GEOLOGICAL BRANCH ASSESSMENT REPORT

11,542

GEOLOGICAL AND GEOCHEMICAL

1 ...

ASSESSMENT REPORT

on the

STAR 1 - 8, 10 MINERAL CLAIMS

LOCATED IN THE ISKUT RIVER AREA

LIARD MINING DIVISION NTS 104 B/11 E

56[°] 33' N Latitude 131[°] 10' W Longitude

for

ENERGEX MINERALS LTD.

by

DAVID A. CAULFIELD, GEOLOGIST CHARLES K. IKONA, P. ENG.

November, 1983

83-#797-#11342

TABLE OF CONTENTS

1.0	INTRODUCTION	page 1
2.0	LIST OF CLAIMS	1
3.0	LOCATION, ACCESS AND GEOGRAPHY	2
4.0	HISTORY	4
5.0	REGIONAL GEOLOGY	4
6.0	LOCAL GEOLOGY	6
	6.1 Structure	7
	6.2 Economic Mineralization	8
7.0	GEOCHEMISTRY	9
8.0	CONCLUSIONS	10
9.0	BIBLIOGRAPHY	11

APPENDICES

APPENDIX

- I ITEMIZED COST STATEMENT
- II SAMPLE DESCRIPTIONS
- III ASSAY CERTIFICATES

IV STATEMENT OF QUALIFICATIONS

V ENGINEER'S CERTIFICATE

LIST OF FIGURES

FIGURE	1	PROPERTY LOCATION MAP	after page 1
	2	CLAIM MAP	2
	3	REGIONAL GEOLOGY (w/legend)	5
	4	"A" CREEK TRAVERSE	6
	5	"B" " .	6
	6	"c" " "	6
	7	LOCAL GEOLOGY	6
	8	STREAM - SEDIMENT LOCATIONS WITH SIGNIFICANT ASSAYS	9

INTRODUCTION

1.0

Energex has completed a preliminary exploration program on its Star group of claims situated just south of the confluence of the Jekill and Craig Rivers in northwestern British Columbia (Fig.1). The group consists of 9 claims totalling 166 units which were staked in the fall of 1982 and during February and March of this year. Skyline - Placer's "Reg" group adjoins the northeast corner of the group. Renewed interest in the area resulted from the exceptional gold values encountered during Skyline's 1982 drill program.

This initial week long program on the claims consisted of reconnassance prospecting and geological mapping combined with silt and heavy concentrate sampling. These surveys generated the collection of the following samples:

- 31 rock samples (1 assay, 30 geochemistry)
- (2) 44 Silt samples
- (3) 26 heavy concentrate samples

The writer was retained by Energex Minerals Ltd. to assimilate all data received to date and report on any significant results produced by this year's fieldwork.

2.0 LIST OF CLAIMS

The B.C. Ministry of Mines, Energy and Petroleum Resources indicates the following claims (Fig. 2) are owned by Energex Minerals Ltd.:

CLAIM NAME	RECORD NO.	UNITS	RECORD DATE
Star 1	2546	20	Oct. 13/82
Star 2	2547	20	Oct. 13/82
Star 3	2548	20	Oct. 13/82
Star 4	2685	16	Mar. 3/83

- 1 -

LIST OF CLAIMS CONTINUED

CLAIM NAME	RECORD NO.	UNITS	RECORD DATE
Star 5	2686	20	Mar. 3/83
Star 6	2687	10	Mar. 3/83
Star 7	2688	20	Mar. 3/83
Star 8	2689	20	Mar. 3/83
Star 10	2690	20	Mar. 3/83
		166	

- 2 -

LOCATION, ACCESS AND GEOGRAPHY

The Star group is located on the eastern flank of the rugged Coast Range Mountains and is approximately 110 kilometers northwest of Stewart, British Columbia. Brunt Mountain which is found south of the confluence of the Craig and Jekill Rivers is situated near the middle of the claim group. Co-ordinates of the property are 56[°] 33 North Latitude and 131[°] 10' West Longitude and the property falls under the jurisdiction of the Liard Mining Division.

To obtain access to the property, helicopter transport can be utilized from the Snippaker gravel air strip located 25 kilometers to the east. The 1983 field season saw daily scheduled flights to the strip from Terrace and Stewart using fixed wing STOL aircraft and the stationing of two independent helicopter bases on the strip. It is anticipated that similar services will be offered during the 1984 season.

The nearest road is the Stewart-Cassiar Highway that passes just to the east of Bob Quinn Lake.

Pamicon Developments Ltd.

2.0

LOCATION AND ACCESS CONTINUED

- 3 -

Recently, a proposal by C.K. Ikona of Pamicon Developments Ltd. has been submitted on behalf of Skyline Explorations for the construction of a road approximately 65 kilometers long, on the south side of the Iskut Valley to connect the Stewart-Cassiar Highway with the B.C. Hydro damsite on the Iskut River and the Skyline Explorations Ltd. 'Reg' prospect on Bronson Creek.

Geographically, the area is typical of mountainous and glaciated terrain with the elevations ranging from a few hundred meters in the river valley bottoms to in excess of 1700 meters at the top of Brunt Mountain. Major drainages are U - shaped whereas smaller side creeks tend to be steeply cut due to the intense erosional environment. Active glaciation is prevalent above 1200 meter contour with the tree-line existing at 1000 meters. The upper reaches of the area are covered with alpine vegetation whereas the lower slopes are predominately timbered with a variety of conifers with an undergrowth of devil's club. More open areas and steeper slopes contain dense " slide " alder growth. Both summer and winter temperatures would be considered generally moderate and in excess of 200 centimeters of rain may be expected during any given year.

Rugged topography, climate and vegetation, all inhibit traversing throughout the claim group. Therefore, operating by helicopter from the Snippaker air strip appears to be the most practical and cost effective means of exploring the Star group during reconnaissance style programs.

HISTORY

4.0

General mineral exploration activity in the region dates back to the turn of the century and continued on into the 1930's with interest in precious metals centering on the Stewart Camp. A revival of activity was seen in the 1950's and 1960's as active exploration progressed throughout the Stikine River area in search for porphyry copper deposits.

- 4 -

In recent years, the marked increase in precious metal prices has prompted renewed interest and exploration activity in the Stewart Camp as well as in adjacent areas of similar geologic settings. As a results of these events, Skyline Explorations Ltd. intensified its gold exploration on both the "Inel" and "Reg" properties. Diamond drilling in the "Reg" during 1982 revealed a consistent gold bearing zone of considerable width. The area was subsequently blanketed by extensive claim staking. During the spring of this year, an agreement was signed allowing Energex Minerals Ltd. to acquire the Star group of claims.

The only previous work conducted on the Star claims was under the direction of Louise Eccles, geologist, of DuPont of Canada Exploration Ltd. A regional program undertaken in 1980 encountered several float occurrences of gold bearing quartz and calcite veins. The following year, the Burton and Cummings claims were staked and a limited exploration program was carried out (Assess. Rpt. 9190). The claims were allowed to lapse and remained open until the fall of 1982.

REGIONAL GEOLOGY

5.0

The Iskut River Gold Camp lies along the contact between the Intermontane and Coast Plutonic Complex geotectonic provinces. REGIONAL GEOLOGY CONTINUED

- 5 -

Plutonic and metamorphic rocks form the bulk of the rocks to the west (C.P.C.) while the eastern portion (I.) is composed of Paleozoic oceanic sediments and volcanics overlain by later Mesozoic volcanic arc assemblages. These assemblages have been extensively exposed along the northeast trending Stikine Arch. Most recent geologic activity is expressed by the young Tertiary volcanic centers (i.e. Hoodoo Mtn.) generated along the Stikine Volcanic Belt.

The oldest group of rocks (Fig. 3) are the Permian limestones (6) overlying metamorphosed sedimentary and volcanic members (Gb). Correlation has been made between this oceanic assemblage and the Cache Creek Group. The Upper Triassic package of island arc volcanics (7,8) and sediments occur unconformably on top of the limestone unit have been informably referred to as the "Snippaker" volcanics. Felsite bodies which may relate to the more acidic members of this sequence have been the focus of recent exploration along a northwesterly trending belt through the Iskut River area. Grove (1981) correlates this assemblage to the Unuk River Formation of the Stewart Complex whereas other writers match this group with the time equivalent Stuhini volcanics. The "Snippaker" volcanic sequence is unconformably overlain by an arkose-argillite unit which also includes cherty limestones and volcaniclastics. This unit (II) has been correlated with the Middle Jurassic Betty Creek by Grove. Structural simplicity and stratigraphic superposition supports the hypothesis of an unconformable basal contact. Quaternary and Tertiary volcanics (18) occur to the north of the claim group at Hoodoo Mountain and also to the south of the claim group in the Mount Dunn area.

REGIONAL GEOLOGY CONTINUED

- 6 -

The greatest portion of the intrusive population is composed of mesozonal Cretaceous plutons (B,C) of the Coast Plutonic Complex. A smaller percentage of the intrusive rocks is comprised of epizonal or subvolcanic felsites or felspar porphyrys. Although their significance is as yet uncertain, these acidic porphyries are spatially related to the important gold occurrences on Skyline's "Reg" and "Inel" prospects. Without accurate age dating it is difficult to tell whether these felsites represent coeval roots of the auriferous felsic members of the "Snippaker " volcanics or perhaps, are from a much later event which may have remobilized and enriched existing mineralized horizons.

6.0 LOCAL GEOLOGY

Property mapping to date has been of a reconnaissance nature with more detailed geology being restricted to a few selected creeks (Figs. 4,5, 6) and ridge lines. Therefore, the local geology on Figure 7 is a compilation of various government and private sources and represents only a generalized plan of the geology with obvious omissions of structure and detailed outcrop geology. Modifications were made where ground control existed.

The most expansive package of rocks on the property is that of the metamorphic group (3) of Paleozoic sediments and volcanics which occupy most of the western half of the claim group. Massive dark green andesitic flows are found interbedded with limestones, rusty argillites, phyllites and more gritty units. The andesites or "greenstones" are resistant weathering and are commonly peppered with disseminated pyrite and pyrrhotite grains. Capping these units is the Permian, Cache Creek equivalent, white crystalline limestone (2) situated on the northern Brunt Mountain ridge line and just north of the claim group.

STAR CLAIMS I-8,10 "A"CREEK TRAVERSE PAMICON DEVELOPMENTS LTD. FIG. 4

GEOLOGICAL BRANCH ASSESSMENT REPORT

	STAR JOI	NT VENTU	RE
5	STAR CL	AIMS 1-8	3,10
"в"с	REE	TRA	VERSE
PA	MICON DEV	ELOPMENTS	LTD
N. T. S. 104 8/11 E	PROJECT. STAR	DATE. NOV 1983	FIG. 5

2 GEOLOGICAL BRANCH ASSESSMENT REPORT

11,342

LEGEND

 I
 Pyritic silic tuff w/interbedded limestone, argillite.

 2
 White limestone

 3
 Fetid black limestone

 4
 Andesite

 5
 Diorite w/hornfels

 Quartz vein
 XXX

Rock sample location

STAR JOINT VENTURE STAR CLAIMS I-8,10 "C"CREEK TRAVERSE PAMICON DEVELOPMENTS LTD. N.T.5 104 B/HE PROJECT. DATE. NOV. 1983 FIG. 6

LOCAL GEOLOGY CONTINUED

6.0

- 7 -

Following an erosional period, the accumulation of the "Snippaker" volcanic and volcanoclastic rocks (1) occurred. It is the intermediate to acidic fragmental volcanic rocks of this sequence which are hosts to much of the economic mineralization on the "Reg" and "Inel" prospects. More detailed mapping will be required to determine if these favourable horizons occur on the Star claims. Typical rock types encountered in traversing were tuffaceous sediments with interbedded limey and cherty units and massive dark green andesites or its coarser grained " diorite " component. The diorite exhibits chilled and hornfelsed margins on both its upper and lower boundaries and is concordant with the local bedding. This may infer a " sill" like intrusive emplacement.

Two major intrusive units located in the area are the large quartz monzonitic or granodioritic stock (B) to the south and the extreme northwest and the smaller satellitic bodies and dykes (A) of felsite or felspar porphyry. These subvolcanic felsites are known to be spatially related to the "Reg" and "Inel" prospects and have been earmarked by various groups as important exploration targets in the Iskut River area.

6.1 Structure

Structural information obtained to date has been minimal. Both outcrop and property scale observations indicate a complex structural history of intensive folding and faulting. Assuming the government mapping to be generally correct, at least two phases of deformation may be interpolated. One deformation results from folding along a northwest - southeast axial trace with the second represented by warping and shearing along a northeasterly direction.

Pamicon Developments Ltd.

6.1 Structure continued

This shear style of folding is best displayed by the limestone unit outcropping along the crest of Brunt Mountain and probably resulted from the emplacement of the two large intrusive phases to the southeast and northwest. The above is a preliminary interpretation only with no consideration given to thrust or block faulting. One major northeasterly fault has been mapped by Skyline personnel across the top of Johnny flats and projected down the Craig River Valley.

6.2 Economic Mineralization

Economic mineralization encountered during this year's field program basically confirmed and relocated the mineralization discovered by DuPont's exploration staff during 1980 and 1981. "A" and "B" creeks (Fig. 4,5) both contained mineralized quartz float with the bedrock source traced in both cases. In outcrop, the quartz veins are generally conformable with bedding and associated with pyritic silicious tuffs or sediments, particularily, its interbedded limestone members. A 0.5 meter vein on "A" creek returned values of 0.18% Cu, 8.70% Pb, 0.04% Zn, 10.72 oz/T Ag and 0.046 oz/T Au. A piece of float sampled by DuPont during 1981 assayed 0.256% Cu, 0.64% Pb, 0.14% Zn, 1.10 oz/T Ag and 0.123 oz/T Au. More than likely, the float was shed from the outcrop which was located this year. Sulphide mineralogy includes pyrite, galena, chalcopyrite, sphalerite, argentite and tetrahedrite. Another smaller (0.1 meter) quartz vein upstream returned anomalous values in some of the metals analyzed. In "B" creek, a similar occurrence had been discovered by DuPont along a sediment-andesite contact (0.004% Cu, 1.15% Pb, 0.01% Zn, 2.11 oz/T Ag and 0.118 oz/T Au.). A carbonate vein hosted by andesite was also sampled and found to contain 1.860% Cu.

- 8 -

GEOCHEMISTRY

7.0

Major drainages on the property were systematically sampled. It was decided to use both the heavy concentrate and silt sampling methods to determine which would respond to the element (Cu, Pb, Zn, Ag, Au, As, Sb, Hg, Ba, W and Ce) dispersion trains better; in particular, gold. A total of forty-four (44) silts and twenty-six (26) heavy concentrate samples were collected for analysis. At least nine (9) kilograms of sieved material was required for the heavy concentrate preparation at C.F. Mineral Research Ltd. in Kelowna, B.C. Sediment was taken from the active part of the creek and passed through a 20- mesh screen. The prepared samples (-60 mesh, nonmagnetic fraction) were forwarded to Nuclear Activation Services Ltd. of Hamilton, Ontario for analysis by Neutron Activation method for As, Sb, Ba, W, Au and Ce. Once the irradiated samples from Nuclear Activation Services " cool ", Cu, Pb, Zn, and Ag values will be received from Chemex Labs.

An examination of the results show that the heavy concentrate sampling method was much more successful in locating Au anomalous drainages. Where only three silt samples taken would be considered anomalous (70,660, and 2100 ppb Au), a total of seven heavy concentrate samples recorded anomalous values (14,000 - 72,000 ppb Au). Importantly, the highest values did not come from the drainages where there are known auriferous occurrences (ie "A", "B" creeks) but from the totally unexplored creeks on the western half of the property. These creeks should be a target of future exploration ventures. Locations and listing of the more significant results are presented on Figure 8.

- 9 -

8.0 CONCLUSIONS

The 1983 field program conducted on the Star claims saw reconnaissance prospecting, geological mapping, and sampling of the main drainage by both silt and heavy concentrate methods. The program was extremely successful in relocating the showings located by DuPont in 1980 - 81 and in uncovering highly anomalous drainages on the western portion of the claim block. A sample from an outcrop on "A" creek returned values of 0.18% Cu, 8.70% Pb, 0.04% Zn, 10.72 oz/T Ag and 0.046 oz/T Au. Values as high as 72,000 ppb Au in heavy concentrate samples and 2100 ppb Au in silt samples were received from drainages on the western side of the property.

Geological mapping has indicated that some of favourable geologic aspects on the "Reg" and "Inel" prospects may also occur on the Star claims. The Snippaker volcanic assemblage may be located on the Star property although the key felsic members, as of yet, have not been discovered. In addition, felsite or felspar porphyry bodies occur on and immediately adjacent to the property. These units are spatially associated with the mineralized zones on Skyline's two prospects.

In conclusion, the very successful geochemical survey coupled with a favourable geologic environment point to the Star project as being of definite merit and further follow-up exploration is fully warranted.

Respectfully submitted, vid A. Lau David A. Caulfield, Geologist C. K. Ikona, P. Eng.

- 10 -

9.0 BIBLIOGRAPHY

Summary Report on the Josh, Josh 2 - 4 Mineral Claims;
 G.C. Gutrath and T.C. Scott, 1983.

(2) Geological Report and Work Proposals on the Reg and Inel Properties of Skyline Explorations Ltd; E.W. Groves, 1981.

(3) Summary Report on the Inel Mineral Claims; C.K. Ikona and T.C. Scott, 1980.

(4) Geological & Geophysical Report, Inel and Hiho Mineral Claims;A. O. Birkeland, 1973.

(5) Government Publications:

G.S.C. Memoir 246; F.A. Kerr, 1929 Operation Stikine - 1956; Map 9 - 1957 Iskut River; Map 1418A, 1979

- 11 -

APPENDIX I

ITEMIZED COST STATEMENT

WAGES

A. Birkeland - P. Eng. 703 - 850 W. Hastings St. Vancouver, B.C. (Energex) June 14, July 7, August 17 - 25, 11 days @ \$210.00 = \$2,310.00 D.A. Caulfield - Geologist 215 - 543 Granville St. Vancouver, B.C. (Pamicon Developments Ltd.) 945.00 August 17 - 23, 6.3 days @ \$150.00 K. Milledge - Prospector 215 - 543 Granville St. Vancouver, B.C. (Pamicon Developments Ltd.) \$4,155.00 August 17 - 23, 6 days \$150.00 900.00 TRAVEL AND ACCOMODATION (A) McDonald Travel (Air Fare) 479.00 Invoice #22339 Invoice #22340 328.00 (B) Pamicon Developments Ltd. . 47.41 Expense Account (C) A. Birkeland \$ 886.03 Expense Account 31.62

ITEMIZED COST STATEMENT

- 2 -

AUTO EXPENSE

Pamicon Developments Ltd.			
Expense Account	= 5.50	7	
A. O. Birkeland			
Expense Account	33.25		\$ 38.75
AVIATION EXPENSE			
Frontier Helicopter			
Ticket #22426, 429,434,437,442,5	50		
Aug. 17 - 22, 1983 8.9 hours @ \$549.00/hour			\$4,886.10
MISC. EXPENSE			
A. O. Birkeland			
Expense Account	30.87		
Pamicon Developments Ltd.	74.89		105.76
FREIGHT			
CP Air Invoice #827790770	122.59		
Pamicon Expense Account			
T.P.A. #283 222 009 338	127.40		
Misc. Freight	183.25	. •	433.24

APPENDIX I

ITEMIZED COST STATEMENT

CAMP SUPPLIES

Deakin Equipment #57294	561.75	
Deakin Equipment #57246	101.60	
Canadian Propane #307940	27.74	
Pamicon Expense Account	106.11	
A.Birkeland Expense Account	370.51	\$1,167.71

CAMP FOOD

3 men for 7 days

ASSAYING

Chemex Labs #18314150 - 52, #183809	945
	1,744.74
Nuclear Activation Service	
#3156	798.50
C.F. Mineral Research	
#3092401	1,901.15
*	
Management Fee & Report Preparation	n

\$2,000.00

\$4,444.39

304.93

Total

\$18,421.91

- 3 -

SAMPLE DESCRIPTIONS

r	1		1	1	1	G	EOCHEM	ICAL DA	I I TA SHEET -	STREAM SILTS	I EX. LURAT	110	visit	t
	KH	10	AC					57	AR		CREEK			
ATE	AU	G /	8 / 83	3	_	PR					AIR PHOTO NO.			
SAMPLE	VOL	UME	DRAIN	Ph	TYPE OF	COLOUR	TEXTURE	% ORGANIC	PETROLOGY OF BEDROCK	ADDITIONAL OBSERVA	TIONS OR REMARKS	L	ASS	AYS
NO.	Width	Depth	AGE		SAMPLE			MATERIAL	AND/OR FLOAT		AMPLE	100	20	
H-1	2	20	FLAT		HHC	D. GREY	SANDY	210%	INTR.	ORIENIATION S		-		
KM-1	"	."	"		SILT						Laurin Martines	+		
4.2	1.5	16	AAT		HAC	D GREY	SANDY	15%	VOLC. 7 INTR.	7 1.55.		-		
KM-2	1.5	/5	"		SILT	D. GACT	74601							
H-3	1	5	RAT		HAC	D. BROW	SILTY	20%	VOLC. 7 INTE	7151		_		
KH-3		-	-		SILT							-		
H - 4	2	30	100.		HNC	D. GREY	SANDY	1 5%	VOLC. 7 IN	R.				
KH -4	"		"		SILT									
	1											-		
H-5	1	10	STEEP	•	HHC	D. GREY	SILTY	10%	INR 7 VOLO			+	-	
KM-5			"		SILT			¥		POOR SIL	r	+		
													-	
H-6	.5	10	FLAT	-	HAC	2. GREN	SANDY	× 10%	INTR.	and the second	(a. aabarr)			
KM-6	"				SILT	(LEAR)	-					-		
	-	20	MOD			L. 980	Sauny	15%	WTR TUNK	······				
H-1	1	1,	STEEP	1-	HAC		-		-					

١	1	1	1	T	GEUCHEMICAL DATA SHEET - STREAM SILTS	1	I LORI.		I
						NTS	1048/	IIE	
							/		_

GAMPLER KM, DAC PROJECT STAR

DATE _____ A UG. 19/83

AIR PHOTO NO.

CREEK

VOLUME DRAIN PETROLOGY ASSAYS SAMPLE TYPE OF COLOUR TEXTURE ORGANIC OF BEDROCK ADDITIONAL OBSERVATIONS OR REMARKS Wigth Depth AGE SAMPLE MATERIAL AND/OR FLOAT NO. Pb Zn .8 20 HOP.-HAC L. GREY SANDY L 5% INTR > VOLC H-8 LOTS OF BLACK SAND ... " SILT POOR SILT KM-8 RUSTY BOG AREA .7 10 FLAT SILT KH-9 L. BROWN GREY SANDY 25% INTR. HMC 5 LOTS OF BLACK SAND H-9 30 MOD. " SILT 4 KM -10 7 50 FAT HNC GREY SANDY 25% LOTS OF BLACK SAND H-10 INTR. KM-11 " SILT # 11 NOD. GREY SANDY <5% SEDS. YOLG 71NTR. 5" RICH FLOAT IN CREEK 75 STEEP HMC H-11 5 4 4 . SILT KM-12 HAC D. BROWN SILTY .5 5 STEEP 20% VOLC. + SEDS. LOCATION OF DAC-2 H-12 KM-13 POOR SILT SILT ----. . . KH-14 .5 5 STEEP SILT POOR SILT

MPLER	K	м, 1	DAC			PRO	JECT	57	AR	CREEK			-
ATE	AUG	. 20	/83							AIR PHOTO NO.			
SAMPLE NO.	VOL Width	Depth	DRAIN AGE	Ph	TYPE OF SAMPLE	COLOUR	TEXTURE	% ORGANIC MATERIAL	PETROLOGY OF BEDROCK AND/OR FLOAT	ADDITIONAL OBSERVATIONS OR REMARKS	РЬ	AS Zn	SAYS
H-13	1	5	NOD.		HMC	D. BROWN GERY	MUDDY	20%	YOLC. + SED.				
KM-15	"		"		SILT					POOR SILT	_	_	
H-14	1	15	MOD.		HMC	D. BROWN GREY	MUDDY	20%	VOLC.+SED.				
KM-16	"	•	"	_	SILT					POOR SILT	_		16
H-15	1.5	10	HOD.		HAC	D. BROWN GREEN	SILTY	10%	VOLC+SED.				
KM- 17	"	•	•		SILT					POOR SILT			
H-16	+	30	NoD.		HAC	GREY	SILTY	~5%	VOLC. + INTR. + S	ED. BRUNT CREEK	-		
KM-18	"	"	"		SILT				4			-	
H-17	1.5	15	NOD.		HMC	D. BROWN	SANDY	10%	VOLC. + SED.	PIECE OF GALENA, PYRITE, QZ FLOAT			
KM-19	"	"	"		SILT			•		POOR SILT			
H-18	.,	10	NOD.		HMC	BROWN	SANDY	10%	VOLC. +SED. 7	INTR.			
KM-20	"	"	"		SILT					POOR SILT			
4-19			dan		unc	BROWN	SAUDU	10%	VOLC. SED O	E FLOAT			
KM-21	"		"		SILT				-	DOOR SILT	+		

ATE AU SAMPLE NO. Wigh H-20 1.5 KM-22 "	UG. a	ORAIN AGE	Ph TYPE SAMP	OF COLOUR				AIR PHOTO NO.			
SAMPLE NO. Wigh H-20 1.5 KM-22 "	dth Dep 5 15	AGE	Ph TYPE SAMP	OF COLOUR	I						
H-20 1.5 KM-22 "	5 15	HOD.		LE	TEXTURE	N ORGANIC MATERIAL	PETROLOGY OF BEDROCK AND/OR FLOAT	ADDITIONAL OBSERVATIONS OF REMARKS	РЬ	AS Zn	SAYS
KM-22 "	* "		нм	c BROWN	SANDY	10%	VOLC. + SED 7	INTR .			
11 21 2		*	511	r				POOR SILT			
H-AI a	20	FLAT	НА	C BROWN		10%	VOLC.+SED>	INTR.	+	-	
кM-23 +		*	SIL	r			+	POOR SILT			
H-22 1.5	5 10	NOR -	на	C BROWN		10%	SED, 1ST 7	INTR	+		
K-24 +		*	512	r				POOR SILT			
H-23 2	15	STREP	ни	C GEEY	,	1 1 5%	INTR. LST, S	ED, VOLC. HALACHITE IN PIECE OF	+		-
KM-25 *		*	511	r					1		
H-24 1	1 10	MAT	· HM	C BROWN		10%	INTR., SED, J	ST, VOLC.	-		
KM-26 *	• *	*	5/4	r							
H-25 4	20	HOD -	нн	D. GREY		25%	SED, INTR.	·····			
KM-27 .	• *	*	5/4	T				· · · · · · · · · · · · · · · · · · ·			

GEOCHEMICAL DATA SHEET - STREAM SILTS

Ext____ATIO ____ISIO

SAMPLER A.O. B.

PROJECT STAR

CREEK

AIR PHOTO NO.

NTS

1

DATE AUG. 18/83

1

SAMPLE	VOL	UME	DRAIN	Ph	TYPE OF		TEXTURE	N AND	PETROLOGY			AS	SAYS	
NO.	Width	Depth	AGE		SAMPLE	COLOUN	- ALONE	MATERIAL	AND/OR FLOAT	ADDITIONAL OBSERVATIONS OF REMARKS	Pb	Zn		
AB-1	2	50	HOD.		SILT	M. GREY	V.F.G SILT	210%	RUSTY, BAN	DED, PYRITIC LIMY TUFFS + ARGILLITE OLD FLAGS 9862-C, 8C 81-1-M				
		•								(*	P		
AB-5	5	10	10 D.		SILT	M. GREY	GRAVEL	210%	RUSTY, INTO	REEDDED AST., PHYLLITE, ARGILLITE	A	CI	REER	200
and the second	1									*		18	AVER	SE
AB-8	3	10	100		SILT	GREY	GLACIAL SILT	<10%	INTERBE	DED LST., ARGILLITE)	-			
"B	4	CR	EER	7	RAVER	PSE	- AU	G. A/	93				-	
	-	1	HOD -	-		A.	SILTS					-		
AB - 9	1	50	STEEP		SILT	BROWN	GRAVEL	15%	257.		-	-		
AB - 16	,	30	STEEP	-	SILT	M. BROWN	SANDY	<10%	RUSTY TUFFS		47			
		-		-									-	
AB-17	.5	10	Map.		SILT	D. BROWN	SANDY	15%	INTR. QZ.V. FLOAT	-				
				•				1						
B	RU.	NT	CR	EEK	TRA	ERSE		106.20	83					
A8-21	.5	5	MOD.		SILT	L. GREY	SILTY	25%	ANDESITS - RUSTY					*
											-			
AB- 23	.5	10	STEEP	1	SILT	GREY	SILTY	25%	INTR.	-				
										-				
AB-24	10	100	STEEP		SILT	L. GRE	SILTY	15%	INTR.					
AB - 25	1	10	NOD.		SILT	L.geen	SILTY	125%	+ INTERS	PDED BLEACHED FELSIC, SILIC. TUFFS				

1

GEOCHEMICAL DATA SHEET - STREAM SILTS

EXPLORATION DIVISION

1

ſ

104 B/11E

f

SAMPLER ______ A.O. B. DATE _____ AUG. 21/83

1

"

1

1

.

1

PROJECT STAR

AIR PHOTO NO.

F

NTS

CREEK

T

SAMPLE	VOL	UME	DRAIN	Ph	TYPE OF	COLOUR	TEXTURE	*	PETROLOGY			ASSAYS				
NO.	Width	Depth	AGE	1000	SAMPLE		- LATONE	MATERIAL	AND/OR FLOAT	ADDITIONAL OBSERVATIONS OR REMARKS	Pb	Zn				
<u>"</u> _	"	CR	EEK	T	RAVER	SE		1.10								
AB-30	.5	5	STEEP		SILT	L.GREY	PEBBLY S CLAY	25%	GRNST.	OLD FLAG #6442						
AB - 31	3	100	STEEP		SILT	L. GREY	PEBOLV S CLAY	25%	ARG.							
A8-32	5	100	STEEP		SILT	L.GREY	PEBBLY S CLAY	25%	GRNST.							
AB-33	?	?	STEEP		SILT	L.GEEY	PEBBLY CLAY	25%	LST., TUFF							
AB-34	?	?	STEEP		SILT	H. BROWN	SANDY SILT	10%	L5T.	POOR SAMPLE						
B	EN,	NO	MT	W.,	NORT	HRID	GE T	RAVER	SE				_			
AB - 38	. 5	50	FLAT		51LT	M. BROWN	SILTY	30%	GRNST. PHYLLITE	FROM GROUND SEEPAGE	·					
•							·			· · · · · · · · · · · · · · · · · · ·	-					
						*										

SAM	PLER A	OB		PROJECT	57	AR		LINE "A" CREE	K 7	RAVE	RS
DAT	E AUG.	18-20/83		- HOSECT				AIR PHOTO NO.			
SAMPLE	LOCATION	ROCK		DE	SCRIPTIO	N		ADDITIONAL OBSERVATIONS			AYS
NU.	08.2	5/1., PY.	Sample Type	WIDTH TRUE WIDTH	Alteration	Freshness	Mineralization	OR REMARKS	РЪ	Zn	
	H8-2	TUFF	4848				11/20	SPECIMEN - NO ASSAY	-		
58801	AB-3	Q2. V. IN T.B. LST.	ROCK CHIP	10cm.					\pm		
58814	AB-3	PY. SIL. TUFF	ROCK CHIP	.5-1m			PY				
58802	AB-4	QZ. V. IN LETS ARG.	ROCK CHIP		(L. 5E		PY		-		
58830	AB-5			\langle							
									+		
58803	AB-6	QZ. V. IN LST, ARG/PH	xec.	·5m		1	GL., SP., PY, PO, CP	± ARGENTITE, TETRAHEDRITE			
58804	AB-7	92. V. IN T. 8. LST., AR	ROCK CHIP	.5m			PATCHY GL.				
								,			
3											

t	t	1 1	l G	EOCHEMICA	AL DATA S	f f Sheet – R	I OCK CHIP SA		ION DI	VISION	1
SAN	IPLER A.C). B		PROJECT	57	AR		LINE "B" CREEK	: E TI	RAJE	RSE
DAT	E AUG	. 19/83						AIR PHOTO NO.		an a	
SAMPLE		ROCK		D	ESCRIPTIO	N		ADDITIONAL OBSERVATIONS	ASSAYS		YS
NO.	LOCATION	TYPE	Sample Type	APPARENT WIDTH TRUE WIDTH	Alteration	Freshness	Mineralization	OR REMARKS	РЬ	Zn	
58805	AB-10	QZ. V. FLOAT		.5~			PO/PY	+ D. SULPHIDE			
	•				2						
58831	AB-11							SPECIMEN			
		QZ.V.		.5~			201	*	-		
58806	AB - 11	FLOAT			_		PO/PY	+ D. SULPHIDE	-		
58807	AB-12	THIN BEDI ARG., 15T.	ED				5% PY/PO	"COUNTRY ROCK *			
58808	AB-13	PY., SIL. TUFF, T. 8. L	ST. CHANNEL	an.			750% PY/PO				
58809	AB-14	PY. SIL. TUFF	GRAB	4m.		50 1	PO/PY	" COUNTRY ROCK"	-		
				.3~							
58815	AB-15	PY. SIL. TUFF						"COUNTRY ROCK"			
58810	AB-15	QZ. V.	FLOAT				PO/PY	+ GL., D. SULPHIDE			
58811	AB- 16A	CHERTY TUFF SIL. PHYLL.	GRAB					"COUNTRY ROCK *			
58812	AB-16B	BARREN QZ.V.	GRAB		NU,SE CL			BULL QZ. VEIN			
e									-		

and the second second	denovem investment encoderation	La secolarizza de la Constante
GEOCHEMICAL	DATA SHEET - ROCK	CHIP SAMPLING

EXPLORATION DIVISION

1

L

T

104 8/118 NTS

SAMPLER	AOB	, DAC
DATE	AUG.	20/83

ſ

1

DATE

. .

PROJECT_

.

STAR

AIR PHOTO NO.

LINE

SAMPLE		ROCK		D	ESCRIPTIO	N	(e).	ADDITIONAL OBSERVATIONS	ASSAYS				
NO.	LOCATION	TYPE	Sample Type	APPARENT WIDTH TRUE	Alteration	Freshness	Mineralization	OR REMARKS	Pb	Zn	T		
588 18	A8-18	VOLC., SED	GRAB				PY/PO	RUSTY !		_			
600.0	·	FELSITE					NINO/ DV		_				
58819	10-11	DIKE	CHIP	.5~			≈10% 11		-		_		
58820	AB-20	FELSITE DIKE	CHIP	.5~	BL GACH GD	WEATHERE	PY	RUSTY!					
58821	AB - 22	Q2. V. IN INTR.	GRAB		CALC- SILICATÉ								
58822	AB-25	D. GR. ANDESITÉ	GRAB	.5m	CALC SILICATE		10-30% PY					_	
58623	AB-26	CL-PT Rock	GRAB		<i>cc</i>	1	210%FY	" COUNTRY FOCK"					
68813	PAC-1	QZ. V INTR.	GRAB		Q2		Pr				_		
58816	DAC-2	D. G.R. Volc.	GRAB		i.		5% PY/PO						
68817	PAC-3	D. G.R. VOLC.	GRAB		a		5% PY/PO	1					
						9							

			G	EOCHEMIC	AL DATA S	HEET - R	OCK CHIP SA		ION DIN	/ISION	
SAM	PLER A	08			5	TAR	-			80	-
DAT	AUG.	21,22 /83	3	PROJECT				AIR PHOTO NO.	-		
SAMPLE	LOCATION	ROCK		D	ESCRIPTIO	N		ADDITIONAL OBSERVATIONS		ASSAYS	1
NO.	LOCATION	TYPE	Sample Type	APPARENT WIDTH TRUE WIDTH	Alteration	Freshness	Mineralization	OR REMARKS	РЬ	Zn	T
BR	UNT M	TN - EA	ST SLC	PETRA	VERSE			-			Τ
3824	AB-27	DIKE	GRAB	.5m.	CL, CA, 92	± φ 2 .ν.	<1% PY	(+)			
8825	AB - 28	FELSITE D. + QZ. V.	GRAB	IOm.	CL,CA QZ	± 92. v.	<1% PY	DIKE SWARN		-	+
C#	CREEK	TRAV	ERSE								+
8826	A8-29	T.B. TURF LST., ARG.	GRAB				PY/PO	RUSTY COUNTRY ROCK"			1
BRUN	T MTN	. NORTH	I RIDGE	TRAVE	RSE						-
3827	AB-35	GRNST.	GRAB	IM.			PY/PO	RUSTY "COUNTRY ROCK"			1
CRAI	RIVE	R TRIB	TRAV	RSE							+
1828	AB-36	QZ.V W PHYLLITE	ROCK	BOULDER TH X DCm	CL., CA, QZ.		PY±CP	MALACHITE? FLOAT BOULDER			1
BEN	WO MT	W. NOR	TH RIDA	ETRAN	ERSE		. Soni in .	•			+
8829	AB-37	VOLC., PHY. TUPF	GRAB					" COUNTRY ROCK"	-		T
	•										
											+
									-		+

ASSAY CERTIFICATES

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1

· ANALYTICAL CHEMISTS

· GEOCHEMISTS

REGISTERED ASSAYERS

TELEPHONE: (604) 984-0221 TELEX: 043-52597

CERTIFICATE OF ANALYSIS

TO : ENERGEX MINERALS LIMITED

900-850 WEST HASTINGS STREET VANCOUVER. B.C. V6C 1E1 CERT. # : A8314152-CO1-A INVOICE # : I8314152 DATE : 2-SEP-83 P.C. # : NONE STAR

CC: PAMICON CEVELOPMENT LT	IT LTD.	OPMENT	CEVE	PAMICCN	: 23
----------------------------	---------	--------	------	---------	------

	Sample	Prep	Cu	Pb	Zn	Ag	AS	AU-AA
	description	code	DDT	ppm	ppm	ppm	ppm	ppb
_	AB - 01	201	93	13	85	0.2	14	<10
	AB - 05	201	90	48	127	0.2	11	<10
	A8 - 08	201	82	14	90	0.4	9	<10
	AB - 09	201	128	51	186	C.8	27	660
-	AB - 16	201	89	52	160	0.9	15	20
	AB - 17	201	43	7	92	0.5	27	<10
	AB - 21	201	56	5	43	0.3	11	<10
-	AB - 23	201	60	2	53	0.3	7	<10
	AB - 24	201	53	5	. 44	0.2	9	<10
	AB - 25	201	81	2	53	0.3	5	<10
-	AB - 30	201	65	14	111	0.2	14	<10
	A8 - 31	201	138	9	72	0.2	4	<10
	AB - 32	201	162	12	84	0.3	6	20
	AB - 33	201	139	10	83	0.2	8	<10
-	AB - 34	201	128	16	80	0.3	7	<10
	AB - 38	201	87	9	85	0.4	14	<10
	KM - 01	203	35	8	40	0.2	4	<10
1.2	KM 02	201	60	17	77	0.3	9	<10
5763	KM - 03	201	63	13	149	0.3	25	<10
	KM - 04	201	14C	10	88	0.3	4	<10
	KM - 05	203	64	6	81	0.1	5	<10
-	KM - 06	201	18	3	38	0.1	3	<10
1.4	KM - 07	201	35	7	61	0.1	3	<10
	KM - 08	201	20	5	37	0.1	4	<10
_	KM - 09	201	16	3	24	0-1	5	<10
	KM - 10	201	16	3	31	0.1	3	<10
	KM - 11	201	43	2	43	0-1	6	<10
	KM - 12	201	45	4	55	0-1	5	<10
-	KM - 13	203	46	3	76	0-1	5	<10
	KM - 14	201	47	8	80	1.6	6	<10
	KM - 15	201	65	3	114	0.2	11	<10
-	KM - 16	201	80	6	123	. 0.2	15	70
	KM - 17	201	82	2	112	0.2	12	2100
	KM - 18	201	45	7	54	0.1	- 9	<10
_	KM - 19	201	70	7	135	0-3	10	<10
250	KM - 20	201	78	4	121	0-4	7	<10
	KM - 21	201	79	5	126	0-3	6	<10
	KM - 22	201	91	4	106	0.3	13	<10
-	KM - 23	201	3.8	2	79	0.2	17	(10
	KM - 24	201	44	10	87	0.3	10	(10

MEMBER CANADIAN TESTING ASSOCIATION Certified by HartBichler

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1

· ANALYTICAL CHEMISTS

· GEOCHEMISTS

REGISTERED ASSAYERS

TELEPHONE: (604) 984-0221 TELEX: 043-52597

CERTIFICATE OF ANALYSIS

TO : ENERGEX FINERALS LIMITED

--- -----

CERT. # : A8314152-CO1-B INVOICE # : I8314152 DATE : 2-SEP-83 P.C. # : NCNE STAR

900-	850	WES	Т	HASTINGS	STREET
VANC	DUVE	R.	в.	C.	
V6C	1E1				

<u></u>	CC: PAMICON	CEVELOPMEN	T LTD.		 		
	Sample	Prep	Hg	Sb			
-	description	code	ppb	ppm			
-	AB - 01	201	40	0.4	 		
	AB - 05	201	20	0-1	 		
	AB - 08	201	10	0.1	 		
100	AB - 09	201	20	0.4	 		
-	AB - 16	201	10	0.1	 		
	AB - 17	201	4 C	0.1	 		
	AB - 21	201	10	0.1	 		
-	AB - 23	201	10	0.1	 		
	AB - 24	201	10	0.1	 		
	AB - 25	201	10	0.1	 		
	AB - 30	201	10	0.1	 		
	AB - 31	201	10	0.1	 		
	AB - 32	201	10	0.1	 		
	AB - 33	201	10	0.1	 		
-	AB - 34	201	10	0.1	 		
	AB - 38	201	30	0.1	 		
	KM - 01	203	10	0-1	 		
	KM - 02	201	10	0.1	 		
_	KM - 03	201	20	0.1	 		
	KM - 04	201	10	0.1	 		
	KH - 05	203	10	0-1	 		
	KM - 06	201	10	0.1	 		
	KM - 07	201	10	0.1			
	KM - 08	201	20	0.1		2.2	
	KH - 00	201	10	0.1			100
-		201	10	0.1			
	- 10	201	10	0.1	 		
	KM - 11	201	10	0.1	 		
	KA - 12	201	10	0.1	 		
	KM - 13	203	20	0.1	 		
	KM - 14	201	10	0.1	 		
	KM - 15	201	20	0.1	 		
-	KM - 16	201	20	0.3	 		
	KM - 17	201	20	0.1	 		
	KM - 18	201	10	0.1	 		
-	KM - 19	201	30	0.1	 		
	KM - 20	201	20	0.1	 		
	KH - 21	201	20	0.1	 		
	KM - 22	201	20	0.2	 		
-	KM - 23	201	30	0.1	 		
	KM - 24	201	30	0.2	 		

Certified by

taut Bichler

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1

ppb

<10

<10

<10

<10

	į.,		0	-
		0	-	ð
		-		۰,
-2		10.1	dint:	ante:

description

KM - 25 KM - 26 KM - 27

KM - 28

code

201

201

201

201

ppm

88

45

43

21

		· ANALYTICAL CHEMISTS	· GEO	CHEMISTS	· REGIS	STERED ASSAYERS	TE	LEPHON	E: (604) 984-0 043-525	221 597
			CERTIFI	CATE OF	ANALYSIS					1
то :	ENERGE	X MINERALS LIMI	TED			CERT.		A83	14152-00	02-A
	900-85	O WEST HASTINGS	STREET			DATE		2-	SEP-83	
	VANCEU V6C 1E	VER, B.C. 1				P.C. # Star	•	NON	E	
	CC: PA	MICON DEVELOPPE	NT LTD.							
	Sample	Prep	Cu	Pb	Zn	Ag		AS	AU-AA	

DDm

16

14

4

3

ppm

114

84

56

50

ppm

0.3

C . 2

0.3

0.3

ppm

7

20

7

9

1	C	T	<u> </u>		
	1	1	2	r	
ł	N	۷	1		

certified by HartBichler

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1

TELEPHONE: (604) 984-0221 TELEX: 043-52597

· ANALYTICAL CHEMISTS

· GEOCHEMISTS

REGISTERED ASSAYERS

				CERTIFICATE OF ANALYSIS
TC	:	ENERGEX	MINERALS	LIMITED

1.1		
	CERT. #	

: A8314152-CO2-8 INVOICE # : 18314152 CATE : 2-SEP-83 P.C. # I NONE STAR

CC:	PAMICON	DEVELOPMENT	LTD.
-----	---------	-------------	------

900-850 WEST HASTINGS STREET

VANCOUVER. B.C.

V6C 1E1

	Sample description	Prep code	Hg ppb	Sb ppm		
_	KM - 25	201	20	0.1	 	
	KM - 26	201	40	0.4	 	
	KM - 27	201	10	0.1	 	
	KM - 28	201	20	0.1	 	 '

MEMBER ANADIAN TESTING ASSOCIATION

certified by HautBichler

C.F. MINERAL RESEARCH LIMITED 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

Heavy Mineral Sample Processing

Sample processing 26 bulk ±9 kg samples (Batch 83-98, through multistage washing, sizing, semigravity concentration; processing all -60 mesh through a tetrabromoethane and a methylene iodide heavy liquid separation using double 0.5-1.0 micron filtration; completing 3 electromagnetic separations on the resultant heaviest fraction @ \$43.50 each

Weighing 78 resultant fractions to 0.02 gm accuracy

Hand agate mortar and pestle grinding 26 of the above concentrates, vialing and weighing to 0.001 gm accuracy into NAA vials @ \$2.50 each

Microsplitting 11 of the above samples @ 90¢ each

Concentrating, drying, weighing, labelling, bagging and storing 26 above -35+60 mesh oversize @ \$1.50 each

NUCLEAR ACTIVATION SERVICES LIMITED

1280 4414 STREET WEST, HAMILTON, CNTARIO LOS 4K1

PHONE 416-522-5666 TELEX 06-036947

CERTIFICATE OF ANALYSIS

13:	ZNERGEX MINEPALS LID.	
	ATTN: MR. A.C. BIRKLAND	CUSTOMER NO. 56
	OTH FLOOR BSO W. HASTINGS ST.	
	VANCOUVER, BRITISH COLUMBIA	DATE SUBMITTED
	V6C 1E1	21-SEP-23

REPORT 1955

DATE BO-SEP-33

REF. FILE 3156-

NUCLEAR ACTIVATION SERVICES LIMITE

32 PREPARED SAMPLES

WERE ANALYSED AS FOLLOWS:

	UNITS	VETHOD	DETECTION LIMIT
45	224	INAA	1.000
AS	pay	INAA-L	1.000
33	· PPM	INAA	1.000
52	PP-4	INAA-L	1.000
34	72	INAA	0.020
3.7	2	INAA-L	0.020
14	22%	INAA	1.000
ы.	PPM	INAA-L	1.000
A'J	PPE	INAA	10.000
11	PPB	INAA-L	10.000
0.0	P P V	INAA	30.000
67	P.9.4	INAA-L	30.000

CERTIFIED DY

					~ ~ ~ ~	
SAMPLE	AS PPM	AS PPM	53 PPM	S3 PPM	24 3	BA 2
9-1						
N-1 -60000		7		1		0.0
	1000	20		1	2.2	0.0
H=3 =50H0		20		î		C.0
11-4 -60HN		370		7		0.0
H-5 -50HAA		24		i		0.0
H-5 -60HN3		23		ĩ		0.0
H-6 -60HNA		2		<1		0.1
H-6 -60HN3		2		<1		0.1
H-7 -60HN		4		1		0.4
H-8 -60HN		<1		1		0.4
11-9 -60HNA		5		2		0.6
H-9- 60HH3		<3		1		0.5
H-10 -60HN4		120		2		0.3
H-10 -60HN2		120		2		0.3
M-11 -60HNA		130		3		0.1
14-11 -50HN3		120		2		0.1
H-12 -60HNA		36		2		C.1
11-12 -60HNB		87		2		0.1
H-13 -60HN		130		3		0.1
11-14 -60HM		31		1		0.5
H-15 -60HN		21		2		0.1
H-16 -60HN4		310		4		0.1
H-16 -SCH13		330		4		0.1
11-17 -60411	530		6		0.31	-
H-18 -50HA	3000		20		0.14	
H-19 -50H4		410		5		0.5
1-20 -6011	2105		11		0.25	-
F-21 -00.14	(F)		L		0.35	
11-22 -60H.CA		715		13		2.2
H-22 -63441.		100		1.5		
N-25 -6000		400		0		~ .
H-24 -60H4		170		2		0.0
11-25 -601112		150		7		0.1
		150				0.7
H=7/ =/01011		-		;		0.7
1-270010	22		160		0.05	

.

1 14 .

NUCLEAR ACTIVATION SERVICES 30-SEP-83 REPORT 1955 ROF. FILE 3156-

PASE

ē

	SAMPLE	W OPM	W PPM	AU PPO	AU PPB	NC6 30	CE PPM	
-	8-1 -60004		430		240		160	
	4-1 -60000		500		<10		130	
	H=2 =0.0111		270		760		150	
-	11-3 -60104		740		1500		530	
	8-4 -6081		620		1300		150	
	H-5 -50HEA	- + + c	520		300		120	
_	H-5 -60HN3		560		1400		130	
	H-6 -60HHA		350		50		850	
	H-6 -60HN3		870		60		850	
	11-7 -60111		1220		250		2000	
-	H-3 -60HN		55		30		1300	
	H-9 -60HMA		38		40		2900	
	H-7- 60HN3		50		<30		2900	
-	H-10 -60HNA		170		1300		2700	
	H-10 -60HN3		220		1309		2500	
	H-11 -60HNA		150		793		450	
_	H-11 -60HN3		130		620		450	
-	H-12 -60HNA		140		430		500	
	H-12 -60HN2		130		200		420	
	H-13 -60H1		3200		24.090		1400	
-	11-14 -60104		1500		3000		410	
	H-13 -60HH		3300		19000		1700	
	-1-10 -60H44		440		200		280	
-	N-15 -601135		410		200		400	
	H-17 -6011N	1300		72000		330		
	11-13 -40.44	2000		28030		260		
100	H-17 -60HN		390		18390		700	
-	H-20 -60HN	2000		14000		160		
	H-21 -60HN	350		3300		460		
	11-22 -604NA		43		2303		480	
-	N-22 -60HND		31		1400		310	
	11-20 -6081		1200		7100		670	
	11-24 -60HN		160		14000		600	
_	11-25 -60HNA		130		1000		530	
	8-25 -601140	'	140		360		500	
	H-26 -60H14		110		<20		1700	
	H-26 -601140	— —	130		250		1700	
-	H-27 -6010	17		530		<30		

٠

•

-	C	CH	HEME	X LA	BS LT) .	2 N C	12 BROO ORTH VAI ANADA	KSBANK AVE. NCOUVER. B.C. V7J 2C1
4	· ANALY	ICAL CHEMISTS	• GE	OCHEMISTS	· REGISTER	ED ASSAYERS	TI T	ELEPHONE	(604) 984-0221 043-52597
-			CERTIF	ICATE OF	ANALYSIS				
- TO	* ENERGEX FINE 900-850 WEST VANCOUVER, E V6C 1E1	HASTINGS	TED STREET		ų.	CERT. # INVOICE DATE P.C. # STAR	*	: A831 : 1831 : 2-5 : NONE	14151-001-1 14151 SEP-83
-	CC: PAMICON	DEVELOPKE	NT LTC.						
	Sample description	Prep code	AU-AA ppt	W ppm	Hg ppb	Sb ppm			
	58801	205	2400		190	15.6			
100	58802	205	10		190	C.6			
	58804	205	<10		70	0.4			
	58805	205	10		160	0.6			
	58806	205	<10		150	0.2			
	58807	205	<10		100	0-4			
	58808	205	(10		70	0.6			
-	58810	205	620		70	5-0			
	58811	205	20		80	0.4			
1976	58912	205	(10		40	1.6			
-	58813	205	<10		6800	0.2			
	58814	205	<10		70	0.4			
	58815	205	<10		50	0.2			
_	58816	205	<10		180	0.2			
	58817	205	<10		170	0.1			
	58818	205	<10		270	0.1			
3	58819	205	20		70	0.6			
	58820	205	<10		1600	0.1			
	58821	205	<10	1	50	0.1			
	58822	205	<10		30	0.1			
-	58823	205	<10		80	0-1			
	58824	205	<10		60	0.1			
	58825	205	<10		40	0.1			
-	58826	205	<10		40	0.1			
	58827	205	<10		20	0.9			
	58828	205	<10		20	0.1			
-	58829	205	<10		40	0.2			
	58830	205	<10		40	0.2			
	58831	205	<10		40	1.0			
	4 2 4 4 1	(43)314 (4	a (194°a) (x== +	•		*)* *)) (***	
-									

CANADIAN TESTING ASSOCIATION

l

Certified by i Haut Bichler

	C · ANALY	CH	· GEOCHEMISTS · REGISTER			TD.	212 BRO NORTH V/ CANADA TELEPHON 5 TELEX:	212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: (604) 984-0221 TELEX: 043-52597	
			CERTI	FICATE O	FASSAY			10400 Act 1000	
								14150-001-	
•	900-850 WEST VANCOUVER. B V6C 1E1	HASTINGS	STREET			INVCIC DATE P.O. # STAR	E # : 183 : 12- : NON	14150 SEP-83 E	
÷.	CC: PAMICON	DEVELOPHEN	T LIMITE	D	7.0	Ac EA	A E.A.		
	description	code		2	20	OZ/T	OZ/T		
-	58803	207	0.18	8.70	0.04	10.72	0.046		
								2	
-									
				÷.,					
-									
- -									
•									
								· · · · · · · · · · · · · · · · · · ·	
-									
				<i>.</i> *					
-									
		645							
					1	Jn.			
-					10	VA_	1		

MEMBER CANADIAN TESTING ASSOCIATION

Registered Assayer. Province of British Columbia

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1

1	· ANALY	+ ANALYTICAL CHEMISTS	GEOCHEMISTS REGISTE			RED ASSAYERS	TELEPHONE: (604) 984-0221 TELEX: 043-52597	
	and the sector		CERTIFI	CATE OF	ANALYSIS			
- το	: ENERGEX MINE 900-850 WEST VANCOUVER, E V6C 1E1	HASTINGS	TED STREET	ED STREET		CERT. # INVCICE DATE P.C. # STAR	: A8314 # : I8314 : 2-SI : NONE	4151-001-# 4151 EP-83
-	CC: PAMICON Sample	Pren	Cu	Mo	Pb	Zn	Aq	AS
	description	code	ppm	ppm	Ppm	ppm	DDM	ppm
-	58801	205	102		7300	104	19.5	6
-	58802	205	69		83	47	0.8	9
	58804	205	60		40	72	0.6	9
	58805	205	90		38	25	0.7	3
-	58806	205	38		77	305	0.2	6
	58807	205	37		10	760	0.5	5
	58808	205	135		10	180	0.5	9
-	58809	205	36		5	67	2.8	•
	58810	205	410		2000	1350	19.0	3
	58811	205	.29		25		0.6	10
_	58812	205	53		23	65	0.4	11
	58813	205	34		11	20	0.1	6
	58814	205	36		12	92	0.5	
	21885	205	42		142	110	0.4	
1	58816	205	04		142	110	1 2	(((((((((((((((((((
	58817	205	80		290	36	0.4	2
	58818	205	262		40	14	0.9	
-	58819	205	252		6	16	0.2	3
	58820	205	20		-	10	0.1	3
e 11 m	58821	205	200			149	0.5	
-	58822	205	490		2	44	1.2	á
	50825	205	400		5	16	0.1	2
	50024	205	38			16	0.1	2
1	50025	205	130		a	44	0.5	3
4750	58827	205	170		5	73	0.5	2 .
	50020	205	270		11	27	0-3	3
	50020	205	77		11	32	0.8	5
-	58930	205	35		18	180	0-2	6
	56831	205	137		6	68	0.4	35
• • •						**** *********************************		-
-								
-			a (+) a) (a) (- +) a -)					-
		. *8						
-								

MEMBER. CANADIAN TESTING ASSOCIATION

CTA

certified by Haut Bichles

APPENDIX IV

STATEMENT OF QUALIFICATIONS

I, DAVID A. CAULFIELD, of 3433 West 12th Street, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

1.

3.

6.

I am a Geologist in the employment of Pamicon Developments Ltd. with offices at #215 - 543 Granville St. Vancouver, B.C.

- I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
 - My primary employment since 1978 has been in the field of mineral exploration.
- 4. My experience has encompassed a wide range of geological environments and has allowed considerable familiarization with geophysical, geochemical, and diamond drilling techniques.

5. This report is based on data generated from work done by myself and A.O.Birkeland, P. Eng. I visited the property during the month of August this year.

I have no interest in the property described herein, nor in securities of Energex Resources Inc.; nor do I expect to acquire any such interests.

DATED at VANCOUVER, BRITISH COLUMBIA, this 20th day of DECEMBER

David A. Caulfield

David A. Caulfield, Geologist

APPENDIX V

ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody in the Province of British Columbia, DO HEREBY CERTIFY THAT:

I am a Consulting Mining Engineer with offices at #215-543 Granville St. Vancouver, B.C.

I am a graduate of the University of British Columbia with a degree in Mining Engineering.

I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.

I have not examined the property reported on herein. This report is based on work done by A. O. Birkeland, P. Eng., and D.A. Caulfield, geologist, both of whom I have worked with for a number of years.

I have no interest in the property reported on, or in the securities of Energex, nor do I expect to acquire any such interest.

day of Dec/83 DATED at VANCOUVER, BRITISH COLUMBIA, this 21

Charles K. Ikona, P. Eng.

1.

2.

3.

4.

1.18/0119 11.12.12