GEOCHEMICAL REPORT

TOK 1-6 AND 7-22

SKEENA MINING DIVISION

NTS MAP 104B/9W

130° 27' West Longitude; 56° 37' North Latitude

STIKINE SILVER, LTD.

RYAN EXPLORATION CO., LTD.

ROGER H. GEORGE

May, 1983

83-#191-#11160

- 5-3 A - 31

14 ATT

GEOLOGICAL BRANCH ASSESSMENT REPORT

11, 160

CONTENTS

 \bigcap

Sub- Chiefen

h (1100040---------

	Page
INTRODUCTION	1 ,
History	1
Physiography	2,
GEOLOGY	5 ,
General Statement	5 _
Property Geology	6.
Structures	6
GEOCHEMISTRY	7
Introduction	7 🧋
Results	9
EXPENDITURES	12
PERSONAL QUALIFICATIONS	13 ,
APPENDIX A - Stream Sediment Geochemistry	14
APPENDIX B - Rock Geochemistry	15

ILLUSTRATIONS

N. GROUP AN

17.1. 1880 N. L

Lawww.comon

		Page
FIGURE		
1.	Location Map	3
PLATE		
1.	NTS Map 104B/9W	In Pocket
2.	Detailed Location Map	*1
3.	Stream Sediment Geochemistry	11
4.	Rock Geochemistry	14

INTRODUCTION

1. 1. X. X. Y. J

History

The areas drained by the upper reaches of the Stikine, Iskut, Unuk and Bell-Irving Rivers have been prospected for gold since the late 1800's when prospectors passed through the region on their way to the interior. The heaviest concentration of effort has been around and north of Stewart, due to its location at tidewater, but continuation of similar rock-types through to the Taku River and generally east of the crest of the coast range implies the significance of this general region.

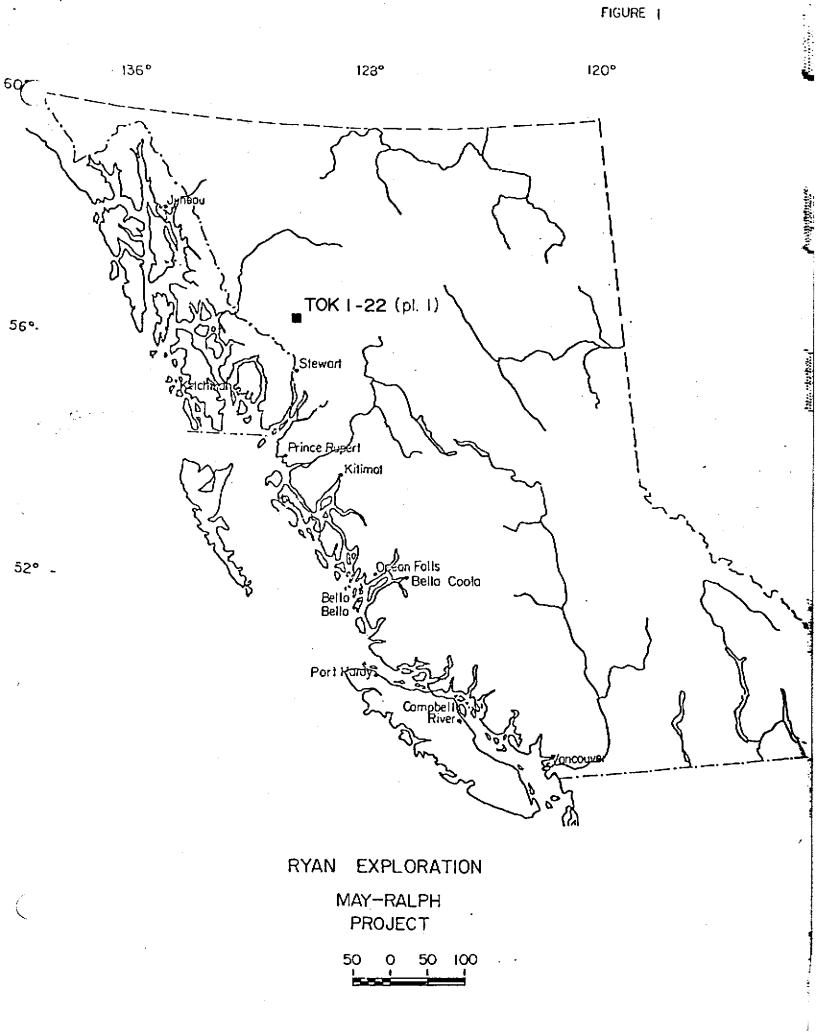
The mineralization near Tom MacKay Lake was discovered in 1932 and active prospecting continued through 1940 fostered by the increases in gold prices in 1934. One adit, completely accessible, exists on the property, and is the result of sporadic mining activities. Several attempts to delineate mineralization with trenching and "winkie-type" diamond drills in Tok 13 and 14 has been conducted. However, because of the very nature of the mineralization, and the shallowness of the holes, it is doubtful that the results would add significantly to current data. Evidence of numerous trenches and three larger diameter holes exists a short distance east of Tok 18 and 20, but little information is available.

In 1975, Texas Gulf acquired a lease on the property and conducted substantial mapping, sampling and geophysical programs. As a result, diamond drilling was conducted on adjacent claims in 1976 in an attempt to delineate zones of massive sulfides near

-1-

"rhyolite-domes" but due to discouraging results, the property was then turned back to the owners. May-Ralph Resources, Ltd. acquired an option in 1979 mining some hygrade materials and helicoptering them out to the Bell-Irving Road. A CHANNE

W. CARWERN, S. I.


With the dramatic increase in metal prices in the late 1970's, Ryan Exploration Co., Ltd., initiated a reconnaissance program in portions of the Western Cordillera. North of Stewart, efforts were concentrated on properties with precious metal values as it was suspected that the remoteness, fine-grained type of mineralization and its antimonial or arsenical nature may have contributed to the area having been bypassed. A spectacular color, anomaly croppingout over eleven kilometers, accompanied by significant gold and silver values and similarities between observed rock-types and those of producing districts lead to acquistion of the properties. The property is comprised of 22 claims, presently held by Ryan Exploration Co., Ltd. under terms of the 1980 agreement with Stikine Silver, Ltd. (the Tok 1-22 inclusive mineral claims).

Physiography

The center of the project area is located at 130° 27' west longitude and 56° 37' north latitude (fig. 1); NTS may reference 104B/9W (pl. 1), approximately 80 km north of Stewart, B.C. Access to the claims is best afforded by helicopters, available on a casual basis in Stewart through Vancouver Island Helicopters which operates a 206 and Jet Ranger. Camp supplies, drilling

-2-

FIGURE |

equipment and additional personnel should be trucked-up the Bell-Irving Highway to Teigen Creek, approximately 75 kilometers north of Mesiadin Junction and then conveyed 38 kilometers to the west by helicopter to the camp site. Amphibious, or float equiped aircraft, could be employed after July 1st, landing on Tom MacKay Lake, four kilometers west of the area. Current plans by B.C. Hydro indicate that a dam might be sited on the Iskut River eleven kilometers to the north.

Generally, the property lies above timberline 750 meters with maximum relief of approximately 700 meters and the highest point at an elevation of 1,300 meters immediately west of camp. Extremes in relief are limited to local areas and should not be considerd a significant problem. Along the southern edges of the property, this situation changes and the land rapidly pitches-off into the Unuk River Canyon.

Vegetation, consisting of scrub trees, alders and some evergreens is subdued as the claims generally overlie an alpine area. However, moving to the south into the Unuk River Canyon and tributaries a definite increase in vegetation is noted becoming very heavy, and constituting a considerable impediment to mapping, sampling and access.

Precipitation is heavy and exceeds 125 cm. per year. While the summers are drier, heavy amounts of rain fall in May, June and September. Wet snow, up to one or two foot depths, should be expected anytime after the middle of September, but substantial

-4-

amounts do not accumulate until late October. Temperatures below O° C. are expected in the latter part of August but do not constitute a problem for drilling or camp activities until the middle of October or later. Due to heavy accumulation of snow during the winter, July 1st would probably be the earliest date that activities out of tent camps would be expected to operate efficiently. The construction of a substantial A-frame by Ryan Exploration Co, Inc., however, allows preparatory activities to begin early in June.

GEOLOGY

General Statement

Generally, the area north of the Unuk River is underlain by a moderately folded sequence of volcanics and sedimentary rocks of marine origin. Deposition occurred in a near shore, island arc environment. Upper Triassic sediments cropout west of Harrymel Creek while the rocks underlying the claims area are considered to be of the Hazelton Group with the Bowser Group bordering them to the north and northeast (Souther, Brew and Okulitch, 1979).

Intrusive materials constitute only a minor proportion of the rocks in the region, with Late Triassic quartz diorites cropping out in the upper portions of Harrymel Creek and only minor scattered occurrences of Jurassic diorites noted elsewhere. The Late Cretaceous and Early Tertiary phases of the coast crystalline belt are well to the west, perhaps as much as ten kilometers.

-5-

Property Geology

The claims area is underlain by a succession of Lower to Middle and possibly Late Jurassic volcanic and sedimentary rocks. The trend within the north half of the claims is generally north-northeast, cutting the regional northwest trend. To the southwest the sediments slowly swing around to a northnorthwest trend as the Unuk River is approached (pl. 1 and 2). The rocks northwest of the andesite lineament generally dip from 45° to 70° to the northwest. On the south side of this feature the units dip vertically to steeply southeast flattening to 50° to the southeast and forming a dip slope on the north side of the Unuk River. CALL DESCRIPTION OF THE

The oldest rocks in the sequence are the basal fragmentals, unit 103, which are Upper Pliensbachian or older (Texas Gulf, 1975). The youngest group dated is the upper mafic volcanics of probable Middle Bajocian Age (Texas Gulf, 1975). This unit is overlain by argillites of a younger age, possibly the Ashman Member of the Bowser Group. Equivalents of the Eskay Creek and Adit Ridge acidic volcanic units may be found in either the Smithers or Nilkitkwa Formations. The older basal fragmentals may have their equivalent in the lower part of the latter formation or the Telkwa Formation.

Structures

The rocks underlying the claims area trend north-northeast.

-6--

The rhyolites northwest of the Eskay Creek dip to the northwest at 50° to 70° and the overlying argillites exhibit a similar attitude. Subordinate folds have been superimposed on the argillites but generally parallel the major trend. To the southeast of the Eskay Creek the beds are verticle, flattening to the southwest. 1. Y.Y. 11

And a second second

Parallelling the northeast trend are a series of northeast faults with vertical dips. Evidence is only occasionally encountered as their recessive nature is covered by float and vegetation. Cutting this trend is a series of east-west and north to northwest cross fractures generally producing off-sets in the lower formations and where breaks are observed, gouge and brecciated materials are present. These fractures are past Adit Ridge but probably Pre-Argillite Creek as there is little apparent off-set in the argillites along these trends. Subordinate north-northeast fractures paralleling the major linears appear to be responsible for the mineralization. The mineralizing solution moved along these fractures and out into permeable units such as breccias or intensely fractured zones or to the surface and syndepositional environments.

GEOCHEMISTRY

Introduction

During the fall of 1982, eighty-one (81) stream sediment samples and eighty-nine (89) rock chip samples were collected on the Tok claims, a 5 km² area (pl. 2). Samples were collected from all major drainages at intervals of three hundred (300)

-7-

meters or less. As many tributaries as possible, regardless of size were likewise sampled. Samples were obtained from what is considered active sediments with sample size necessarily in excess of 10 gr. in order to supply suitable amounts of material for the various analysis. Samples were contained in "poly-type" bags labeled and containerized in burlap for shipping. All samples were shipped to U.S. Borax's Research Laboratory, 412 Crescent Way, Anaheim, California 92801.

1.1. Mar 1991

The samples are shipped wet and undergo routine drying procedures upon receipt, followed by sieving and retention of the -80 mesh portion of the sample. Geochemical determininations for copper, molybdenum, lead, zinc, and silver were made by the usual method of acid digestion with aqua-regia and analysis by atomic absorption. Gold was determined by fire assay, follwed by digestion of the DORE' bead in aqua-regia and analysis by atomic absorption. Tungsten was determined colorimetrically with dithiol after fusion of the sample with potassium bisulfate and digestion in HC1. Arsenic was determined colorimetrically in pyridine -silver diethyldithio-carbamate after fusion with potassium bisulfate, digestion with concentrated HC1 and generation of arsine.

Orientation surveys have been conducted in several areas where jurassic volcanic and sediments exist in an alpine terrain and are exposed to similar climatic conditions. Using previously described sampling methods and analytical procedures background, values were established for copper, molybdenum, lead, zinc, silver and gold at 18 ppm, 2 ppm, 15 ppm, 50 ppm 0.7 ppm and no

-8-

value, respectively and anomalous values were set at the mean plus two standard deviations 150 ppm, 15 ppm, 50 ppm 195 ppm, 1.6 ppm and 0.35 pm, respectively (Kock and Link, 1970). Using these latter values, little is overlooked on a reconnaissance basis. Previous reconnaissance work, however, has lead to the establishment of the claim boundaries over the anomalous area, thus eliminating the necessity of redefining this zone. From a considerable amount of data collected in the cordillera, higher values have been established which have proven to lead directly to the specific mineral occurrence and they are: copper - 170 ppm, molybdenum - 15 ppm, lead - 75 ppm, zinc 250 ppm, silver -1.7 ppm and gold 0.40 ppm. It is these values which are considered not worthy and their existance along strike from known occurrences defines zones where soil sampling and geophysics should be employed.

Results

Several stream sediment anomalies exist within the boundaries of the Tok Claims (pl. 3). By and large they were expected and are substantiated by rock sampling in the general area of the anomalous values (pl. 4).

Coincident lead, zinc, and silver anomalies occur in a northeast trending band following the main creek in Claims 1, 2 and 4. Values run as high as 4,480 ppm lead, 2,300 ppm zinc and 7.9 ppm silver (Samples 3506, 3508 - 3510, 3517 - 3521, 3800, 3802, 3805 and 3806). Only one rock sample, 3520, carried any values worthy of note (62.8 ppm silver). Anomalous values above the lake are quite likely accounted for by the significant mineralization near

-9-

the head of the creek (just outside the claim boundaries) running as high as 10.15 percent lead, 16.10 percent zinc, 756 ppm silver and 5.3 ppm gold. The stream sediment anomaly continues past the north end of the lake without supporting rock chip or float samples and constitutes a significant target. AND DESCRIPTION OF

In Claim 8, between Eskay and Argillite Creeks, background values for zinc increase into the 400 to 500 ppm range. Although higher zinc values are expected in an area underlain shales, graywackes and acidic volcanic samples 1168 and 1172 - 1174 ran as high as 3.0 ppm silver and 1.02 ppm gold. Four samples (1182, 1185, 1187 and 1189) extend the anomaly to the southwest along Argillite Creek with values running in the 0.7 ppm gold range. Rock samples obtained in this area were well below background. Leakage along the Argillite Creek linear is the suspected source, but due to heavy vegetation in the area, its significance is uncertain.

Sample 1533 taken just northwest of an elongate outcrop of well mineralized acidic volcanics in Claim 10 ran 679 ppm lead, 810 ppm zinc and 1.9 ppm silver. Although ponding of water and a high percentage of organics are present and might normally diminish the samples significance strong quartz-pyrite stockwork, and traces of galena and sphalerite (3788 and 3840) are worthy of further evaluation.

Most of the stream sediment samples collected in Claims 13 and 14 were anomalous (1029, 1033, 1501 and 1502) running as high as 1,447 ppm lead, 760 ppm zinc, 4.8 ppm silver and 0.44 ppm gold. Previous activities such as trenching, underground work and

-10-

drilling has broadcast mineralized materials over a wide area, nevertheless, stream sediment samples taken to the northeast along Eskay Creek (1503, 1585 and 1592) show a normal decay of values as distance increases from known areas of mineralization. It is suspected that little is hidden, and the significant "zones" lie down dip from known outcrops. PORT OF ANY

PERSONAL QUALIFICATIONS

I received Bachelor of Science degrees in Chemistry and Geology from Washington State University in 1967 and 1968, respectively, and a Master of Science degree in Geology from Idaho State University in 1971. From 1972 through 1976, while employed by El Paso Mining and Milling reconnaissance, detailed mapping and drilling projects were supervised in Southeastern Alaska. Since 1977, I have been retained as a consultant by U.S. Borax and Chemical Company supervising exploration programs in Southeast Alaska, Alaska interior and the coast range of British Columbia, Canada.

Submitted Apr11 2, 1983.

Ros H. George

Roger H. George

EXPENDITURES

Adaman State Constanting Adama

A THE REAL

Helicopter:	Long Beach Helicopter 4 Hours @ \$425/hr.	\$ 1,700.00
Geologist:	Evaluation of data and report 8 Hours @ \$165/hr.	1,320.00
Crew Leader:	July 20th - August 5th @ \$1,800/mn.	900.00
Field Assistant:	July 20th - August 5th @ \$1,500/mn.	750.00
Samples:	170 for Cu, Mo, Pb, Zn, Ag @ \$4.55/sample 170 for Au goechem, fire assay, AA finish @ \$4.00/sample 170 W @ \$3.75/sample	773.50 680.00 637.00
	Preparation SSS @ \$.55 RxS @ \$2.00	44.55 178.00
Food:	\$15.00/man/day	450.00
Camp Equipment:		200.00
Base Map:	1:6,000	75.00
Drafting:	15 Hours @ \$6.00/hr.	90.00
Report Prep:	Typing 5 hr. @ \$20.00/hr Copying Miscellaneous	100.00 45.00 25.00
TOTAL		\$ 7,968.05

APPENDIX A

en de la M

in and the

1.1.1.1.1.1.1.1.1

Stream Sediment Geochemistry

USBRC Geochemical Analysis

dante, secolationale com

فينتخط والمنادية

Sample Number	Cu ppm	Mo ppm	Pb mqq	Zn ppm	Ag ppm	Au ppm	W PPm	As ppm
MR- 1029	48	5	203	583	2.1	0.275	0	25
MR- 1030	38	5	154	476	1.2	0.341	Ō	15
MR- 1033	29	5	290	701	1.2	0.077	Õ	21
MR- 1036	38	5	74	270	2.3	1.738	Ō	24
MR- 1039	26	5	27	106	1.4	0.396	ŏ	17
MR 1007	20		21	100		0.050	•	
MR- 1042	23	5	33	97	1.5	0.110	2	6
MR- 1043	24	5	26	97	1.9	0.198	0	26
MR- 1067	39	5	38	131	1.6	0.297	0	14
MR- 1068	28	5	50	117	1.9	0.297	0	8
MR- 1069	26	5	40	119	1.8	0.297	Ō	12
1111 2005	20						•	
MR- 1070	37	5	52	151	1.6	0.286	2	12
MR- 1071	35	5	53	129	2.0	0.374	0	13
MR- 1107	201	12	43	360	2.2	0.352	2	73
MR- 1108	50	- 7	20	282	1.0	0.121	0	20
MR- 1110	57	7	18	318	1.1	0.099	0	29
MR- 1112	80	13	27	529	1.3	0.352	0	14
MR- 1113	54	8	19	349	1.1	0.220	0	30
MR- 1114	57	8	13	356	1.2	0.110	0	21
MR- 1115	32	10	22	369	1.2	0.165	0	38
MR- 1116	42	5	15	264	1.2	0.132	2	52
		-						
MR- 1117	51	6	14	288	1.1	0.143	0	14
MR- 1118	49	7	30	275	1.8	0.165	2	27
MR- 1134	51	5	46	131	1.2	0.220	0	8
MR- 1135	22	5	32	95	1.2	0.748	0	13
MR- 1137	21	5	32	95	1.4	0.330	0	12
MR- 1140	29	6	30	98	1.4	0.121	0	15
MR- 1168	58	5	38	309	3.0	1.023	2	17
MR- 1169	59	9	38	455	1.6	0.374	0	4
MR- 1170	67	10	26	492	1.9	0.330	0	10
MR- 1171	46	6	31	312	1.4	0.396	0	4
MR- 1172	62	11	36	378	1.5	0.704	2	17
MR- 1173	62	8	43	421	1.7	0.704	2	12
	*-	-						
MR- 1174	67	13	40	431	1.6	0.682	2	14
MR- 1178	41	5	37	205	1.2	0.682	0	10
MR- 1179	34	5	33	142	1.3	0.363	0	8
MR- 1182	36	5	38	155	1.3	0.726	Ō	16
MR- 1185	39	5	40	238	1.4	0.704	ō	12
		-		. – –			-	

-A1-

Sample Number	Cu ppm	Mo ppm	Pb ppm	Zn ppm	Ag ppm	Au ppm	W ppm	As ppm
MR- 1186 MR- 1187 MR- 1188 MR- 1189 MR- 1190	48 39 55 40 56	6 6 7 12	25 39 39 36 19	262 190 304 234 339	1.4 1.5 1.5 1.5 1.4	0.165 0.407 0.363 0.792 0.231	2 0 2 0 2	19 13 10 10 35
MR- 1191 MR- 1246 MR- 1287 MR- 1288 MR- 1289	37 36 36 57 39	6 5 5 5 5	26 26 19 24 27	371 118 157 235 163	1.6 1.1 1.2 1.0 1.2	0.242 0.253 0.319 ins 0.352	2 0 0 2	23 11 10 19 12
MR- 1291 MR- 1292 MR- 1293 MR- 1294 MR- 1296	65 59 60 68 45	5 5 5 5 5	33 35 33 31 26	169 149 154 197 115	1.3 1.1 1.2 1.0 1.1	0.462 ins 0.242 0.187 0.440	0 0 0 0	29 35 18 15 10
MR- 1297 MR- 1501 MR- 1502 MR- 1503 MR- 1533	44 323 158 185 40	5 7 6 5 12	31 1447 585 548 679	144 760 720 880 810	1.2 4.8 3.1 3.1 1.9	ins 0.440 0.121 0.121 0.165	0 0 2 0 2	10 47 36 23 28
MR- 1535 MR- 1546 MR- 1548 MR- 1549 MR- 1550	19 39 22 26 32	6 5 5 5 7	28 31 23 29 33	141 177 137 352 428	0.9 1.1 1.2 1.1 1.3	0.066 0.242 0.033 0.055 0.077	0 0 0 5	18 11 8 11 17
MR- 1552 MR- 1585 MR- 1592 MR- 3505 MR- 3506	22 63 97 41 43	5 5 5 9	39 155 243 31 2460	213 587 616 173 546	1.7 1.8 3.0 1.9 4.8	0.110 ins 0.143 0.06 ins	0 0 2 2	15 15 21 nd nd
MR- 3508 MR- 3509 MR- 3510 MR- 3517 MR- 3518	42 23 38 50 81	5 9 7 18 24	2180 914 1800 2200 4480	910 930 1570 1080 1590	3.1 1.8 3.3 1.9 7.7	0.39 0.08 0.04 ins 0.09	3 3 2 2 6	nd nd nd nd
MR- 3519 MR- 3521 MR- 3523 MR- 3524 MR- 3528	49 61 62 29 64	30 5 5 6 5	134 2020 2850 46 45	1420 540 830 146 257	2.4 7.9 9.1 1.7 1.2	0.03 0.12 0.12 0.06 ins	5 3 2 3	nd nd nd nd

1

(

and the full of the second

.

Sample	Cu	Mo	Pb	Zn	Ag	Au	W	As
Number	_ppm	ppm	ppm	ppm	ppm	ppm	PPM	ppm
MR- 3800	81	7	1870	1420	2.0	ins	3	nd
MR- 3802	77	17	622	2300	1.7	0.12	5	nd
MR- 3805	82	17	33	690	1.6	0.06	2	nd
MR- 3806	5	7	21	185	1.5	0.03	2	nd

K-F-WINES

 $\left(\right)$

APPENDIX B

医外外的 化合金

Lagran and

2.

Rock Sample Geochemistry

USBRC Geochemical Analysis

Sample Number	Cu ppm	Mo ppm	Pb ppm	Zn ppm	Ag ppm	Au ppm	W ppm	As ppm
MR- 1099	27	8	67	188	12.8	0.242	2	140
MR- 1100	85	5	426	438	8.7	0.330	0	35
MR- 1101	36	5	78	140	2.4	0.330	2	52
MR- 1105	49	5	17	93	1.2	0.121	0	1
MR- 1106	54	5	16	101	1.2	0.088	0	3
MR- 1109	76	5	23	181	1.1	0.143	0	9
MR- 1111	74	5	14	166	1.2	0.165	0	9
MR- 1136	7	5	15	102	1.3	0.198	2	8
MR- 1138	5	5	13	66	1.2	0.209	0	1
MR- 1139	85	5	13	63	1.1	0.143	2	13
MR- 1212	14	5	31	98	1.1	0.088	0	5
MR- 1214	27	5	23	76	0.9	0.066	2	8
MR- 1216	10	5	19	101	0.7	0.110	Ō	9
MR- 1221	5	5	36	133	0.7	0.253	Ō	6
MR- 1226	5	5	8	11	0.6	0.286	0	6
MR- 1236	29	5	15	96	1.7	0.319	0	19
MR- 1243	35	42	158	307	2.1	0.385	5	39
MR- 1244	13	5	485	575	4.2	0.759	5	17
MR- 1245	5	5	50	52	0.8	0.363	0	4
MR- 1250	5	5	116	255	1.2	12.430	0	6
MR- 1255	6	5	811	11	3.7	0.286	2	6
MR- 1258	5	5	26	120	0.6	0.099	5	15
MR- 1259	45	5	29	122	0.9	0.132	0	4
MR- 1284	10	5	17	46	0.8	0.005	0	2
MR- 1328	5	5	24	70	0.9	0.198	0	2400
MR- 1329	14	5	69	91	18.6	1.034	0	22
MR- 1331	6	7	18	57	0.8	0.121	2	34
MR- 1506	5	5	9	64	1.0	0.165	0	5
MR- 1512	5.	5	119	6	1.2	0.231	2	28
MR- 1519	18	5	17	163	1.3	0.132	0	2
MR- 1522	242	7	3920	574	10.2	1.166	0	44
MR- 1528	22	5	145	41	70.8	0.858	0	34
MR- 1532	13	5	24	170	1.4	0.968	0	7
MR- 1539	5	5	20	5	0.8	0.231	7	19
MR- 1543	7	5	22	50	1.2	0.253	2	13

-B1-

C

AT 200 YEAR OF A

10.00

1

Constant States

Sample Number	Cu ppm	Mo ppm	Pb ppm	Zn ppm	Ag ppm	Au ppm	W ppm	As <u>ppm</u>
MR- 1551 MR- 1555 MR- 1556 MR- 1559 MR- 1564	22 47 7590 25 623	5 5 5 5 5	45 20 26400 3030 336	67 105 19300 117 6700	1.3 0.8 239.0 9.2 9.6	0.154 0.033 2.079 1.969 0.528	0 0 0 2	2 17 1056 171 31
MR- 1568 MR- 1575 MR- 1581 MR- 1582 MR- 1587	722 35 5260 55 19	5 5 5 5	204 1049 25610 184 21	17200 124 46000 277 99	9.3 4.3 95.8 1.7 0.6	0.539 0.858 2.750 0.297 0.231	0 0 0 0	117 90 1315 19 5
MR- 1590 MR- 1592 MR- 1594 MR- 1596 MR- 1605	85 37 18 7 5	5 13 5 5 5	22 169 26 26 27	91 355 118 98 114	0.7 1.8 0.6 0.7 0.6	0.231 0.231 0.242 0.253 0.253	0 0 0 0	5 8 3 19
MR- 1610 MR- 1611 MR- 1612 MR- 1614 MR- 1615	9 5 6 5 21	5 5 5 5	22 26 22 13 10	92 122 70 153 96	1.1 0.7 0.6 0.8 0.8	0.286 0.264 0.297 0.088 0.385	2 0 0 0	2 3 1 12 0
MR- 1617 MR- 1638 MR- 1640 MR- 1642 MR- 1646	221 10 21 38 9	.5 165 5 207 5	2642 18 58 70 46	560 17 24 87 60	22.2 0.5 1.0 1.6 0.8	0.011 0.077 0.099 0.231 0.231	0 5 2 7 0	749 29 51 48 15
MR- 1650 MR- 1653 MR- 1659 MR- 1663 MR- 1664	8 5 34 5 11	84 5 28 5 16	34 26 29 24 77	101 33 122 43 526	1.0 0.5 1.1 0.6 1.3	0.242 0.154 0.418 0.176 0.154	7 0 5 2 2	76 3 15 0 5
MR- 1665 MR- 1667 MR- 1669 MR- 1670 MR- 1672	5 56 5 19 5	5 5 5 5 5	28 21 12 17 14	51 33 40 75 42	0.6 0.5 0.3 0.4 0.5	0.176 0.143 0.077 0.088 0.077	0 2 0 2 0	6 0 4 7 45
MR- 1673 MR- 1674 MR- 1676 MR- 3507 MR- 3511	5 8 7 10 56	5 5 5 5	13 11 21 8 27	26 16 58 152 306	0.5 0.4 0.5 1.2 2.6	0.077 0.198 0.176 0.02 0.02	2 2 0 2 3	10 17 8 nd nd

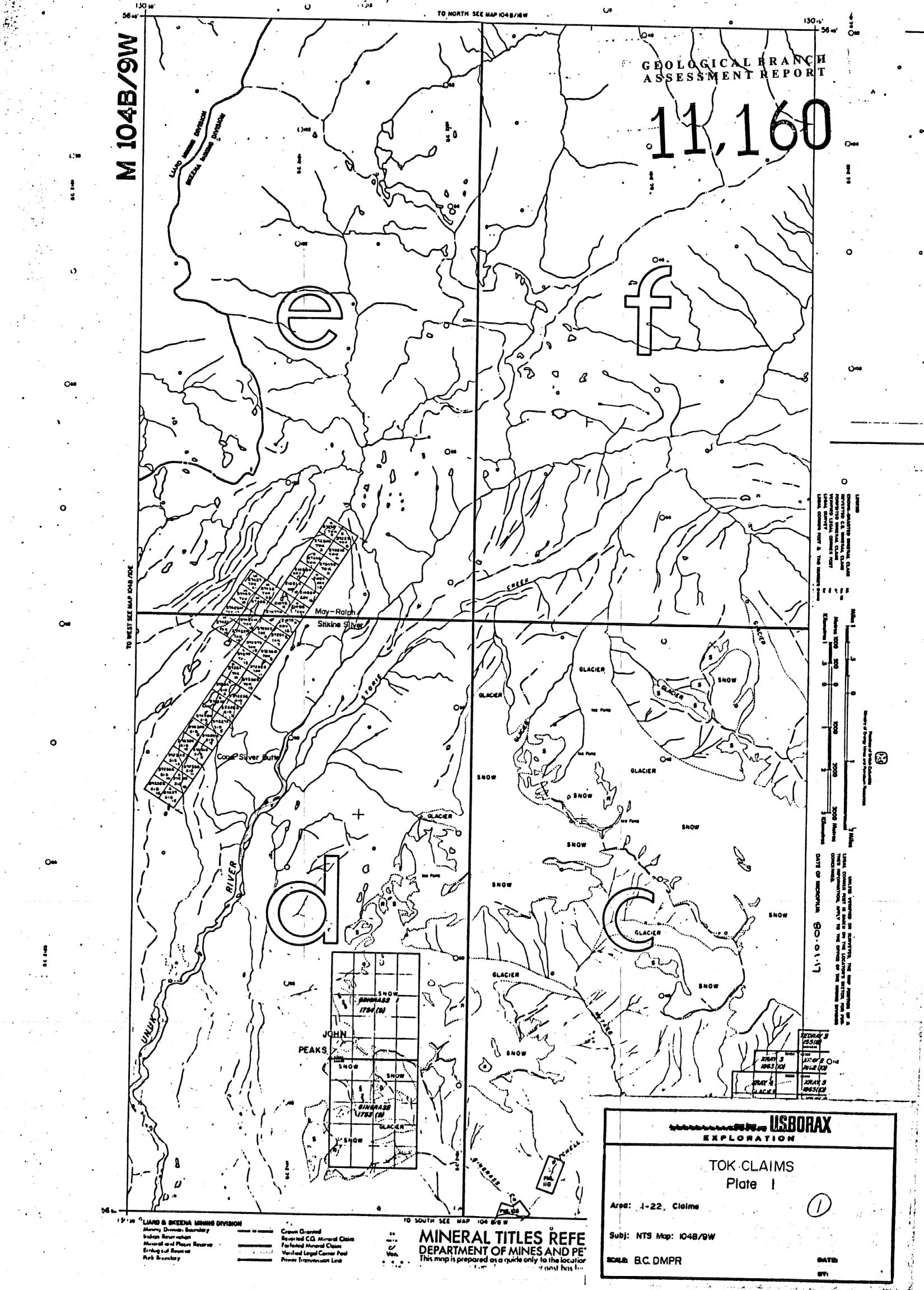
-B2-

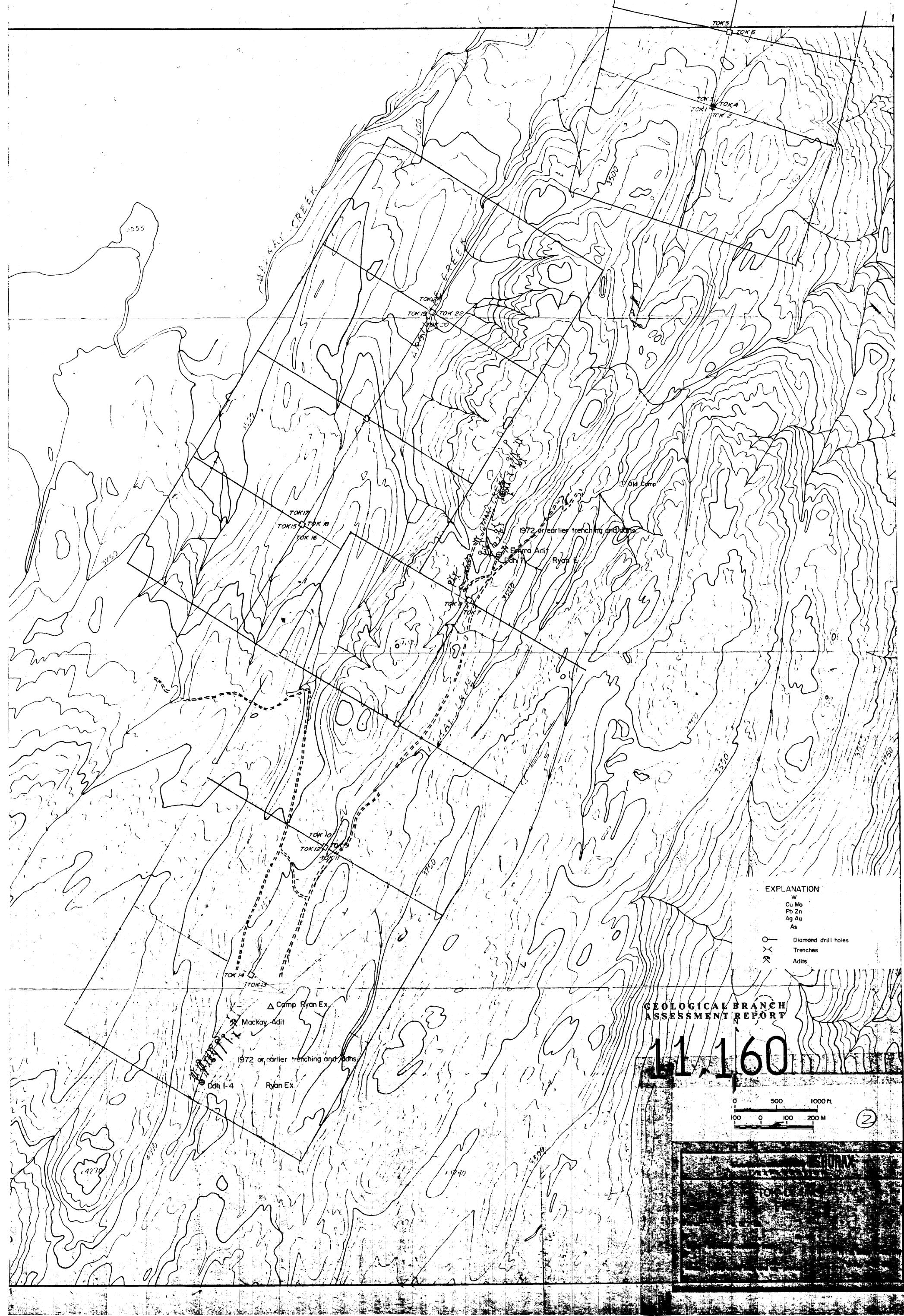
C

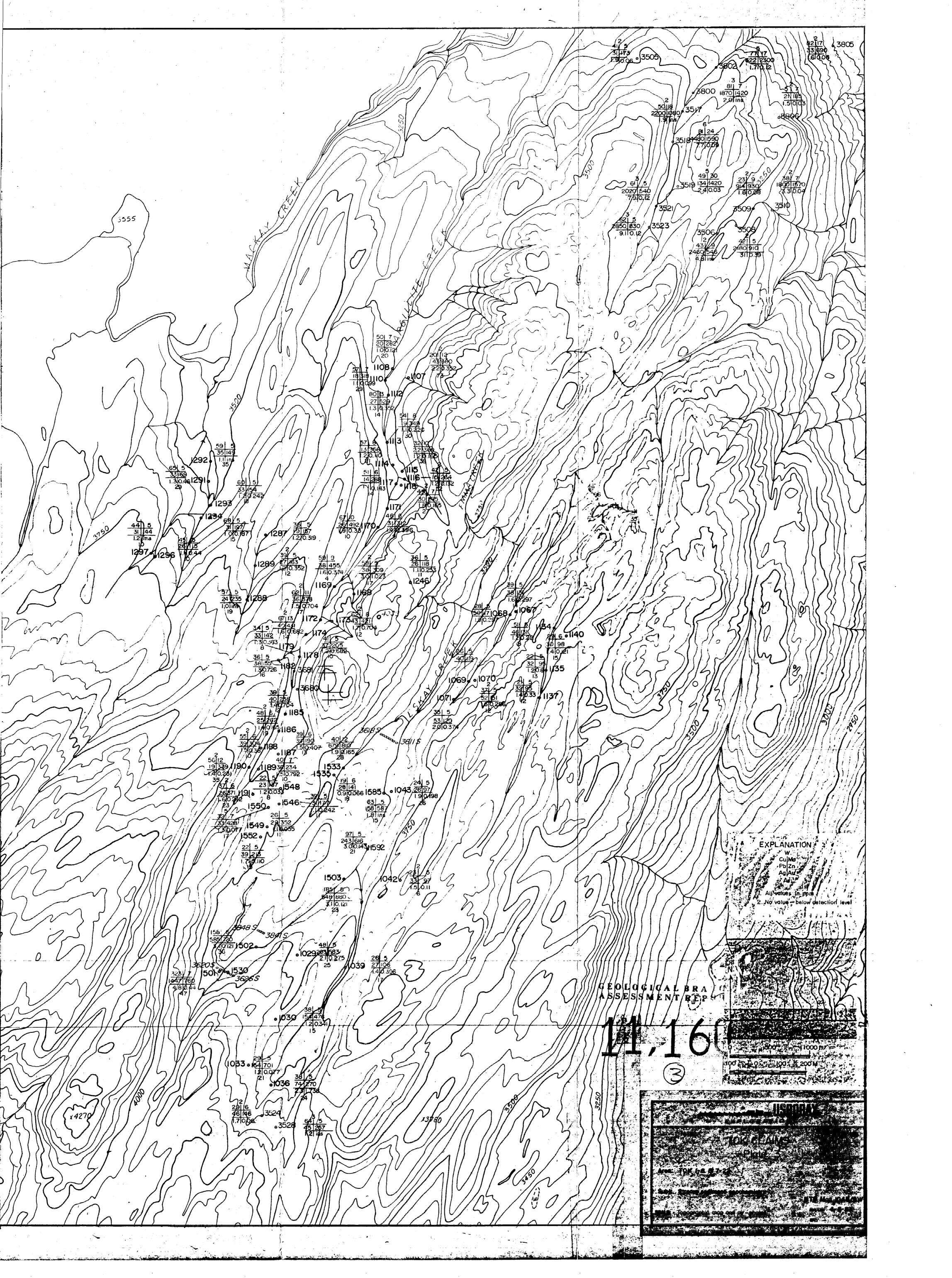
in, danž ut

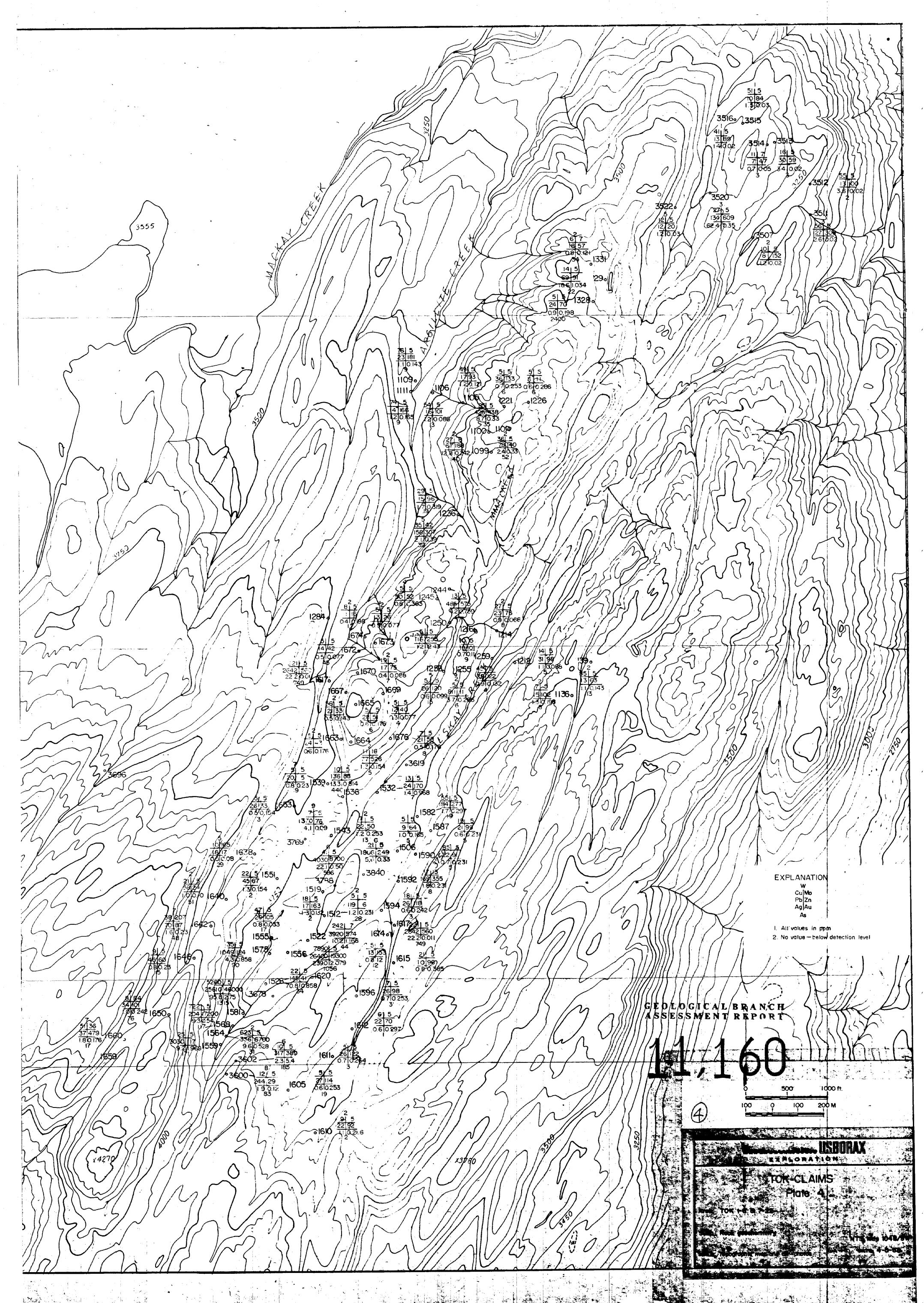
C. BALLAND C. AND

No. 10. 10. 10.


and the second second


Sample	Cu	Мо	Ър	Zn	Ag	Au	Ŵ	As
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MR- 3512	55	5	13	100	3.6	0.02	2	nd
MR- 3513	16	5	30	59	3.4	0.02	3	nd
MR- 3514	11	7	7	47	0.7	0.05	3	nd
MR- 3515	51	5	10	84	1.5	0.03	1	nd
MR- 3516	41	.5	13	89	1.4	0.02	1	nð
MR- 3520	27	5	134	609	62.4	Q.35	3	nđ
MR- 3522	12	5	12	20	1.2	0.03	5	nd
MR- 3600	12	5	244	29	1.9	0.12	8	83
MR- 3602	10	5	317	389	2.3	5.4	6	185
MR- 3769	7	5	1370	76	4.1	0.09	9	nð
MR- 3788	41	5	4030	8700	22.1	0.50	13	173
MR- 3840	21	5	1860	249	5.6	0.33	6	nd


Ć.


er sourcestaine

-B3-

