GEOLOGICAL BRANCH ASSESSMENT REPORT

11,282

V LANA CLAIM

Hisola M.A. 921/8W 50° 2015', 120° 2615'

Geoclemical REPORT

BY

Mr. Murray Swetz on thor, owner. Gr. Ce. Grower operator.

22 April 1983

INDEX PAGE

LOCATION & ACCESS	Page	1
PHYSIOGRAPHY		1
BRIEF HISTORY OF PROPERTY		1
DETAILED EXPENSES		2
DETAILED SAMPLING REPORT		2
ASSAYING METHOD AND WRITERS QUALIFICATIONS		3

INDEX MAP

1

Figure 1

ASSAY SHEETS 2 **elaim Map** SAMPLING GRID MAP in Pocket Back of Folder

LANA M.C. LOCATION & ACCESS

The Lana Claim containing 6 - Units, lies in a wooded area, approx. one and a half kilometres due west of the extreme south end of Stump Lake and 52 kilometres north-east of the town of Merritt B.C., via the Kamloops-Merritt Highway. A dirt road - running west of the highway comes to within 500 metres of the Lana claim, the last portion by foot trail.

N.T.S. 921/8W. - NICOLA MINING DIVISION

PHYSIOGRAPHY

The Lana M.C. lies within the Great Central Plateau area of south-western B.C. The topography is made of gentle rolling hills and valleys, studded with small lakes. The regional area is generally open range - grazing land. The forested areas are made up of Ponderosa and small Jackpine trees. Rain and snowfall is very moderate.

BRIEF HISTORY OF PROPERTY

There was no known previous work done on the Lana M.C. to the best of my knowledge, with the exception of some prospecting carried out by myself in 1981. While prospecting, I failed to locate any old workings of any kind. There are no known reports covering any past work on the Lana Claim.

DETAILED EXPENSES, LANA CLAIM

Assay Costs	\$ 1,056.00
Salary, 6 - One man days \$100.00 per day	600.00
Truck expenses from Vancouver to Merritt and Merritt to work area and return - 1,250 km @ 16¢ per kilometre	200.00
Sampling Supplies	43.00
Motel and Board - \$43.00 per day	215.00
TOTAL COSTS	\$ 2,114.00

DETAILED SAMPLING REPORT

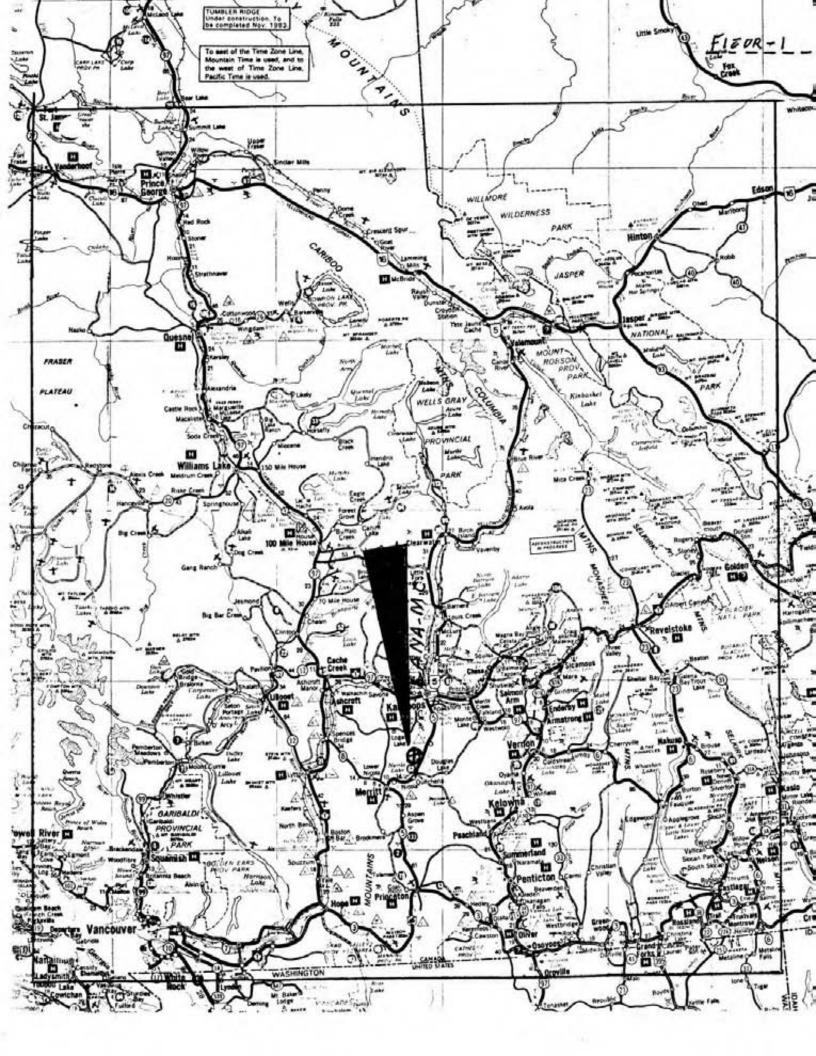
A total of ONE HUNDRED AND TEN Soil Samples (110) were taken from the Claim. A Grid - Survey was put in with a 270 m Baseline running north-south, and ten Gridlines, 300 m long running east-west. Station and Line spacings at 30 m intervals. A Brunton Compass and Hip Chain Topo Fill were used in conducting survey-orange colored Flagging used on Gridlines and orange and blue Flagging for Sample Stations. Soil Holes were dug using a Prospectors Hammer - Mattock, to an average depth of 18 to 20 cm. Sampling was carried out over a large Iron Oxidized Mariposite containing Silver - Copper values. Sampling has indicated two small Gold Anomalies. Sampling carried out by one man over a period of six days - March 31st to April 5th, 1983 including report preparation. Type of transportation used - 1978 Ford Pick-up Truck.

ASSAYING METHOD AND WRITERS QUALIFICATIONS

Name of Assayer -

BONDAR - CLEGG & COMPANY LTD. 130 Pemberton Ave. North Vancouver, B.C., Canada, V7P 2R5 Telephone: (604) 985-0681

ASSAYING METHOD AND WRITERS QUALIFICATIONS (cont'd.)


Assay method for Soils = Dried, Screened minus - 80 mesh, One Gram Solution, Digested with Perchloric Acid and Nitric for approx. 1¹/₂ hrs. Diluted to volume analysed by standard Atomic Absorbtion techiques. Silver Copper Background corrected for None Atomic Absorbtion.

WRITERS QUALIFICATIONS

I am a self employed Prospector with 31 years prospecting experience in British Columbia and Yukon. During that time, I have assisted in various Geophysical Surveys. I reside at Suite 203 - 1215 Comox Street, Vancouver, British Columbia.

Vancouver, B.C. April 22, 1983

Murray Swetz

Houdae-Clegg & Company Lat. 130 Femberion Ave. North Vancouver, B.C. Canada V7P 205 Phone: (600 915-061) Telex: 04-352667	BONIC	DAR-CLEGG	Geochemical Lab Report
EPI 122-0451	THE C		FIGURE-2
ROMI MR. GEORGE G. GRAUER MATE: 12-APR-83 PROJECT: LANA HC	SUBMIT	TED BY! W SMETZ	
LOWER LEMENT DETECTION LIMET EXTRACTION	нетнор	SIZE FRACTION BAMPLE TYPE	SAMPLE PREPARATIONS
CO 1 PPM HND3-HCL HOT EXTR AS 1 PPM HNO3-HCL HOT EXTR AU 5 PPB AQUA PEDIA		-80 SOILS -80 -80	DRY: SEIVE -80
CPORT COPIES TO: MR. GEORGE G. GRAVER MR. MURRAY SWETZ	INVOICE	TO: MR, GEORGE G, GRAUER	
A CONTRACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACT			
Sand States Street	SIL PRO		

Bibata-Cing il Campany Ltd. 130 Persberton Ave. North Vancouver, B.C. Camala, V7P 285 Phone: (606) 905-0681 Tolex: 04-352667

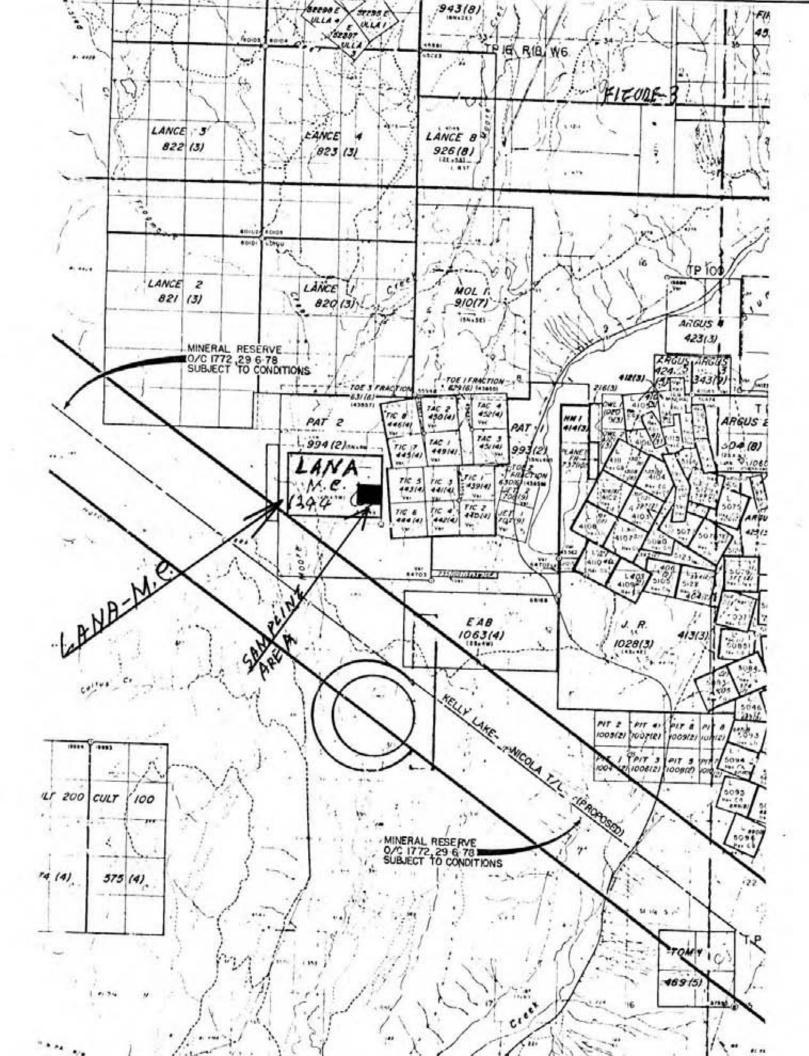
Geochemical Lab Report

REPS 173-0451 PROJECTI LANA NO					11.5	PAGE 1					
SAMPLE ELEMENT MUMBER UNITS	Cu PPH	As PPM	Au PPB	WOTES	SAMPLE ELEMENT MUMBER UNITS	Cu PPM	Аві ррн	Au PPB	MSTE		
5 34, 0 1 000	58	0.3	10		5 70N+304	21	(0.2	(5	SINCE		
S BL #30M	66	0.2	5		S 900+60W	20	0.3	-15			
S BL 450N	36-	0.2	<5		S 9011490M	25	(0.2	20			
5 EL AVON	66	0.4	20		S 90M#120W	20	0.2	<5			
5 BL 4120N	40	<0.2	<5		3 90N+150W	38	0.2	<5			
S PL +150M	52	<0.2	45	5 100 C 10 10 2	3 90N#180W	40	40.2	(5	CONTROL OF		
5 BL FIBON	26	\$0.2	<5		5 90N+210W	41	(0.2	<5			
5 BL 4210N	36	<0.2	(5		S 5084240W	39	<0.2	70			
5 BL #240N	19	\$0.2	65		8 90%+2704	25	<0.2	(5			
5 FL +270H	25	40.2	B		5 90113004	32	(0.2	6			
S 0+00H+30W	56	0.3	5		8 120N+30W		<0.2	15			
5 010001800	50	0.3	15		\$ 120N+60W	44	and the second second second	15			
S DECONÉTON	73	0.4	10 .			19	(0,2	(5			
					S 12004900	20	<0.2	<5			
5-0100N11200	-47	0,2	5		S 120H+120P	31	<0.2	45			
s 0+00#150W	50	0.3	<5		S 120N+150W	32	<0.2	.45			
0+00111800	3.9	0,2	10	IN THE REAL	\$ 120W+180W	44	<0.2	5	- III. College		
S 0440N1210H	34	0.2	5		\$ 120N+210M	46	\$0.2	<5			
5 L . M12400	37	0.4	-05		S 1209+240V	38	<0.2	.<5			
5 0400N4270W	36	0,2	(5		S 120H+270W	36	0.2	<5			
5 0100N1300W	34		(5		B 120M4300W	28	×0,2	15			
S 30NF36R	59	0.5	(5		\$ 150N+30M	27	(0.2	4			
S 30N+60N	112	1.2	20		S.150N+60M	51.	<0.2	-05			
5 30N1900	105	0.7	20		5 150N+90W	35	-0.2	(5			
S 30N+120W	54	0.8	CS.		\$ 150N+120U	55	<0.2	45			
3 30//13504	62	0.4	5		S 150N+150W	18	40,2	(5			
S 3041180W	33	10.2	(5		S 150W+1800	37	<0.2		ALL ALL ALL		
S 30H+210W	34	0.3	15		5 150H+210W	32	<0.2	15			
S 30N1240M	40	\$0.2						<5 /F			
			85		5 1500+2400	27	\$0.2	(5			
3 30942700	26	0.2	15		\$ 150H+270W	37	\$0.2	(5			
s 30N+300U	35	0.2	<5	West always	S 1509+300W	76	40.2	4			
5 60N+30N	28	(0.2	15	1	S 180N+30W	29	<0.2	5			
5 60N+60W	24	<0.2	5		5 100N+60V	47	0.3	55			
5 60N+90W	37	40.2	(5		5 180N+904	-42	0.2	(5			
5 60N±120¥	39	0.3	(5		S 180N+120W	19	50.2	<5			
50N+150W	49	0.4	<5		S 189N#150W	21	\$0,2	<5			
S 60041800	42	0.3	5	101010-007	\$ 180N+180W	25	<0.2	3			
3 50N+210W	30	0.2	<5		5 130M+210M	27	<0.2	<5			
50H+240W	33	(0,2	<5		S 1BON+240U	28	0.2	<5			
5 42704	29	10.2	. (2		5 180N4270W	38	\$0.2	15			
	39	<0.2	<5	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	S 180N#300W	38	30.2	<5			

Bindur-Clegg & Company Ltd. 150 Persherion Ave. North Vascouver, B. C. Canuda V7P-283 Phone: (604) 985-6681 Tuley: 04-352667 BONDAR-CLEGG

Geochemical Lab Report

REPORT: 123-0451	PROJECT:	LANA MC				PAGE 2				
SAMPLE ELEMENT	Ett.	As	Au	1313	NOTES					
HUMMER UNITS	PPH	PPR	PPB	1		the second s				
5 2100/300	23	-0.2	<5	Mag 2	All and and and	In the second				
5.210H+60W	24	\$0.2	<5							
S SIGNAROW	:45	10.2	10							
S 710W±120W	. 30	10.2	<5							
S 710H+150H	27	(0.2	<5	and the						
5 210K1180M	15	\$0,2	<5	Sec. In.	CONTRACTOR OF STATE					
S 210M#210W	32	40.2	<5							
5 210N4240W	27	\$0.2	<5							
D 210H+270W	30	\$0.2	<5							
5 210#+309#	-32	\$0.2	<5							
5 24011300	26	(0.2	<5	-	C THE REPORTS	the state of the s				
5 240/19800	30	(0.2	0							
5 240N#POW	26	\$0.2	. (5							
5 240X4120W	18	40.2	15							
5 24001150W	25	19.2	<5							
5 240N+1B0W	32	\$6.2	<5	32.0	a industrial states					
5 2' 12100	28	\$0.2	(5							
5 2-12404	21	\$0.2	<5							
5 240812700	.77	x0.2	<5							
9 240N+300W	21	10.2	(5							
5 270H+30W	21	10.2	<5	10.0						
5 27017804	18	\$0.2	(5							
5 270N490H	22	(0.2	<5							
5 270N+120W	29	\$0+2	.05							
270H+150M	.28	<0.2	(5							
276N+180W	24	<0.2	<5	TO THE	Constant Provent					
270N12104	31	(0,2	15							
5 2708+2409	30	<0.2	- (5							
0.270812700	18	<0.2	<5							
3 2708+3004	22	(0,2	<5							



764 BELFAST ROAD, OTTAWA, ONTARIO, K1G 0Z5 PHONE: 237-3110 TELEX: 053-4455

 Invoice: 4524 Date: April 13, 1983 Report No: 123-0451 Project: LANA MC

4					
110 Analyses	of Silver	at	1.90	209.99	
110 April 19865	of Copper	ot	0.95	104.50	
	Subtatel			313,50	313 59
110 Analyses	of Gold - Fire Assay	at	5.00	560.00	
	Subtotal			650.00	660.00
Sample Prepar	r∋tion				
110 Samples	of DEV, SEIVE -80	at	0.75	82,50	
	Subtotel			82,50	82.50
	invoice lo	1.51			41056.00

THIS IS A PROFESSIONAL SERVICE ACCOUNTS DUE WHEN RENDERED


	-	1 2		۰. ۲	. <u>.</u>			·				· · ·
	0+00 N EU AZ AU	r d.v.7 5010 10	9 m t o 56 0.3 5	3 9 4 0 50 0.3 5 5	3 00 + 0 73 0.4 10	3011+0 47 012 5	Bosito 503 55	308140 38 10	Roit to 34 5	7 0,4 5 37 5	Bolt + 0 3 C 0 · 1 = 5	3000 to 0400 N 34 20.2 5
	0+30 N EU A 5 A U	6C 0. 5	° 59 0.5 55	° (112) (2.0) (2.0)	106 0.7 20	6 54 0.9 *5	0 64 5	• - 0 · 2 - 5	° 0.3 < 5	° 40 20.5 85	o 26 0·2 <5	o 35 0.2 5
	0+60 N C U A T A U	36 0.2 45	19 - 0.1 -5	24 <0.1 5	* 37 * 0-1 * 5	o 39 0·3 < 5	9 49 8.4 5	o 42 0.3 5	0 30 0.7 5	0 33 40.2 45	29 <0.2 =5	39 = 0-2 = 5
, , , , , , , , , , , , , , , , , , , ,	0+90 N C U A & A U	66 0.4 20	21 ~0~2 ~5	20 0-3 - 5	0 25 20 20	0 2.0 0.1 < 5	38 0-1 5	• - 0.2 - 5	6 41 50.2 55	° = 0:2 (70)	25 = 0·2 = 5	0 - 32 - 5
L BRANCH T BF20RT	C C C C C C C C C C C C C C C C C C C	40 < 0.). <5	0 44 = 0.7 = 5	0 - 0-2 - 5	0 - 2.0 - 0.2 - 5	31	o = 0.1 = 5	0 44 = 0.7. 5	46 50.2 5	38 ~0.7 ~5	36 0.2 = 5	8 7 0.2 7 5
GEOLOGICAL Assessment	EU AF A	5] 2 D·J 25	0 97 50.1 5	0 51 5 5	o - 0 · 2 - 5	0 55 e. 0. 1 45	0 	0 = 0.2 5	0 32 20.2 25	s 27 < 0.1 < 5	0 57 5 5	\$ ~ 0.2. ~ 5
9	0+130N CU AE AU	26 10-2 45	29 -0.2 -9	0 47 0.5 55	0 42 0.2 5	0 - 0-2 - 5	0 21 7 G - D 7 5	0 25 < 0.2 = 5	0 27 < 0.2 < 5	0 26 8.1 6.5	0 5 39 5 0.2 5	0 33 <0.1 <5
	0-7 210 N C U A E A U	36 40.9 45	0 23 ~0.2 ~5	0 24 = 0·2 = 5	0 - 15 - 0·2 10	0 - 0-2 - 5	0 5-1 5-2 5	0 - 0.7 - 5	o 33 ~0-2 ~5	0 27 <0.2 <5	0 30 50.2 5	0 32 4 0.2 4 5
	07240N CU AG AU	19 19 20-2 2-5 2-5 2-5	0. 26 <0.9 ~5	0 30 50.9 55	0 26 263 25	° ≈ 0-2 ≈ 5	0 25 20.7 25	3] 40.2 5	2 (= 0-2 = 5	0 2) < 8·2 < 5	0 27 <0.2 <5	0 21 < 0.2 < 5
	of 270N eu Au Au	25 5 5	9 = 0.2 = 5	0 	0 27 20 20 2 5	s 29 407 5	s 40.2 √5	0 24 5 8.2 5	° ~ 31. ~ 0.2 15	0 30 40.2 45	0 = 0, 2 = 5	04300W 217 202 20.1 4 25

LANA M.C.

LECEND

SOIL SAMPLING SURVEY LANA M. C. = 6 UNITS

> AU - PPB = AG - PPM = EU - PPM = N.T.S. 921/SWAU- ANOMALY =

