83-#4-11018.

AIRBORNE GEOPHYSICAL REPORT ON THE SEQ 1 AND SEQ 2 MINERAL CLAIMS RECORD NOS. 933(1) AND 934(1) CLAIM SHEET NO. 104K/12E TULSEQUAH RIVER AREA ATLIN MINING DIVISION, B.C. 58°45' N. LAT., 133° 35' W. LONG.

OWNED AND OPERATED

BY

COMAPLEX RESOURCES INTERNATIONAL LTD.

REPORT BY

KEN G. LINTOTT, P.GEOL.

FEBRUARY, 1983

1.018

Sec. 31

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

INTRODUCTION		•	•	•	•	•		•	•	•	5	,	•	•		•	•	•	•	•	•	•	•	•	1	
LOCATION AND	ACC	ESS		•	•	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	1	
GEOLOGICAL S	ETTI	NG	•	•	•	•	•	•	•	•	ł		÷	•	•	•	•	•	•	•	•		•	•	2	
AIREORNE GEO	PHYS	ICA	L	SL	JRI	/EY	ſ	•			•			•		•		•	•		•	•	•		3	5
CONCLUSIONS	AND	REC	OM	Mł	N)A'	L10	DNS	5					•		•					•			•	3	5
STATEMENT OF	COS	TS		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	4	I.
STATEMENT OF	QUA	LI	:10	:A:	110	ON!	s				•	•			•		•	•	•	3	•	ě	•		4	ł
PERSONNEL .			÷			•							•				•					÷	,	÷	ţ	5

APPENDIX

HELICOPTER MARK VI INPUT SYSTEM (QUESTOR REPORT)

MAPS

LOCATION MAP (SEE PAGE 8 OF APPENDIX) INPUT SURVEY RESULTS (IN POCKET) TOTAL INTENSITY MAGNETIC SURVEY (IN POCKET)

PAGE

INTRODUCTION

Questor Surveys Limited was contracted to carry out an airborne electromagnetic survey (INPUT system) and magnetic survey over the SEQ mineral claims, situated in the Tulsequah area of northwestern British Columbia.

The report and maps prepared by Questor are attached as an appendix to this report. Questor's report and maps have been edited to delete only information not relevant to the SEQ mineral claims.

The claims were acquired to cover possible strike extensions of the gold-silver bearing massive sulphide ore horizon of the Tulsequah Chief Mine which is located on certain Crown-granted claims within the boundaries of the SEQ 1 claim.

The purpose of the 1982 exploration program was to determine whether conductive sulphides could be detected that may be related to a massive sulphide ore body.

LOCATION AND ACCESS

The SEQ 1 claim record number 933(1) and the contiguous SEQ 2 claim record number 934(1) are located on the east side of the Tulsequah River valley about 60 miles south of Atlin, British Columbia, at about latitude 58° 45' N. and longitude 133° 35' W. The property extends

from the valley of the Tulsequah River at an elevation of about 75 meters to the upper reaches of Mt. Eaton at an elevation of about 1,700 meters.

Access for the airborne survey was from the airstrip at Atlin, British Columbia.

GEOLOGICAL SETTING

The Tulsequah area lies on the eastern flank of the coast range Batholith and is underlain by a succession of Paleozoic and Mesozoic volcanics and sediments of which Mesozoic rocks are most abundantly exposed. The SEQ 1 and 2 claims are underlain entirely by steeply dipping volcanic rocks of the Stuhini Group of Upper Triassic age which locally consists of andesites of flow and fragmental origin.

The Stuhini volcanics are the host rocks for gold and silver bearing exhalative massive sulphide deposits of the Tulsequah Chief Mine. The Tulsequah Chief Mine is owned by Cominco and is located on certain Crown-granted claims which are located within the boundaries of the SEQ 1 mineral claim.

The SEQ 1 and SEQ 2 claims were located to cover possible extensions of the Tulsequah Chief mineralization horizon which strikes north easterly and dips steeply northwest. For a greater geological detail reference may be made to G.S.C. Memoir 362 by J. G. Souther and accompanying map 1262A. The geology of the Tulsequah Chief Mine by W. T. Irvine is published in "Structural Geology of Canadian Ore Deposits", Volume 26, Commonwealth Mining and Metallurgical Congress, 1957.

AIRBORNE GEOPHYSICAL SURVEY

See attached appendix for methology, presentations, and interpretations by Questor Surveys Limited.

The most evident aspect of the INPUT survey is the great number of anomalies along the Tulsequah River flats. These are most likely caused by conductive overburden.

No significant anomalies were detected within the confines of the SEQ claims, however, a few weak responses occur immediately southeast of the SEQ 2 boundary.

CONCLUSIONS AND RECOMMENDATIONS

The INPUT system failed to detect the Tulsequah Chief ore body or outline additional significant conductors within the confines of the SEQ claims.

The weak responses southeast of the SEQ 2 claim should be ground checked to determine the geology and probable cause of the conductivity.

-3-

STATEMENT OF COSTS

The airborne survey was flown over a much broader area than is covered by this report, and therefore, costs ascribed to the SEQ claims have been prorated on a line kilometer basis.

45.7 km at \$85.25/line kilometer	\$3,897
Mobilization/Demobilization	1,863
Preparation of Report: 1 day at \$200	200
TOTAL	\$5,960

STATEMENT OF QUALIFICATIONS

Name:	Ken G. Lintott
Profession:	Geologist
Education:	University of Alberta, B.Sc., 1970
	Geology
Professional Association:	Professional Geologist - Association of
	Professional Engineers, Geologists, and
	Geophysicists of Alberta
Experience:	3 years seasonal employment: Saskatchewan
	12 years Wollex Exploration Ltd., Consultant
	and Exploration Manager: Northwest
	Territories, Yukon, Manitoba, Saskatchewan,
	Alberta, British Columbia, California,
	Nevada, and Montana

See Page 1 of the report by Questor Surveys Limited.

HELICOPTER MARK VI INPUT SURVEY

WOLLEX EXPLORATION

TULSEQUAH RIVER AREA

BRITISH COLUMBIA

PROJECT # 241126

....

-

....

...

1.1

....

- 4

AUGUST, 1982

Questor Surveys Limited, 6380 Viscount Road, Mississauga, Ontario L4V 1H3

CONTENTS

INTRODUCTION	•	•	•	•	•	•	•	•	•	•	÷	•	•	•	•	•	•	•	•	1
SURVEY PROCEDURE	•	•		•	•	•	•			•		•								1
MAP COMPILATION			•			•			•							•		•		2
DATA PRESENTATION		•	•	•		•													×	3
RESULTS	•		•			•					•					•				4
AREA OUTLINE																				

APPENDIX

....

1

...

114

....

....

.

....

....

1.0

1.

EQUIPMENT			•	•	•	•	•	•	•	•	•	•	ě	(i)
MARK VI INPUT (R) SYSTEM	•	•	•	•	•	•	•	•	•			•		(i)
SONOTEK P.M.H. 5010 PROTON MAGNETOMETER .	•	•						•				•		(iii)
DATA SYMBOLOGY	•	•	•	•	•	•	•	•			•	•	•	(iv)
POSITIVE ANOMALY SYMBOL	•		•		•			•			•			(iv)
CONDUCTIVITY-THICKNESS .	•	•	•		•	•		•			•		•	(iv)
SELECTED CHANNEL HALF WIL	TI	I 1	LI	417	r		•	•	•			•		(iv)
NEGATIVE ANOMALY SYMBOL	•	•		•	•			•			•	•		(v)
ASSOCIATED MAGNETIC PEAK				•							•	•	•	(v)
GENERAL INTERPRETATION .	•							•						(v)
SAMPLE RECORD														
HELICOPTER CONDUCTIVITY-	CH.	IC	KN	ES	s/1	DE	PT	н	NO	MO	GR	AM		
DATA SHEETS														

١....

INTRODUCTION

÷,

44

...

This report contains the results of a helicopter MK VI INPUT survey flown in the Tulsequah River Area, British Columbia, on May 27, 28, 30 and 31, 1982.

A brief description of the survey procedure is included.

The survey mileage was 232 line kilometres and the survey was performed by QUESTOR SURVEYS LIMITED. The survey aircraft was a Bell 205 Helicopter C-GLMC and the operating base was Atlin, British Columbia.

The area outline is shown on a 1:250,000 map at the end of this report. This is part of the National Topographical Series, Sheet Number 104K.

The following were the personnel involved with the airborne survey:

Pilot	-	Bob Masson
Navigator	-	Harold Sandau
Operator	-	Keith Higgenbottom
Engineer	-	Langhin Currie
Geophysicist	-	Bill Lechow

SURVEY PROCEDURE

Terrain clearance was maintained as close to 122 metres as possible, with the E.M. Bird at approximately 45 metres above the ground. Rough terrain could be a factor for the helicopter not being at 122 metres. A normal S-pattern flight path using approximately one half kilometre turns was used. Consecutive lines were flown in alternate directions for the sole purpose of interpreting dipping conductors. This phenomenon will be dealt with later. A line spacing of 400 metres was used over the entire survey area while detailed work at 200 metre spacing was carried out over the northern most part.

The equipment operator logged the flight details and monitored the instruments. It was the responsibility of the geophysicist to maintain and check the ground magnetic station, Geometrics G-806, which was recording the daily diurnal changes. The results of these recordings have been included in the final shipment.

MAP COMPILATION

.

•

•

•

••

--

**

-

.

+

......

-

-

. .

4 -

. .

•

.

-

+

nie i

•

•

 The base map for navigation and flight path recovery was constructed from photographs from the National Air Photo Library in Ottawa. These photographs were at a scale of 1:70,000. The final map was reproduced at a scale of 1:15,840 on stable transparent film from which white prints can be made. A copy of the map layout is located on each sheet using topographical reference numbers. The map sheet is a 25 minute photographic quadrangle.

Flight path recovery was accomplished by comparison of the 35mm half frame film with the mosaic in order to locate the fiducial points. Most picked points are between 2 and 3 kilometres depending on the difficulty of the area, some picked points are much in excess of this figure.

- 2 -

DATA PRESENTATION

The results of the INPUT survey are presented to the client in the following manner:

- a blank 25 minute photographic base at a scale of
 1:15,840
- a photographic base showing combined INPUT anomalies,
 half peak width of channel 2, conductive overburden,
 selected targets, skew classification and flight lines
- a clear overlay showing the contoured form of the total magnetic field

See Appendix for a comprehensive description of the interpretational approach used in helicopter INPUT surveys.

QUESTOR'S conventional form for presenting the helicopter INPUT data on a base map is as follows and is self-explanatory:

DECAY INTERVAL CLASSIFICATION:

米	1	Channel	(340	microseconds)
-ф-	2	Channel	(540	microseconds)
-\$-	3	Channel	(840	microseconds)
-ф-	4	Channel	()	1240	microseconds)
	5	Channel	0	1740	microseconds)
-0-	6	Channel	(2340	microseconds)

HELICOPTER INPUT SYMBOLDGY

RESULTS

۰.

i.

. .

1 ...

1.4

1.14

1.1

-

The survey area is situated approximately 100 kilometres south of Atlin, British Columbia, and roughly 3-4 kilometres north of the Village of Tulsequah. It is an area which is entirely underlain by rocks of the Stuhini Group. This is an Upper Triassic formation which consists of mainly volcanic rocks, andesite and basalt flows, pillow lava, volcanic breccia and agglomerate, lapilli tuff; minor volcanic sandstone, grey wacke and siltstone. Beyond the eastern survey boundary, there exists medium to coarse grained, pink, biotite-hornblende quartz monzonite. To the north and beyond the survey boundary, fine grained clastic sediments and intercalated volcanic rock outcrop. Bordering the survey area on the west side, along Tulsequah River as well as along the southern boundary, paralleling Taku River, there is a Pleistocene cover which consists of fluviatile gravel, sand silt; glacial outwash, till, alpine moraine and undifferentiated colluvium.

There are three former producers located in the immediate area of the survey, namely Polaris Taku, Tulsequah Chief and Big Bull. All were considered small producers. The Polaris Taku was a gold mine which milled 719,336 tons of ore until 1951. The gold occurs in fine needles of arsenopyrite disseminated in a fault-bounded wedge of Stuhini volcanic rocks. The deposits are shear zones containing numerous replacement veins adjacent to which the wall rock is carbonatized and locally albitized. The Tulsequah Chief and Big Bull Mines were very similar in their geological make-up. The ore deposits occupy shear zones in altered Stuhini volcanic rocks. The alteration is associated with large felsite dykes and northeasterly trending faults. Ore minerals consist of massive, fine-grained, pyrite and chalcopyrite in lenses, and sphalerite, pyrite and galena in a dense guartz-carbonite-barite gangue.

The mass of anomalies along the northern shore of Taku River and also along the eastern shore of Tulsequah River are interpreted to be due to saline material incorporated within the thick Pleistocene layer. Both rivers are tributaries to the Pacific Ocean and over the years the salt water from this source had deposited the brine material on the bottom of both rivers. I have outlined both conductive areas with a dashed line and if one refers to geology MAP 1262A, it will be noted that this dashed line coincides guite closely with the Pleistocene cover. In this type of environment, it would be very difficult to distinguish a sulphide target located below the overlying conductive layer. Pyrrhotite does not seem to prevail in this particular area so that magnetics will not assist in locating sulphide targets. The Big Bull Mine is located entirely within volcanic rocks, just beyond the Pleistocene cover.

I have outlined five areas on the map, which all appear to be located within the Stuhini volcanics. The exceptions, however, are ZONES 1 and 5. These two conductors may in fact, be outliers to the Pleistocene alluvial deposits. Again, brine deposits within this environment may be the cause. Because of the proximity of the Polaris Taku and Big Bull Mines to the their geological make-up. The ore deposits occupy shear zones in altered Stuhini volcanic rocks. The alteration is associated with large felsite dykes and northeasterly trending faults. Ore minerals consist of massive, fine-grained, pyrite and chalcopyrite in lenses, and sphalerite, pyrite and galena in a dense quartz-carbonite-barite gangue.

The mass of anomalies along the northern shore of Taku River and also along the eastern shore of Tulsequah River are interpreted to be due to saline material incorporated within the thick Pleistocene layer. Both rivers are tributaries to the Pacific Ocean and over the years the salt water from this source had deposited the brine material on the bottom of both rivers. I have outlined both conductive areas with a dashed line and if one refers to geology MAP 1262A, it will be noted that this dashed line coincides quite closely with the Pleistocene cover. In this type of environment, it would be very difficult to distinguish a sulphide target located below the overlying conductive layer. Pyrrhotite does not seem to prevail in this particular area so that magnetics will not assist in locating sulphide targets. The Big Bull Mine is located entirely within volcanic rocks, just beyond the Pleistocene cover.

ZONE 4 is quite a weak response, but may in fact, be a legitimate response; in other words, not related to compensation or equipment noise. The negative response which trails intercept 10261A is indicative of a flat lying conductor displaying poor conductivity. It may be caused by surficial material or a poor flat lying bedrock source. It is certainly not a priority target.

APPENDIX

EQUIPMENT

The helicopter is equipped with a Mark VI INPUT ^(R) E.M. system and Sonotek P.M.H. 5010 Proton Magnetometer. Radar altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. Thirty-five millimeter half frame cameras are used to record the actual flight path.

BARRINGER/QUESTOR MARK VI INPUT (R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the helicopter. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the helicopter on two hundred and fifty feet of cable, and the received signal is processed and recorded by equipment in the helicopter. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is proportional to the dimensions, the conductivity and the depth beneath the helicopter.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheetlike surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

The samples or gates are positioned at 340, 540, 840, 1240, 1740 and 2340 micro-seconds after the cessation of the pulse. The widths of the gates are 200, 200, 400, 400, 600 and 600 micro-seconds respectively.

For homogeneous conditions, the transient decay will ' be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided

....

by the log ratio of the amplitudes at these points.

SONOTEK P.M.H. 5010 PROTON MAGNETOMETER

The magnetometers which measure the total magnetic field have a sensitivity of 1 gamma and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a timesharing basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. The precession frequency is being recorded and converted to gammas during the 0.2 second interval when there is no power in the transmitter loop.

For this survey, a lag factor has been applied to the data. Magnetic data recorded on the analogue records at fiducial 10.00 for example would be plotted at fiducial 9.95 on the mosaics.

DATA SYMBOLOGY

....

The symbols used to designate the anomalies are shown in the legend on each map sheet and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the analog record.

A sample record is included to indicate the method used

(iii)

for correcting the position of the E.M. Bird and to identify the parameters that are recorded.

All the anomaly locations, magnetic correlations, conductivity-thickness values and the amplitudes of channel number 2 are listed on the data sheets accompanying the final maps.

POSITIVE ANOMALY SYMBOL

A symbol ascribed to spatially represent the position of peak response amplitude from a conventional secondary field direction. The convention is based on the response type most frequently detected with the geometrical configuration of the system.

CONDUCTIVITY-THICKNESS

6...

A numerical value based on a ratio between early and late channel amplitudes. It normalizes the DECAY INTERVAL CLASSIFICATION against the AMPLITUDE CLASSIFICATION to derive a value based on the temporal rate of decay of the secondary field.

SELECTED CHANNEL HALF WIDTH LIMIT

A planimetric representation of the profile-derived half-width of a positive response. It may also be used to ' indicate the group half-width of multiple responses.

NEGATIVE ANOMALY SYMBOL

A symbol ascribed to spatially represent the position of peak response amplitude from a reverse secondary field direction-(see POSITIVE ANOMALY SYMBOL)

ASSOCIATED MAGNETIC PEAK

A symbol ascribed to spatially represent the position and magnitude of a magnetic susceptibility anomaly proximate to a recognized conductivity anomaly. For purposes of plotting simplifications, only positive monopoles and the positive component of dipolar responses are mapped in this manner.

GENERAL INTERPRETATION

The INPUT system will respond to conductive overburden and near-surface horizontal conducting layers in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and the anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies but these can be identified by reference to the monitor channel.

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

(v)

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors and produce attractive looking anomalies. With no other information than the airborne results, these must be examined on the ground.

Serpentinized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have fairly large response on channel # 1, they decay rapidly and they have strong magnetic correlation. INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25-30%, very little or no response at all is obtained but as the percentage increases the anomalies become guite strong with a characteristic rate of decay which is usually greater than that produced by massive sulphides.

Commercial sulphide ore bodies are rare and those that respond to helicopter survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.

Representative INPUT Magnetometer and Altimeter Recording

A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO

.

. .

]

]

]

.

....

. .

1.1.1	CO.	8	
101	81 S		
3.3	1.0	***	

	TO LOTAL Y	FIDUCIAL	CHADNELS	HALF LEFT	W117H 1(100)	197	CONFLICTORE CLASS	56.1-0	\$10-1	A53001A762 865 19613100	MAGNETIC VALUE
-											
έ.	190410	91.26	2								
-	176206	102.36	2	101.99	102.54	0.55	t				
	evelon.	112.22	3	111.74	112.26	6.55	1		12		
		112.65	Nedative	e horeal	1						
-	sectory.	114.05	4	113.89	116.16	0.32			3		
4	100	114.49	6	114.24	114.52	0.35	2	1.67	10		
	1902.00	114.89	2	114.69	114.91	9.22	1				
	15-616E	115.35	5	115.25	115.53	0.28			S	115.58	45
	1+010F	116.27	6	115.94	116.47	0.53	4	14	Ŷ	116.31	58
5	and a second	116.60	Nedativ	e Anotal	4	1215-25					
-	Loton	117.69	Ł	112.51	117.75	0.24	5	250	V.		
	111.1.1.2.4	117,80	Nesativ	e messi	4						
1	155566	138.32	4	118.03	118.41	31.39	3		4		
	1.0.1	118.72	4	118.52	118.31	14.05			4		
-	1-0105	119.15		118.99	119.22	0.4	16			12.0.211	20
	1.	119.42	Netatio	e écosal		2200	18			121-222	
	3463	126,13	5	119.91	100.97	0.36		120	4		
-		120.41	Medativ	e Ancest	6		100	223			
	12010M	120.79	3	120.45	126.89	0.24	1	.26	T	121.01	36
12.5	Lune.ut	121.15	Noostin	o Lonast	0						
	Saund	121.07	R	-91.25	171.49	1.34	1				
	1.001.00	and the second	5		4.6.4.6.4.						
in'	interes.	ar at	6								
	1 1.000	19.17		17.20	18. 14	di di			1.4		
-	1.54.04.04	10.19	Negativ	in onnest	4.	W. Care			10		
	Lingua:	A9 95	5	45.25	39.01	6.34	4		61		
	100100	49.36	6	49.09	49.52	0.49	4		19		
	100105	17100	D.	47.447		21.11	\$r		120		
	163564	89.51	6				12		122		
	100508	90.05	6						14.7		
		90.25	6				2		0.0		
	96555	90.25	6				- X-		72		
•	100368	91,01	5	90.55	-1.55	1.04	5		5.7		
	50000F	91.24	6				2		57		
-	100500	91,58	5						-2		
	005014	92.05	2	91.95	52.28	9.30	14		78		
1	5050.1	\$3.53	Å	43	\$3.67	0.48	9	36	60	41. 35	350
•••	16656	05.47	+		and the second second	and the	-		50	11.00	
	200501	95.73	Ä				4		50		
1	100568	96.00		95.62	92.19	0.55	4	15	90		
	100536	94 44	4	10100	. W * A . (4.00	,	10	69		
	100508	04 01	4				7		9.9		
-1	100568	07 20	0				4		54		
1	10/2012	02.75	0				0		412		
••	100202	07 40	0	97.13	ed ar	and a			51		
	100201	7/+00	0	41 - 7.4	10.01	3.00	1		5.6		
T	100306	70+20	0				4		-01		
••	199507	44.08	0	Sec. 61	true his	4.44	3	inter-	24		
	100202	99474	0	22.00	100408	1.000	4	110	31		
1	1005049	99.85	6				9	11	40		

12.16	12.00	20	
1.1	UL.	4	

ľ	OUDIALI	FINDCIAL C	HORMELS	1441) sli (Fri i	ann 1669	r Ar	0 10 00 (103)	nd .	212-1	$\frac{1}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{2} \frac{1}{10^{-1}} \frac{1}{2} \frac{1}{10^{-1}} \frac{1}{10^{-1}$	VALUE
	L					0.15.1	1.00			2.1.239	21
	1000088	100.45	ő Nesative	Anots19			123				
		and the second					15	31	53		
	100516	111.57	6				4		20		
	10051B	111.85	6				1		25		
	196240	112,31	¢.						-30		
	100510	112.55	÷.							12.04	46
	100000	16.94	4				5	-	100	2016.940	
	100000	17.32	0	17.17	17.45	12, 52	5	1.47	30		
	100500	17 80	6				12		- 14		
	100601	17.00	6	17.72	18,21	0.49	1		3.5		
	199200	10.14	4	- transformer a			4		47		
	106905	10,14					3		29		
	100401	18.55	0				4		-41		
	100606	18.80	e .	19 48	19.17	0.59	4		45		
	10050H	18.91		10,10			4		35		
	1009003	19.12	0				.3		35		
	100200	20.08	5	00.00	20.48	6.40		31	21		
10	100501	20.40	6	20.00	20+30						
		20,80	Nesscr	the Hungara	21.25	0.45	1		1	21+40	200
	M03001	21.35	3	21,20	21100	0110	2		30		
	10050N	22,63	6			0.07	. 0		25.		
1	10060P	23.07	6	22+45	22.24	Ars. Fr	2		17		
1	.0060K	23.60	\$				6		18		
	HUGAUS	23.82	5						10		
	- 6453	24.21	5				14		11	28.32	20
	105503	24,41	6	24,07	29.56	19.50			9.4	1. N. C.	
			1.12	00 60	29.20	0.40	2		40		
	100744	85.83	5	83.37	07 04	0.04	5		41		
	10074B	87.54	6	87.19	07101	A AC	4		- 513	la l	
1	100740	88.38	6	83.08	85,07	0.27	· · ·				
2		88.82	Nedat:	ive Anonal	9	A 10	1(4)		26	70,39	374
1	100740	89.49	5	25.58	87166	0100	1	3	er. 60	1	
-	100748	91.46	6	91.32	91.05	0.01		1.1	5 90	1	
	100745	91.99	1 6	21.71	92.28	Q.631	1		10	1	
٠	-00246	5 92.1	1 6				-		a 1		
	10024	92.7	7 6				4			å	
-	00.20	1 93.4	6 6				3		1	t.	
	100740	93.5	5 5	92.48	24.44	1.96	9		2		
1	0020	93.9	8 6				-1				
	1 10074	- 94 3	0 6				4		35 9	1	
	10034	94.6	0 Nesal	tive Annas	19						
Ē	1					122	-			7	
	1 10080	6 25.4	5 6	25.33	23.57	0.25	4			74.	Sto
	10080	8 26.2	8 6	26.07	26,55	0.98	5			11	
	1 10000	1 26.9	5 5				5			A ()	
	10000	27.	10 6	26.81	27.23	0.40	4			10	
	- 100M	17 17	44 6	STORAGE S			3			40	
	10094	10 C/ 10	21 1	27.6	28.36	9.79	1 4			31	
	1008	30 20×	05 4	20, 30	30.14	0.24	1 2			3	
	1 1003	29.	20 4				1			40	
	1008	OF 32.	24 0	70 +1	32.82	0.6	1 4	12		50	
1	1 1008	0.1 32.	0 00	Sart h	ALC: NO. TOTAL	10000	4			51	
	1008	65 32.	10 8		1000000000						ar an include provide an an

PHIF 3

U isi	ιτ 'I	DECISE CH	nNHLLS	HAL - 4 LEF1	i din Kali	1.10 satell	NURE	ere et et	steri	nin Clatha SSL1 ¹ C	64 	noode" 10 Art 45
			ana ala sere re-	41.02	23.32	2.41		16	29			
10080		23434	2	1941 1.8.11			53	1.52	10			
10080	r1 -	53.99	i i				14	11.	27	100 100		
10030	10	33.74	1	75.70	34.24	0.54	1	312	24	26.00		1.4.15
10080	P	34.06	0	33.75	14.93	0.70	91	115	40			
10080	£	39.75 35.09 1	o desativo	inatziv	64941							
		12 07						8	8			
3 (dane	10	67.41	h	52.17	37. 22	(*a) 5 ⁴ 1	6		37			
100-30	18	57.12	Magatan	· Pressie								
		37.07	POLINE KANA	52.35	44				1			
10005	960	59,00	2	20.00		10.000	1.44		2			
1009	20	79.42	6	76.13	79.57	6.40	10		1.4			
1002	30	80. 23	t.	80.01	a." 10P	9.35						
1000	a.	81.22	t				9		1			
1009	30	81.34	ô.	39,91	的新闻的	0.02						
										397-3		
1005	1360	84.73	4	0.000	Gard Alto	and a			12.0			
17:05	2.54	35.10	÷.	86.77	23-25	0+176						
0000		85.25	Nedativ	AC ANDLEL					1.1			
5163	235	85.52	t	\$2.35	2.1 + 2.2	2.41	1		10			
100	620	86.48	6	84.04	55.54	0.00	4	3				
200	100	85.80	Nedati	ve fine 1	57							
= 75.0	1-34	100.07	5	100,94	10, 118	9.5.08						
							1		09			
100	115.6	108.72	6	108,42	20++03	01040						
	COLUMN T	109,22	Nesali	ve finena	14F							
		ALCONTRACTOR				12.703			1945			
3.60	690	136.41	6	138.24	138.55	9,31	2		12			
100	1005	138.97	6	138.85	139.17	0.31	4		12			
100	0702	170.92	6	139.69	134.93	0.23	1		-37			
1.00	0490	197102							10			
100	1012	41,16	6				2		40	63	Sec.	6
1	1010	41.42	6	40.84	11.94	1+10	1		100			
10	1010	41,901	6				3					
10	Gult.	49.23	1	42.40	42.39	0.92	3		11			
10	1010	42.71	~	0.000			-A		-23	2		
30	1101E	42.70	Madal	ina anan	Tur							
		43+20	NE22	APAR HISTORY								
	÷.	1010 1000	-	1.0	35 400	0.37	3		1	5		
10	01036	46,45	6	4012	1 40-00	1.4.6.68						
		46.75	Nesa	CING LICHOR	119	0.04	1		3	3		
1	01038	47.19	- 6	45.9	0 91,90	0.44	, Le					1
1	1920	47.57	Nesa	tive Anom	318							
1 .	arana	101.5/	6	101.2	0 101.60	6 0.45	4		18 3	1		
1 :	OLTON.	101.8	5 Nesa	tive more	asls.							
		100000000000000000000000000000000000000					3			59		
1	01200	49.4	2 6				3			17		
1	365101	49.6	7 6	1 mars		6.6			tE	52		
-	01201	50.8	7 6	50,	53 50.9	2 6148						
	141620	51.2	0 Nes	ative Aco	n.219							
1		101.4	2 2	143.	53 143.7	0.18	4					
1	101204	14.9.00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Section and the second second	- color bills	111111				

P1.5.5	- 0

4	- rbrake, y	FIDUCIAL	CHANNELS	153L - 53 F T	91010 61000	99 2012 222	ert1100 LL(3)	High And And	540-	1002 (A162) 305 (2011 20	AGGRETIC VALUE
	101508	159.00 175.45	Nesstavi 2	e fromal	9		E.				
	191698	76.40	3	76.31	$fp_{\gamma}/2\Psi$	0.23	a.		4		
	101-20	194.20	3	159.14	194.27	Q125	40	244	90		
	101906	207.15 207.48	é Nesstiv	362.61 0 Autorit	167.121. S	0.29	*	34	25		
	10210A	249.93 250.20	5 Nesativ	249.75 e Anomal	250.03 2	0.08	4		3		
	102406	38.35	4	78127	39:42	$g^{(1)}_{ij} = 0$	E	1%			
-	190316 102428	63.94 64.14	1	63.90	64.32	0,1	i.		1	94.95	3.00
	192,310	63,25	6	60+04	45.40	11.14		1.16	43		
	102506	65,60 65,90	8 Nesetiv	65.40 e Anosal	-65.74 .v	9.55		2.53	37		
Ξ.	1979200	15+34	2								
		82.11 85.19	2. 4	85.0% 85.0%	$\frac{\partial \omega_{ij}}{\partial t} = \omega_{ij}$ Here, the	197 - 45 14 - 594					
Ú.	102716	91.93	ò	71.71	92.02	0.31	3	14	59)		
-	70.5809	92.26 92.60	ð Nefal ís	91,9/ 20 Anda2	92.41 Ist	0.04	4		4.		
1	103604	147.46 148.90	A Resaur	147.19 ve Anoma	147.61 19	Q.43		N.	e) I		
	10310A 10310B	165.20 165.42 165.80	6 5 Nedata	1a4.88 ve Anosa	155.48 19	5569	* 1	29	23 33		
	193206	177.71 178.10	5 Nesati	177-57 ve Anoma	177.82 12	0,25	Ļ	29	15		
-		191.41	Nesati	ve Anona	19						
h	103404	203,13 203,48	6 Nesati	202.99 Ve Anota	203.27 19	0+27	3	1 M	31		
		213.01	Nedati	ve Ariotii	:19						
	10350A 10360B	223,37 223,53 224,05	6 6 Nedati	223.04 ve Anos:	1 223.83	0,79	4		35 42		

l

PAGE 5

Cionaci	10001AL	CHANNELS	(Ft) byPs	UID'H RISH,	892	AST FUEL	SE(51)	1616-)	635(8)26 29 256 Peri) 1766	MOTORE FLC WALCH	
103/00	237,54	5 Nesativ	237.15 e Anamal	237.68	0.53	4	2일	40			
	251.69	Nedativ	e finnaal	9							
						14					

÷.

1.4

1.0

+ + ·

•

10 GAMMA CONTOUR LINE 50 GAMMA CONTOUR LINE 100 GAMMA CONTOUR LINE

(1 GAMMA = 1 NANOTESLA IN SI UNITS) MAGNETIC DEPRESSION

The aircraft is equipped with the Barringer/Questor Mark VI INPUT* airborne E.M. System and the Sonotek PMH 5010 Proton Precession Magnetometer and Sonotek SDS-1200 Series Data Acquisition System. The INPUT* system will respond to conductive over-burden and near-surface horizontal conducting layers in addition to bedrock conductors. Discrimination of conductors is based on the rate of transient decay, magnetic cor-relation and the anomaly shape, together with the conductor pattern and topography.

G. H.