NTI GROUP REPORT #1
REPORT ON GEOCHEMICAL WORK FOR
ASSESSMENT PURPOSES

NTI MINERAL CLAIM
VICTORIA MINING DIVISION
RECORD NUMBER 706
NTS MAPSHEET 92C/16E
L.C.P. CO-ORDINATES: 48° 53' North Latitude
124° 04' East Longitude

AUTHOR: CRAIG STEWART, PROJECT GEOLOGIST

OWNER AND OPERATOR: NORANDA EXPLORATION COMPANY LIMITED

(NO PERSONAL LIABILITY)

DATE: JANUARY, 1984.

GEOLOGICAL BRANCH ASSESSMENT REPORT

11,347

TABLE OF CONTENTS

I.	ABSTRACT	i
CHAPTER	1. INTRODUCTION	
	1.1 INTRODUCTION	1
	1.2 LOCATION, ACCESS AND PHYSIOGRAPHY	1
	1.3 CLAIM DESCRIPTION	2
CHAPTER	2. GEOCHEMISTRY	
	2.1 ANALYTICAL TECHNIQUES	4
	2.2 FIELD PROGRAMME AND RESULTS	4
CHAPTER	3 REGIONAL GEOLOGY	6
CHAPTER	4 CONCLUSIONS AND RECOMMENDATIONS	8

LIST OF FIGURES

FIGURE 1: NTI CLAIM LOCATION MAP 1:160,000 Page 3

FIGURE 2: SAMPLE LOCATIONS AND ANOMALOUS VALUES 1:5,000 Page pouch

FIGURE 3: REGIONAL GEOLOGY 1:250,000 Page 7

LIST OF APPENDICES

APPENDIX 1: STATEMENT OF QUALIFICATIONS

APPENDIX 2: GEOCHEMICAL RESULTS

APPENDIX 3: STATEMENT OF COSTS

I. ABSTRACT

The NTI claim covers the contact between a roof pendant of Paleozoic Sicker Group clastic sediments and Jurassic Island Intrusives. A stream draining this contact contained visible gold and copper geochemical anomalies within the sediments. Chalcopyrite and molybdenum occur with quartz veins in the intrusive while the sedimentary pendant is pervasively silicified, highly pyritic, and contains trace amounts of chalcopyrite mineralization. A mineralized intrusive-sedimentary interface represents the primary exploration target on the NTI claim. A detailed programme of geology and geochemical work will be carried out along the contact during 1984.

CHAPTER 1 INTRODUCTION

I.1 Introduction

The NTI mineral claim was staked in 1982 as a result of a regional geochemistry program from which pan samples containing visible gold were obtained. Twelve units cover the drainage area which lies along the contact of a Paleozoic meta-sedimentary roof pendant with Jurassic Island Intrusives. Field work to date has been restricted to soil, silt, and pan sampling with minor reconnaissance geological mapping. Geochemical results are low and sporadic however work to date has been minimal.

1.2 Location, Access and Physiography

The NTI claims are located on the southern half of Vancouver Island, British Columbia, immediately south of the Chemainus River, (NTS 92C/16E). The legal corner post is positioned at the junction of logging road C19 and Chemainus Mainline, a distance of approximately 28km on a bearing of 250° from the town of Ladysmith (Figure 1).

Access onto the claim group is excellent via Macmillan Bloedel Limited, Chemainus Woodland Division logging roads out of Copper Canyon. The Chemainus Mainline provides the primary access route from Highway 1, approximately 11km south of the Ladysmith townsite. The legal corner post is located at the C19-Chemainus Mainline junction, a distance of approximately 35.4 km from the highway. From off of the mainline, the South Road, S-2, S-4A, S-9A, S-11A, M-8, and M-11 auxillary roads provide various degrees of accessibility onto the claim, (Figure 1). Vehicular access is often limited due to erosion of the roads. If a detailed program is required, upgrading of the road system would be relatively easy and inexpensive.

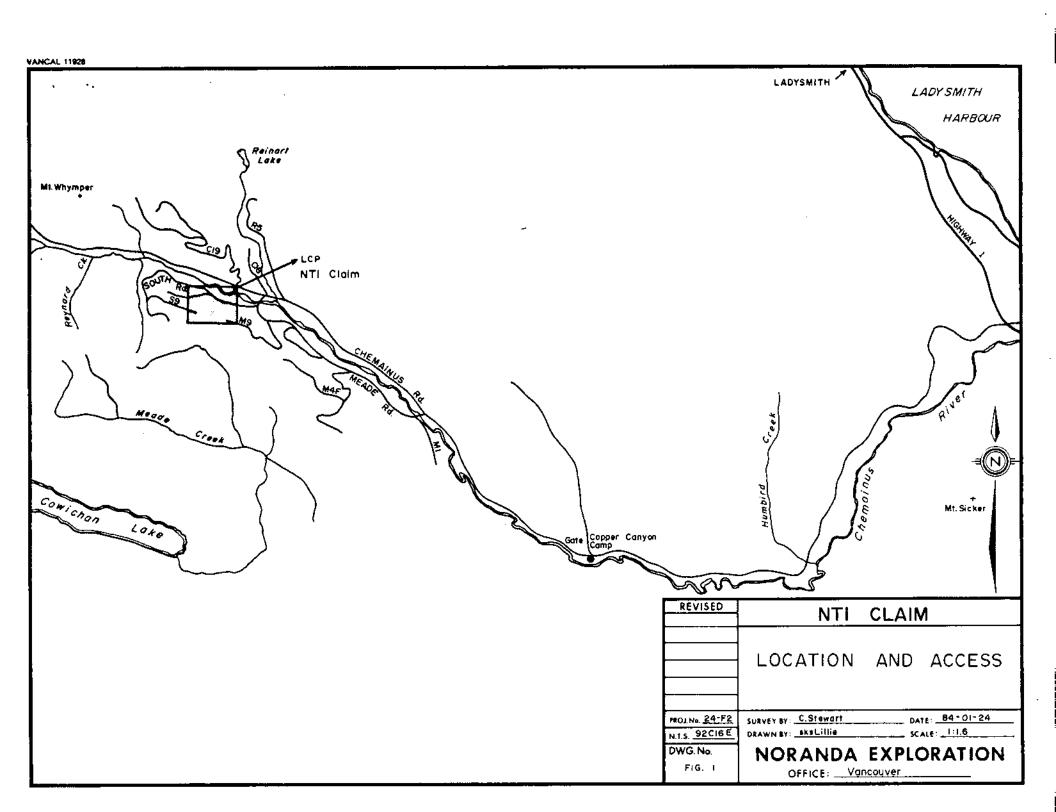
Topographically, the claim covers a weakly mountainous area with elevations ranging from 440 to 820 meters. The north and west boundaries of the claim are marked by the Chemainius River and South Chemainus Creek respectively. Slopes varying in gradient from 30 to 70 degrees extend up from the drainage systems toward the southern half of the claim where they shallow into a gentle hilltop with slopes less than 15 degrees. The shape of the mountain and broadness of the Chemainus River valley indicates extensive glaciation although till developement is not significant. Outcrop is well exposed throughout

the claim.

Logging operations have removed the tree cover from 100% of the claim. Regeneration is restricted to very thick vines and bushes, especially in creek beds and other protected areas. Soils are poorly developed, consisting primarily of 'A' and 'C' horizons, both being relatively thin and greatly disturbed by the logging activity. Till horizons are moderately well developed in the Chemainus River valley. Prior to the 1984 geochemical surveys, detailed soil profiles for the claims will be sampled to enhance the validity of the field work.

1.3 Claim Description

i) NTI Claim


Record Number; 706

Claim Units; 3S X 4W, (Total of 12)

L.C.P. Co-ordinates; 48° 53' North Latitude

124° 04' East Longitude

Expiry Date; October 29, 1984.

CHAPTER 2 GEOCHEMISTRY

2.1 Analytical Techniques

Soil, silt and pan samples collected on the NTI mineral claim were analyzed for Cu, Zn, Pb, Ag, Mo, Fe, Mn, and Au by the Noranda geochemical laboratory in Vancouver.

Analysis for Cu, Zn, Pb, Ag, Mo, Mn, and Fe was accomplished utilizing a perchloric-nitric acid decomposition, (HClO₄-HNO₃). A 0.4 gram sample of -80 mesh material was digested in a solution containing 4ml of perchloric acid, (70%), plus nitric acid, (4+1), for 4 hours at reflux temperature. After digestion, each sample is diluted to 10ml with water; the resulting solution being analyzed on the Varian Techtron AA-475 atomic absorption machine.

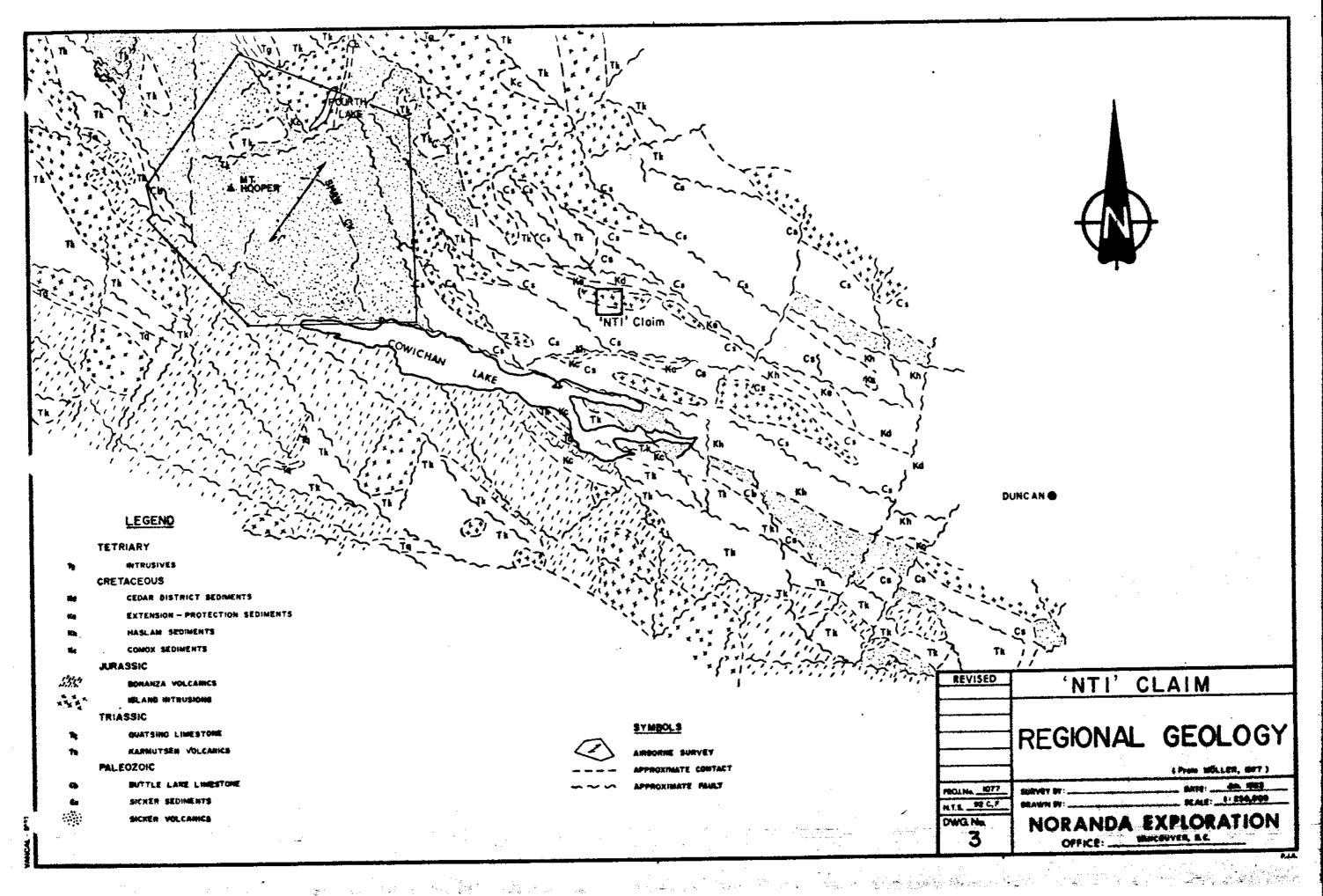
For gold analysis, a 10.0 gram sample is digested with aqua regia from which gold is extracted into MIBK. Atomic absorption is used to determine gold values within a sensitivity of 10ppb.

2.2 Field Programme and Results

A total of 6 silt, 22 soil, 7 heavy mineral concentrates, and 3 rock samples were collected along the South Road and spur S-4A in the northern portion of the claim, (Figure 2, pouch). Analytical results are tabulated in Appendix 2, with anomalous values plotted on Figure 2.

Soil samples were collected at 100m intervals along the width of the claim. Relatively poor in quality, the soils were generally 'A/C' horizon samples with minor 'B' zones sporadically collected. As illustrated in Figure 2, the soil geochemical anomalies are restricted to low, sporadically occurring copper highs peaking at 140ppm. Gold anomalies were not found in soil samples. The lack of correlation between the soil and sediment samples in addition to the poor quality of the soils indicates that soil geochemistry may not be an effective tool for assessing the potential of the NTI claims.

The silt and pan samples collected from Ridgeway Creek were anomalous in gold and copper. Visible gold was obtained in a pan sample and two silt samples contained values of 10,000 ppb gold. Copper anomalies attained values of 240ppm. Since Ridgeway Creek drains the contact between the intrusive and


overlying meta-sediments, the anomalous geochemical values obtained from the sediments have greatly enhanced the potential for mineralization to exist along the geological contact.

CHAPTER 3 REGIONAL GEOLOGY

As mapped by J.E. Muller, (Open File #463, 1977), the NTI mineral claim lies along the contact of Jurassic Island Intrusives and Paleozoic Sicker Group sediments, (Figure 3). The Sicker sediments were descibed by Muller as, "... a greywacke-argillite sequence occurs in graded beds, a few millimeters to several centimeters thick, of argillite and siltstone, or in beds to several decimters thick of greywacke sandstone. The formation is commonly silicified and like the volcanic rocks, its structure varies from almost flat lying beds to isoclinal folds." Outcrops of the sedimentary sequence observed on the claim are similar to the description with the additional occurrance of coarse breccia units. Silicification and pyritization is intense throughout the sedimentary sequence.

The intrusive units are mapped as quartz diorites to diorite in compostion. On the property itself, the intrusives observed to date are quartz diorite to diorite, medium to coarse grained with blocky fracture and abundant quartz veins and veinlets.

To date, very little detailed geological mapping has been carried out on the claim however this will be emphasized during 1984.

CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS

The primary target on the NTI claim is a mineralized contact between Paleozoic Sicker sediments and Island Intrusives. Anomalous Au-Cu values obtained from Ridgeway Creek, which drains this contact zone, has enhanced the potential of the target. Three other claims, (NTI 2, 3 and 4), were staked to increase coverage of the contact zone. Work on these claims has consisted of detailedgeochemical sampling and preliminary geological mapping.

To determine the significance of the contact zone, field work during 1984 will consist of;

- i) Detailed geological mapping of the NTI, NTI 2, NTI 3, and NTI 4 claims as a whole and the contact zone in particular,
 - ii) Detailed geochemical sampling along the contact zone,
 - iii) Geophysical followup in response to the results of i) and ii).

APPENDIX 1
STATEMENT OF QUALIFICATIONS

CERTIFICATE OF QUALIFICATION

- I, Craig Stewart, of the City of North Vancouver, Province of British Columbia do hereby certify that:
 - I am a geologist residing at #6, 1923 Purcell Way, North Vancouver.
 - I am a graduate of the University of Alberta, Edmonton, with a B.Sc. (1980) in geology.
 - I have been practicing my profession since May, 1980 and am at present Project Geologist with Noranda Exploration Company, Limited.
 - 4. I am a member of the Geological Association of Canada.
 - 5. I am a member of the Canadian Institute of Mining and Metallurgy.

DATED: JANUARY 28, 1984

C. Stewart, B.Sc.

APPENDIX 2 NTI GEOCHEMICAL RESULTS

SAMPLE DAT	'A					NTI GEOCHEMICAL R	ESULTS
· >							
(
c							
c ! .						DDDDD DDDDD	
(
(DDDDD DDDDD	
,	<u>иминиминини</u> инининининини ининининин	0000000 0000000000 _000000000000000_	RRRRRR RRRRRRR DODDDDDDDDDDDDDDDDDDDDDD		**************************************	dadaadadad dadadaddadada addaddaddadadaga_	AAAAAAAAAA AAAAAAAAAAA
,	инии инии инии инии инии инии	00000 00000	FREER FREER	AAAAA AAAAA AAAAA AAAAA	инини инини инини инини	TODOO COODD	AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAA
(;	инии инии инии инии	00000 00000	RRRRR RRRRR	AAAAA AAAAA AAAAAAAAAAAA	инини инини инини инини	duada aadda aaaaaaaaaaaaaa	AAAAA AAAAA
(ииии иииии <u>иииии иииии</u>	0000000000	RRRRR RRRRR		иииии иииии иииии	4044444444 404444444	AAAAAAAAA <u>AAAAAAAA</u>
(•			-		
						·	
(
(
`							
•							
	·		·				
. ا							
12						-	• •
							
6 (7							
(7 ¹							10:08:31

NTI GEOCHEHIC	AL RESULTS								ABE 1 ANUARY 24, 19
NUMBER				91A AG1A	HD1A	HN1A	FE1A		
8220610 8220611	777? 7777	86 40	32 52	2 .2 2 .2	12	310 450	4.2 3.4		
B220612 .	2777	46	48	2 .2	1	320	4.2		
8220613 8220614	????	66 66	50 54	2 .2	6 4	260 590	4.0 3.5		
8220615	2727	0	_46	22	11	540_	3.8		
8220616 8220617	? ? ?? ????	140 90	80 76	2 -2 2	1 2	450 450	4.8 4.3		
8220618	7777	74 .	66	2 .2	1	360	4.0		
8220619 8220620	???? ????	76 110	52 54	2 .2	1	450 370	3.8 4.4		
_8270671	2227	<u>_36</u> 48	_38 42	2 .2	<u> </u>		3.2	 ·	
8220622 8220623	2245	64	56	2 .2	1	360	3.7		
8220624 8220625	???? ????	32 78	60 70	2 .2	1 1	350 1200	3.5 3.5		
B220626	4555	70	86	10 .2	1	960	3.8		
8220427 8220428		64 62	60 60	2 .2	1	770	3.4		
8220629 8220630	????	50 66	62 58	6 .2	1 4	1200 1500	3.2 3.5		
9220631	2277	100	78	2 .2	1	710	4,2		
			•						_
						<u>-</u>			
				-					
						·	· ·		
		 · · · · ·				•			
						•			

NTI GEOCHEMIC	CAL RESULTS		-,								PAGE 1 JANUARY 2	24, 1984	
NUMBER	TYPĘ	CU1A	ZNIA	PFIA	HOIA	AG1A	AU9I	AU1E		;-,-, <u></u>			
8221911 8221912 8221913 8221914 8221915 8221916	SILT SILT SILT SILT ROCK ROCK	210 66 48 64 100	86 48 50 36 48	16 2 4 2 2	22 1 2 2 120	.4 .2 .2 .2 .2	54 7 1 6	10					
8221917 8221918 8221919 8221920 8221921 8221922	PAN SILT ROCK ROCK SILT ROCK	68 92 42 84 68 240	54 110 74 24 58 44	4 B 2 2 2 2	2 2 1 1 2 1	.2 .4 .4 .2	10000	10 10 10					
	_		-			-			-				
											·		
									-				
				,								-	
	<u> </u>												

TITLE UNKNOWN						-· -					PAGE 1 JANUARY 24, 1984	
NUMBER	TYPE	AU1E	CU1A	ZN1A	PBIA	AG1A	MO1A	MN1A	FE1A			
8218751 8218752 8218753 8218753 8218754	2222 2222 2222 2222 2222 2222	10000 30 10 10 10		<u> </u>								
8218756 8218757 8222992 8222993 8222994 8222995 8222995	5555 5555 5553 5555 5555 5555	10 6 12 7 3	68 70 66 70 78	56 54 50 52 56	4 2 2 2 2	.2	1 1 1 1	560 550 550 520 240	4.4 4.2 3.9 3.9			
8222997 8222998 8222999	???? ???? ???? _	10 10 10	110 460	72 32 56	2 2 2	.2				-		
				-	 .			· · · · ·	-			
											-	
,				-								

NTI GEOCHEMIC	AL RESULTS									PAGE 1 JANUARY 24	1984
NUMBER	TYPE	CU1A	ZN1A	PR1A	AG1A	M01A	MN1A	FE1A	AU9I	 	
8220606 8220607	SILT SILT	110 86	64 72	10	.2	1 1 1	700 850	4.4	16		
8220408	SILT	88	78	В	.2	1	790	4.5	1		
8220609 8220632	SILT SILT	120 140	94 98	& B	.2	1 1	1300 930	4.6 4.4	1		
B220633	ROCK	<u>140</u>	30 100	12	.2	- <u>1</u> -	420 720	3.2 4.2	. <u>.</u>	 	
8220634 8220635	SILT	96	160	28	. 2	1	1000	4.6	4		
8220636 8220637	SILT SILT	120 120	78 72	10 6	.2	1 1	1100 680	4.8 5.2	13 7		
8220638	SILT	100	82	8	.2	i	940	5.0	6		
8230639	SILT —		78 68		.2	<u>1</u>	08A	4.8		 	
				_							
									•		
					· · · · · · · · · · · · · · · · · · ·					 	-
	-										
							-				
-						·			-		-
											
				,					•		
								<u>-</u>	···	 	

APPENDIX 3
STATEMENT OF COSTS

NORANDA EXPLORATION COMPANY, LIMITED

STATEMENT OF COST

DATE	October	1983
------	---------	------

PROJECT - NTI CLAIMS TYPE OF REPORT Geochem

a) Wages:

No. of Days - 10 mandays Rate per Day - \$96.36

Dates From - November 1 1982 - October 27,1983

Total Wages 10 X \$96.36 \$963.55

b) Food and Accommodation:

No. of Days - 10 Rate per Day - \$22.00

Dates From - November 1 1982 - October 27, 1983

Total Cost - 10 X \$22.00 \$220.00

c) Transportation:

No. of Days - 10

Rate per Day - \$45.00

Dates From - November 1, 1982 - October 27, 1983

Total cost 10 X \$45.00 \$450.00

d) Analysis \$349.60

e) Cost of Preparation of Report:

Author \$ 96.00
Drafting \$ 96.00
Typing \$ 96.00

e) Other:

Total Cost \$2,271.15

UNIT COSTS

Unit Costs for Geochem

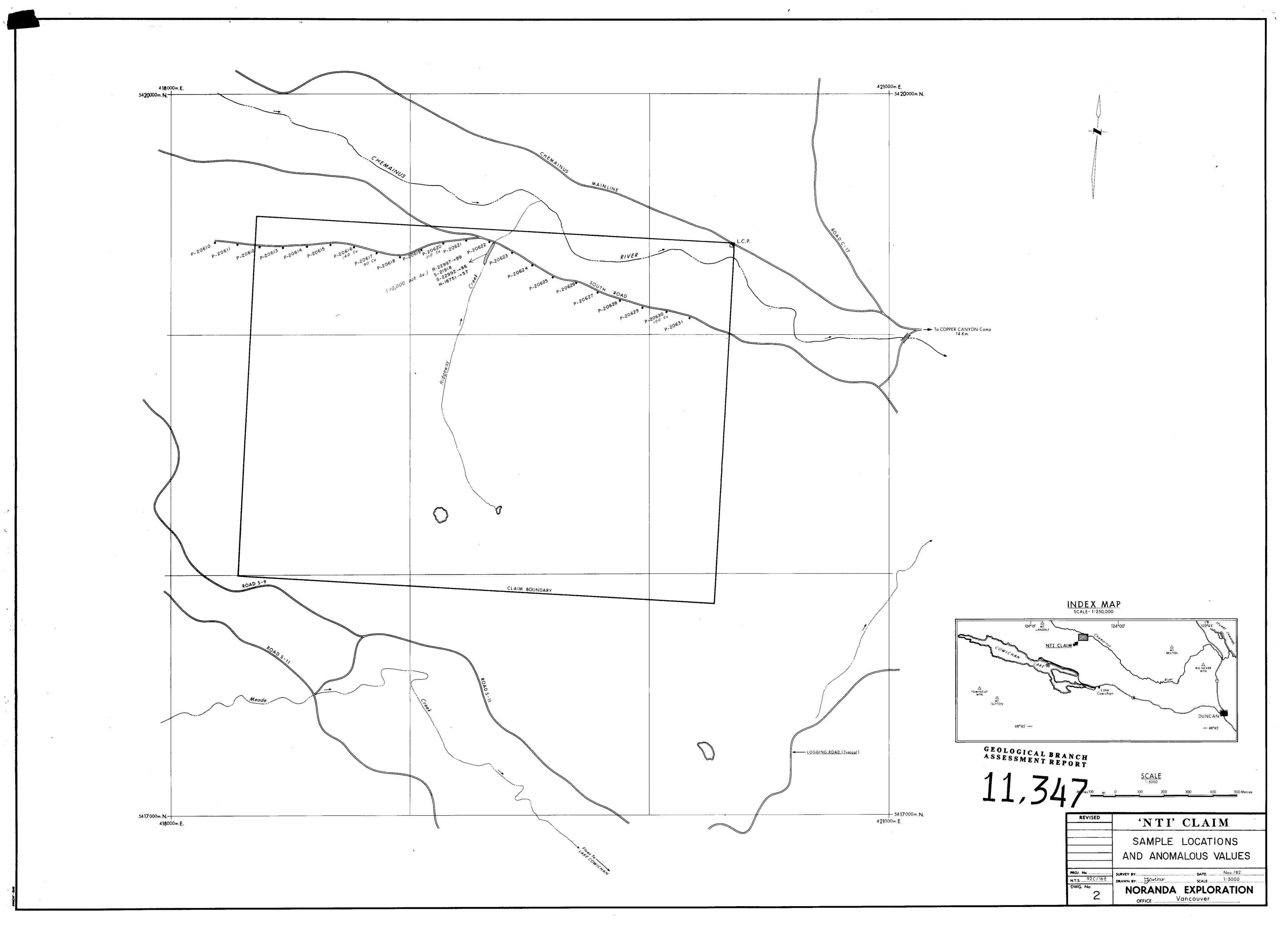
No. of Days -10

No. of Units - 38 Samples Unit Costs - 59.77 / Sample

38 X 59.77 Total cost

\$2,271.15

Total Cost


\$2,271.15

NORANDA EXPLORATION COMPANY, LIMITED

DETAILS OF ANALYSES COSTS

Project: NTI Claims

Element	No. of Determinations	Cost per Determination	Total
Cu	38	1.60	60.80
Zn	38	.60	60.80
РЬ	38	.60	60.80
Мо	38	.60	60.80
Ag	38	.60	60.80
Fe	38	.60	60.80
Mn	38	.60	60.80
Au	38	4.00	152.00
Total			\$349.60

