SKUM LAKE PROPERTY

on

Ti and Ski Claims (Map 920-13E)

Clinton Mining District

 \mathbf{for}

Taseko Mining Ltd.

by

J. R. Woodcock

J. R. Woodcock Consultants Ltd. 806-602 West Hastings Street Vancouver, B. C. V6B 1P2

GEOLO^tGTC[,]A¹C² BRANCH ASSESSMENT REPORT

11,001

TABLE OF CONTENTS

Page No.

INTRODUCTION	1
LOCATION AND ACCESS	1.
CLAIMS AND OWNERSHIP	2
GEOLOGY	2
CONCLUSIONS AND RECOMMENDATIONS	4
APPENDIX I - DIAMOND DRILL LOGS	
APPENDIX II - ASSAY DATA	
APPENDIX III - COST BREAKDOWN	

FIGURES

-

1.	Location Map	la
2.	Claim Map	lb
3.	Drill Hole Location Map	In Pocket

SKUM LAKE

INTRODUCTION

The Skum Lake target, a large pyritic area of porphyries and volcanic rocks, underwent its first major exploration in 1972, when Cyprus Exploration Corporation Ltd. did a program of geological mapping, induced polarization work, and diamond drilling. The claims subsequently lapsed and other organizations or individuals briefly held the claims or did limited investigations.

In 1981, Taseko Mines Limited acquired the Ski claims covering this property and in 1982, this Company conducted a program of percussion drilling and diamond drilling on the outer parts of the large induced polarization anomaly. In August, 1982, J. R. Woodcock logged the core for the Taseko diamond drill holes. In this work, Woodcock logged the different rock units and made notes on the pyrite mineralization and alteration. However, he did not make detailed estimates of the distribution of the mineralization and alteration. Also, he has not correlated the data with the core descriptions obtained by Cyprus Exploration Corporation Ltd.

LOCATION AND ACCESS

This property is situated just north of Skum Lake on the Chilcotin Plateau about 70 miles west-southwest of Williams Lake at latitude 57°47' north and longitude 123°35' west. The property is on map sheet 920-13E.

The alteration zone constitutes a hill called Newton Hill, which rises 500' above the flat Chilcotin Plateau at about 4000' elevation. The property is covered by a sparse growth of pine.

Access to the property can be by several means. There is a narrow airstrip for light aircraft at the east end of Skum Lake. Also, Skum Lake can be used for float planes. Access for drilling is from Williams Lake, westward along the Bella Coola road for 60 miles to Lee's Corner. Subsidiary gravel roads and dirt roads lead to the fishing camp at the east end of Skum Lake and access trails for 4-wheel vehicles extend from here to the mineralized parts of the property.

.../2

-1b-

CLAIMS AND OWNERSHIP

Claim data is shown in Table I. The Ti claim is registered in the name of Edith McLorin and the Ski claims are registered in the name of Taseko Mines Ltd. The claims are in the Clinton Mining Division.

TABLE I

Name	Record No.	Record Date	No. of Units
Ti	1218	July 22, 1982	20
Ski B	1111	Sept. 24, 1981	15
Ski C	1112	Sept. 24, 1981	9
Ski D	1113	Sept. 24, 1981	8
Ski E	1114	Sept. 24, 1981	20
Ski F	1141	Sept. 24, 1981	20

GEOLOGY

The preliminary geological map of the Taseko area by H. Tipper (1978) shows that most of the formations in the vicinity of Skum Lake are volcanic rocks of Tertiary ages and that the porphyries at Skum Lake are assigned to the Eocene intrusions. The strata surrounding the Fish Lake copper-gold deposits, 25 miles due south of Skum Lake, are also assigned by Tipper to these Tertiary formations.

There have been some comparisons made with the geology at Skum Lake and that at Fish Lake. The mineralization at Fish Lake, which is copper-gold with abundant pyrite in places, occurs in a sequence of fine-grained banded tuffs of intermediate composition. These tuffs are cut by numerous dykes. Many of these dykes are porphyries with plagioclase phenocrysts and sparse quartz phenocrysts; however, the composition of the matrix is mainly plagioclase with some quartz. The composition is that of quartz diorite. Some of these porphyries contain about 25% phenocrysts and others are very crowded with only about 25% matrix. Many of these porphyries are a light creamy colour due to the alteration and to the low content of mafic minerals.

The Cyprus geologists assigned some arkose outcrops on the east end of Skum Lake to the Upper Cretaceous; the central porphyry at Skum Lake to Early Tertiary and some basalts on the north flank of the hill to Late Tertiary.

In the logging done on the core, Woodcock classified the rocks into several major units. The following sequence, based on incomplete sections, is suggested:

- 1. The lower part of hole No. 3 has andesites, microdiorites and some diorites (see unit No. 2). In the upper part of this hole, a feldspar porphyry occurs. This feldspar porphyry has a uniform content of plagioclase phenocrysts and some mafic phenocrysts. It is very similar to the quartz diorite porphyries at Fish Lake excepting that the porphyries at Fish Lake contain a greater proportion of plagioclase phenocrysts and also a scattering of small quartz phenocrysts.
- 2. Hole No. 4 intersects mainly andesite, microdiorite and diorite (field identifications). In places, it is difficult to differentiate between andesite and microdiorite because of the broken nature of the rock. Also there may be some gradation between the two rock types. In places there is a gradation between diorite and the microdiorite. The diorite is a medium-to coarse-grained phaneritic rock and because of its coarse-grained nature one would expect it to be intrusive. Some light-green tuffaceous rocks are intercalated with these intermediate volcanic and dioritic This andesitic sequence is underlain by the white rocks. bleached and altered tuffs and porphyries similar to those of holes No. 1 and 2. Thus one would expect that these andesitic rocks might overlie the unit of white tuffs and porphyries.
- 3. Most of hole No. 1 and the upper part of hole No. 2 consist of tuffs of angular fragments and also some white feldspar porphyry. Alteration obscures the contact and the structure within some of the units. Whether or not some of the white quartz-feldspar-porphyry is a fragmental of porphyry is not known. If the spacial relationship of the porphyry with the tuff persists, then one would suspect that the white porphyry is extrusive. It is noticeable that some of this white rock is completely altered to white clay and sericite with no pyrite or limonite to indicate the unusual hydrothermal alteration associated with pyritization.
- 4. Nearly all of hole No. 2 and the lower part of hole No. 1 consist of arkose, pebble conglomerate, and gritstone. This is overlain by the white tuff and porphyry unit. Possibly it correlates with the arkoses mapped at the east end of Skum Lake.

In summary this appears to be a volcanic sequence which is underlain by the arkoses and conglomerates. The porphyries and the diorites could be either flow rocks or dykes and sills cutting the volcanic sequence. The presence of abundant pyrite in places does imply some igneous and hydrothermal activity and the similarity between some of these porphyries and those found at Fish Lake

.../4

would also indicate that at least the feldspar porphyry, some of the diorite and possibly some of the quartz - feldspar porphyry are dykes.

CONCLUSIONS AND RECOMMENDATIONS

The central part of Newton Hill is underlain by pyritized porphyries which have been interrupted as intrusions. Diamond drilling by Cyprus has indicated that, in some places, these porphyries are underlain by an andesitic volcanic rock.

The present study of core from the south part of the induced polarization anomaly indicates that the rock is a volcanic sequence which is underlain by arkoses and conglomerates. The porphyries and diorites, logged in the southeast part of the property, could be either flow rocks or dykes and sills that cut the volcanic sequence. The presence of abundant pyrite in places does imply some igneous and hydrothermal activity.

The similarity between the geology of Skum Lake and that of Fish Lake has been suggested. At Fish Lake the volcanic rocks consist of finely banded andesitic tuffs and these are cut by a number of porphyries of quartz diorite composition. However, the white acid volcanics and associated quartz feldspar porphyry at Skum Lake are not found at Fish Lake. The volcanic sequence at Skum Lake is presumed to be of Tertiary age whereas the volcanic sequence at Fish Lake may be of Mesozoic age.

Any further work on the property should entail correlation of core from the more recent Taseko drilling with the core obtained by Cyprus. Additional accurate information should be obtained on the geology of the Fish Lake deposit for comparison. For comparison, it is necessary to know the relationship of any pyritic halos to the copper-gold zone, the age and composition of the volcanic sequence and the types of porphyry dykes. A limited amount of petrographic work should help in comparing the dykes at the two properties.

Thus far, the drilling and the assay work have not detected any economic amounts of copper or gold. Any further drilling must await definition of a suitable target based on the Fish Lake model or another suitable model.

October 6, 1982

J. R. Woodcock

APPENDIX I

DIAMOND DRILL LOGS

300

S176

ر ,

DRILL HOLE		
DATE DRILLED		
DATE LOGGED Aug. 26/82		
LOGGED BY J. R. Woodcock		
DRILL CO		
DIP TESTS	*Note	\mathbf{sp}

PROPERTY _____ Skum Lake

PROJECT ____Skum Lake

COMPANY <u>Taseko Mines Ltd.</u>

*Note specimens were selected for study.

LOCATION 112+50'E,	170+00'S					
ELEVATION 1234.44m	(4050')					
DIRECTION						
LENGTH 127.41						

ABBREVIATIONS

FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
0	6,10	overburden					
6.10	40.84	white tuff	Bleached and sericitized tuff with				
			variety of angular fragments; in places				
			it resembles the white quartz-feldspar	* Sp. 11.5'	(3.51m)		
			porphyry which may be a fragmental.				
			Moderate disseminated pyrite.	71'	(21.64m)		
. <u></u>			6.10-14.02 abundant manganese stain in				
			oxidized zone, also geothite-jarosite				
			16.46-21.34 light grey color, but no more				
			pyrite.				
			21.34-30.48 white; pyrite content has				
·······			decreased (>2% down to<1%)				
			30.48-56.08 very white and altered but				
			pyrite content <2% and mostly < 1%				
40.84	71.32	White quartz-	35.35-49.07 many mud and broken zones				
		feldspar por-	51.21-52.12 some grey slips of sheared				
		tuff	pyrite	217'	(66.14m)		
			40.84-57.91 still highly altered (sericite,				
			etc.) but no good obvious fragments.				
			57.91-71.32 rock harder, but still ser-				

•

, , ,

DRILL HO	LE1		PROJECTSKUM LAKE			PAGE_	2
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
			-icitized; feldspar phenocrysts occur in				
			clusters in some places and disseminated				
			pyrite is higher in these clusters.				
			Pyrite 1 to 2%				
71.32	80.16	white tuff	light grey; high pyrite				
80,16	92.66	white guartz-	relatively hard, similar to 57.91-71.32				
		phyry	pyrite <1%; in places pyrite clusters		·		
		· · · · · · · · · · · · · · · · · · ·	increase in amount.				
92.66	109.42	white tuff	87.17-95.40 rock so broken and kaolinized				
			that it is difficult to tell type of				
		·	rock; in places tuff has moderate (>2%)				
······································			disseminated pyrite plus some crystals				
			along fractures.				
		·	106.68-109.42 - sheared, kaolinized gouge	· · ·			
		<u> </u>	zones mainly altered feldspars with buff	·			
109.42	116.13	arkose	spots and black specks; no pyrite; in-	Sp. 362.5'	(110.49m)		
		1	cludes some fine-grained versions.				
116.13	118.87	mudstone	This could be a mudstone of volcanic				
			origin.	387'	(117.96m)		
		· · · · · · · · · · · · · · · · · · ·	117.96 banding 35° to core; some arkosic				
			bands.				
121.31	127.41	pebble conglomerate	pebble conglomerate interbedded with				
			arkose and banded mudstone; many rounded				
			light soft pebbles.				
			127.41 End of hole.	404 *	(123.14m)		
		<u></u>					
<u> </u>							

)

DRILL HOLE2			PROPERTY Skum Lake		LOCATION <u>112+50'E</u> , 166+00'S ELEVATION <u>1225.30m</u> (4020')			
DATE LOG	GED <u>Aug.</u> 26	1982	PROJECT Skum Lake	D	DIRECTION			
LOGGED B	Y J. R. Woo	dcock	COMPANY Taseko Mines Ltd.	IN		ION <u>90°</u>		
DRILL CO.				. LI	ENGTH			
DIP TESTS		·····						
ABBREVIA	TIONS		1					
FROM	то	ROCK UNIT	DESCRIPTION SAM	IPLE No. REC	OVERY	%	%	
0	19.81	overburden						
19.81	25.60	white porphyry	Completely altered to white clay and ser-			. <u></u>		
			icite; no pyrite, no limonite.					
25.60	28,96	siltstone	The greenish altered rock; largely feld-					
			spar; grades to green mudstone 25,60-27.13					
		<u> </u>	largely altered to white clay and sericite					
			No pyrite or limonite					
28.96	33.53	conglomerate	Assorted rock types in angular and sub-				· · · · ·	
		arkosa-	rounded pebbles up to 7cm long.					
33.53	129.24	siltstone	Green with sericite alteration; some small	····				
			black angular fragments. With increasing					
			depth, to 4328, the rock becomes mudstone *Sp.	123' (37.49)			
			with few small fragments.					
			43.28-49.99 intermixed arkose and grit with					
			some conglomerates.		·			
			49,99-57.0 green mudstone and siltstone.					
			White calcite spots 57.00-95.71 coarse arkose interlayered with					
		· · · · · · · · · · · · · · · · · · ·	some green mudstone; layering at 70° to core axis.					

DRILL HOLE	2	·····	PROJECT SKUM LAKE			PAGE	2
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
			69.80-71.63 most of core ground. Green				
			colour, probably sericite alteration;				
			rock very soft; no pyrite.				
			53.34-128.02 mostly good solid core with				
			little fracturing.				
			92.66-95.10 parts are coarse enough to be			·	
			conglomerates		,		
			95.71-102.11 green mudstone with scattered				
			lithic fragments.				
			102.11-107.90 coarse arkose interlayered				
			with the fine-grained green mudstone		÷		
			containing scattered large (up to 3cm)				
			lithic fragments.				
			107.90-110.03 arkose-conglomerate				
			110.03-116.74 mudstone-arkose				
			116.74-122.53 arkose-conglomerate				
			122.53-129.24 arkose-mudstone				
			128.02-129.24 core becomes fractured				
			129.24 End of hole				
		<u> </u>	Note: the "green mudstone" is probably of				
			volcanic origin, possibly a water-laid				
			fine-grained tuff.				
						·	
						· · · · · · · · · · · · · · · · · · ·	

,

23.

.

DRILL HOLE 3		LOCATION 110+00'E, 176+00'S
DATE DRILLED	PROPERTY Skum Lake	ELEVATION 1258.82m (4130!)
DATE LOGGED Aug. 25, 1982	PROJECTSkum Lake	DIRECTION
LOGGED BYJ. R. Woodcock	COMPANY Taseko Mines Ltd.	INCLINATION 90°
DRILL CO		LENGTH142,65
DIP TESTS		
ABBREVIATIONS		

FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
0	28.04	overburden					
28.04	68.58	feldspar por-	Feldspar porphyry at 49.38m light greenish				
		phyry	grey; 10% plagioclase phenocrysts altered				
			to epidote plus sericite; < 8% biotite and				
		· · · · · · · · · · · · · · · · · · ·	hornblende phenocrysts altered to chlorite;				
			2% scattered white calcite pockets				
			28.04-49.07 completely oxidized - rusty;				
			geothite on fractures	Sp. 161'	(49.07m)		
			28.04-42.06 abundant manganese oxide on	178'	(54.25m)		
			fractures		· · · · · · · · · · · · · · · · · · ·		
·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	37.80-46.63 broken, clay alteration, mud				
			seams, very low recovery.				
	·		49.07-67.06 intermixed fresh and rusty			· · ·	
			(oxidized) zones.				
. <u></u>			mud seams at 65.53 and 67.06.				
68.58	95.40	micro-diorite	greenish, chloritic volcanic with many	2821	(85.95m)		
			irregular chloritic seams; low disseminated	2761	(84.12m)		
		· · · · · · · · · · · · · · · · · · ·	pyrite; abundant gypsum-pyrite veins;				
			pyrite slips and coarse pyrite crystals				
			in places.				

,

,

DRILL HOLI	E <u>3</u>		PROJECTSKUM LAKE			PAGE _	2
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
			65.58-73.76 broken core, gouge zones; low				
			recovery.				
			68.58-74.98 yellow grean altered or				
			weathered volcanic without limonite.				
			74.98-78.03 gouge and broken zones.				
95 10	111 56	diorite	The diorite is a dark grey medium grained	342'	(104.24m)		
			phaneritic mixture of sericitized		,		
			plagioclase and chloritized mafics; out-				
			lines of crystals are blurred.				
			coarse grained matrix of rock becomes more				
			apparant because of less shearing and		-		
			chlorite.	325'	(99.06m)		
		. ,	Some of the so-called andesite may in part				
			be altered equivalent.				
			89.00, 92.05, 93.57, short zones of				
			broken rock; clay alteration.				
			105.77-109.73 broken and altered rock				
			good selenite crystals on some fractures				
			gouge @ 106,98m.				
			110.03-111.56 broken rock, gouge @ 111.40				
111.56	134.11	tuff	111.56-120.70 some zones are highly				
			sericitized; also sericitization along	397'	(121.01m)		
-		· · · · · · · · · · · · · · · · · · ·	some fractures; high pyrite with abundant				
		,, <u>.</u>	coarse pyrite along fracturës.				<u></u>
			120.70-121.01 and 118.87-119.18 andesite	·			
			cut by pyrite veinlets				
			116.74-117.35 broken; gouge zones	·			
			129,84 broken				

FROM	то	RECOVERY	%	*			
			The fragmental matrix is easily apparent:				<u> </u>
			a variety of rock types are present. In			<u>+</u>	
			places, the so-called diorite seems to			<u>+</u>	
			grade into it.				
134.11	137.77	porphyritic	Less plagioclase than the diorite; also				
			variable content of plagioclase pheno-				
			crysts.				
			Cut by epidote veinlets.	443'	(135.03m)		
			Plagioclase crystals adjacent to veinlets				
			are also epidotized. Sericitized		·		
			plagioclase.				
37.77	142.65	tuff	High sericitization; no epidote veinlets				
			broken rock 137.16-137.46, 140.21-140.51,				
		· · · · · · · · · · · · · · · · · · ·	141,12-142,65,				
	142.65		End of hole.				
					<u> </u>		
	ļ						
			·				
					· · ·		
<u> </u>							
	ļ						
	· ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	ļ						
	ļ						

DRILL HOLE 4		LOCATION 114+00'E, 176+00'S
DATE DRILLED	PROPERTY Skum Lake	ELEVATION <u>1252.73m (4110')</u>
DATE LOGGED Aug. 25, 1982	PROJECT Skum Lake	DIRECTION
LOGGED BY J. R. Woodcock	COMPANY	INCLINATION 90°
DRILL CO		LENGTH53
DIP TESTS		
ABBREVIATIONS		

FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
0	21.95	overburden					
21.95	24.08	boulders	boulders and weathered rock				
24.08	28.65	andesite	abundant epidote, pyrite veinlets	Sp. 86.5'	(26.37m)		
			concentration of plagioclase phenocrysts				
			at 25.91				
			24.08-31.39 abundant manganese				
			coatings and dendrites; broken and oxidized		-		
			with some geothite. Also pyrite on some				
			fractures.				
			31.39-39.62 abundant limonite on fractures				
			(geothite) plus manganese; some hematite				
			limonite				
28.65	37.49	diorite	35.05 badly broken rock				
37.49	41.76	microdiorite	39.62-50.29 abundant geothite on fractures				
41.76	50.30	diorite and	(without manganese)				
		micordiorite	42.98 broken rock, all moderately				
			sericitized				
			44.81-50.29 broken rock and fault zones				
50.29	59.74	tuff	High sericite, low pyrite			4	
			50,29-53,95 light green rock with gouge				

DRILL HOLE	E4		PROJECTSKUM_LAKE			PAGE _	2
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%
			and abundant calcite				
· · · · · · · · · · · · · · · · · · ·			53.95-57.00 broken rock, no limonite, no				
			pyrite				
59.74	72.24	andesite	broken rock; looks like microdiorite in				
······			places; pyrite in some fractures; abundant				
		5504001+0	epidote				
_72.24	76.50	basalt	greenish grey andesite, even texture, no				
			phenocrysts				
		·	cut by thin epidote veinlets, no pyrite,		1		
			calcite on fractures only				
			cut by few quartz veinlets (<4/meter)				
			This resembles thin andesite layers in				
			DDH#3.				
76.51	80.47	porphyritic	yellow green from pervasive epidote;				
		andesite	plagioclase phenocrysts; chloritized				
			hornblende phenocrysts; very limy, white				
			calcite spots				
80.47	87.17	diorite-	Cut by many epidote veinlets; chloritized				
		microciorite	inclusions; could be a fragmental; highly				
	1		fractured and sheared compared to pervious				
			rock type				
87.17	89.92	porphyritic andesite	light greenish-grey andesite with horn-				-
			blende; less plagioclase phenocrysts				
			than at 76.2m, no pyrite.				
89.92	110.03	microdiorite-	sharp gradations between textures;	Sp. 300'	(91.44m)		
			Dark fragments in places, along with				
			larger areas of differing textures, but	344*	(104.85m)		
			with gradational contacts.				

DRILL HOLE4 PROJECTSKUM LAKE								
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%	
			appears coarser adjacent to sparse quartz					
·			veinlets					
			also more epidote adjacent to sparse quartz					
			veinlets; minor pyrite in few fractures;					
			many epidote veinlets	y epidote veinlets				
			102.72 unusual reddish bands interlayered	2.72 unusual reddish bands interlayered				
			with chlorite bands and epidote bands					
			106.07-107.59 much broken rock	06.07-107.59 much broken rock				
110.03	124.05	fragmentals	parts are similar to microdiorite zones					
			in textures; some is porphyritic andesite;					
			but not as sheared and chloritized;					
			Epidote veinlets					
			110.34-111.86 broken and gouged rock					
			111.56-111.86 coarse calcite crystals					
			112.78-113.39 broken rock					
			119.78-120.70 sheared; gouge					
124.06	128,93	tuff	bleached and altered					
			highly pyritic - mainly in veins					
			most is badly broken					
			127.10-128.93 brick-red due to oxidation		•			
128.93	141.73	white porphyry	contains 25% small white altered plagio-	Sp. 427'	(130.15m)			
			clase phenocrysts plus scattered small					
			quartz crystals					
			few small chlorite spots of altered mafics.					
			highly sericitized phenocrysts and matrix.					
			no pyrite; no limonite; not limy					
			134.11-137.77 rock is so sheared, altered					
			and kaolinized that it is hard to identify					

DRILL HOL	_Е4	PROJECTSKUM LAKE							
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	%	%		
			137.77-141.73 porphyry is sericitized to						
		·	white color; however, in places, it is						
			grey with the abundant pyrite						
141.73	154.54	white tuff	parts look similar to white tuff,	476.5'	145.24m)				
			but most has abundant angular fragments;						
			highly sericitized and pyritized; also			· · · · · · · · · · · · · · · · · · ·			
			pyrite concentrations.		,				
			End of hole.						
					-				
				· ·					
		· · · · · · · · · · · · · · · · · · ·							
<u> </u>									
	·		· · · · · · · · · · · · · · · · · · ·						
	·								

۰.

APPENDIX II

ASSAY DATA

.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

2095 WEST TRANS CANADA HIGHWAY — KAMLOOPS B.C. V1S 1A7 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

то	Taseko Mines Ltd.	Certifica	te NoK-4786
	Box 157	Date	March 12, 1982

Ashcroft, B.C. VOK 1A0 ATTENTION: DR. L. ROSS

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	GOLD	SILVER	Cu	Zn					
		Ounces Per Ton	Ounces Per Ton	Percent						
.1	#3 92 - 102	.005	.12	.01	.10					
2	102 - 112	.005	.09	.01	.10					
3	112 - 122	.005	.07	.01	.19					
4	122 - 132	.004	.07	.01	.15					
5	142 – 152	.004	.03	.01	.10					
6	152 - 162	.006	.07	.01	.08				1	
7	162 - 172	.004	.03	.01	.04					а.
8	172 - 182	.003	.03	.01	.04					
9	182 – 192	.003	.03	.01	.03					
10	192 – 202	.004	.07	.01	.05					
11	202 - 212		.07	.01	.04					
12	212 - 222	.004	.07	.01	.07					
13	222 - 232	.005	.07	.01	.07			4 C		
14	232 - 242	.006	.03	.01	.04					
15	252 - 262	.006	.07	.01	.08					
16	262 - 272	.009	.09	.02	.07		:			
1/	2/2 - 282	.003	.12	.01	.50					
18	282 - 292	•005	.09	.01	.03					
19	292 - 302	.005	.15	.01	.08		•			
20	$\frac{17}{10}$ $\frac{302}{2}$ -312	·•UU3	•U/	• •01	.03					
	1									

NOTE:

Rejects retained three weeks.

Pulps retained three months

unless otherwise arranged.

Registered Assayer, Province of British Columbia

TO _____ Taseko Mines Ltd.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

2095 WEST TRANS CANADA HIGHWAY — KAMLOOPS B.C. V1S 1A7 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

Certific	cate No.	<u> </u>	-4786	2
Date _	March	12,	1982	

Jhereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	GOLD	SILVER	Cu	Zn					
		Ounces Per Ton	Ounces Per Ton	Percent	Percent	Percent	Percent	Percent	Percent	Percent
21 22 23 24 25 26 27	#3 312 - 322 322 - 332 332 - 342 342 - 352 252 - 362 362 - 372 372 382	.003 .004 .007 .007 .004 .006	.09 .07 .09 .15 .09 .07	.01 .01 .05 .01 .01	.03 .05 .02 .10 .02 .04					
27 28 29 30	$372 - 382 \\ 382 - 392 \\ 392 - 402 \\ 402 - 412$.003 .006 .005 .006	.07 .12 .03 .07	.01 .01 .01 .01	.03 .10 .08 .02					
31 32 33 34 35	$412 - 422 \\ 422 - 432 \\ 432 - 442 \\ 442 - 452 \\ 452 - 462 \\ 452 $.005 .004 .007 .007 .010	.09 .07 .07 .09 .03	.01 .01 .01 .01 .01	.02 .02 .02 .02 .01					
36 37 38 39 40	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.006 .008 .009 .005 .006	.07 .09 .07 .12 .07	.01 .01 .02 .01 .01	.01 .02 .02 .01 .01					

NOTE: Rejects retained three weeks.

Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

2095 WEST TRANS CANADA HIGHWAY - KANLOORS 20

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

PHUNE. (604) 372-2784 -- TELEX: 048-0320 CERTIFICATE OF ASSAY

70 _____Taseko Mines Ltd.

Certificate No. ___K-4786 3

Date March 12, 1982

Jurreby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No	Marked	GOLD	S'LVER	. Cu	Zn					
		Ources Per Ton	Cunces Per Ton	Percent						
41	#4 113 - 122	.006	.07	.01	L.01					
42	123 - 132	.005	.03	L.01	.01					
43	132 - 142	.005	.07	.01	.01				ł	
44	142 - 152	.004	.07	.01	.01	ł .				
45	152 - 162	.004	.09	.01	.01					
46	182 – 192	.004	.07	.01	.01					
47	192 - 202	.004	.09	.01	.01					
48	202 - 212	.005	.03	.01	.02					
49	212 - 222	.007	.07	.01	.15					
50	222 - 232	.006	.03	.01	.01					
			L L							
51	232 - 242	.006	.03	L.01	.01					
52	242 - 252	.004	.03	.01	.01					
53	252 - 262	.005	.07	.01	.02					
54	262 - 272	.004	.07	.01	.01					
55	272 - 282	.005	.09	.01	.01					
56	282 - 292	.006	.07	.01	.02					
57	292 - 302	.006	.03	L.01	.02					
58	302 - 312	.005	.07	.01	.02					
59	312 - 322	.005	.07	.01	.01					
60	#4 322 - 332	.006	.09	.01	.01					

NOTE:

Rejects retained three weeks.

Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

2095 WEST TRANS CANADA HIGHWAY — KAMLOOPS B.C. V1S 1A7 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO _______ Taseko Mines Ltd.

Box 157

REVISED

Certificate No. <u>K-4786</u> Date <u>April 5, 1982</u>

Ashcroft, B.C. VOK 1A0

ATTENTION: DR. L. ROSS

Jhereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	GOLD	SILVER	Cu	Zn					
		Ounces Per Ton	Ounces Per Ton	Percent	Percent	Percent	Percent	Percent	Percent	Percent
61 62 63 64 65 66 67 68	#4	.014 .005 .004 .006 .005 .006 .012 .015	.07 .07 .09 .07 .12 .07 .07	L.01 .01 .01 .01 .01 .03 .01 .01	.02 .03 .05 .02 .03 .03 .03 .02					
70	412 - 422 422 - 432	.030	.12	.06	.03					
71 72 73 74 75 76 77 78 78	#4 $432 - 442$ 442 - 452 452 - 462 462 - 472 472 - 482 482 - 492 492 - 502 502 - 507 462 - 172	.019 .010 .007 .008 .007 .007 .007 .004 .004	.17 .12 .09 .15 .07 .07 .07 .03 .09	.03 .01 .01 .01 .01 .01 .01 .01	.10 .10 .02 .10 .04 .02 .03 .05					
80	#2 162 - 172 #2 172 - 182 L means "Less than"	.004 .008 #2 samples a	.07 .07 are probably	.01 .01 nismarked	.03 .02 1 #4's		-			

NOTE:

Rejects retained three weeks. Pulps retained three months

unless otherwise arranged.

Registered Assayer, Province of British Columbia

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

APPENDIX III

COST BREAKDOWN

İ.