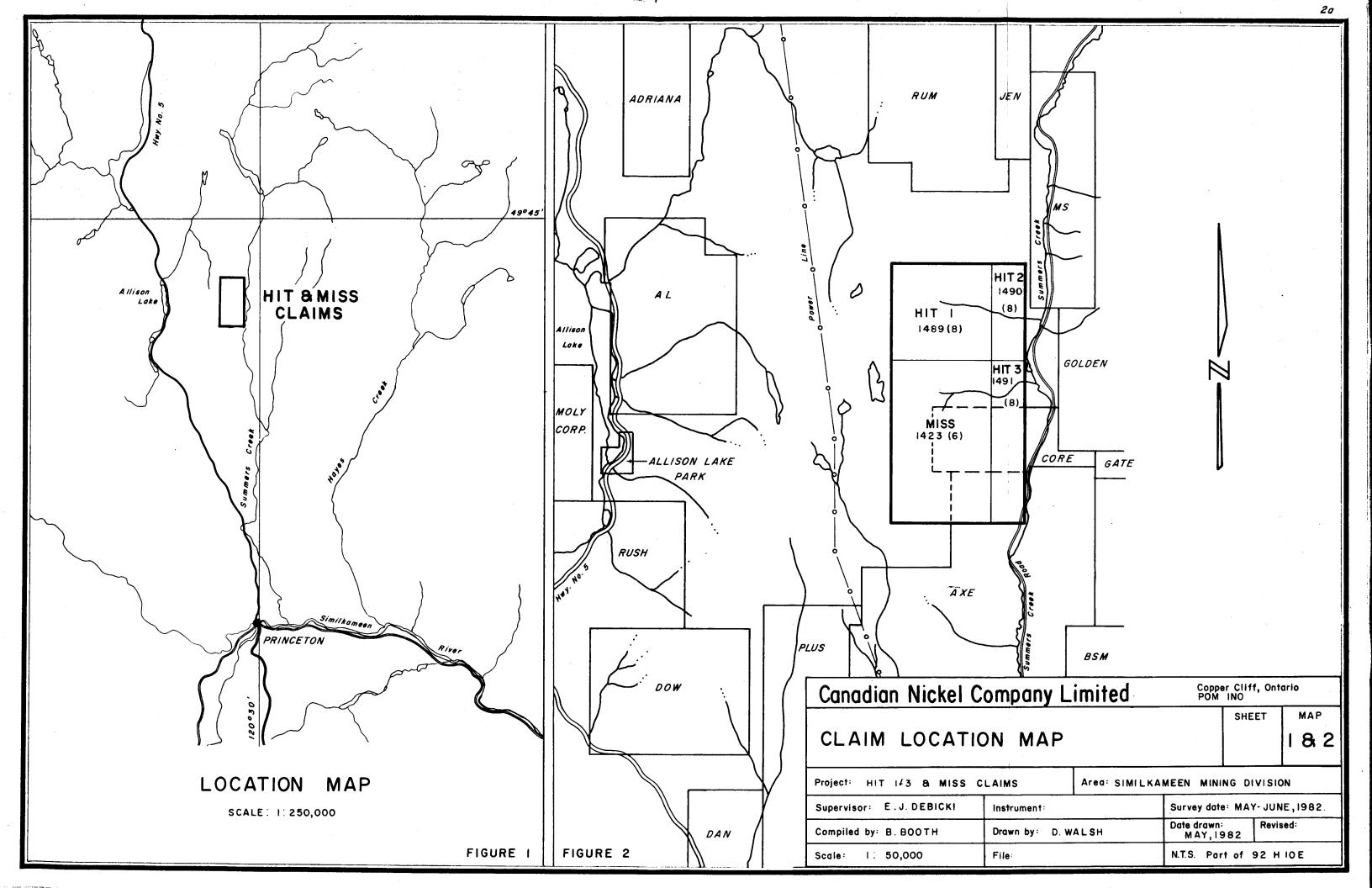
2.2 Property Definition

The HIT 1-3 and MISS claims are located in the Similkameen Mining Division, claim sheet NTS 92-H-10E. (Map 2).

Claim Name	Units	Record No.	Date Staked	Date Recorded
MISS	15 9 3 4 31	1423 (6)	May 23, 1981	June 10, 1981
HIT 1		1489 (8)	August 1, 1981	August 5, 1981
HIT 2		1490 (8)	August 1, 1981	August 5, 1981
HIT 3		1491 (8)	August 1, 1981	August 5, 1981

The HIT/MISS claims occupy ground between the AXE Cu deposit on the south and the RUM claim on the north. The southeast portion of HIT 3 is in apparent contravention of a prior claim CORE 4 (1428(6)). The southeast corner of the MISS and HIT 3 claims is covered by prior staking, namely AXE 2000 (1217(11)).

2.3 Previous History


Portions of the HIT/MISS claims were previously held by Adonis Mines Ltd., Amax Potash Ltd., Texas Gulf Sulphur Co., and Sheba Copper Mines. The claims occupy ground north of the AXE Cu deposit (57.5 million tonnes at 0.50% Cu) held by Global Energy Corp. (formerly Adonis Mines Ltd.) and under option to Cominco Ltd. The RUM Cu prospect, held by Ruskin Developments Ltd., and formerly Amax, occurs to the north. The northeast portion of HIT 1 was mapped and sampled by Sheba Copper Mines Ltd. (Saleken, 1972) formerly held as the MDA-CORB claims. The BO prospect (location approximate) was evaluated in 1970 by Texas Gulf Sulphur who completed reconnaissance soil sampling and mapping.

2.4 1982 Exploration Program

The 1982 Canico exploration program was carried out by a six man crew during the period May 28 to June 20, 1982. Work on the claims was completed from a base camp located on the RITA claims, 6 kilometres to the southeast. Access to and from the property on a daily basis was by truck.

The program consisted of gridding, prospecting, geological, geochemical and geophysical surveys on two detailed areas, namely, the south portion of the MISS claim and west portion of HIT 3 claim, (HIT 3/MISS Detail) and the east central portion of the HIT 1 claim (HIT 1 Detail). Grid lines were re-established and filled in at 100 metre spacing utilizing a grid established in 1981.

A total of 37 rock samples and 363 soil samples was collected from the 11,200 metres of grid on the HIT 3/MISS Detail and 1,700 metres of grid on the HIT 1 Detail areas.

3.0 REGIONAL GEOLOGY

The general geology of the HIT 1-3 and MISS claims area is outlined by G.S.C. Map 888A (Rice, 1947) and more recently by B.C.D.M. Bulletin 69 (Preto, 19**7**9).

Upper Triassic-Lower Jurassic Nicola Group rocks, underlying much of the immediate area, consist of subareal and submarine andesite and basalt flows, breccias, conglomerates, sediments, volcanoclastics and lahar deposits which have been intruded by synvolcanic diorite intrusives. Granite, granodiorite, quartz monzonite and diorite phases of the Upper Triassic - Lower Jurassic Allison Lake Pluton occupy much of the area several kilometres west of the property. The Upper Cretaceous Summers Creek Stock, approximately one kilometre in diameter composed of granodiorite and diorite, occurs several kilometres to the south of the claim group.

The Nicola Group sequence, striking roughly north-south, in the vicinity of the HIT/MISS claim group, is part of the Nicola Group Central Belt (Preto, 1979) approximately 5-6 kilometres wide and bounded on the east by the Summers Creek Fault. The area is geologically similar, and along strike to, the area hosting the Newmont Copper Mountain - Ingerbelle Cu deposit 50 kilometres to the south.

The Nicola Group rocks are disrupted by several large north-south trending, high angle fault zones.

4.0 PROPERTY GEOLOGY

The HIT 1-3 and MISS claims are underlain entirely by a sequence of Upper Triassic - Lower Jurassic Nicola Group volcanics and sediments, and synvolcanic diorite intrusions. The claims were staked in 1981 on the basis of the geological environment defined by mapping by Preto (1979).

4.1 Geological Units

The Nicola Group has been subdivided into five distinct units forming a staked, moderately to steeply dipping sequence. The general geology of the HIT/MISS claim group is simplified on Figure 1. The geology of the HIT 3/MISS Detail and HIT 1 Detail areas is included as Figure 2 and Figure 7, respectively.

Unit la consists of andesite and basalt flows, medium to fine grained, light to dark green coloured. Epidote rich flows containing weakly schistose zones are common. Unit lb consists of augite-plagioclase porphyry flows, massive, green coloured, with low grade greenschist facies minerals such as epidote, actinolite, chlorite, albite and carbonate as common alteration products. Compositions range from alkaline to subalkaline (Preto, 1979) and are compositionally equivalent to Unit la.

Unit 2 occurs as a lenticular 2200 metre long by 100 metre to 800 metre wide unit trending north-south down the central portion of the claim group and onto the AXE claims to the south. It is fine grained, leucocratic, locally sheared, and generally pyritic. Preto (1979) suggests this unit to be an altered, quartz porphyry intrusive. The east and west contacts, although not exposed, appear to indicate that Unit 2 is in relatively sharp contact with the enclosing Unit 1 volcanics. Mapping in 1982 concluded that Unit 2 is a lenticular body of highly altered Unit 1 volcanic. There is no evidence that either contact is fault-bounded. Unit 2 has been interpreted to pinch out to the north. Lack of outcrop prevents defining the exact location of the contact.

Unit 3 is an interbedded volcanic sandstone, fine to medium grained, well bedded, light to dark grey in colour. One unidentified fossil was located within the unit. This unit is not widespread and was located in outcrop on the western portion of the HIT 3/MISS Detail area (Figure 2).

Unit 4 is a grey, fine grained, massive limestone occurring as an interbed within Unit 1. Its extent is limited to a small area of the western portion of the HIT 3/MISS Detail area (Figure 2).

Unit 5 is a dark green to grey, massive, medium to coarse grained, equigranular diorite or syenite consisting of feldspar, augite, hornblende and magnetite. This unit occurs as plugs, dikes and small bodies believed to be synvolcanic with the other units of the Nicola Group. Emplacement of these Unit 5 bodies is believed to have taken place along pre-existing faults. The Unit 5 plug mapped on the east portion of the HIT 1 Detail area is the southern portion of a larger body continuing to the north. A 600 metre diameter plug of Unit 5 has also been mapped on the east central portion of the HIT 3 claim immediately west of the Summers Creek Road.

4.2 Structure

The Nicola Group volcanic sequence trends roughly north-south. Dips of bedding where measurable in sediments are moderately to steeply inclined, predominantly to the east. Foliation and schistosity, developed to various degrees of intensity throughout the units, trends roughly north-south with moderate to steep dips mainly to the east.

The Summers Creek Fault trending north-south along the Summers Creek valley on the eastern edge of the property, marks the division between the Nicola Group Central Belt on the west and the Eastern Belt on the east (Preto 1979). All rocks of the HIT/MISS claims occur within the Central Belt. The eastern contact zone of Unit 2 on the HIT 3/MISS Detail area is marked by

a zone of extensive reticulated cleavage coincident with a 0.5 kilometre wide shear zone trending NNE-SSW as mapped by Preto (1979). This shear zone is part of the Missezula Mountain fault, a sinuous and branching fault system that can be traced from the RUM Cu prospect in the north, through the HIT/MISS Unit 2 alteration zone and south through the AXE Cu deposit. Elsewhere on the property, short discontinuous, NNE-SSW to N-S trending en-echelon faults cut through various portions of the Nicola Group volcanics.

4.3 Alteration

Alteration within the Nicola Group rocks on the HIT/MISS claim group is widespread. Unit lb porphyry flows contain epidote, actinolite, chlorite, albite and carbonate as common alteration minerals. Individual massive flows of Unit la can be highly epidotized particularly where sheared. The most intense alteration occurs within the lenticular 2200 m long by 100-800 m wide Unit 2. The entire unit has been silicified with minor amounts of sericite, carbonate, kaolin and gypsum. Alunite may also be present based on a field test specifically designed to test for low pH minerals. A sugar cube size of material is finely ground up and placed in a Pyrex test tube. The tube is heated intensely with a flame type burner. The gas (H_2SO_4) driven off which condenses at the mouth of test tube, is tested with litmus paper. If a pH of 1 is obtained, the test material can be assumed to be alunite. Pyrite is ubiquitous throughout Unit 2 at about 0.5% with local zones up to 10%. The weathering of the pyrite accounts for the rusty zones within the otherwise leucocratic appearance of Unit 2.

4.4 Mineralization

Mineralization occurs within two environments on the HIT/MISS claim group. Short NNE-SSW trending shear zones locally contain minor amounts of chalcopyrite or other copper minerals detectable by malachite stain. Exploration in 1981, reported chalcopyrite-pyrite carbonate veinlets and traces of galena-chalcopyrite-pyrite quartz veinlets associated with these shear zones confined to the Unit 1 Nicola Group volcanics.

The most extensive mineralization located to date is with the highly altered Unit 2. Pyrite at 0.5% is ubiquitous throughout the unit with local concentrations up to 10%. The eastern contact is marked by downslope displaced soil geochemical values anomalous in Cu, Pb, Zn, Au, Ag, As. These values may be indicative of downhill seepage from the contact. Exploration along this contact failed to locate any visible mineralization because of lack of adequate outcrop. Unit 2 is interpreted to represent either the cap of an epithermal vein/stockwork type alteration zone based on the presence of low pH alteration minerals such as alunite, or the outer halo of a porphyry system.

The HIT/MISS claims lie within the Aspen Grove copper belt, which extends from Princeton to Aspen Grove. The belt is well known for its numerous copper showings and deposits consisting of pyrite + chalcopyrite + bornite + chalcocite mineralization occurring as disseminations, replacements and

- 5 -

fracture fillings within the Nicola Group volcanic and sedimentary rocks. Several showings also contain associated precious metal values. The most significant deposit within the belt is the Newmont Ingerbelle-Copper Mountain camp at Princeton, B.C. Two significant copper prospects, namely the AXE and RUM, occur to the immediate south and north, respectively, of the HIT/MISS claims. The AXE deposit (57.5 million tonnes of 0.5% Cu) contains disseminated and fracture controlled pyrite, chalcopyrite and molybdenite in hydrothermally altered Nicola Group volcanic flows and breccias intruded by diorite dikes and apophyses. The RUM showing consists of pyrite, chalcopyrite, and bornite in fracture zones cutting diorite sills and volcanic flows of the Nicola Group near branches of the Summers Creek Fault. This fault system may also host the bornite-chalcopyrite-pyrite-carbonate fracture fillings cutting altered Nicola Group andesites at the BO showing (HIT 2 claims). The BO showing has not been located during the course of the 1981 and 1982 exploration programs. Its location on Figure 1 is approximate based on information obtained from assessment reports.

5.0 GEOCHEMICAL SURVEYS

The 1982 program completed exploration on two detailed areas of the HIT/MISS claim group. On the HIT 3/MISS Detail area, a total of 11,200 metres of grid line was established consisting of a 700 metre north-south baseline, east-west crosslines at 100 metre intervals and stations along the crosslines at 20 or 50 metre intervals. On the HIT 1 Detail Area, a total of 1,700 ['] metres of grid line was established consisting of a 200 metre north-south baseline and east-west crosslines at 100 metre intervals. Rock and soil geo-chemistry were completed on both detail grids. A total of 37 rock samples and 363 soil samples was collected.

Geochemical rock and soil samples were submitted to Acme Analytical Laboraties for analysis. Samples were analyzed for Cu, Pb, Zn, Ag, and As utilizing ICP. A 0.5 gram sample is digested with 3 ml. of 3:1:3 HCl to HNO₃ to H₂O at 90°C for one hour. The sample is then diluted to 10 mls. with water and analyzed by standard ICP techniques. Au was also analyzed by atomic absorption utilizing a 10 gram sample leached by the same preparation technique as with the ICP analyzed samples. Two rock samples were analyzed for 30 elements by ICP. Not all the soil samples were analyzed for Zn. Geochemcial results are listed in Appendix A.

5.1 Rock Geochemical Survey

A total of 37 rock samples was collected from various locations throughout the HIT 3/MISS and HIT 1 Detail areas, plotted on Figures 2 and 7, respectively. Rock sample descriptions are listed in Appendix B.

The analytical results do not indicate any significant zones of mineralization. A NNE-SSW malachite-stained fracture zone at 3+85W/18+20S returned a value of 3,284 ppm Cu, 1,483 ppm Zn with negligible Pb, Ag, As, Au values. Traces of chalcopyrite along the fracture zone explains the copper value. This type of mineralization, common in the area, is not significant. Background metal values for Cu, Pb, Zn, Au, Ag, As in the Unit 2 altered zone are strongly depleted compared to the Unit 1 Nicola Group volcanics.

Talus rock samples displaced downhill from the eastern contact of Unit 2 failed to explain the cause of the anomalous soil geochemical values suspected also to have been displaced downhill. No samples containing pyrite \pm chalcopyrite \pm arsenopyrite \pm epidote \pm quartz \pm siderite mineralization reported in the 1981 exploration program between 16+00S - 20+00S/2+00E -6+00E, were located in 1982.

5.2 Soil Geochemical Survey

A total of 363 soil samples was collected from the two HIT/MISS Detail grids. Soil sample locations are plotted on Figures 3 and 8 with soil sample results for Au, Ag, As, Cu, Pb, Zn plotted on Figures 3a - 3g and 8a - 8g.

On the HIT 3/MISS Detail grid (Figures 3-3g) the soil sample results indicate a downslope eastward displacement from the contact of Unit 2. Anomalous soil results are dispersed erratically on the eastward facing slope where gradients average $30^{\circ} - 40^{\circ}$. Maximum values for each element are: 153 ppb Au, 8.4 ppm Ag, 289 ppm As, 574 ppm Cu, 449 ppm Pb, and 437 ppm Zn. The results indicate that mineralization occurs along the eastern contact of Unit 2. West of this contact soil geochemical results are extremely low for all elements. The HIT 3/MISS Detail grid covered only the southern [700 metres of the total 2200 metre strike length of the altered Unit 2 zone.

On the HIT 1 Detail grid (Figures 8-8g), detailed soil sampling was completed to explain an anomalous zone located in 1981 with values up to 390 ppb Au and 47 ppm As. The 1982 soil sample program outlined a 200 m long by 25 metre wide north-south trending zone anomalous in Au with values up to 120 ppb versus a background of 5 ppb. The zone is open to the north and south. Values of As up to 46 ppm versus a background of 2 ppm are displaced 100 metres downhill to the east relative to the Au anomaly. The anomaly may represent the northward continuation of the eastern contact of Unit 2. No Unit 2 rocks were identified on the HIT 1 Detail grid but the area immediately west of the Au soil anomaly is overburden covered.

6.0 GEOPHYSICAL SURVEYS

Altimeter, magnetometer and VLF-EM geophysical surveys were completed on the HIT 3/MISS and HIT Detail grids.

6.1 Altimeter Survey

Altimeter readings, using a Thommen pocket altimeter instrument, were taken at 25 metre intervals on the HIT 3/MISS Detail grid. The results of the survey, plotted and contoured on Figure 4, indicate an eastward facing slope relatively flat west of the base line (00 to 7+00W) becoming very steep $(30^{\circ}-40^{\circ} \text{ gradient})$ east of the base line (00 to 7+00E) to Summers Creek valley bottom.

- 7 -

6.2 Magnetometer Survey

Canico personnel carried out 12,900 metres of ground magnetometer survey taking readings at 25 metre intervals. A Scintrex MF-1 fluxgate magnetometer was used to measure the relative vertical field strength in gammas. Corrections were made for diurnal and instrument drift by reading a base station at one to two hour intervals. The corrected survey results are plotted on Figures 5 and 9 with contours drawn at 100 gamma intervals.

In detail, the magnetic data show short range variations caused by local changes in magnetite content and/or depth variations to the magnetic source. Geological units, in particular the magnetic unit 5 diorite intrusive (HIT 1 Detail grid) is well defined by its higher intensity compared to the surrounding Unit 1 volcanics. Individual Unit 1 Nicola Group volcanic flows with increased magnetite content are also well defined by their higher intensity, such as on the HIT 3/MISS Detail grid between 2+00E and 4+00E.

6.3 VLF-EM Survey

A 12,900 metre VLF-EM survey was conducted on the 100 metre grids using a transmitting station at Seattle, Washington (NPG) which operates at 18.6 kHz. A Crone "Radem" receiver was employed at 25 metre station intervals to record the tilt angle of the resultant field in degrees. The data are presented on Figures 6 and 10 as profiles.

The tilt angle data on the HIT 1 Detail (Figure 10) shows a clear regional affect which is caused by steep topography. Crossovers from a weak - medium conductor are superimposed on the regional on all lines at approximately 3+50E. The results are typical of those caused by a shear and/or geological contact such as suggested on the geological plan (Figure 7).

On Figure 6, the tilt angle VLF data for the MISS claims appears almost entirely related to topographic effects. A few weak indications of possible bedrock sources are shown on the map. These do not follow any pattern which can be related to the geological or magnetic data.

Neither of the VLF surveys produced data which could be interpreted as resulting from sulphide sources.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The HIT/MISS claim group is underlain by volcanics, sediments and synvolcanic intrusives of the Upper Triassic - Lower Jurassic Nicola Group. The sequence trends roughly north-south and is cut by several major north-south fractures, namely the Summers Creek Fault on the east and Missezula Mountain Fault in the central portion of the claim group. A lenticular 2200 metre long by 100-800 metre wide leucocratic, pyritic, highly altered volcanic is indicative of a cap zone of an epithermal system or outer halo zone of a porphyry system. The zone holds untested potential for precious metal-base metal mineralization. Anomalous soil geochemical values up to 153 ppb Au, 8.4 ppm Ag, 289 ppm As, 574 ppm Cu, 449 ppm Pb and 437 ppm Zn, are displaced downhill up to 700 metres away from the suspected source along the eastern contact of the altered Unit 2 zone. The contact is not exposed and prospecting and geological mapping failed to locate the source of the soil geochemical anomalies.

Future work on the HIT/MISS claim group will consist of diamond drilling the eastern contact of the altered Unit 2 Nicola Group volcanic.

8.0 REFERENCES

- Christoffersen, J.E., De Paoli, G.M., and Hodgson, C.J., 1971: Geological, Geochemical and Geophysical Report on the Ketchan Creek Property (RUM Claims); B.C. Assessment Report #3365.
- Peto, P., 1982: Prospecting and Geochemical Report on the HIT 1-3 and MISS Claims, Canadian Nickel Company Limited; B.C. Assessment Report.
- 3. Preto, V.A., 1979: Geology of the Nicola Group between Merritt and Princeton; B.C.D.M. Bulletin #69.
- Preto, V.A., 1972: Geology of the Allison Lake Missezula Lake Area, B.C.; B.C.D.M. Preliminary Map No. 17, Scale 1:15,840.
- Preto, V.A., 1981: Reconnaissance Rock Geochemistry of the Nicola and Kingvale Groups between Merritt and Princeton; B.C.D.M. Paper 1981-2.
- 6. Rice, H.M.A., 1960: Geology and Mineral Deposits of the Princeton Map Area, B.C.; G.S.C. Memoir 243.
- 7. Rice, H.M.A., 1947: Princeton Geology Map; G.S.C. Map 888A, Sheet 92-H (East Half), Scale 1:253,440.
- Salekan, L.W., 1972: Report on the Geology, Geochemistry and Magnetics, Princeton Claims, South MDA - RCS and North MDA - CORB Claim Groups, B.C. Assessment Report #4227.

9.0 STATEMENT OF EXPENDITURES - 1982

HIT #1, #2, #2 and MISS CLAIMS

WAGES

E.J. Debicki H.R. Butler B. Booth J. Scouten K. MacDonald C. Ravnaas R. Allum D. Walsh	8 days @ \$250 2 days @ \$258 14 days @ \$96 14 days @ \$81 10 days @ \$87 10 days @ \$76 11 days @ \$67 3 days @ \$155	\$2,000 516 1,344 1,134 870 760 737 465	\$ 7,826.00
PERSONNEL EXPENSES			
Accommodation (Meals (Town & T Groceries (Camp	ravel) 15 man days @ \$20 per day	323.51 300.00 868.33	1,491.84
TRANSPORTATION			3
	4 x 4 - 10 days @ \$33.29 per day 2 x 4 - 14 days @ \$26.22 per day	332.90 367.08	
Gasoline	Van - 10 days @ \$22.11 per day	$\frac{221.10}{224.10}$	1,145.18
ANALYTICAL			
•	is (Cu,Pb,Zn,Ag,As,Au) @ \$8.25 each s (Cu,Pb,Zn,Ag,As,Au) @ \$10.25 each	2,994.75 	3,353.50
MISCELLANEOUS			

Field Supplies, Propane, Maps, Stationary

474.51

Total: \$14,291.03

E.J. Debicki August 4, 1982

10.0 AUTHOR'S QUALIFICATIONS

I, EDWARD J. DEBICKI, of the City of Richmond, in the Province of British Columbia, HEREBY CERTIFY:

- 1. THAT I reside at 11351 Seahurst Road, Richmond, British Columbia, V7A 3P3
- 2. THAT I am a graduate of McMaster University, Hamilton, Ontario, with a degree of Bachelor of Science (1971).
- 3. THAT I am District Geologist, B.C. and Yukon, with Canadian Nickel Company Limited (subsidiary of Inco Limited) of Copper Cliff, Ontario, POM 1NO.
- 4. THAT I have practised my profession as a geologist since 1971, having worked in Ontario, Quebec, the Northwest Territories, Yukon Territory and British Columbia.
- 5. THAT I visited the property and that the work described in this report was carried out under my supervision on behalf of Canadian Nickel Company Limited.
- 6. THAT I am a Associate Member of the Geological Association of Canada and a member of the Canadian Institute of Mining and Metallurgy.

DATED at Richmond, British Columbia, this 17th day of September, 1982.

Debicki Edward

APPENDIX A

ANALYTICAL RESULTS

ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158

435

ICP GEOCHEMICAL ANALYSIS

A .500 BRAM SAMPLE IS DIBESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH F THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 pps. AU: ANALYSIS BY AA FROM 10 BRAM SAMPLE. SAMPLE TYPE - BOCK CHIPS

			MAILED Juni 24/2 ASSAYER ACTU		Seamon
JUNE 21 1982	DATE	REPORTS	MAILED YING ATMASSAYER L'CALL	DEAN	TOYE,
				- Tele	
			V		

CANADIAN NICKEL PROJECT # MISS CLAIMS #60828 FILE # 82-0441

SAMPLE #	CU ppm	PB ppm	ZN Ppm	AG ppm	AS ppm	Au* PPb
RX042198 RX042199 RX042200 RX045853 RX045854	109 3284 54 60 127	8 76 7 7 14	71 1483 19 90 127	.3 1.1 .2 .1	29 15 23 11 12	លមាម
RX045855 RX045856 RX045857 RX045858 RX045858 RX045859	64 25 12 295 597	239 14 8 8	370 241 36 43 39	.5 .1 .4 .2	21 9 3 4 8	10 5 10 15
RX045860 RX045861 RX045862 RX045863 RX045863	11 80 136 64 28	10 12 8 10	43 65 80 78	·1 ·2 ·4 ·2	6 13 30 7 34	សសាលា
RX045865 RX045866 RX045867 RX045868 RX045868 RX045869	78 33 86 55 86	10 133 13 67 17	70 166 332 292 160	1.0 1.3 1.3 1	13 27 12 53 • 17	5 15 15 10 5
RX045870 RX045871 STD A-1 RX042938 RX042939	4 88 31 9 138	9 8 44 1 6	7 82 187 5 43	.4 .1 .4 .1	2 14 13 2 5	យមាលមា
RX042940 RX042941 RX042942 RX042943 RX042943 RX042944	65 17 62 56 138	10 8 15 11 13	54 42 76 75 51	.2 .1 .1 .2	22 5 525 31 16	5 5 10 5 5
RX042945 RX042946 RX042947 RX042948 RX042948 RX042949	110 28 9 4 28	8 7 30 5 11	81 154 47 11 98	.1 .2 .1 .1	15 6 2 7 24	សសសម
RX045883	250	14	99	.1	32	5

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DISESTED WITH 3 ML OF 3:1:3 HCL 10 HWC3 TO H2O AT 90 DES.C. FOR I HOUR. THE SAMPLE IS DILUTED TO 10 HLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Wa,K,W,Ba,Si,Sr,Cr AND B. Au DETECTION 3 pps. AUX AMALYSIE BY AM FROM 10 GRAM SAMPLE. SAMPLE TYPE - ROCK CHIPS

DATE RECEIVED AND 19 1982 DATE REPORTS MAILED Super 382 ASSAYER _ A Chilly DEAN TOYE, CERTIFIED B.C. ASSAYER

CANADIAN NICKEL - FILE # 82-0901

FACE & L

SAMPLE I	52	No ppe	Cu ppe	Pb ppc	2n pps	Aq ppe	Ni pps	Co pps	tin ppe	Fe	As pps	U pps	Au ppa	Th ppe	Sr ppa	Cd ppe	Sb ppe	Bi pps	V pps	24 2	P I	La ppe	Cr pps	Ng 1	3a 900	Ti I	8 pps	#! 1	Na Z	ĩ	k ;;;;	Aut ppb	
RX15461 RX15462		6 4	5 10	23	2 74	$^{.1}_{.1}$	1	1 2	16 285	1.20 3.19	8 2	2 2	XD ND	2 2	4	1	2 2	2 2	1	,02 .61	.01 .01	27	1	.02 1.01	43 32	.01 .01	22	.20 1.25	.02 .61	.18 .10	2	5	Hrt Mw

LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C.

PH: 253-3158

TELEX: 04-

ICP GEOCHEMICAL ANALYSIS

M SAMPLE IS DIGESTED WITH 3 NL OF 3:1:3 HCL TO HND3 TO H2D AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 pps. IS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - SOIL/SILT /

IS BY AA FR	ION 10 GRAN SAMPL	E. SAMPLE T	Δ	Cho.			1			
DATE	REPORTS	MAILED		<u>c2\$[\$2</u>	ASSAYE	R	- Elin	DEAN	TOYE,	CERTIFIET
	CANAL	IAN NICH		DJECT #	60828 ·	- 14050	, FILE #	# 82-04	39	
_E # <u>SX</u>		MO ppm	CU Dþm	FB ppm	ZN ppm	AG ppm	AS ppm	Au* ppb		
58655 88656 88657		2 · 2 2	14 33 85	20 58 54	99 227 198	.1 .2 .3	4 6 2	5 5 5		
98658 88659 88660 88661 88662		2 3 4 3 2	154 117 200 203 114	19 27 16 11 10	127 140 62 61 44	.1 .1 .1 .1	3 6 4 2 2	<u> </u>		
88/43 88/4 88005 88666 88666 88667		4 1 1 1 1	458 104 15 35 15	13 14 10 10 9	52 50 62 47 57	• 1 • 1 • 1 • 1 • 1	2 2 2 4 2	ភភភភ ភភភភ ភភភ		
88668 88669 88670 88671 88671 88672		1 1 1 1	62 17 17 19 18	13 10 11 12 7	65 97 42 57 50	- 1 - 1 - 1 - 1 - 1	10 7 5 6 5	5 ឆ 5 5 5 5		
88673 88674 88675 88675 88676 88677		1 1 1 1 1	12 43 24 15 18	10 10 12 10 8	58 52 62 55 43	.1 .2 .1 .2 .1	4 6 11 6 7	5 5 5 5 5		
88478 88679 88680 98681 88682		1 1 10 2	20 18 16 38 22	9 14 9 24 19	48 73 67 87 97	.1 .2 .1 .3 .1	2 3 6 26 6	90 5 5 5 5		
(88683 (88684 (88685 (88685 (88685 (88687		5 3 4 1 1	56 67 100 9 9	122 104 320 85 101	195 202 258 187 209	.7 .4 .9 .2	29 29 46 6 7	ភា ភ្លា ភ្លា ភ្លា ភ្លា ភ្លា		
188 7 8 182 9 A-1		1 2 2	11 45 29	34 199 41	300 123 176	1.7 .3	9 289 9	5 15 5		

	CANADIAN	NICKEL	PROJ	JECT #	60828 -	14050	FILE #	82-04 39
SAMPLE #	M P		CU opm	FB ppm	ZN ppm	AG PPm	AS PPM	Au # ppb
5X088690 5X088691 5X088692 5X088693 5X088693 5X088694		74333	64 50 77 55 39	449 382 375 197 144	387 413 437 348 351	2.0 2.3 8.4 2.7 1.9	194 81 35 25 21	55 45 40 35 50
SX088695 SX088696 SX088697 SX088698 SX088698 SX088699		2 1 2 1 2	29 10 26 24 55	92 37 107 47 42	311 183 306 180 193	1.1 .6 1.0 .2 .4	18 3 12 10 22	សលេសស
SX088700 SX088989 SX088990 SX088991 SX088992		2 1 1 1	137 13 9 14 12	32 10 12 13 18	188 86 77 200 76	.2 .1 .1 .1 .2	30 3 2 2 4	ហម <u>ា</u> មា
SX088993 SX088994 SX088995 SX088996 SX088997 SX088997		2 4 10 9 10	9 13 15 43 45	34 20 182 222 97	52 23 7 14 23	-7 -1 -9 -8 1.1	2 5 13 19 22	5 5 20 25 15
SX088998 SX088999 SX089000 SX089001 SX089002		9 4 2 1 2	42 25 22 113 208	119 34 19 10 12	38 59 86 51 56	.8 .3 .1 .1 .1	25 10 2 3 2	20 55 55 5
SX089003 SX089004 SX089005 SX089006 SX089007			317 236 139 137 25	14 15 14 15 9	48 42 55 60 132	.1 .1 .1 .3	2234 2	<u>ទទ</u>
SX089008 SX089009 SX089010 SX089011 SX089012		1 1 1 1	18 20 21 23 26	12 10 11 11 13	186 92 94 98 98	- 1 - 1 - 1 - 1	30353	ហ្គមា ស្ត្រា
SX089013 SX089014 STD A-1		1 1 1	19 20 30	10 14 42	75 59 177	.1 .2 .2	5 4 8	5 5 5
							•	

•

•

C

¢

•

••

	CANADIA	N NICK	EL PRO	JECT #	60828 -	14050	FILE #	82- 0
SAMPLE #		MD ppm	CU	₽B ppm	ZN ppm	AG PPm	AS PPM	А ц¥ Р РБ
SX089015 SX089016 SX089017 SX089018 SX089019		1 1 1 1 1	20 39 25 21 38	11 9 11 8 10	41 57 74 57 52	. 4 . 1 . 1 . 1 . 1	3 16 27 5 11	ניו ניו ניו ניו ניו
SX089020 SX089021 SX089022 SX089023 SX089023 SX089024		1 1 1 2	30 43 57 115 151	11 10 13 9 16	76 72 69 66 59	- 1 - 1 - 1 - 1 - 1	8 10 13 2 10	ល បា បា បា បា
SX089025 SX089026 SX089027 SX089028 SX089029		1 1 2 1	58 43 36 21 44	8 11 11 10 10	74 78 82 83 68	. 1 . 1 . 1 . 1 . 1	2 6 4 8	רא כע כע כע כע
SX089030 SX089031 SX089032 SX089033 SX089034		1 1 1 1	32 53 33 10 12	11 12 8 5 9	60 80 69 87 87	. 1 . 1 . 1 . 1	25 25 8 2 2	មាយមាយ
SX089035 SX089036 SX089037 SX089038 SX089038 SX089039	•	1 1 1 1	24 35 27 29 13	9 21 11 13 9	133 132 66 60 73	- 1 - 1 - 1 - 1 - 1	55526	លលល
SX089040 SX089041 SX089042 SX089043 SX089043 SX089044		1 1 2 1 1	16 20 18 19 18	10 10 9 8 9	68 54 43 50 49	. 1 . 1 . 1 . 1 . 1	2 3 7 5 5	כח כח כח כח
SX089045 SX089046 SX089047 SX089048 SX089048 SX089049		1 1 1 1	23 25 23 22 12	10 11 10 9 8	48 49 73 70 68	.1 .1 .2 .1 .1	7 7 9 3 2	ດາ ເມ ເມ ເນ
SX089050 SX089051 STD A-1		1 1 1	52 11 29	12 8 43	49 52 176	.1 .1 .3	2 4 8	

•

•

••

•

-

	•									
-										
							•			
	· •	CANADI	AN NIC	KEL PR	OJECT #	60828	- 14050	FILE :	# 82- 043-	
	SAMPLE #		MO PPm	CU Ppm	P.B P.D	ZN ppm	AG ppm	AS ppm	Au* ppb	
	SX089052 SX089053 SX089054 SX089055 SX089055		1 1 1 1	10 40 85 26 18	6 13 8 11 10	34 56 37 76 95	. 1 . 1 . 1 . 1 . 1	MUMMU	សលាស	
	SX089057 SX089058 SX089059 SX089060 SX089060		1 1 1 1	15 12 12 20 20	8 8 11 8 9	71 63 76 89 87	- 1 - 1 - 1 - 1 - 1	5915 1990	ង ស ស ស ស ស ស	
	SX089062 SX089063 SX089064 SX089065 SX089065 SX089066	•	1 1 1 1	16 21 19 24 44	8 10 11 10 10	96 82 82 76 47	.1 .2 .1 .2 .1	N N N N D	មាលលាយ	
	5X089067 5X089068 5X089069 5X089070 5X089071		1 1 1 1	26 26 25 24 22	12 15 13 11 9	95 100 87 94 69	.4 .2 .1 .2	35762	លលល	
	SX089072 SX089073 SX089074 SX089075 SX089076		1 1 1 1	17 37 25 21 27	10 11 11 10 13	82 71 75 70 69	.1 .2 .1 .2 .2	255 20 20	ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ	
	SX089077 SX089078 SX089079 SX089080 SX089081		1 1 2 1	22 26 57 75 34	12 10 12 21 10	83 79 54 94 109	. 1 . 1 . 1 . 1 . 1	5 2 7 46 16	5 120 5 10 5	
	SX089082 SX089083 SX089084 SX089085 SX089085 SX089086		i 1 1 1	14 16 117 40 43	8 11 10 9 11	53 51 61 43	- 1 - 1 - 1 - 1 - 1	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	លលល	
	5X089087 5X089088 STD A-1		1 1 1	23 14 30	8 8 42	51 46 178	.1 .1 .3	2 2 7	ភ ភ ភ	

•

								•	
							ĸ		
C		•							
!					•	•			
		CANADI	AN NICH	EL PR	DJECT #	60828 -	14050	FILE #	82-043
	SAMPLE #		MO ppm	CU ppm	₽B ppm	ZN PPM	AG PPm	AS PPM	Au* ppb
	SX089089 SX089090 SX089091 SX089092 SX089093		1 1 1 1	40 16 19 19 25	6 10 7 9 9	40 76 59 68 56	- 1 - 1 - 1 - 1 - 1	3 2 4 4 3	ភ ភភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ
	SX089094 SX089095 SX089096 SX089097 SX089098		1 1 1 1	32 19 20 25 21	8 9 10 10	52 67 60 66 77	.1 .1 .2 .1 .1	5 7 7 8 5	15 10 5 5 5
	SX089099 SX089100 SX089101 SX089102 SX089103		1 1 3 2 7	20 14 29 13 47	9 8 27 26 55	97 79 168 100 49	.3 .1 .1 .1	4 4 7 3 19	20 5 5 5 5
	SX089104 SX089105 SX089106 SX089107 SX089108		ស្ន ស្ន ស្ន ស្ន ស្ន ស្ន	43 51 32 39 38	51 58 39 60 54	57 83 113 47 73	.52 .23 .34 .3	18 18 15 18 18	5 5 5 10 15
•	SX087107 SX087110 SX087111 SX087112 SX087113		5 2 1 1 1	46 162 38 85 32	46 14 8 5	- 72 103 48 69 80	.4 .2 .1 .1 .1	11 3 2 3 2	<u>ទ</u> ទ្ធ ទទ្ធ ទ
	SX089114 SX089115 SX089116 SX089117 SX089117 SX089118		2 1 2 1 1	143 23 18 32 10	12 9 9 11 7	104 57 72 95 71	.2 .1 .1 .1	2 4 36 33 8	5 5 5 5 5 5 5 5
	SX089119 SX089120 SX089121 SX089122 SX089122 SX089123		1 1 2 1	20 33 14 106 23	6 7 7 9 8	50 123 42 67 39	- 1 - 1 - 1 - 1 - 1	2522	ស ស ស ស ស ស ស
	SX089124 STD A-1		1 1	28 29	7 42	56 172	.1 .3	2 10	5
								· ·	
k									

57000000	1	120	-7	- 4	24	12
5X088809	1	98	26	. 1	16	5
SX089810	4	223	27	.5	26	20
SX0ESB11	1	202	24	.2	28	10
SX088812	2	215	19	. 1	31	5
SX088813	1	232	18	. 4	35	30
SX088814	2	346	28	. 1	38	5
SX088815	7	205	130	.5	61	20
53.088816	000	115	42	. 1	78	10
SX088817	3	Se	29	.2	49	5
SXOBS518	ç	140	34	.5	43	10
SX088819	6 5	268	77	. 6	49	15
5X088820	5	50	128	. 4	33 -	25
	Mo	Cu	Pb	Az.	As	Ant
	Ppm	ppm	Pp-	~q7	Ppm	Ppb

18	Critte		CHARLE .			
SANPLE #	MD	CU	PB	AG	AS	Au*
	ppm	ppm	ppm	ppm	ppm	ppb
SX088821	4	73	30	.1	22	5
5X088822	9	59	40	.1	31	5
SX088823	13	42	46	.4	31	15
SX088824	15	44	48	.6	31	25
SX088825	9	23	87	.5	20	15
37000020		20	07		~~	
S7089826	7	54	46	.6	23	10
SX088827	8	43	54	.7	21	20
SX088828	12	92	43	.7	25	20
SX088829	22	27	81	1.9	34	40
SX088830	5	37	47	1.3	20	40
SX086831	4	65	27	. 1	13	5
5X088832	2	17	17	. 1	3	5
SX089833	1	7	14	.2	3	5
SX086834	1	3	6	- 1	2	5
SX088835	1	11	23	.1	2	5
SX088836	1	12	30	. 1	2	5
SX088837	1	29	26	.1	2	5
SX088838	1	22	18	.1	4	5
5x088839	1	18	16	.1	6	5
SX088840	1	14	32	.1	В	5
			18		2	
SX088841	1	15		.1	13	5.5
SX088842	2	143	16 13	. 1'	14	35
SX088843		152				
SX088844	3 2	363	13	.7	16	65
SX088845	2	246	14	. 1	9	10
SX088846	2	152	13	. 1	3	5
SX088847	2	574	18	. 1	15	5
SX088848	2	226	19	. 1	7	5
SX088849	1	452	13	. 1	9	5
SX088850	1	284	14	. 1	15	5
SX088851	1	129	12	. 1	10	5
SX088852	1	218	12	. 1	. 7	5
SX089853	1	53	11	. 1	3	5
SX088854	î	155	12	. 1	4	10
SX088855	ĩ	53	10	. 1	8	5
SX088856	1	154	14	. 1	10	5
SX088857 ·	1	25	7	.1	2	5

1

CANADIAN NICKEL FILE # 82-0430

CANADIAN NICKEL FILE # 82-0430

	CANA	DIAN NI	CKEL	FILE #	82-0430	
SAMPLE #	MO '	cu	PB	AG	AS	HU.*
	ppm	ppm	ppm	ppm	ppm	ppb
SX088894	2	39	12	. 1	7.	5
SX088895	, 3	38	11	. 1	7	5
SX088896	1	10	7	.3	7 3	. 5
SX088897	1	24	10	. 1	4	10 ES
SX088898	1	22	12	. 1	4	5
SX088899	1	24	12	. 1	2	5
SX088900	1	32	12	. 1	0	0.0
SX088901	1	19	10	. 1	5	5
SX088902	1	22	10	. 1	2	5
SX088903	1	29	12	. 1	E-	5
SX088904	1	64	12	. 1	9	5
SX088905	2	9	27	. 1	19	5
SX088906	1	18	9	. 1	3	5
SX088907	1	21	9	. 1	4.	5
SX088908	1	45	11	. 1	8	5
SX088909	1	17	9	. 1	4	5
SXOBB910	1	21	11	. 1	8	5
SX088911	1	32	8	. 1	8	5
SX088912	1	20	32	. 1	6	5
SX088913	1	39	82	.5	5	5
SX088914	1	22	149	1.3	16	5
SX088915	1	32	197	.9	57	20
SX088916	1	24	311	2.1	23	155
SX088917	1	18	72	.2	4	5
SX088918	1	113	22	. 1	10	5
SX088919	3	368	19	. 1	14	10
SX088920	2	302	13	. 1	10	5
SX088721	1	143	14	. 1	6 7	5
SX088922	1	275	13	.1		ហហ
SX088923	1	61	5	. 1	6	5
SX086924	1	102	13	.2	7	5 5
SX088925	1	13	3	. 1	7 2 5 4	5
SX088926	1	31	6	. 1	5	5
SX088927	1	60	1 1	. 1	4	64 CH CH
SX088928	1	42	11	- 1	ć	Ð
SX088929	1	51	10	.1	, B 2	6 63
SX088930	1	29	7	. 1	2	5
STD A-1	1	29	39	.2	8	5

t

	CANA	DIAN NI	CHEL	FILE #	82-0430	
SAMPLE #	MO	CU	PE	AG	AS	Au#
	ppm	ppm	ppm	PPm	ppm	ppb
SX088931	1	19	4	- 1	2	5
SX088932	1	30	9	. 1	7	5
5X088933	1	14	5	. 1	6	5
SX088934	1	148	17	. 1	10	5
SX088935	1	108	15	.1	6	5 5
SX088936	2	260	12	.1	8	S
5:088937	1	131	10	. 1	5	15
SX082938	1	34	7	. 1	3	
SX058737	1	82	ę.	.1	4	5 53
57088940	1	18	7	.1	2	5
5X088941	3	218	16	.1	9	10
SX088942		212	13	.1	8	5
SX098943	2 3 9 4	207	15	.1	11	5
SX088944	0	266	16	.1		
5X088945	7	307	15		11	10
5709940	4	507	15	. 1	10	5
SX088046	2	381	17	.1	10	5
SX088947	5	277	18	.1	7	5
SX088948	1	106	13	. 1	7	. 5
SX088949	4	361	10	. 1	4	5
SX088950	1	127	13	.1	7	5
SX088951	1	131	10	.1	15	5
SX088952	1	215	15	1	10	10
SX088953	1	52	11	.1	10	5
SX088954	1	67	14	. 1	10	5
SX088955	1	81	14	.1	10	5
SX088756	2	106	14	. 1	8	5
SX088957	1	97	9	. 1	8	5
SX088958	1	56	11	. 1	7	10
SX088959	1	32	9	.2	14	5
SX088760	î	68	14	.1	19	5
SX088961	1	89	15	. 1	9	5
SX088962	1	103	13	.1	10	5
SX085763	1	29	17	.1	5	10 10
SX082584	1	32	45	.3	4	5
SX088765	1	18	65	.1	3	5
5X088766	1	56	94	.6	7	5
SX088967	1	54	53	.5	10	5
STD A-1	1	29	42	.2	9	5
	+	27	42	• 4		5

-

	CANA	DIAN NI	CLEL	FILE #	82-0430	
SAMPLE #	MO	CU	PB	AG	AS	ALI*
	ppa	ppm	ppm	ppm	ppm	ppb
SX088968	1	37	56	.2	7	5
SX088969	1	17	9	. 1	В	5
SX088970	1	16	10	. 1	5	5
SX088971	1	22	10	. 4	2	5
SX088972	1	1 ć	5	.2	2	5
SX088973	1	20	ε	.1	4	15
SX088974	1	18	6	. 1	2	5
SX088975	1	17	8	. 1	4	5
SX088976	1	54	10	.1	4	5
SX088977	1	36	14	. 1	4	5
SX088978	1	23	11	.1	4	5
SX088979	1	20	6	.1	3	5
SX088980	1	15	9	. 1	3	5
SX088981	1	27	7	. 1	6	5
SX088982	1	21	10	. 1	5	5
SX088983	1	23	10	. 1	5	5
SX088984	1	19	12	.1	7	5
SX088765	1	24	10	. 1	8	5
SX088766	1	26	9	. 1	9	5
SX088987	1	22	9	. 1	12	5
SX088988	1	27	9	. 1	6	5
STD A-1	1	29	39	2	12	5

CALLADA

1.4.4

....

. .

E

APPENDIX B

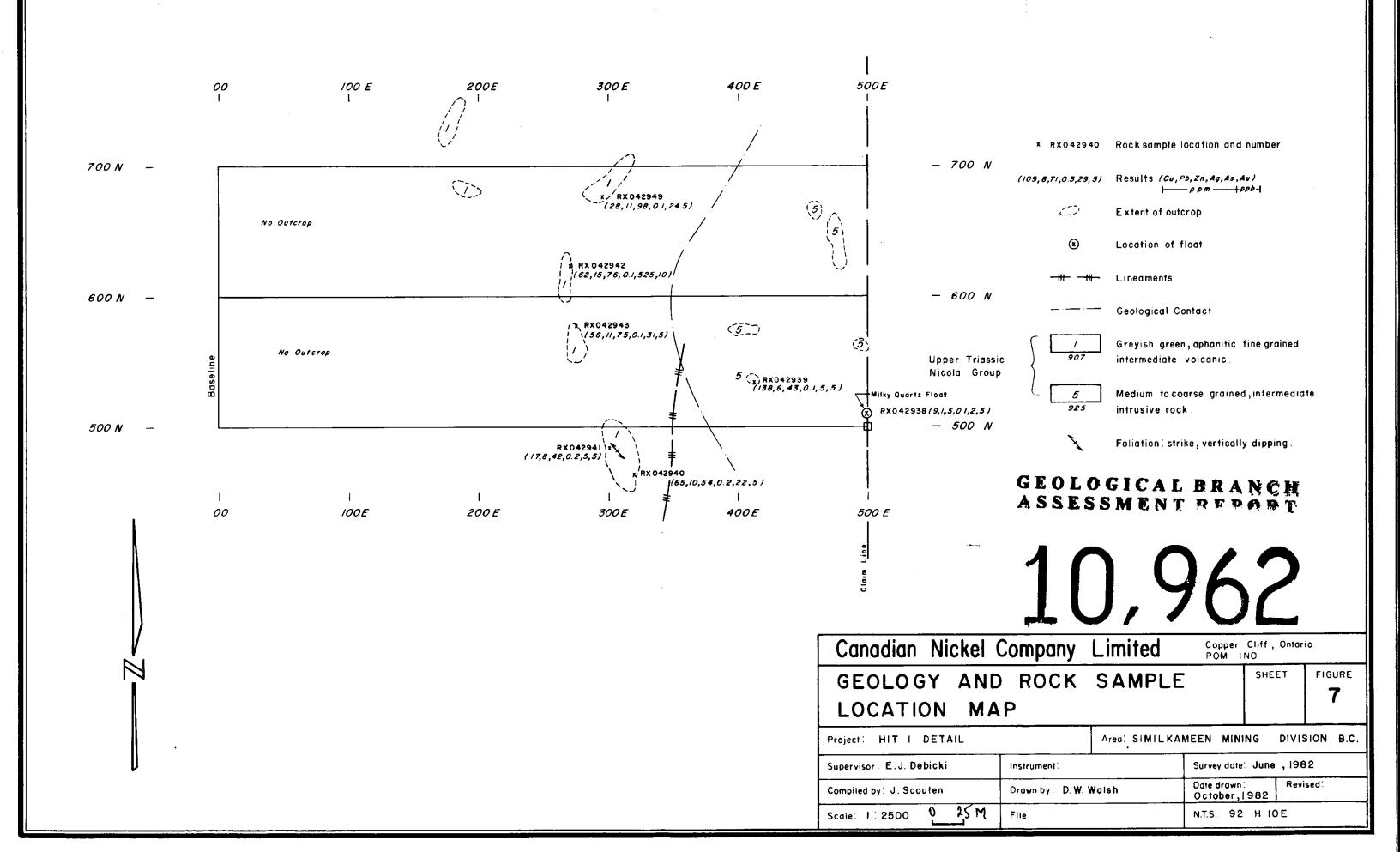
ROCK SAMPLE DESCRIPTIONS

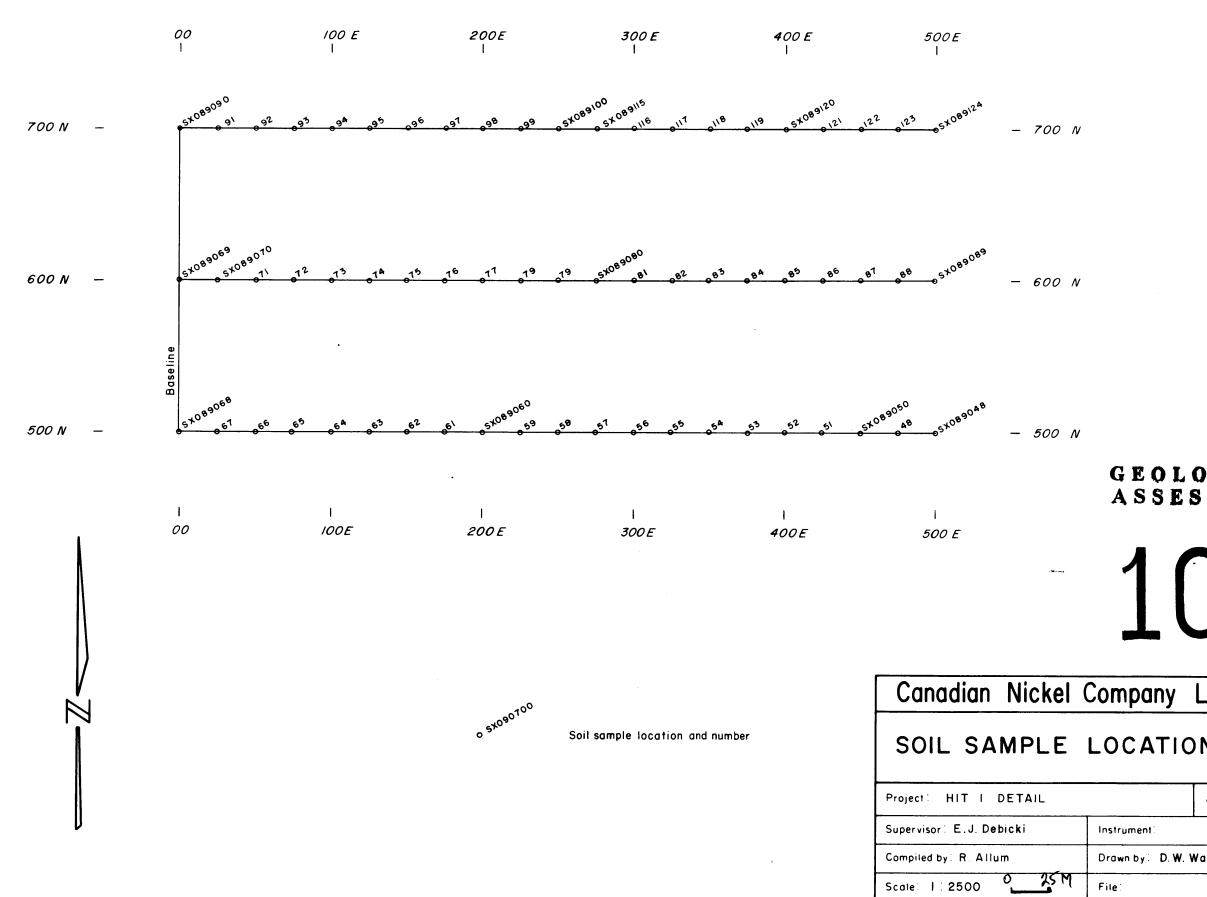
ł

-

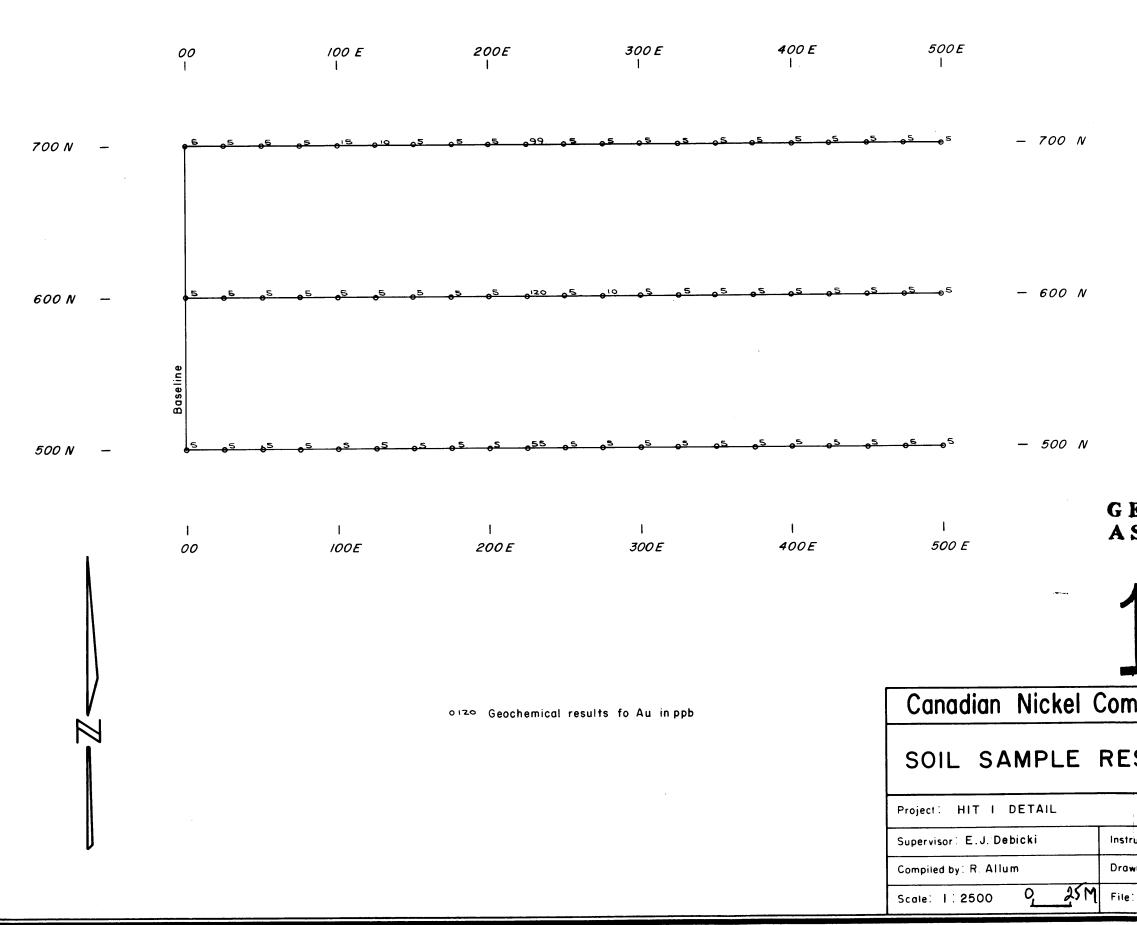
TRAVERS			-	.	PROJECT _					IAN I		DOTH	<u></u>
N.T.S	92_H-	10E		-	AREA	DATE			Ju	<u>ne 1</u>	82		
SAMPLE	SA	MPLE TY	(PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(р.р.т	. / %	/oz.p	er ton)
NUMBER	Rock Talus	<u>SX</u> Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH, AREA N/S	LONGITUDE and/or U.T.M. E/W	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		ppm		ppm	ppm		ppm Zn
RX042198				17+855	1+60W	Mafic Volcanic (Basaltic). Color dark gre	v	109	5	0.3	29	8	71
						to black on weathered surface and dark gr on fresh. Carbonate veining occurs associ-	een						
						ated with hairline fractures. Hematite staining occurs to a small degree. Gossan zones are minor. Pyrite is abundant along fractures but has been weathered out from							
	++	·	· · · · · · · · · · · · · · · · · · ·	ł		matrix.						······	·
RX042199				<u>18+155</u>	3+85W	Mafic Volcanic (Basalt). Color is dark gr on fresh surface. Highly altered. Mn stain		3284	5	1.1	_15	76	1483
		- <u>-</u>				ing is present. The outcrop is highly].						
						sheared. Small quartz veins occur contain-							
						ing Chalcopyrite, pyrite. Malachite_occur. along fractures in crystal fibrous fans.	s						
RX042200				17+88S	6+68W	<u>Qtz. vein (Gossanous) with a Plagioclase</u> porphyry. Pyrite also occurs. Some carbon is present.	ate	54	5	0.2	23	7	19
<u>RX045853</u>			· · · · · · · · · · · · · · · · · · ·	17+10S	_2+40W	Mafic Volcanic (Basalt) medium grained massive, dark green on fresh surface. Mind carbonate veinlets.	or	60	<u> </u>	.0.1	_11	7	90
<u>RX045854</u>				16+90S	2+90E	Mafic Volcanic in contact with felsic		127	5	-0.1	-12		-1.2.7
			·····			has occurred (minor). Highly sheared and gossan zones are present. Pyrite occurs							
	 -	··				-along-fractures							
<u>RX045855</u>	<u> </u>		<u> </u>	17+00S	3+20E	Mafic Volcanic. Dark green in color. Gossa		_64	10	0.5	_21	239	370
RX045856	 			17+255	4+00E	zones occur. Pyrite occurs as dissemination Mafic Volcanic, Dark green in color on fre surface. Gossanous. Some carbonate.		25	5	0.1	9	14	241
RX045857				18+50S	6+85E	Mafic Volcanic, (Basaltic to Andesitic), fine to medium grained, soft, massive. Day		12	5	0-1	3	6	
						green in color on fresh surface.							

TRAVERS	E NUMB	ER			PROJECT	MISS CLAIMS (HIT #3 IN PART) GEOLOGIS	ST(S).	BRI	AN R	<u>. BO</u>	OTH	
N.T.S		2-H-10I		_	AREA	Okanagan DATE		<u>lur</u>	<u>ne 19</u>	82		
SAMPLE SAMPLE TYPE		SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RESULTS (ppm. / % /oz					er ton)		
NUMBER	RX SX Rock, Streom Grob, Talus Silt, Chip, Soil Channe		Grob,	LENGTH, WIDTH, AREA N/S	LONGITUDE and/or U.T.M. E/W	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	ppm				ppm	ppm Zn
RX045858				19+00S	6+50E	Mafic volcanic (Basaltic to Andesitic)	29'	10	0.4	4	8	43
						Sample was a gossan zone near Plag. Porphyry and Mafic Volcanic contact. Generally massive po, py observed.						
	╏							<u> </u>				
RX045859				<u>18+955</u>	<u>5+85E</u>	Mafic volc., andesite, breccia. Minor py massive.	<u>59.7</u>	1.15-	-0-2	8	8	39
. RX045860				19+00S	3+85E	Mafic volcanic andesite, no sulphides,	11	5	0.1	6	6	43
						massive light green (pale), epidote stringer	ij	[
·····		 			ļ	are common.						
<u>RX045861</u>			ļ	19+00S	_2+58E	Plag. porphyry, highly sheared, schistose	80	5	0-2	_1.3	10	65
<u> </u>		 				gossan is present along shears. Some	 					
		ļ	ļ			silicification has occurred.	 					
RX045862				19+00S	2+15E	Mafic volcanic schistose, sheared some	136	5	0.4	30	12	80
		 			l	silicification, gossan along fractures.				······	<u> </u>	
<u>RX045863</u>				19+00S	1+500E	Mafic volcanic, schistose, sheared pale green.	64	5	0.2	7	8	60
RX045864				19+00S	_5+75W	Mafic volcanic (Andesite to Basalt)	5	34	0.1	28	10	78
		<u> </u>				slightly schistose, minor carbonate.		13	0.1	78	10	70
RX045865				21±005_	1+25E	Mafic volcanic (Andesite to Basalt) schistose light green to pale green, gossan		1	0.1	/0	10	/0
	 					along planes.				· · · ·		
RX045866				21+005	.0+90E	Mafic_volcanic_(Andesite_to_Basalt)_schistos	e 1º	27_	1.0	33_	133_	166
					[pale green, minor pyrite.						
RX045867				18+00S	5+40E	Altered and sheared Andesitic Volcanic,	-	12	0.1	86	13	332
						light pale green. Quartz clasts are present,						
						schistose minor silicification has occurred.						
RX045868				18+00S	4+45E	Altered, sheared mafic volcanic some pyrite	10	53	1.3	55	67	292
						present pale to dark green. Qtz. stringers		ļ				
	ļ		<u> </u>			are present.		ļ				
RX045869		ļ	<u> </u>	17+50S	3+50E	Altered, sheared, schistose. Mafic Volcanic	<u> </u>	17	0.1	86	17	160
	<u> </u>	ļ	ļ	_	ļ	some pyrite, minor silica.						
RX045870				17+255	4+75W	Limestone, massive, grey, carbonate_veins	ļ'	2	0.4	4	9	7

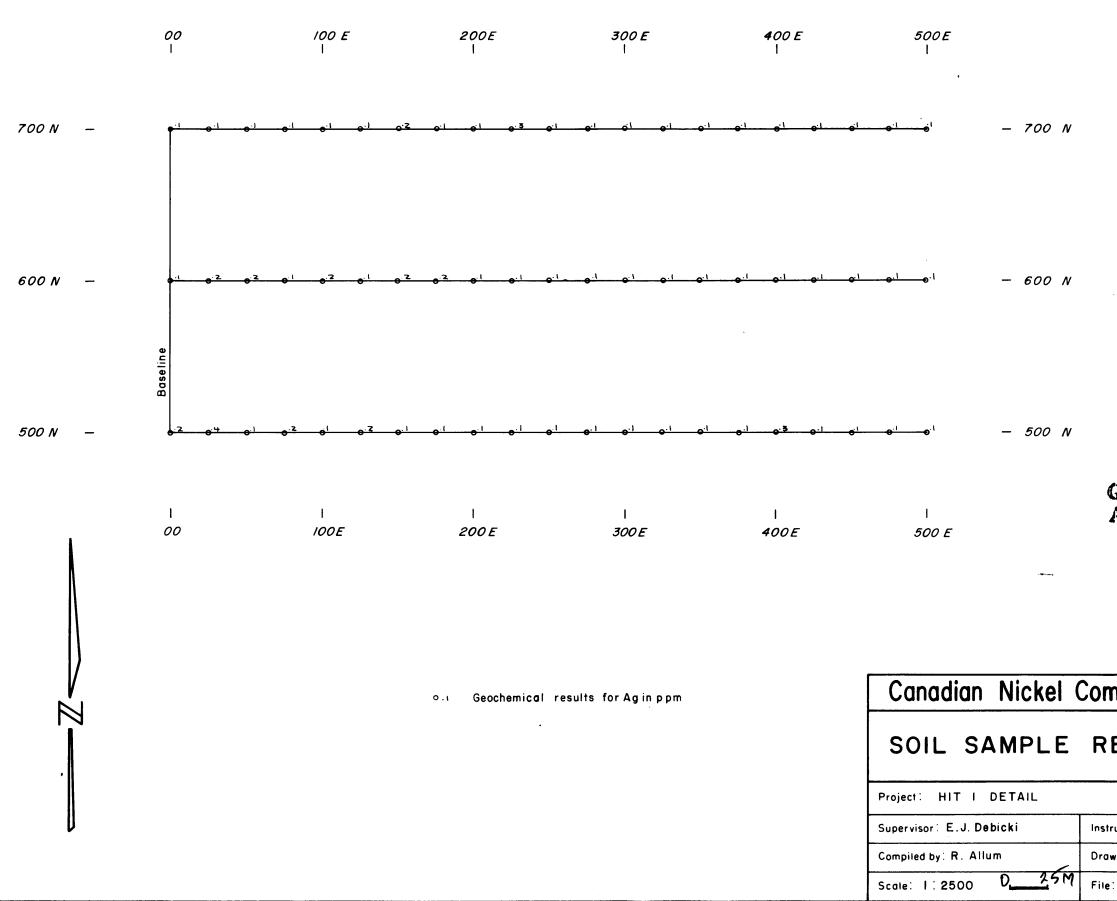

NTS	TRAVERSE NUMBER N.T.S92- H - 10 E				ΔΑΕΔ					IST(S) BRIAN R. BOOTH June 1982									
SAMPLE	ويتعاددون والمرجع والمتعادية والمتحاد والمتحاد المتحاد والمتحاد والمحادة			F SAUP		YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RESULTS (ppin /% /oz.per ion)								
NUMBER	<u>RX</u> Rock, Talus	<u>SX</u> Stream Silt, Sail	Grab, Chip, Channel	LENGTH, WIDTH, AREA N/S	LONGITUDE and/or U.T.M. E/W	SAMPLE DESCRIPTION Rock type, lithology, choracter of soil, stream silt, e Formation Mineralization, etc.	etc.	ppb	}			ppm Pb							
RX045871				15+005	4+90W	Mafic Volcanic (Andesite to Basalt) pa dark green.	ale to	 	14	0.1	88	8							
														·					

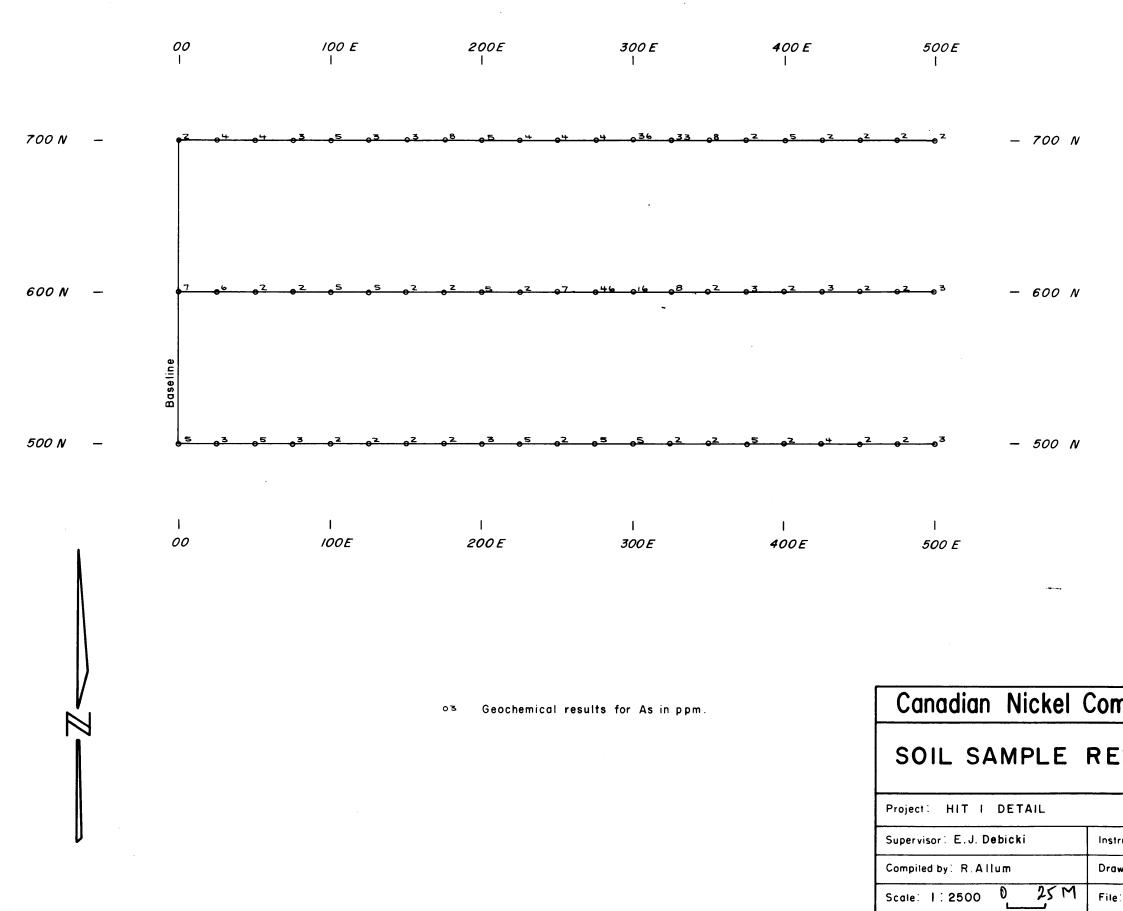

TRAVERS	E NUMB	ER		_	PROJECT	OKANAGAN GE	EOLOGIS	T(S).		J. SC	COUTE	N		
N.T.S	92 -	<u>H - 10.</u>	<u>E</u>	_	AREA	Hit and Miss Claims D/	ATE			June	1982			
SAMPLE	S.	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	ο.p.n.	. 1 %	/oz.p	er ton)	, }
NUMBER	<u>RX</u> Rock, Talus	<u>SX</u> Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH, AREA	LONGITUDE and/or U.T.M.	Rock type, lithology, character of soil, stream silt, etc Formation Mineralization, etc.	с.	Au ppb	Ag	Cu	As	РЬ	Zn ppm	
RX042938			grab		5+35N	Milky white angular quartz float found	in		0.1	9	2	<u>p</u> l	5	
					4+40E	talus. Abundant quartz float in surroun talus.								F
RX042939			chip	lxl=lm ²	5+35N 4+40E	Med. grained, intermediate, intrusive r Diorite. Visible Py and cpy(?) Malachit staining; epidotized feldspars.		5	<u>p.1</u>	138	5	6	43	
			chip	1x1-1m ²	4+63N 3+20E	Greyish green a phanitic rock. Interm. volcanic (andesite). Mildly foliated. Abundant carbonate, weathers grey with		5	p.2	65	_22	_10_	54	
RX042941			chip	lxl=lm ²	4+80N 3+00E	scattered red (hematite stained) patche Grey aphanitic rock. Andesite. Mildly foliated; quartz/carbonate veining and alteration. Visible Py. Weathers grey t		5	0.2	17	5	8	42	
RX042942			chip	$l \times l = lm^2$	6+25N 2+70E	pale green. Local altered zone within aphanitic gre andesite. Abundant rusty weathering.	y	10	p.1	62	525	15	76	
			chip	1x1=1m ²	5+80N 2+75E	Greenish grey fine grained rock. Andesi Weathers red to brown. Sample taken at approximate location of 1981 soil anoma No visible sulfides.		5	p.1	56	31	11	75	
.RX042944			chip	$lxl=lm^2$	14+05S 6+80W	Intermed, to mafic volcanic, Locally fr ured and (quartz?)/carbonate altered zo No visible mineralization. Green on fre surface, grey on weathered surface.	ne.	5_	D.2_	138	16	13	51	
RX042945			grab		14+00S 4+75W	Grey to pale green, very fine grained r 10% small block fragments (crystals?).	ock	5	0.1	110	15	8	81	
RX042946			chip	1x3=3m ²	14+03S 0+25E	Red (hematite) staining. Semi-angular. Propylitized rock. White. Dissem. Py. Rusty weathering. Silica rich.		5	0.1	28	6	7	154	
RX042947			chip	lxl≡lm ²	14+25S 2+25E	Propylitized rock. Visible py, well-de oped gossan.			0.2	9	2	30	47	
RX042948			chip	$l \times l = lm^2$	14+20S 2+75E	White, aphanitic, semi vitreous rock. H Silica rich. Dissem Pv.	ard.	5	0.1	<u></u>	7	5	11	

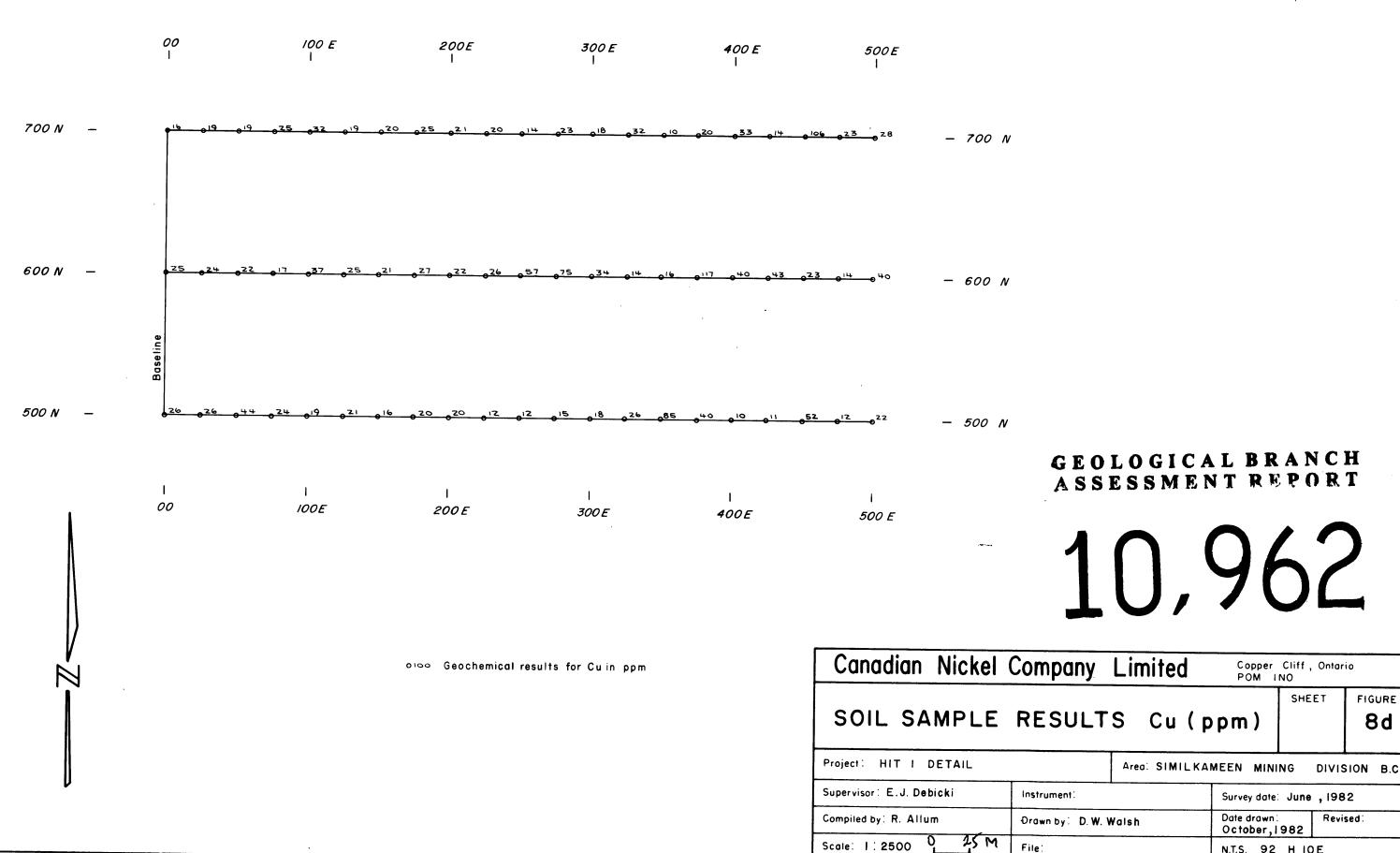
TRAVERS	E NUMB	CR	_	_	PROJECT	OKANAGAN	GEOLOGIS	T(S)_		<u>J. S</u>	COUT	EN		
NT.S			<u>– II – 10</u>			Hir and Miss Claims	DATE			June	_198	2		
SAMPLE	S	AMPLE TY	(PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	┷┷ <u>╪</u> ╋╻┲╻┲╺┎╻ ╡	RES	ULTS	(ppm	. 7%	/02 p	ar ion)	
NUMBER	<u>RX</u> Rock, Talus	<u>SX</u> Stream Sitt, Sail	Grab, Chip, Channel	LENGTH, WIDTH, AREA	LONGITUDE and/or U.T.M.	Rack type, lithology,character of soil,stream sill, Formation Mineralization,etc.	, etc.	Au ppb	Ag	Cu	As ppm	Pb	Zn ppm	
Rx042949			grab		6+75N 2+90E	Light grey aphanitic rock, andesite)	<u>buff to</u>	5	0.1	28	4		98	<u> </u>
— — — — — — — — — — — — — — — — — — —						rusty weathering.								·
]					
							<u> </u>							
·····														
											·			
											·			
												<u> </u>		
	······		····										<u> </u>	
						· · · · · · · · · · · · · · · · · · ·					•			
;														
* * ··· · · · · · · · · · · · · · · · ·				{										
											·			
<u> </u>													<u>_</u>	
					·	·								
														<u> </u>
·				·										
					·	······								
											-			


TRAVERS 		92 - H - 10E			AREA Summers Creek DATE			J	une	1982				
SAMPLE	S.	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	inden. Zwischer Ausbeider wir fühlten	RES	ULTS	ppin)	. / %	/02.D	er ton)	}
NUMBER	<u>RX</u> Rock, Tolus	<u>SX</u> Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH, AREA		 Rock type, lithology, character of soit, stream sil Formation Mineralization, etc. 	it,etc.	ppb Au		ppm		ppm	ppm Zn	
RX045883	rock		grab		5+25W 15+10S	Nicola Group mafic volcanic.		5	01-	250	32	14	99	
						· · · · · · · · · · · · · · · · · · ·								
			·····											

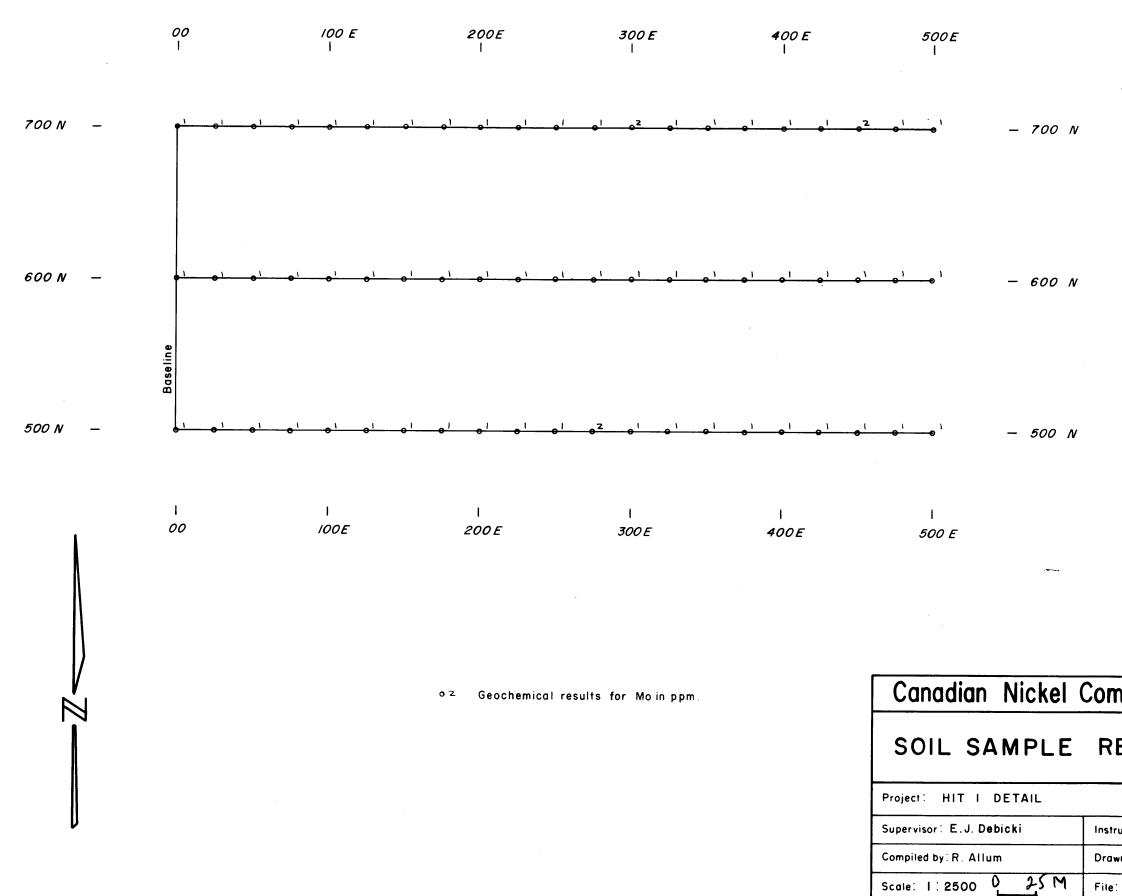
TRAVERS	SE NUMO	ER		-	PROJECT	HIT/MISS CLAIMS, B.C. GEOLOG	IST(S)	 .	<u>E, I</u>	EBIC	КI		·
N.T.S				QΕ		Summers Creek DATE _A	ug. 2	7, 19) 82 (samp	les c	ollec	<u>t.e.d</u>
SAMPLE		AMPLE T		SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE	state and the state of the stat	uessaas naq)	270	5 762. j	per lon	
NUMBER	<u>RX</u> Rock, Talus	<u>SX</u> Stream Sill, Soil	Grob, Chip, Channel	LENGTH, WIDTH, AREA	LONGITUDE ond/or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb	Ag	As	Cu	РЪ	Zn	TCP
RX015461	rock		grab		17+00S	Fg. light grey-white (tinge yellow) highly	5	0.1	6	5	2	2	<u>├</u> ──
					0+50W	altered mafic volcanic with clay. (Nicola				+			1
						Group). Alumite test tve (pH ~ 1 or less)		1		1			
						Sample submitted for Thin Section XRD for							
						<u>clay mined determination fluid inclusion</u> study.							
RX015462	rock		grab		10+00S	Fg. grey, altered Nicola Gp. mafic volcanic	5	0.1	2	10	3	74	
			0-5.0	,	0+50W	with clay alteration. Pyrite 4-5% Linely					- -		
·						disseminated throughout and concentrated al			· [
	· [fracture planes as smears. Alumite test tve						 .	
						but pyrite (sulphides) may mask effect of t	est.		l	{			
	·}		•						<u> </u>		- 	<u> </u>	•
							_	·					
	-							.	·	ļ			
								-	<u> </u>			·	
								-	<u> </u>	<u> </u>		<u> </u>	
	.			· <u> </u>		} 						l	·
				- 					ł				
	·			- <u></u> .	·····	·		·					
												<u> </u>	<u></u>
	·					}							
	-								<u> </u>			· ·	
								·					
·								 					
······	1			·····			-						
						│ 		-					·
	1						-1						
					· · · · · · · · · · · · · · · · · · ·								
							_						
											•••••		-



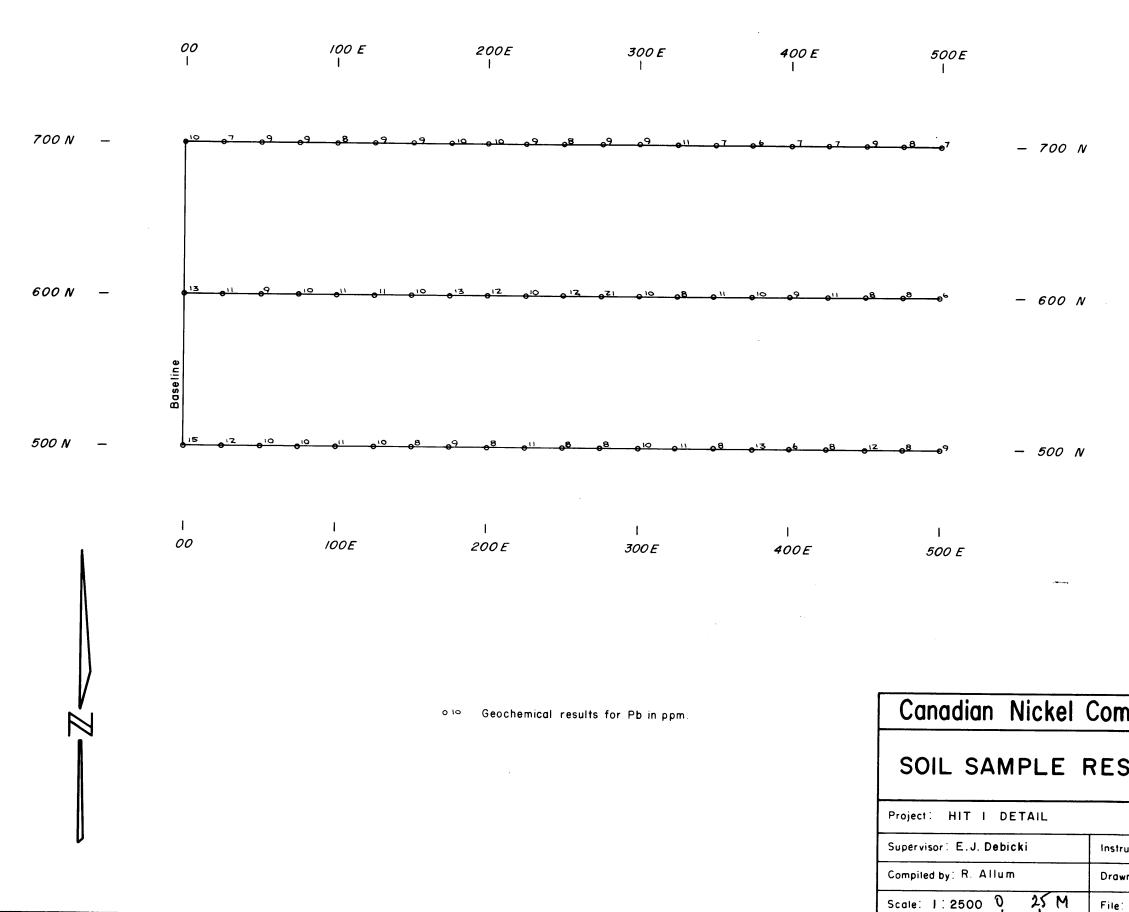

1(), (96)2	
npany	Limited	••	Cliff , Ontar NO	io
CATIC)NS		SHEET	FIGURE 8
	Area: SIMILKAN	MEEN MIN	ING DIVIS	SION B.C.
ument	<u> </u>	Survey date	June ,198	32
vn by∶D.₩.\	Walsh	Date drawn October, I N.T.S. 92	982	sed:
		1 .1.3. 3 2		


10,962										
npany Limited Copper Cliff, Ontario POM tNO										
ь)	SHEET	FIGURE 8a								
MEEN MINI	NG DIVIS	SION B.C.								
Survey date: June , 1982										
Date drawn: Revised: October,1982										
N.T.S. 92	HIOE									
	Copper POM 1 D b) MEEN MINI Survey date Date drawn October,	Copper Cliff, Ontor POM INO SHEET (b) MEEN MINING DIVIS Survey date: June, 198 Date drawn: Revi								

GEOLOGICAI ASSESSMENT					
10,9	96		2		
npany Limited	Copper POM I		Ontario		
ESULTS Ag(p	opm)	SHEE	т	FIGURE 8 b	
Area: SIMILKAN	MEEN MINI	NG	DIVISI	ON B.C.	
rument: Survey date: J une , 1982					
wn by: D.W. Walsh Date drawn: Revised: October,1982					
	N.T.S. 92	ню	E		

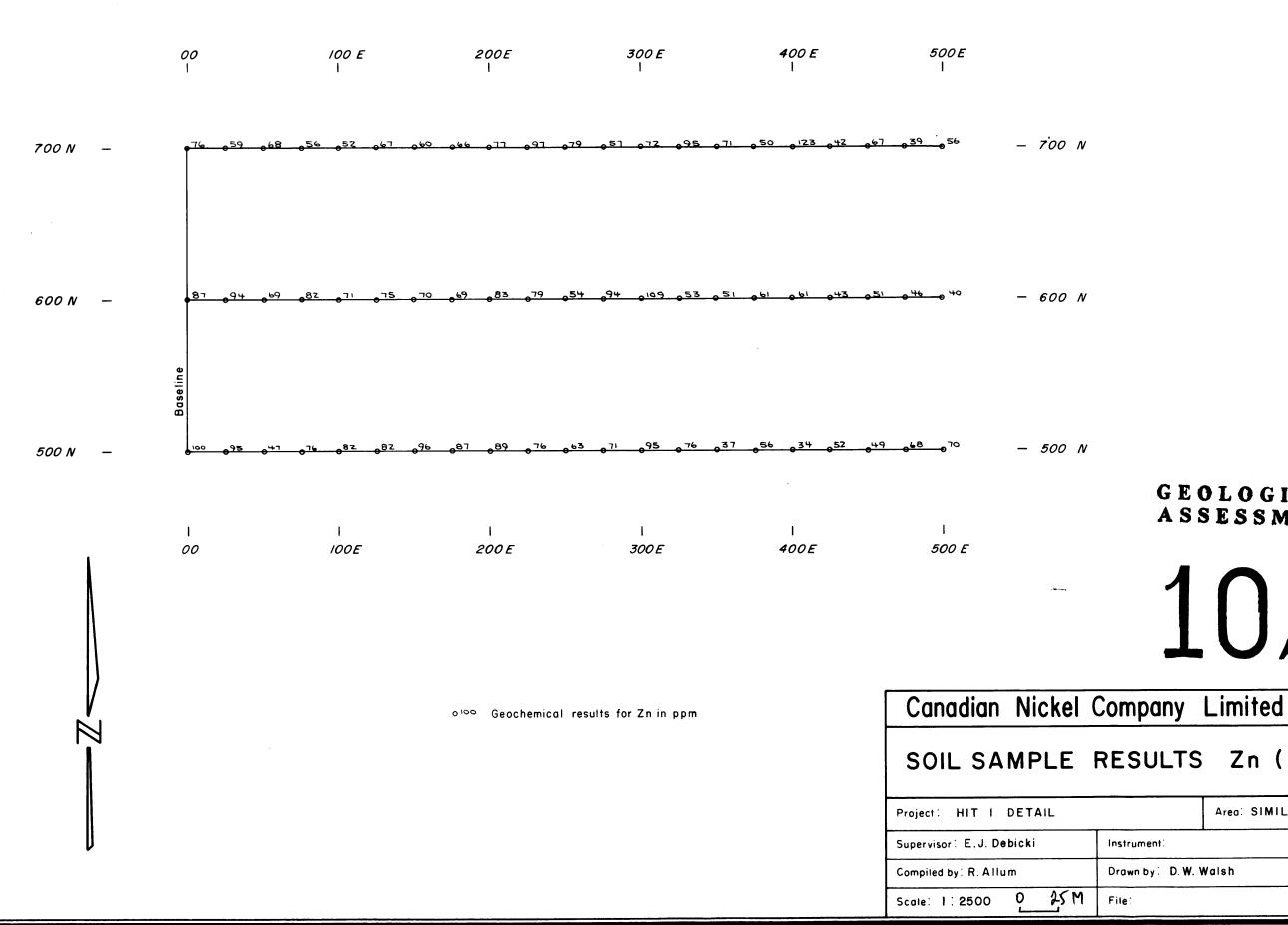


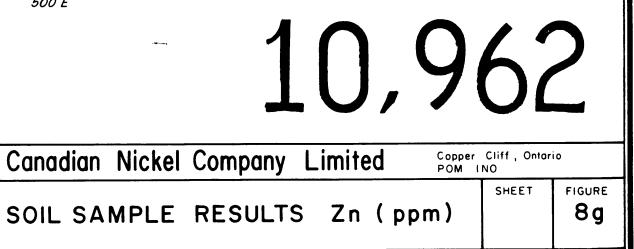
GEOLOGICA Assessmen	AL BR	RANC	U
ASSESSMEN	VTRI	EPOR	T
1n		< 2	
TO,	7(JC	-1
mpany Limited		Cliff , Ontar NO	io
ESULTS As (p		SHEET	FIGURE 8c
Area: SIMILKA	MEEN MINI	NG DIVIS	SION B.C.
awn by: D. W. Walsh	Survey date Date drawn	June , 198	sed:
e:	October, N.T.S. 92	982	



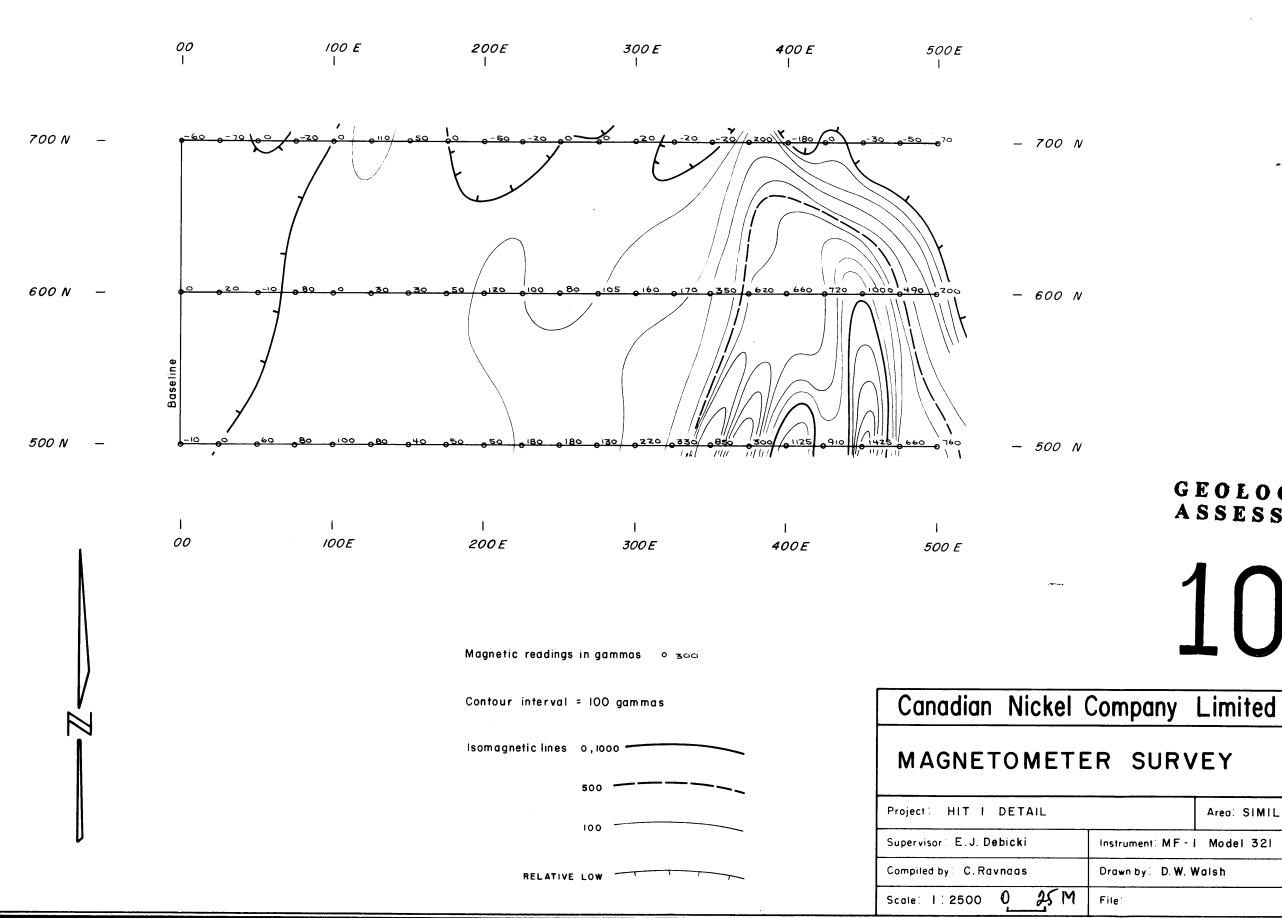
SULTS	Cu (ppm)	
	• •	

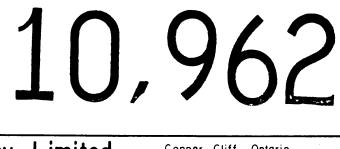
	Area: SIMILKA	MEEN MINING	DIVISION	B.C.
iment:		Survey date: Jun	e ,1982	
n by∶D. W. V	Valsh	Date drawn: October,1982	Revised:	
		N.T.S. 92 H I	OE	


GEOLOGICAL BRANCH ASSESSMENT REPORT									
10,9	96	5							
pany Limited	Copper POM I	Cliff , NO	Ontari	0					
ESULTS Mo(p	pm)	SHEE	T	FIGURE 8 e					
Area: SIMILKAI	MEEN MINI	NG	DIVIS	ION B.C.					
ument	Survey date	June	, 198	2					
n by: D.W.Walsh	Date drawn: Revised: October,1982								
N.T.S. 92 H IOE									

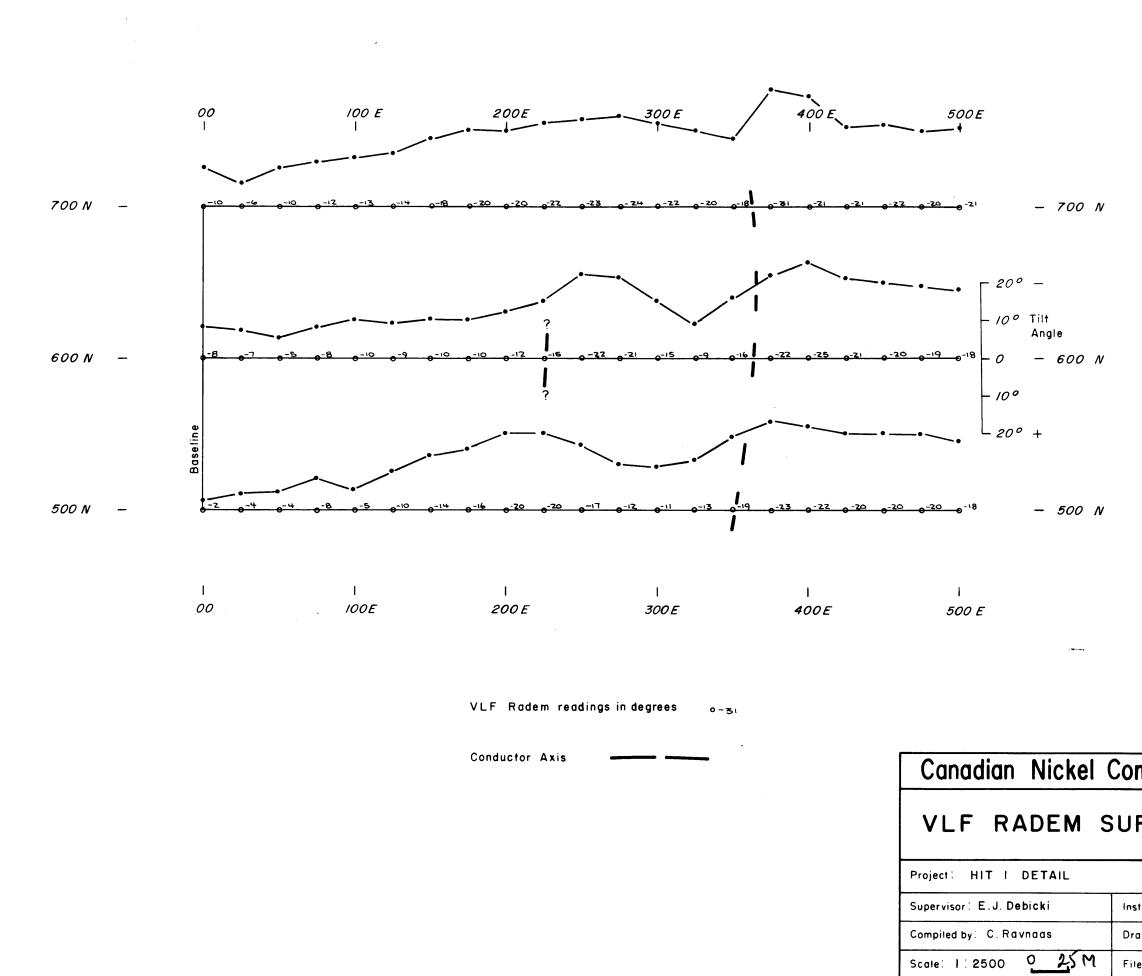


1

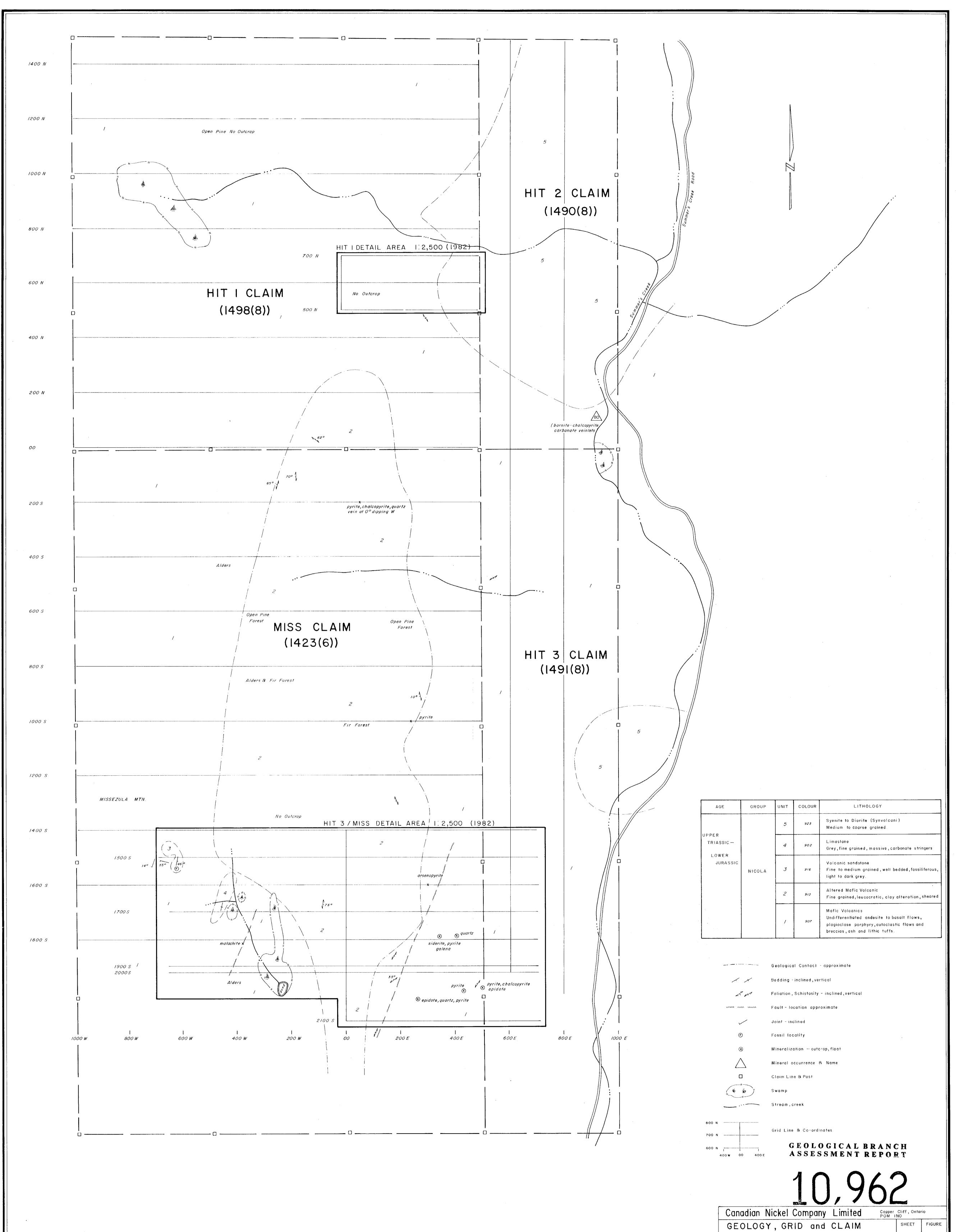

geologic assessmen 10,			
npany Limited		Cliff , Ontar NO	io
SULTS Pb (p	pm)	SHEET	FIGURE 8 f
Area: SIMILKA	MEEN MINI	NG DIVIS	NON B.C.
ument	Survey date	June ,198	2
n by∶D. W. Walsh	Date drawn October, I N.T.S. 92	982	sed:


•

	Areo: SIMILKA	MEEN MINING	DIVISION B.C				
strument	.	Survey date: June , 1982					
rawn by: D.W.	Walsh	Date drawn: Revised: October,1982					
le		N.T.S. 92 H I	0 E				


Copper Cliff , Ontario POM INO

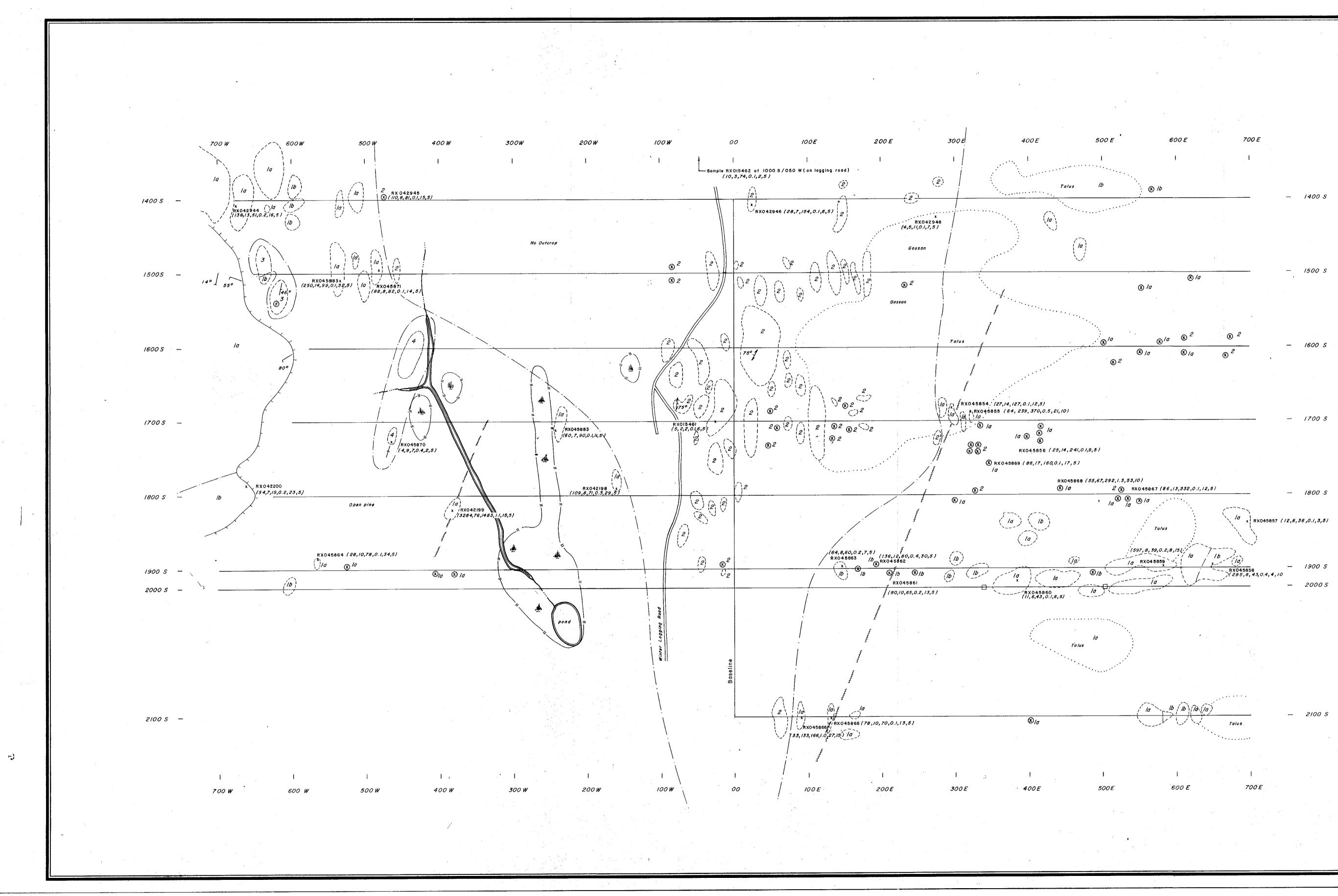
SHEET


FIGURE

9

	Area: SIMILK	AMEEN MINING	DIVISION	B.C.				
rument: MF - I	Model 321	Survey date: June , 1982						
wn by: D.W. Walsh		Date drawn: Revised: October,1982						
		N.T.S. 92 H 10	DE					

GEOLOGIC ASSESSME	AT 13 :	R P O F	
mpany Limited		Cliff , Ontar NO	
RVEY		SHEET	FIGURE IO
Areo: SIMILKAN	MEEN MINI	NG DIVIS	SION B.C.
trument: V.LF Radem		June , 198	
awn by∶D. W. Walsh	Date drawn O ctober , l	982	sed:
e	N.T.S. 92	HIOE	

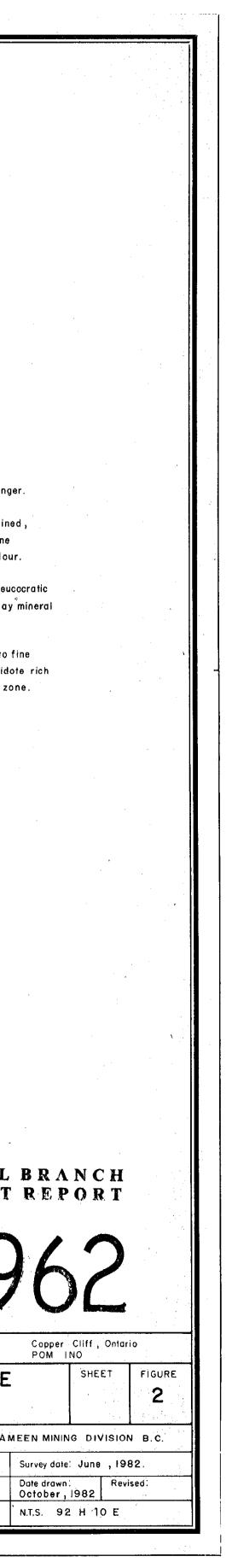

 COMPILATION MAP
 I

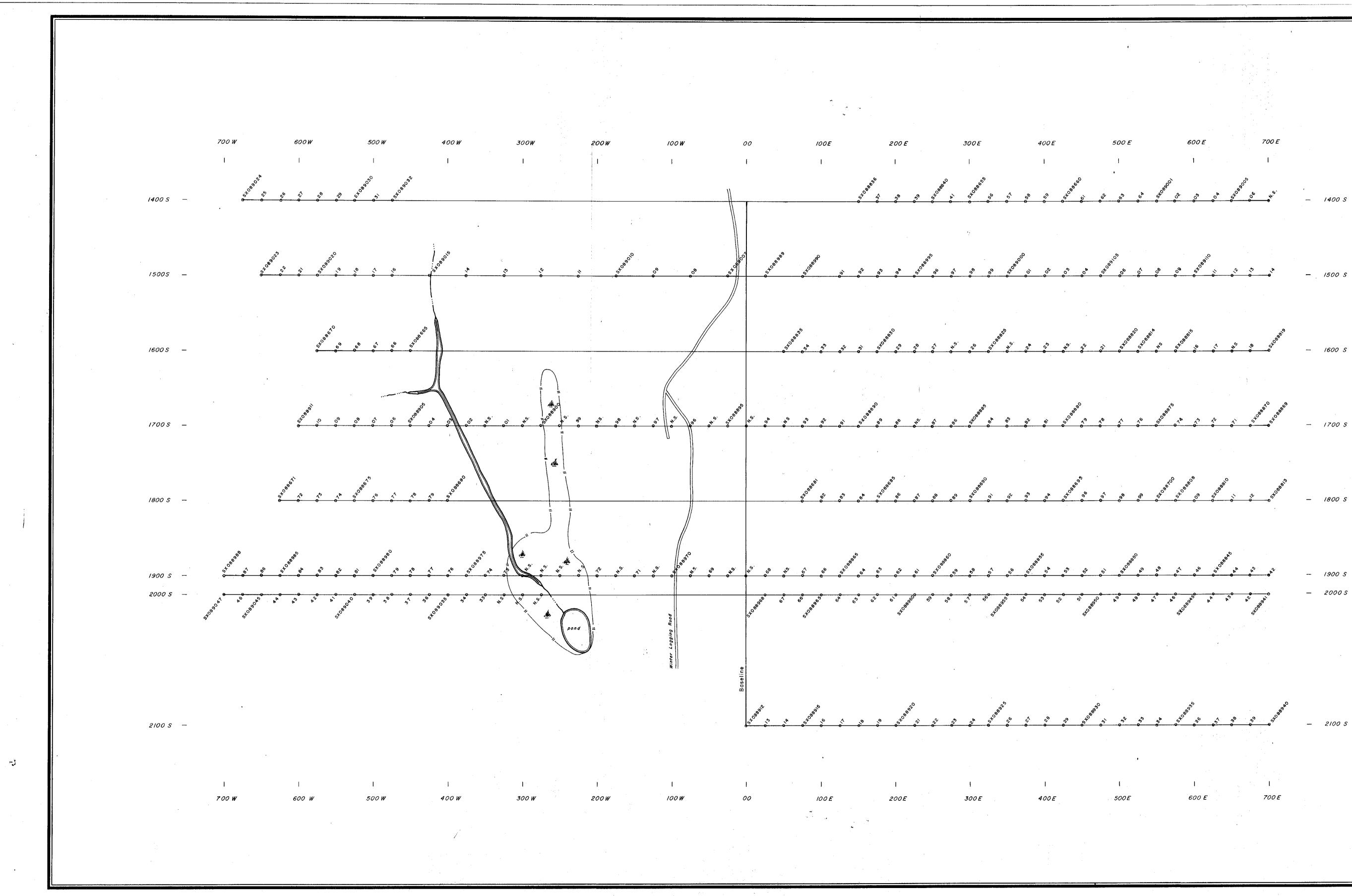
 Project: HIT I-3, MISS CLAIMS
 Area: SIMIKAMEEN MINING DIVISION B.C.

 Supervisor: E.J.Debicki
 Instrument:

 Survey date: June, 1982

902 4 ' 916 3 9/3 2 907 11 , x RX057369 -----, ***** TTT ····· ···· Taluş \otimes W1 1300 300

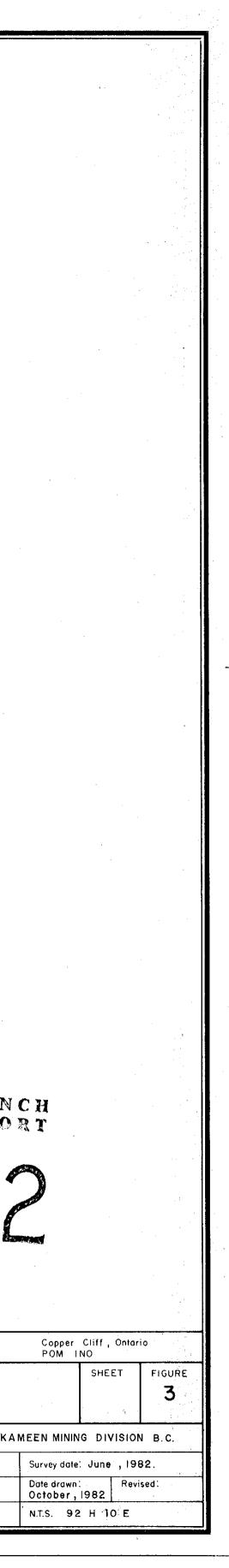

300

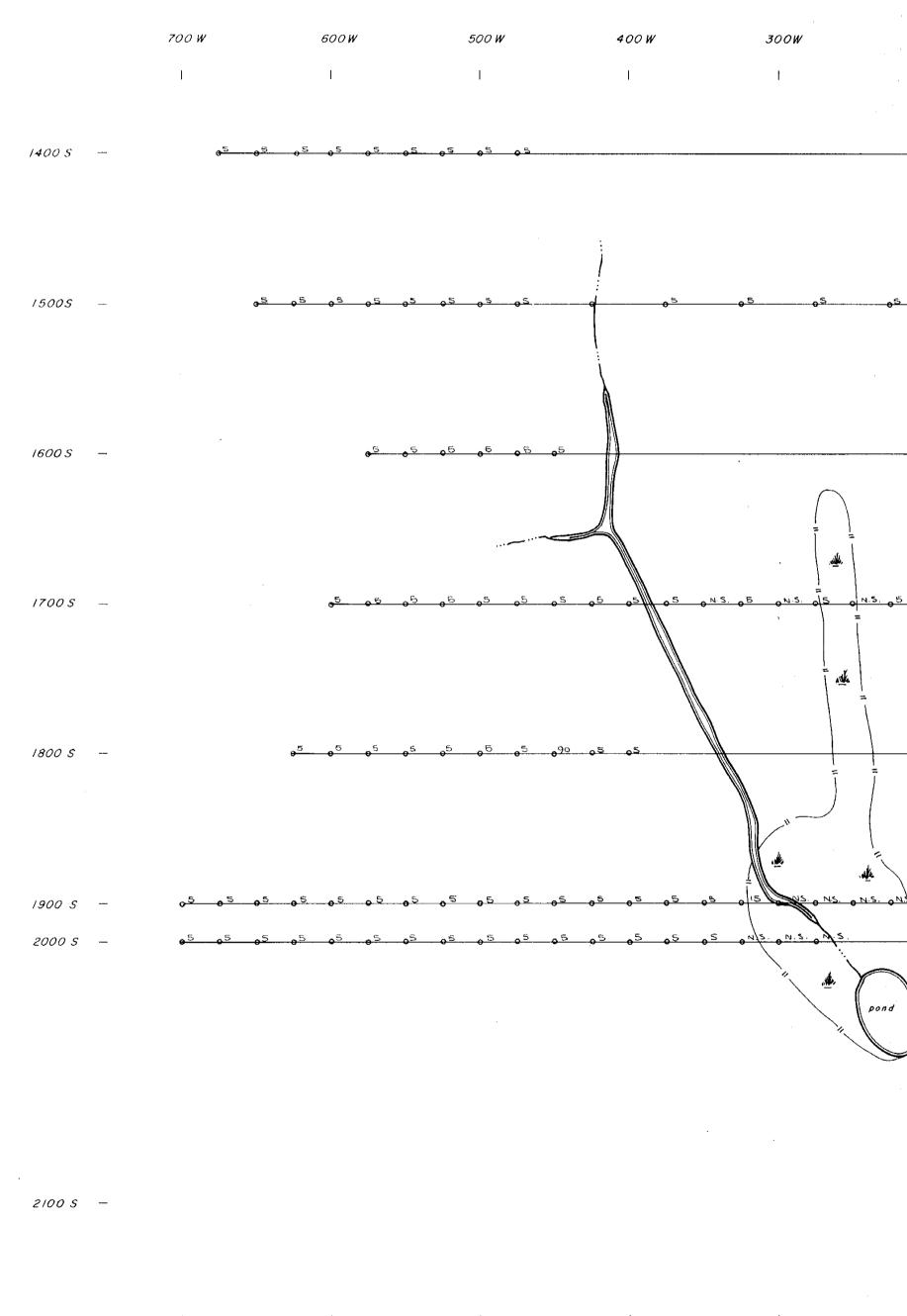

٠.

LEGEND

LIMESTONE - grey, fine grained massive Upper Triassic Nicola Group limestone containing carbonate stringer. VOLCANIC SANDSTONE - fine to medium grained, well bedded, fossiliferous sandstone generally light to dark grey in colour. ALTERED MAFIC VOLCANIC - fine grained, leucocratic volcanic which has undergone clay mineral alteration and shearing. /a ANDESITE and BASALT FLOWS - medium to fine grained, light to dark green, epidote rich flows containg minor schistose zone. /b PLAGIOCLASE PORPHYRY Outcrop Area Rock sample number and location Geological contact (inferred) Swamp boundary and symbol Escarpment Fault (approximate) Talus boundary Fossil location Float angular (109,8,71,0.3,29,5) Analytical results (Cu, Pb, Zn, Ag, As, Au) Corner claim post Foliation (vertical, inclined) Joint (inclined) GEOLOGICAL BRANCH Bedding (vertical, inclined) ASSESSMENT REPORT

Canadian Nickel (Company	Limited
GEOLOGY AND	ROCK	SAMPLE
LOCATION MA	P	
Project: HIT 3/MISS DETAIL		Area: SIMILKAN
Supervisor: E.J. Debicki	Instrument	•
Compiled by: B. R. Booth	Drawn by D.W.	Walsh
Scale: 1:2500 0 25M	File:	
		·





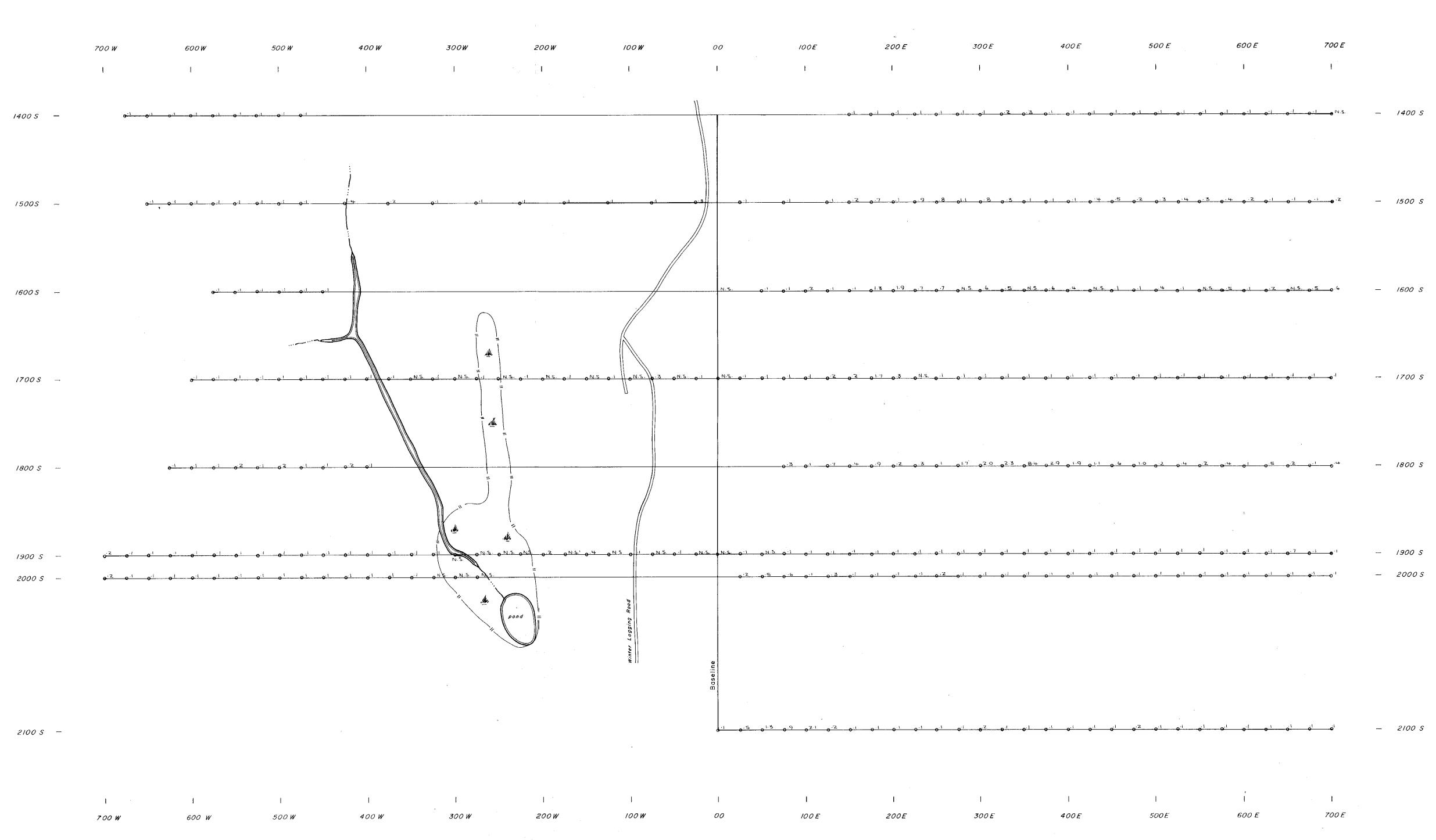
Canadian Nickel	Company Limited
SOIL SAMPLE	LOCATIONS
Project: HIT 3/MISS DETAIL	Area: SIMILK
Supervisor: E.J. Debicki	Instrument
Compiled by: R , Allum	Drawn by . D.W. Walsh
Scale: 1:2500 0 25 M	File

l 1 700 E 600 E

- 2000 s

1 700 W 300 W 600 W 500 W 400 W

700 E 600 E 200W 100 W 100E 200 E 00 $-\frac{5}{6^5} - \frac{5}{6^5} + \frac{5$ <u>N-S. 05 05 05 05 05 040 040 020 020 020 015 015 015 015 015 05 05 05 025 05 015 015 020 010 05 01.5 010 0</u>15 - 1600 S 4 - - 1800 So 55 Geochemical results for Au in ppb. - 2000 S GEOLOGICAL BRANCH ASSESSMENT REPORT — 2100 S Canadian Nickel Company Limited 1 1 I 11 1 ł Ι 1 1 1 100 W 00 100 E 200E 300 E 400E 600 E 700 E 200 W 500 E SOIL SAMPLE RESULTS Au Project: HIT 3/MISS DETAIL Area: SIMIL Supervisor: E.J. Debicki Instrument Compiled by: C. Bell Drawn by: D.W. Walsh Scale: 1:2500 0 25 M File:


		:		
Copper POM I	Cliff , Ontar NO	0		
(ppb)	SHEET	FIGURE 30		
KAMEEN MININ	G DIVISION	N B.C.		
Survey date	June ,198	32.		
Date drawn: Revised: October , 1982				
N.T.S. 92	H 10 E			

L L

1	1	I	I	l
700 W	600 W	500 W	400 W	300 W

.

۰. T

~*

700 E

2

5 --- 1900 5

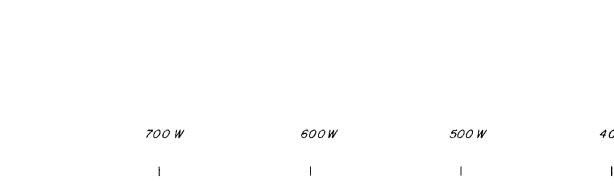
— 2000 S

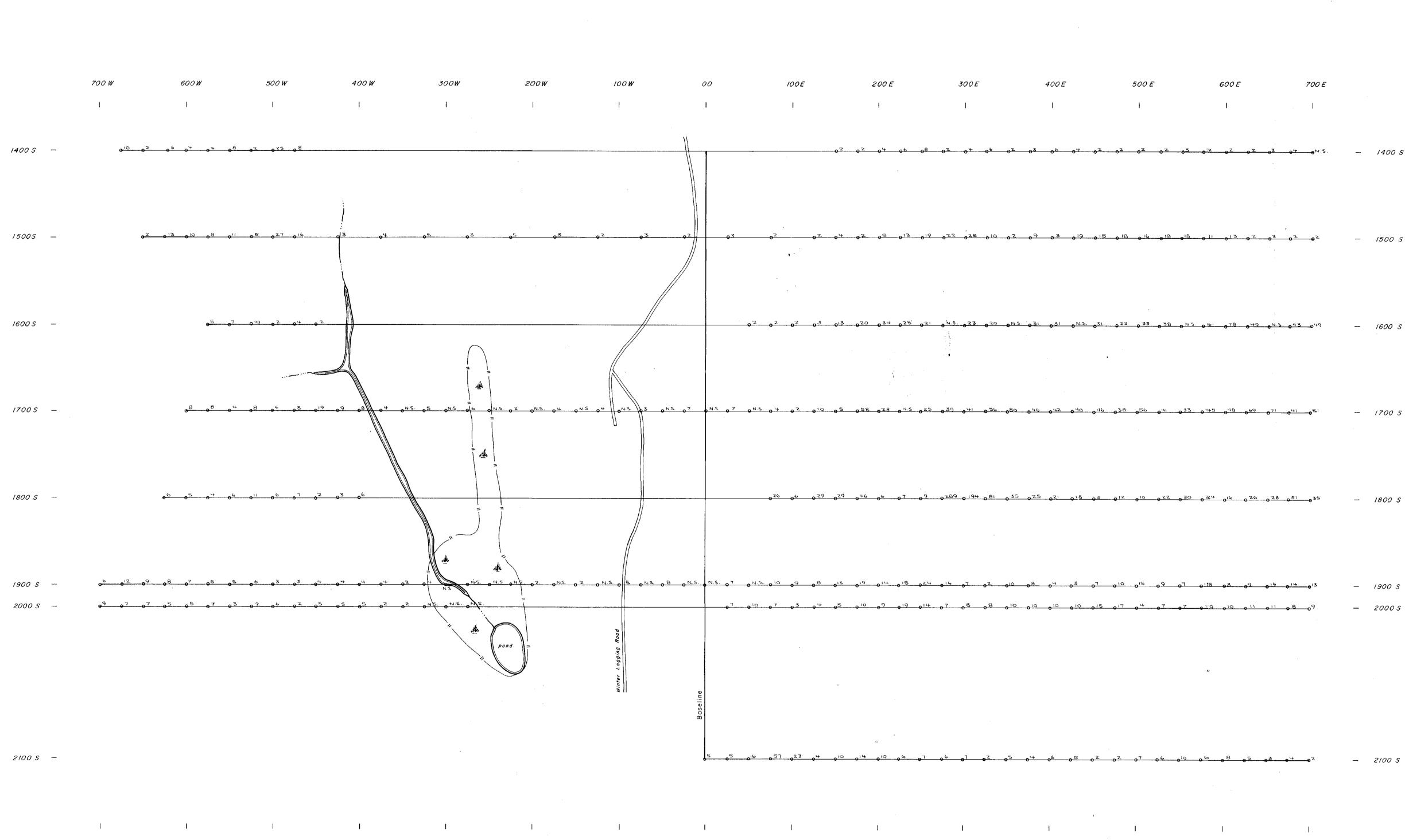
- 2100 S

1 . **|** 700 E 600 E

• Geochemical results for Ag in ppm

•


. GEOLOGICAL BRANCH ASSESSMENT REPORT


10,962

Canadian Nickel Company Limited SOIL SAMPLE RESULTS Ag Project: HIT 3/MISS DETAIL Areo: SIMIL Supervisor: E.J. Debicki instrument: -----Compiled by: C. Bell Drawn by 1 D.W. Walsh Scale: 1:2500 0 25 M File

	Copper POM I	-Cliff , Onta NO	rio		
(ppm)	SHEET	FIGURE		
LKA	MEEN MININ	IG DIVISIC	N B.C.		
	Survey date	: June , 19	82.		
	Date drawn: Revised: October , 1982				

700 W 600 W 500 W 400 W 300 W

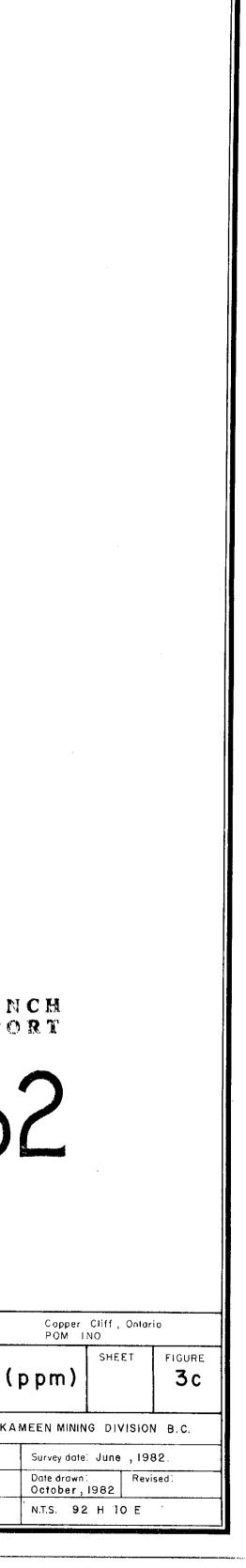
ني[،]

200 W 100 W 00 100 E 200E 300 E 400E 500 E · · · · · ·

- 1700 5

— 1900 S

— 2000 S

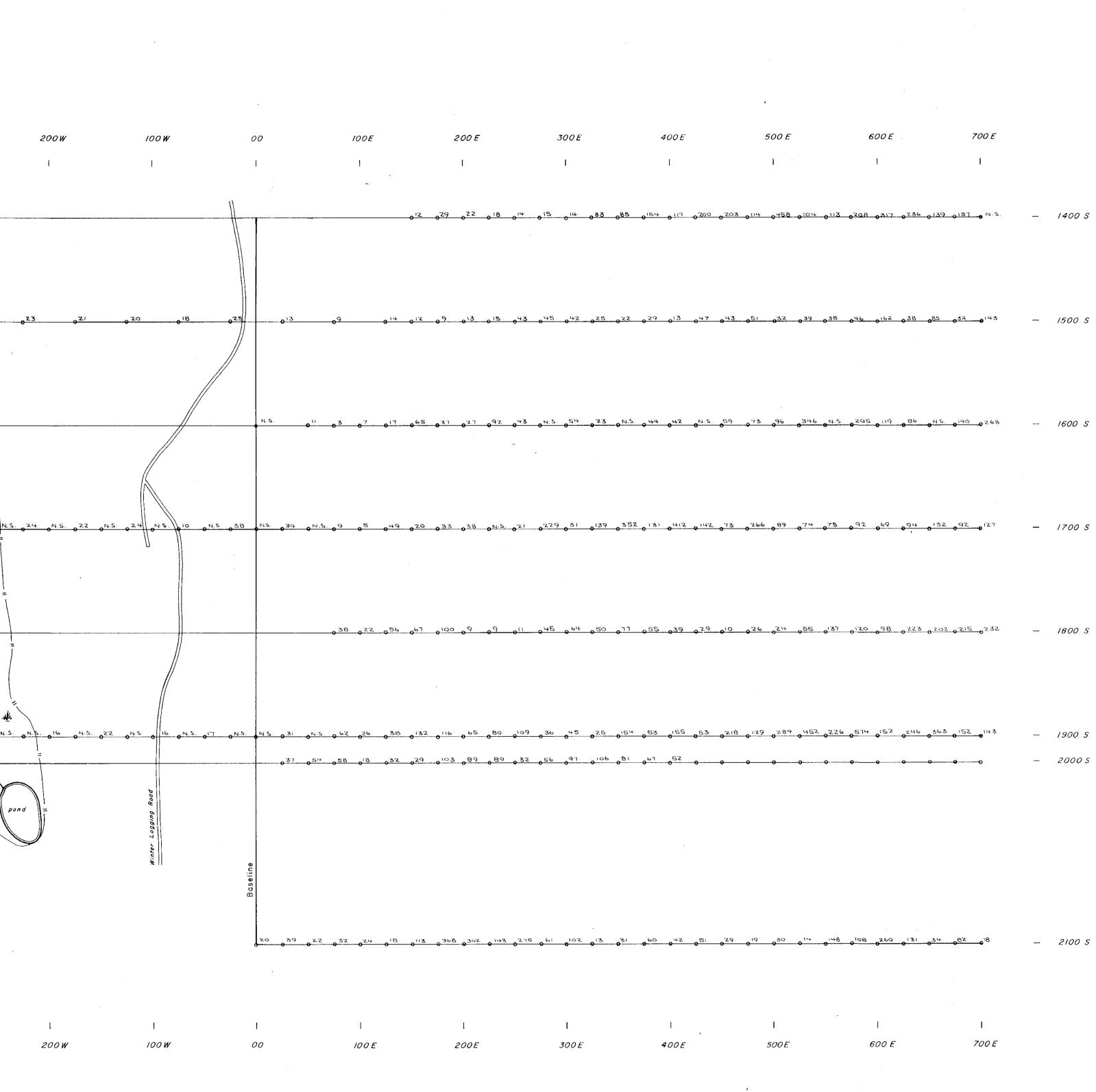

| 1. 600 E 700 E

- 2100 S

,

033 Geochemical results for As in pom

Canadian Nickel	Company	Limited
SOIL SAMPLE	RESULT	S As (
Project: HIT 3/MISS DETAIL	, <u>, , , , , , , , , , , , , , , ,</u>	Area: SIMILK
Supervisor: E.J. Debicki	Instrument:	
Compiled by: C. Bell	Drawn by: D.W. 1	Walsh
Scale: 1:2500 0 25 M	File:	······································



a					
	700 W	600 W	500 W	400 W	300W
	1	I	l	1	1
14005 —	0 ¹⁵¹ 0 ⁵	8 0 ⁴³ 0 ³⁶ 0 ^{ZI} 0 ⁴	<u>4 032 053 033</u>		
					o ¹⁹ o ²⁶ o ²³
<i>15005</i>	G <u>,11</u>	<u>5 0⁵⁷ 0⁴³ 0³⁰ 0³</u>	⁸ o ²¹ o ²⁵ o ³⁹	20 20	e ¹⁹ e ²⁶ e ²³
					x
1600 S —		ee /	• • •	15	
					\bigcirc
					. we
17005		0 ³² 0 ²¹ 01	7. 0 ⁴⁵ 0 ²¹ 0 ¹⁸ 0	9 062 029 022 0N	<u>.5. 019 N.5. 032 N.5. 024</u>
					T rate
1800 S		0 ¹⁸ 0 ¹⁸ 0 ¹² 0 ¹⁴	3 e ^{Z4} e ¹⁵ e ¹⁸ e	ZO 018 016	
1900 S —	o ²⁹ o ²² o ²	6 0 ^{2.4} 0 ¹⁹ 0 ²³ 0 ²	0 0 15 0 20 0	23 036 054 017 01	
2000 5	2 ³ 25 2	³ • ¹⁸ • ¹⁹ • ¹⁸ • ²	<u>0 016 013 029 0</u>	27 9 35 9²⁴ 9 12 9 16	
					pond

21005 -

. I I I I i i 400 W 300 W 700 W 600 W 500 W

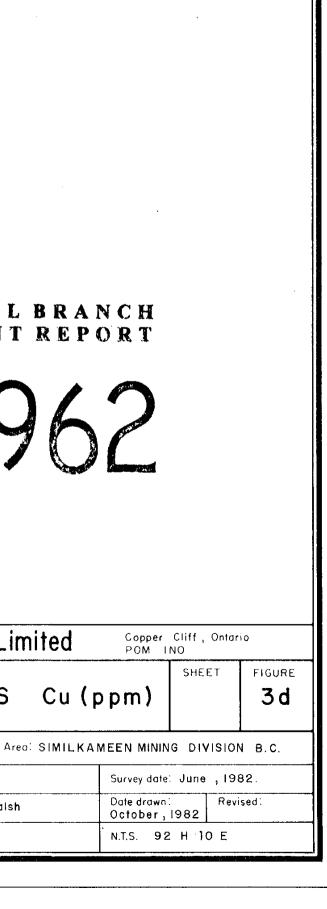
1

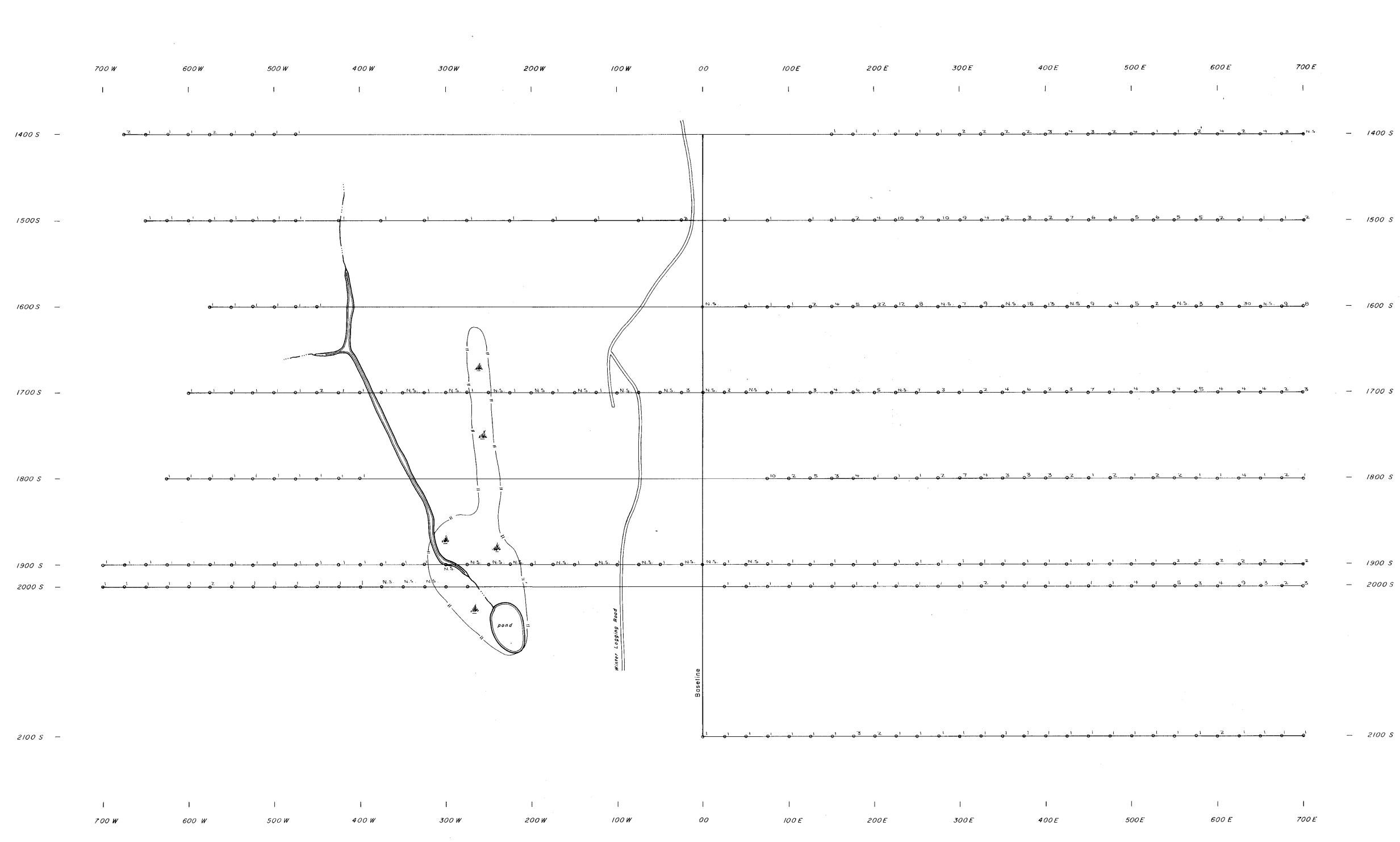
.

700 E 600 E

— 2000S

- 2100 S


I I 700 E 600 E


o 200 Geochemical results for Cu in ppm

GEOLOGICAL BRANCH ASSESSMENT REPORT

962

Canadian Nickel Company Limited SOIL SAMPLE RESULTS Cu(ppm) Project: HIT 3/MISS DETAIL Supervisor: E.J. Debicki Instrument: Compiled by: C . Bell Drawn by: D.W. Walsh Scale: 1:2500 0 25M File:

i	I	I	I	I
700 W	600 W	500 W	400 W	300 W

•

-3

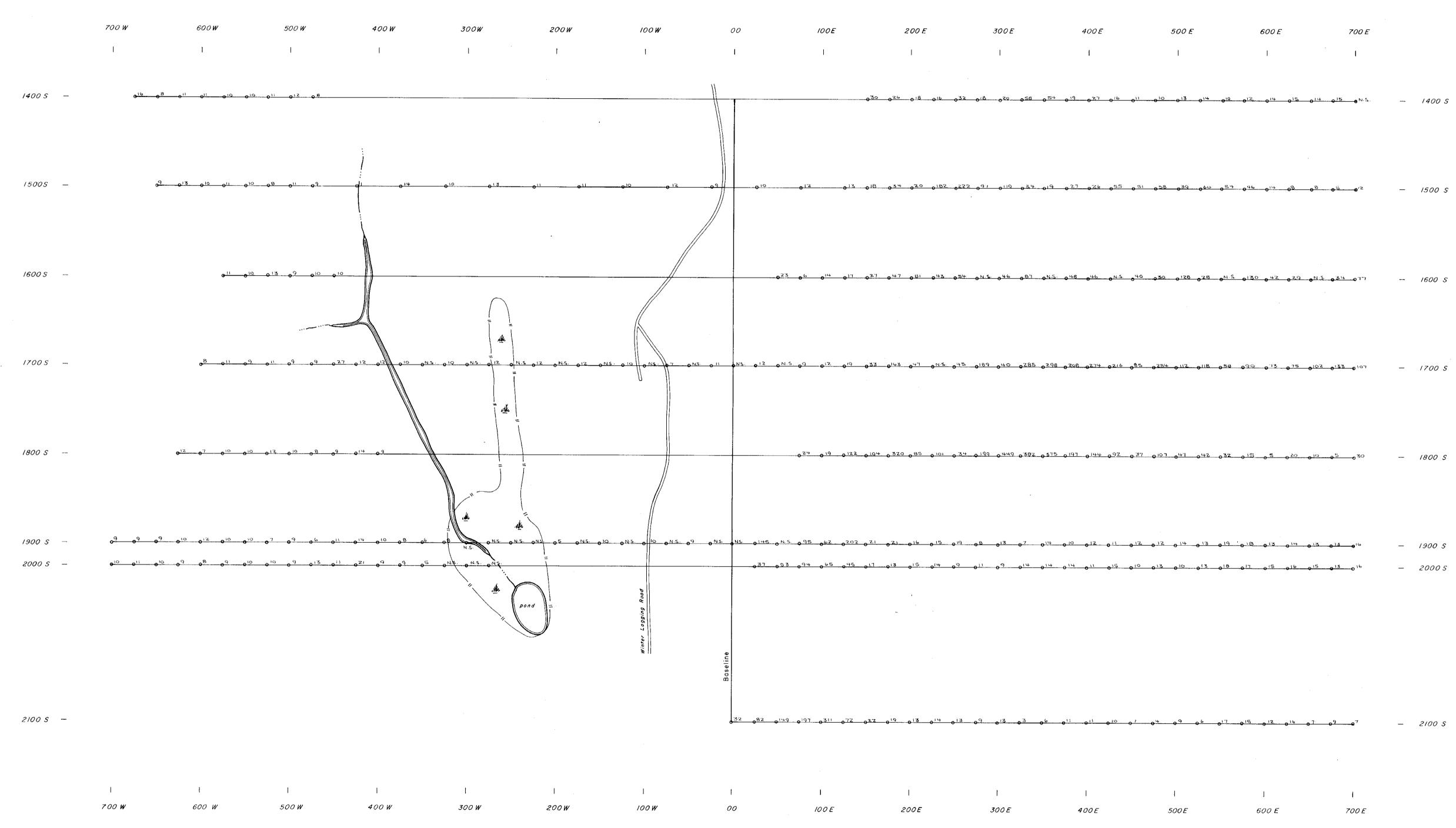
700 E 600 E | 1

— *1600 S*

— 2000 S

- 2100 S

1 1 700 E 600 E


o 🐃 🛛 Geochemical results for Mo in ppm

GEOLOGICAL BRANCH ASSESSMENT REPORT

10,962

Canadian Nickel Company Limited SOIL SAMPLE RESULTS Mo(Project: HIT 3/MISS DETAIL Area: SIMIL Supervisor: E.J. Debicki Instrument Compiled by: C. Bell Drawn by: D.W. Walsh Scale: 1 : 2500 0 25M File:

Copper POM I	Cliff , Onlar NO	io			
(ppm)	SHEET	FIGURE 3e			
KAMEEN MININ	G DIVISION	N B.C.			
Survey date	: June , 198	32.			
	Date drawn: Revised: October , 1982				
N.T.S. 92	H 10 E				

~J

700 E

— 1900 S — 2000 S

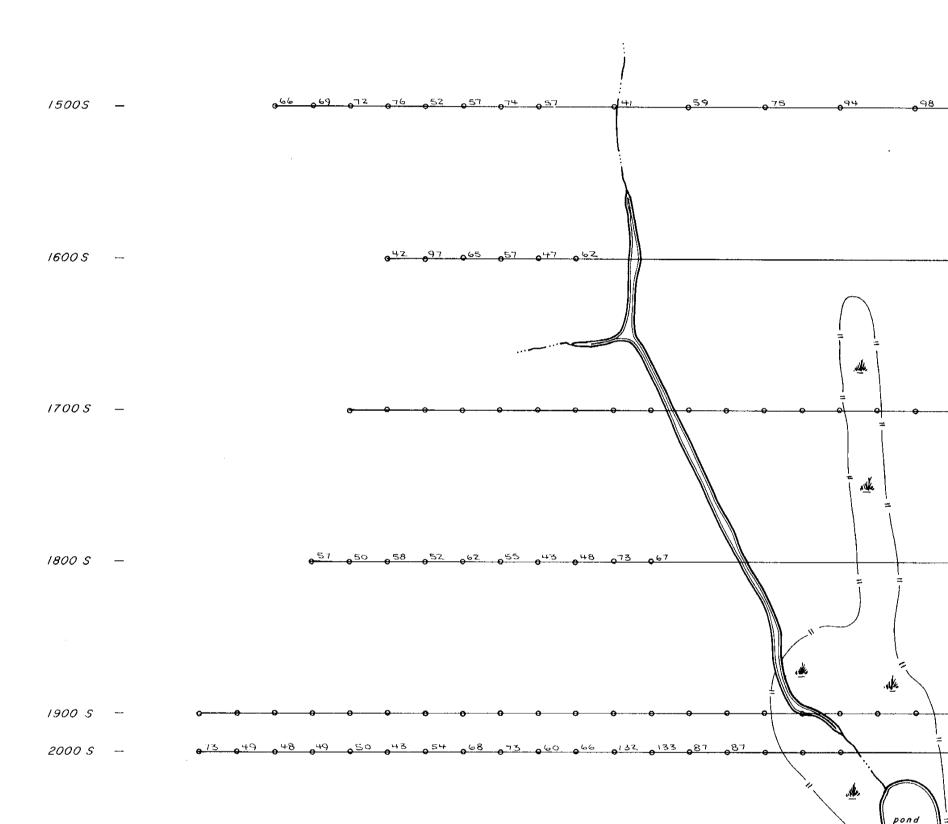
- 2100 S

1 1 700 E 600 E

1

o 30 Geochemical results for Pb in ppm.

GEOLOGICAL BRAN ASSESSMENT REP(


Canadian Nickel Company Limited SOIL SAMPLE RESULTS Pb (Project: HIT 3/MISS DETAIL Area: SIMILK Supervisor: E.J. Debicki Instrument. Compiled by: C. Bell Drawn by: D.W. Walsh Scale: 1 2500 0 25M File:

NCH	
Copper Cliff, Ont POM INO	ario
ppm)	FIGURE 3 f
KAMEEN MINING DIVISI Survey date: June , I Date drawn: Re October , 1982 N.T.S. 92 H 10 E	

700 W	600 W	500 W	400 W	300W
1	l	I	1	1

.

1400s e⁵⁹ e⁷⁴ e⁷⁸ e⁸Z e⁸Z e⁸ e⁶⁰ e⁸⁰ e⁶⁹

21005 -

I	I	t	I	I
700 W	600 W	500 W	400 W	300 W

٠.J

ł

200W	100 W	00	100E	200 E		400 E	500 E	
I	I	I	I	۰. ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	I	I	1	
						198 0127 0140 062 0	<u>61 044 052 050 0</u>	5) 65 %
18 0<u>9</u>+	<u></u>	0132 086	, 77 , 200 g	76 052 023 07	+ , 23 , 38 , 59 ,	86 0100 049 c	57 083 0113 0470	73 0 ⁷²
			Q	9				
0		•			• •			•
\ \			<u>081</u> _ <u>07</u> _ <u>0195</u> 0	202 0228 0187 0209 03	•			188 0
	o o o o o o o o o o o o o o o o o o o				00 0 0 0		, <u> </u>	
	W.	Base		~ 		Q		
1	. I	I	I	I	1	ł	1	
200 W	100 W	00	100 E	200E	300 E	400E	500E	

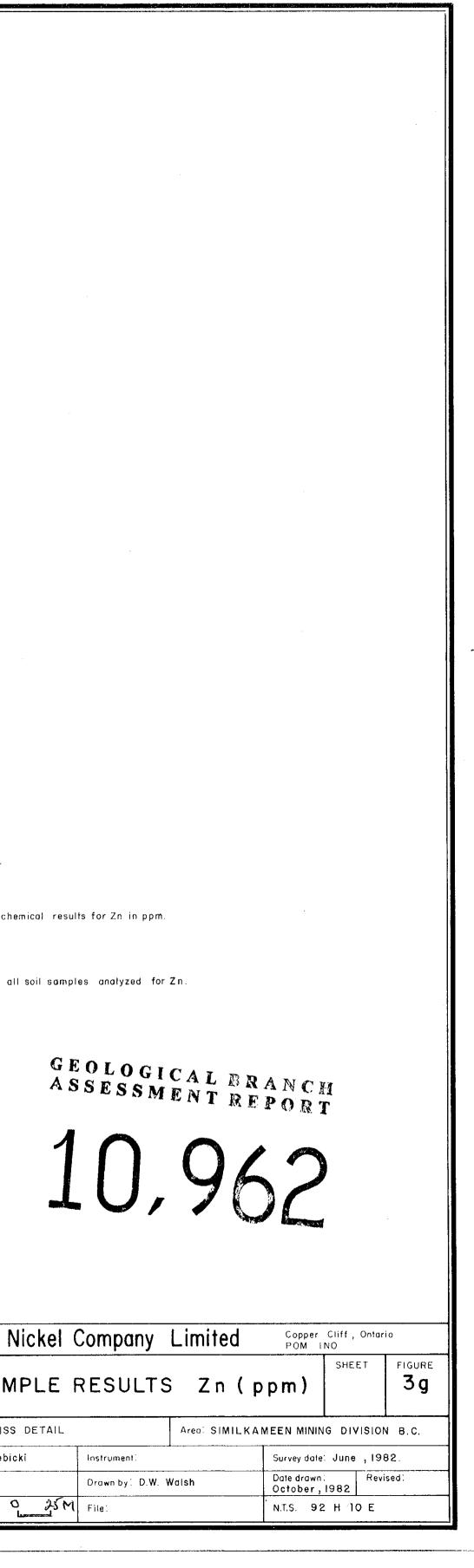
i

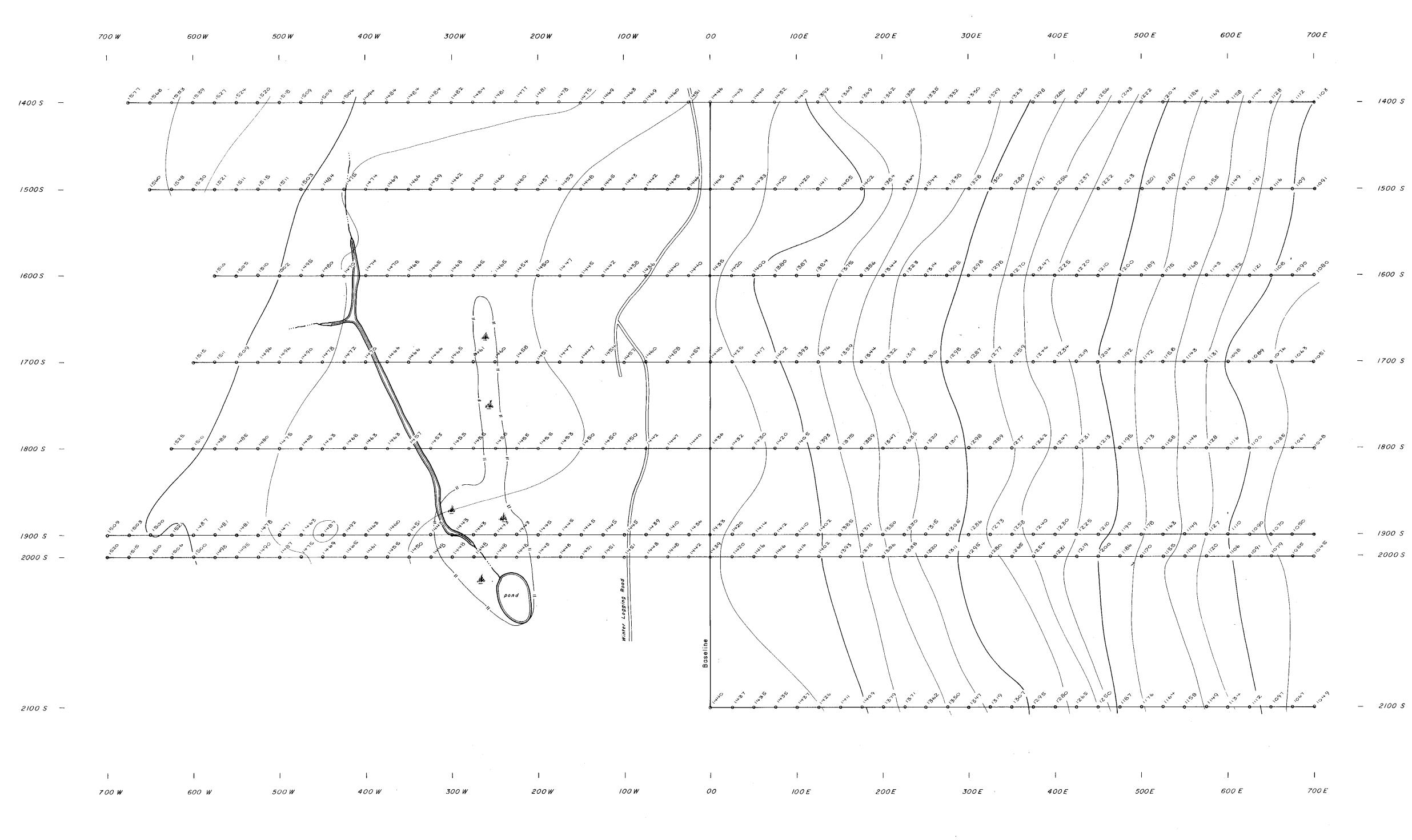
600 E 700 E I I

56 048 042 055 069 N.S. - 1400 S , 72 0103 048 069 080 0104 - 1500 S

- 1800 S

— 2100 S


I 700 E 600 E


•

♦100 Geochemical results for Zn in ppm. * Not all soil samples analyzed for Zn.

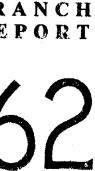
10,962

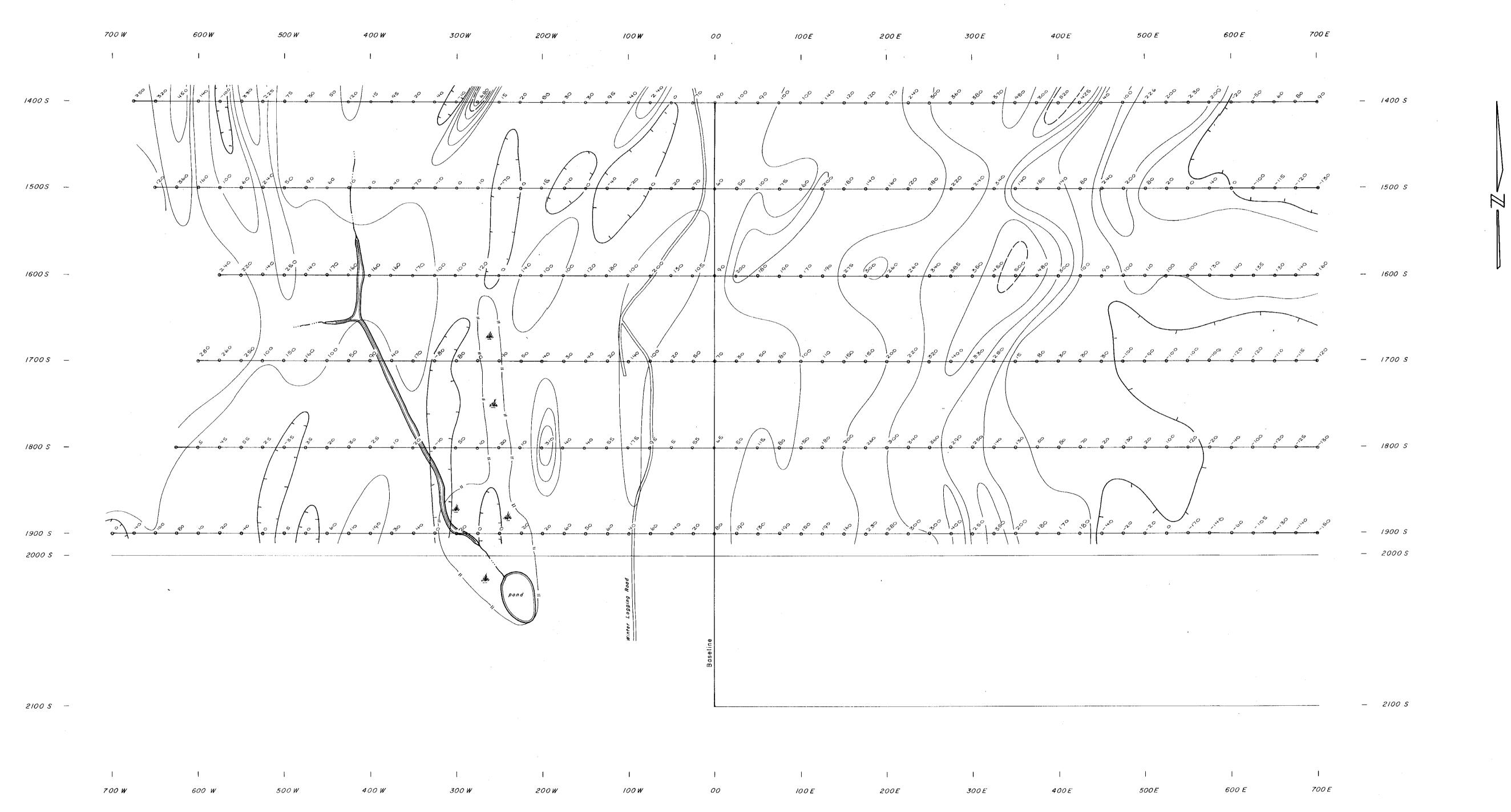
Canadian Nickel	Company	Limited	
SOIL SAMPLE I	RESULTS	5 Zn (
Project: HIT 3/MISS DETAIL		Areo: SIMILKA	
Supervisor: E.J. Debicki	Instrument	L	
Compiled by: C. Bell	Drawn by: D.W. Walsh		
Scale: 1:2500 0 25 M	File:	· · · · · · · · · · · · · · · · · · ·	

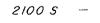
برا

— 1500 S

- 1600 S


- 1700 S

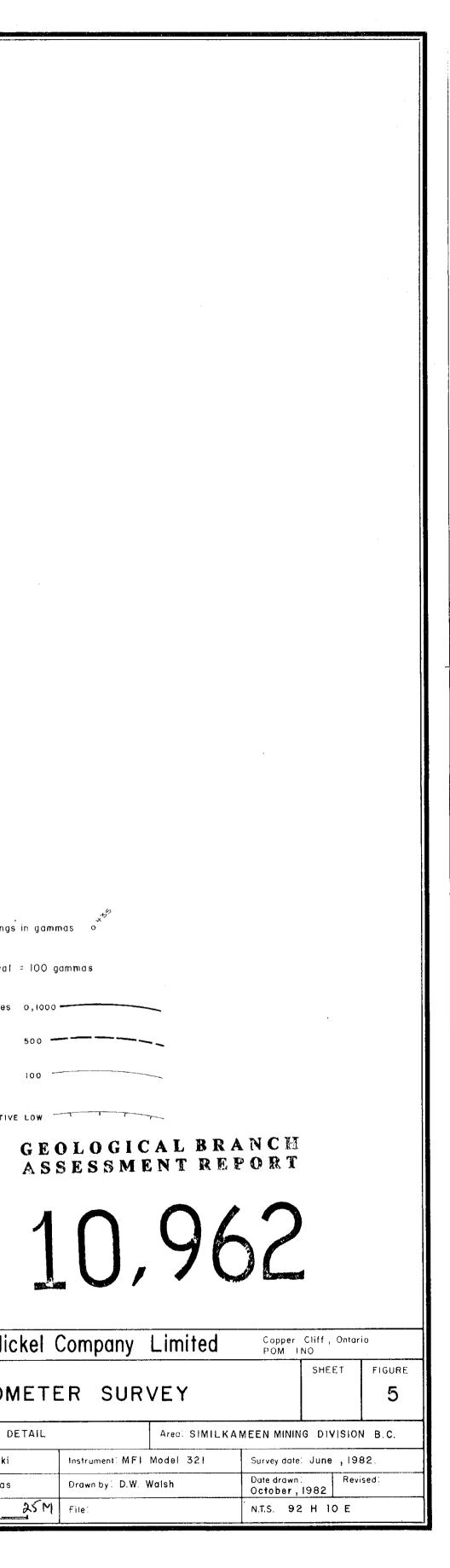

— 1900 S — 2000S


— 2100 S

Altitude readings in meters Contour Interval 25 meters

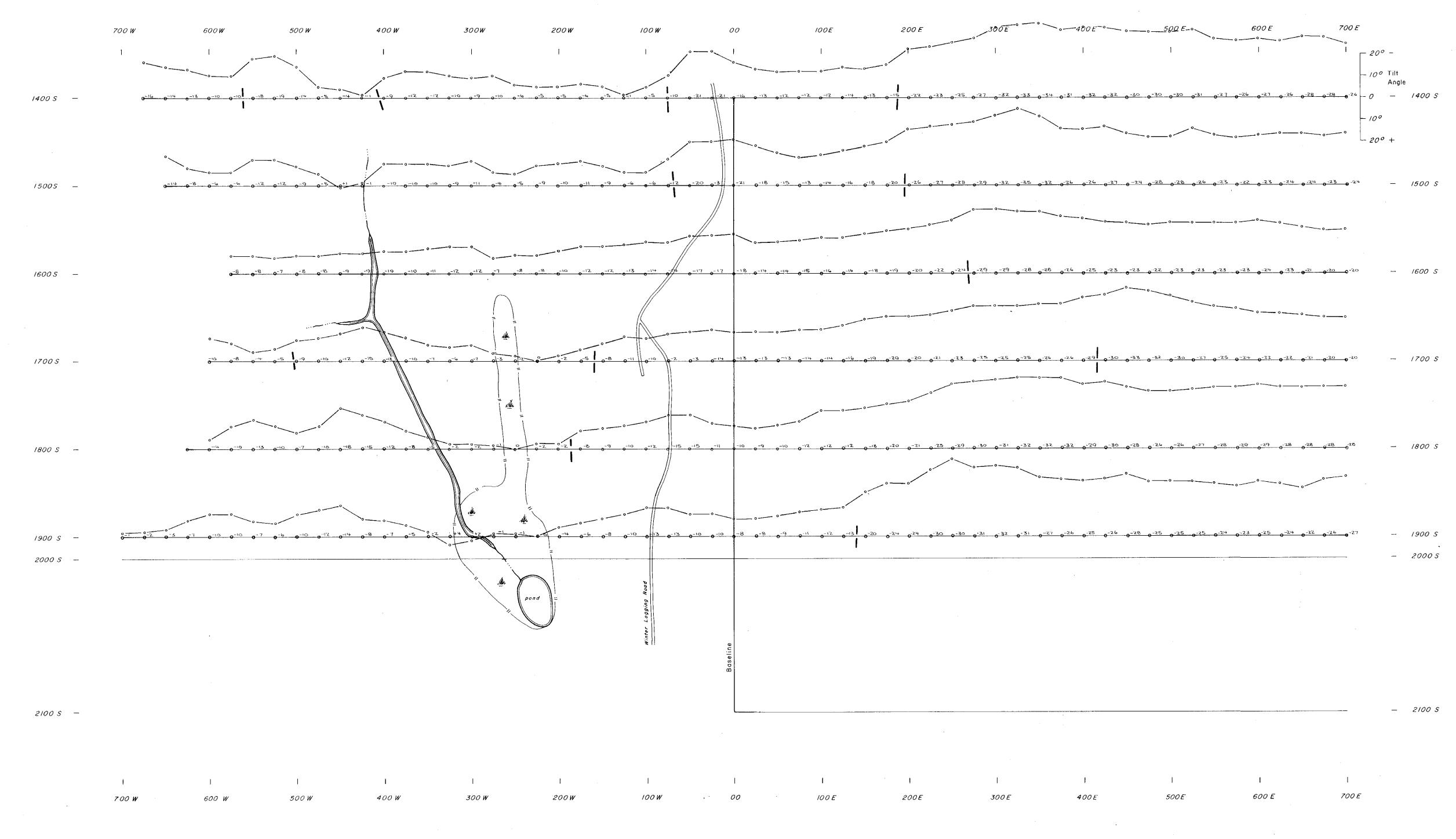
Canadian Nickel	Company l	_imited	Copper POM 1	Cliff , Ont NO	ario
ALTIMETER SI	URVEY			SHEET	FIGURE
Project: HIT 3/MISS DETAIL		Area: SIMILKA	MEEN MININ	G DIVISI	ON B.C.
Supervisor: E.J. Debicki	Instrument: Thommen 2000 Altimeter		Survey date: June , 1982.		
Compiled by: R. Allum	Drawn by: D,W. W	alsh	Date drown October ,		
Scole: 1:2500 0 25M	File:		N.T.S. 92	. H 10 E	

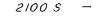




•

... ,




Canadian Nickel Company Limited

MAGNETOMETER SURVEY

Project: HIT 3/MISS DETAIL	Area: SIMILK
Supervisor: E.J. Debicki	Instrument: MFI Model 321
Compiled by: C. Ravnaas	Drawn by' D.W. Walsh
Scale: 1:2500 0 25M	File:

ł

٠<u>.</u> ا

. .

.

	00 H1				
N20	Seattle Wash	nington			
VLF Radem readings in	degrees o-31				
Conductor Axis —					
	010010	A 37 300 400			
GE	OLOGICA	A L R R	ANCH		
AS	SESSMEI	NTRM	PAPT		
AS	SESSME	NTRE	PORT		
	SESSME		PORT		
A S : 1	SESSME		PORT		
A S		<u>9</u> 6	PORT 52		
	SESSME	9 (port 52		
	SESSME	9 (PORT 52		
A S	SESSME	96	PORT 52		
	SESSME	96	PORT 52		
A S 1	SESSME)	NT R 1	PORT 522	f, Ontorio	
A S 1 Canadian Nickel (SESSME)	NT R 1	Copper Clift	f , Ontario HEET	FIGURE
A S 1	SESSME Company L	NT R 1	Copper Clift		
AS Canadian Nickel (VLF RADEM S	SESSME O, Company L	NTRE 96	Copper Clift	HEET	FIGURE 6
AS 1 Canadian Nickel (VLF RADEM S Troject: HIT 3/ MISS DETAIL	SESSME O, Company L	NTRE 96	Copper Clift POM INO Survey date: JL	HEET DIVISION Ine , 1982	FIGURE 6 B.C. 2.
AS 1 Canadian Nickel (SESSME Company L	NTRE OQC .imited	Copper Clift POM INO SAMEEN MINING	HEET DIVISION Ine , 1982 Revise	FIGURE 6 B.C. 2.