NAME (OF.	PROPERTY		JACKI	OT						
		JP83-1		LE	NGTH	_ 9	6.0	ft			
LOCATIO	NC	Collared	at	south	end	of.	Dou	ble	Standar	d Glory	No1
LATITUE	DE			DE	PARTI	JRE					
ELEVAT	ION			A Z	IMUTH		285		DIP	-39	
STARTE	D _	July 3	, 1	983 FI	NISHE	D	Jul	y 4,	1983		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	-				
	_				
		-			
	-		-		-

HOLE NO. JP83-1 SHEET NO.1_Of 3

REMARKS 15.5 feet West of

JP83-10 on LINE
JP83-9

LOGGED BY J.R.Foster

OOTAGE	DESCRIPTION			SAMP	LE			A	SSA	Y 5	
ROM TO	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	'Au	Ag	Au ¬	Aq	Þ
0 8.0	CASING						(ppb)	(ppm)	oz/t	oz/t	pp
.0 96.0	REEVES FORMATION UNIT 4a										
	-dominantly light grey to white banded limestone/ dolomitic limestone with minor siliceous (cherty) bands and wollastonite bands 8.0- 9.5 ft -wollastonite-diopside skarn; light green and pink, medium grained, massive 9.5-20.5 ft -mostly massive medium grained limestone; locally banded at 75 to C.A.; becoming weakly to moderately skarnified at 19-20 ft. 20.0-21.0 ft -biotite lamprophyre intermediate dyke; fine to medium grained, CI = 35-40; feldspar porphyritre; mafics are mostly bronzy biotite	0003 0004 0005 0006 0007 0008 0009	GI	8.0 11.0 15.0 19.0 21.0 24.0 27.0 30.0	11.0 15.0 19.0 21.0 24.0 27.0 30.0 33.0 OGI	3.0 4.0 4.0 2.0 3.0 3.0 3.0 3.0	< 5 5 < 5 B R	4 0.2 0.6 0.6 0.2 0.2 1.4 30	СН	0.74	
	21.0-27.0 ft -well banded, banding at 70° to C.A; cherty bands present 27.0-35.0 ft -increase in dark grey-black carbonaceous laminae; locally with minor limegreen serpentine-rich patches.& wollastonite bands -mineralization: calcite-wollatonite zone disseminated galena and rare py; some galena is present in one carbonate veinlet at 25° to C.A.	11	<1%	33.0 36.0	36.0 39.0	3.03	1000		0.96	12.4	23

NAME OF PROPERTY____JACKPOT

HOLE NO. JP83-1

____ SHEET NO. _ 2 Of 3

FOOTAGE		DESCRIPTION			SAMPL	.E				ASSAYS	
ROM TO		DESCRIPTION	140.	SULPH	FROM	FOOTAGE	TOTAL	Au	Aa	- !	
35. 35. 40. 47. 55.	0 ft 0-46.0 ft 0-55.7 ft 7-60.7 ft	-carbonaceous laminae decrease, banding becomes more diffuse and at very low angles of 5-10° to C.A. -dark grey band 1-2 cm wide contains 5-10% disseminated py; band is at 20° to C.A. -banding is near parallel to C.A. -white to light grey cherty unit with minor wollastonite and limestone bands up to 1 cm at 15° to C.A. -medium grey fine grained limestone, has patchy chaotic appearance; locally laminations are well preserved at 35° to C.A.; rare limegreen serpentine bands are present; no apparent mineralization. -laminations at 40° to C.A. -mostly medium grey fine to medium-grained limestone, well laminated to patchy in appearance, with minor bands of coarse grained white marble; cherty bands decrease after 63.0 ft -banding at 70° to C.A.	0013 0014 0015 0016 0017 0018 0020 0021 0022 0023 0024	IDES	39.0 42.0 45.0 47.5 51.0 54.0 57.0 60.0 63.0 66.0 69.0	42.0 45.0 47.5 51.0 54.0	3.0 3.0 2.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0	42455555555555555555555555555555555555	Ag (ppm) 1.2 0.4 < 0.2 < 0.2 < 0.2		
69.	0 ft 0 ft	-banding at 60° to C.A.									
		-wollastonite band									

NAME OF PROPERTY___JACKPOT

HOLE NO. _JP83-1 _____ SHEET NO. _3 of 3

FOOTAGE				SAMPL	E				ASSAYS	
FROM TO	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	Au	Aa		
	75.0-76.0 ft -carbonite breccia, with dark grey dolomitic fragments in medium grey dolomitic limestone matrix; banding variable from 50 to 15 to C.A. downhole 77.0 ft -banding at 20 to C.A. 80.0-96.0 ft -banding indicates considerable small scale folding; in general banding is	0025 0026 0027 0025 0036 0036	5	75.0 78.0 81.0 84.0 87.0 90.0 93.0	78.0 81.0 84.0 87.0 90.0 93.0	3.0 3.0 3.0 3.0 3.0 3.0	(ppb) <.5 15 <.5 <.5 <.5 <.5	(ppm) 40.2 40.2		
6.0	near parallel to C.A. END OF HOLE									

NAME OF PROPERTY JACKPOT

HOLE NO. JP83-2

LOCATION 500 ft SW of Double Standard Glory Hole

LATITUDE LINE 13+38 W DEPARTURE 7+50S

ELEVATION AZIMUTH 061 DIP -80 STARTED JULY 4,1983 FINISHED JULY 5, 1983

Uncorrected Corrected

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-800	0610	0	-800	0610
150	-84		150	-82	
400	-82°	1 30 00 00 00 00 00 00 00 00 00 00 00 00	400	-79°	

HOLE NO.JP83-2 SHEET NO. 1 of 11

REMARKS 10 ft east of LINE

83-2 8+00S

LOGGED BY J.R. FOSTER

001	AGE	DESCRIPTION	1		SAMP	LE			A	SSAY	S
FROM	то	D. E. S G R. I. P. I. T. G.	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	Au	Ag		
0	10.0	CASING						(ppb)	(ppm)		
10.0	30.0	GRANOPHYRE									
		-fine to medium grained, medium grey, CI=25-30%, mafics appear to be all biotite in fine grained phase; minor medium grained granitoid phase contains 10-15% hornblende	0032	1%	23.0	26.0	3.0	5	< 0.2		
		-rusty fractures common				G G					
		-po present, probably ubiquitous as most of core is weakly magnetic; overall about 1% po									
	ė.	30.0 ft -contact obscured by broken core; foliation in granophyre is developed at 30° to C.A.									
30.0	80.0	DIORITE									l.
		<pre>-medium grained, massive -some more mafic inclusions are present -contact with underlying granodiote/tonalite is obscured by broken core, but may be gradational</pre>	0033		65.0	68.0	3.0	く 5	0.6		
80.0	86.0	GRANODIORITE/TONALITE	0034		80.0	83.0	3.0	45	0.8		
		-medium grained, light grey; contains numerous angular inclusions of biotite-rich metasediments (?) -rare po+py present, mostly in metasediment inclusions					U #.				
		86.0 ft -lower contact at 50° to C.A.									

NAME OF PROPERTY___JACKPOT

HOLE NO. JP-83-2

SHEET NO. 2 of 11

FOO	TAGE		DESCRIPTION			SAMPL	.E				SSAYS	
ROM	TO		DESCRIPTION	NO.	SULPH.		FOOTAGE		1	. 1		
88.500				75.00	IDES	FROM	TO	TOTAL	Au	Ag		
86.0	101.3		N (CALC-SILICATE SKARN)					2.2		(ppm)		
		tinge; weakly	euhedral cubes, overall less than 1%	0035 0036		86.0 88.6	88.6 92.0			0.8		
		86.0-88.6 ft	-relatively massive, banding/lamination is poorly developed	on								
		87.0-87.2 ft	-breccia zone with Truman fragments in white felsite matrix	n								
		88.6-89.2 ft	-wollastonite-bearing skarn; sulphide content negligible									
		89.2-101.3 ft	-Truman skarn becomes well laminated downhole, silica content also increas	ses								
		95.5 ft	-laminations at 70° to C.A.									
		97.1-98.1 ft	-white medium to coarse-grained granitoid dyke, less than 1% mafics; less than 1% py present; upper contact at 60° to C.A., lower contact at 35° to C.A.	et								
		99.3-100.7 ft	-dyke similar to above; upper contact at 75° to C.A., lower contact at 60° to C.A.									
		101.3 ft	-contact at 25° to C.A.									
								e #				

NAME OF PROPERTY JACKPOT

HOLE NO. JP83-2

LOCATION 500 ft SW of Double Standard Glory Hole

LATITUDE LINE 13+38 W DEPARTURE 7+50S

ELEVATION AZIMUTH 061 DIP -80 STARTED JULY 4,1983 FINISHED JULY 5, 1983

Uncorrected Corrected

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-800	0610	0	-800	0610
150	-84		150	-82	
400	-82°	1 30 00 00 00 00 00 00 00 00 00 00 00 00	400	-79°	

HOLE NO.JP83-2 SHEET NO. 1 of 11

REMARKS 10 ft east of LINE

83-2 8+00S

LOGGED BY J.R. FOSTER

001	AGE	DESCRIPTION	1		SAMP	LE			A	SSAY	S
FROM	то	D. E. S G R. I. P. I. T. G.	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	Au	Ag		
0	10.0	CASING						(ppb)	(ppm)		
10.0	30.0	GRANOPHYRE									
		-fine to medium grained, medium grey, CI=25-30%, mafics appear to be all biotite in fine grained phase; minor medium grained granitoid phase contains 10-15% hornblende	0032	1%	23.0	26.0	3.0	5	< 0.2		
		-rusty fractures common				G G					
		-po present, probably ubiquitous as most of core is weakly magnetic; overall about 1% po									
	ė.	30.0 ft -contact obscured by broken core; foliation in granophyre is developed at 30° to C.A.									
30.0	80.0	DIORITE									l.
		<pre>-medium grained, massive -some more mafic inclusions are present -contact with underlying granodiote/tonalite is obscured by broken core, but may be gradational</pre>	0033		65.0	68.0	3.0	く 5	0.6		
80.0	86.0	GRANODIORITE/TONALITE	0034		80.0	83.0	3.0	45	0.8		
		-medium grained, light grey; contains numerous angular inclusions of biotite-rich metasediments (?) -rare po+py present, mostly in metasediment inclusions					U #.				
		86.0 ft -lower contact at 50° to C.A.									

NAME OF PROPERTY JACKPOT

FOOTAGE	DECOMPOSITION			SAMP	LE			ASSAYS
FROM TO	DESCRIPTION	NO.	", SULPH	5000	FOOTAGE		Au	Ag
01.3 111.7	HYBRID TONALITE -numerous inclusions of dark-grey metasediment		IDES	FROM	ТО	TOTAL		(ppm)
11.7 117.0	111.7 ft -lower contact at 55° to C.A. TRUMAN FORMATION -very siliceous, lamination generally indistinct or	0037	E Q.	111.7	114.0	2.3	< 5	1.0
	possibly badly contorted -overall 5.6% sulphides, almost all po with minor py 116.5 ft —laminations at 25° to C.A. 117.0 ft —lower contact at 80° to C.A.	0038	5%	111.7	117.0	3.0	〈 5	0.8
17.0 147.0	GABBRO -medium grained, massive, dark green; chilled upper contact -CI = 40-50%, mafics are amphibole and biotite 147.0 ft -lower contact at 70° to C.A.			10 min 10				
47.0 148.0	GRANODIORITE/TONALITE 148.0 ft -lower contact at 25° to C.A.							
48.0 194.5	PREEVES FORMATION (Unit 4b) -fine to medium grained, white to light grey dolomitic limestone, generally well banded but lacking cherty or coarse marble bands -locally well mineralized with po and minor py	0039		148.0	151.6	3.6	〈 5	0.6

NAME OF PROPERTY JACKPOT

FOOTAGE	DECOMPOSITION			SAMP	LE			ASSAYS
FROM TO	DESCRIPTION	NO.	", SULPH	5000	FOOTAGE		Au	Ag
01.3 111.7	HYBRID TONALITE -numerous inclusions of dark-grey metasediment		IDES	FROM	ТО	TOTAL		(ppm)
11.7 117.0	111.7 ft -lower contact at 55° to C.A. TRUMAN FORMATION -very siliceous, lamination generally indistinct or	0037	E Q.	111.7	114.0	2.3	< 5	1.0
	possibly badly contorted -overall 5.6% sulphides, almost all po with minor py 116.5 ft —laminations at 25° to C.A. 117.0 ft —lower contact at 80° to C.A.	0038	5%	111.7	117.0	3.0	〈 5	0.8
17.0 147.0	GABBRO -medium grained, massive, dark green; chilled upper contact -CI = 40-50%, mafics are amphibole and biotite 147.0 ft -lower contact at 70° to C.A.			10 min 10				
47.0 148.0	GRANODIORITE/TONALITE 148.0 ft -lower contact at 25° to C.A.							
48.0 194.5	PREEVES FORMATION (Unit 4b) -fine to medium grained, white to light grey dolomitic limestone, generally well banded but lacking cherty or coarse marble bands -locally well mineralized with po and minor py	0039		148.0	151.6	3.6	〈 5	0.6

NAME OF PROPERTY_ JACKPOT

HOLE NO. JP-83-2

SHEET NO. 4 OF 11

		DESCRIPTION			SAMP	LE				ASSAYS	
FROM TO		DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL	Au	Ag	_ [
	REEVES FORMATIO	N cont.		1003	7.10.00	1	TOTAL	100000000000000000000000000000000000000	(ppm)	Zn %	
	148.0-149.6 ft	-siliceous skarn, white; weakly reactive rare py cubes present	0040 0041 0042		154.7	154.7 156.7 159.0	2.0	4 5 4 5 4 5	5.1 9.3 0.2	2.2	
	149.6-150.7 ft	-fine-grained mafic dyke (lamprophyre ?) at 5° to C.A.	0043 0044 0045		159.0 163.0	163.0 166.0 169.0	4.0	₹ 5 ₹ 5	1.5 0.6 0.6		
	150.7-151.6 ft	-skarn; diopside bearing	0046		169.0	171.5	2.5	45 45	0.2 <0.2		
	151.6-156.7 ft	-dolomitic limestone, well banded; banding changes from 10° to C.A. at 154.0 ft to 60° to C.A. at 156.0 ft; sulphides (po + minor py) are 5% at 151.6-154.7 ft, decrease to less than 1% at 154.7-156.7 ft	0055 0056 0057		173.0 176.0	176.0 179.0 182.0	3.0	< 5 < 5 < 5	0.6 0.2 0.2		
	156.7 ft	-contact with lower skarn is 30° to C.A.									
	156.7-159.0 ft	-garnetiferous skarn									
	159.0-163.0 ft	-siliceous diopside-bearing skarn with 1% py									
	163.0-194.0 ft	-dolomitic limestone									
	165.0 ft	-banding at 80° to C.A.									
	170.0 ft	-banding at 80° to C.A.									
	171.5-173.0 ft	-sulphide content increases to 20-25% dominantly po, with minor py, possible 1% sph; sulphide banding at 70 to C.A.									
	176.0 ft	-banding at 55° to C.A.									
	180.5 ft	-banding at 55° to C.A.	1								

NAME OF PROPERTY____JACKPOT

HOLE NO. __JP83-2

SHEET NO. 5 Of 11

FOOT	AGE		DESCRIPTION			SAMP	LE		ASSAYS				
FROM	то		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	Au	Ag			
		182.0-185.0 ft 185.0 ft	-sulphide content increases slightly to 1% overall, only py identified -banding at 50° to C.A.	0058 0059 0060 0061	1% 1%	182.0 185.0 188.0	185.0 188.0 191.0 194.5	3.0 3.0 3.0	(ppb) < 5 < 5 < 5	(ppm) 0.2 0.2 40.2			
		186.6 ft	-2 cm band of 30% sulphides, mostly polesser py and rare sph; banding at 55° to C.A.; overall sulphide content at 185.0-188.0 ft is 1%										
		188.0-194.0 ft	-banding disappears as compositional differences decrease; Reeves becomes medium grey homogeneous dolomite with recognizable foliation; sulphide content is negligible			,							
		190.0 ft	-foliation at 65° to C.A.										
		194.0-194.5 ft	-siliceous greenish skarn									3	
		194.5 ft	-lower content at 65° to C.A.										
94.5	245.1	GABBRO											
		-medium grained	, massive	1									
		200,8-202,2 ft	<pre>-fine grained mafic dyke and rubble zone possible fault; probably 1-2 ft of core missing</pre>										
		203.8-205.0 ft	-fine grained felsite dyke; contacts obscured by broken core										
		210.8-212.7 ft	-fine grained gabbro dyke; upper contact at 10 to C.A., lower contact at 30 to C.A.										
		245.1 ft	-lower contact at 55° to C.A.								*		4.

NAME OF PROPERTY____JACKPOT

HOLE NO. JP83-2

SHEET NO. 6 of 11

FOO	TAGE		DESCRIPTION			SAMP	LE			A	SSAYS	
FROM	то		DESCRIPTION	NO.	5 SULPH		FOOTAGE		7	2~		
45.1	276.8	REEVES FORMATIO	N (Unit 4b)		IDES	FROM	то	TOTAL	(ppb)	(bbm)		
		less dolomotic -light grey to -banding is gen	grained dolomitic limestone, becomes downhole white, often with patchy purple tinge erally poorly defined; locally aminae are present									
		245.1-247.0 ft	-banded siliceous skarn, light grey to white with green tinge; banding at 65° to C.A.	0062 0063 0064		248.3 256.3	247.0 253.6 259.0	1.9 5.3 2.7	⟨ 5	0.2 <0.2 <0.2		
		247.0-248.3 ft	-black biotite-rich mafic lamprophyre; lower contact at 05° to C.A.	0065 0066 0067	=	262.8	262.8 265.9 269.0	3.1		<0.2 <0.2 <0.2		
		248.3-253.6 ft	-Reeves dolomitic limestone as des- cribed above; no apparent mineralization	0068		269.0	273.8 276.8	4.8	< 5	40.2		
		252.0 ft	-banding at 60° to C.A.	3					5.			
		253.6-256.3 ft	-mafic lamprophyre; upper contact at 25° to C.A., lower contact at 60° to C.A.									
		256.3-262.8 ft	-dolomitic limestone, vague banding at 75° to C.A.; rare disseminated py occurs throughout, overall much less than 1% sulphides									
		262.8-265.8 ft	-mafic lamprophyre/dolomitic limestone complex; limestone probably inclusions in one dyke									
		265.8-273.8 ft	-limestone, white with purplish tinge; banding becomes very vague at 70-75° to C.A.; mineralization appears to be confined to very rare disseminated py grains.									
		273.8-275.0 ft	-mafic lamprophyre; upper contact at 40° to C.A., lower contact at 45° to C.A.		2							
		275.0-276.8 ft	-banded limestone; negligible sulphide mineralization; banding at 80° to C.A.					-				
		276.8 ft	-contact at 20° to C.A.				1			j		

NAME OF PROPERTY___JACKPOT

HOLE NO. JP83-2 SHEET NO. 7 Of 11

DESCRIPTION	F660 "							ASSAYS	
	NO	- SULPH	FROM	FOOTAGE	TOTAL	Au	Aa		
MAFIC LAMPROPHYRE		,50	7.554	,,	IVIAL		(ppm)		
-very reactive due to numerous carbonate veinlets oriented at 30 to C.A. 281.0-287.6 ft -major fault gouge section with lamp- rophyre and limestone fragments in carbonaceous mud matrix -py appears cogting fragment surfaces	071		279.0 281.0	281.0 284.0	2.0	< 5 < 5	4 0.2 4 0.2 0.4 0.2		
RENO FORMATION (LOWER TRUMAN ?)									
weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py 291.0 ft -foliation at 55 to C.A. 296.0 ft -foliation at 65 to C.A.	075 076 077 078	3% 5% 5% 20%	291.0 294.0 298.0 301.2	294.0 298.0 301.2 304.0	3.0 4.0 3.2 2.8	45 45 45 110	0.6		
304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65 to C.A.									
306.4-308.1 ft -mafic lamprophyre; upper contact at 20° to C.A., lower contact at 45° to C.A.									
	-very reactive due to numerous carbonate veinlets oriented at 30° to C.A. 281.0-287.6 ft -major fault gouge section with lamp-rophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces 287.6 ft -contact at 60° to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py -foliation at 55° to C.A. 296.0 ft -foliation at 65° to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present; sulphide banding is at 65° to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30° to C.A. 281.0-287.6 ft -major fault gouge section with lamp- rophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces 287.6 ft -contact at 60° to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py -foliation at 55° to C.A. 296.0 ft -foliation at 65° to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present; sulphide banding is at 65° to C.A. 304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65° to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30° to C.A. 281.0-287.6 ft -major fault gouge section with lamp- rophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces -contact at 60° to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py -foliation at 55° to C.A. 291.0 ft -foliation at 55° to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present; sulphide banding is at 65° to C.A. 304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65° to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30° to C.A. 281.0-287.6 ft -major fault gouge section with lamp- rophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces 287.6 ft -contact at 60° to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py 291.0 ft -foliation at 55° to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present: sulphide banding is at 65° to C.A. 304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65° to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30 to C.A. 281.0-287.6 ft -major fault gouge section with lamprophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces 287.6 ft -contact at 60 to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py 291.0 ft -foliation at 55 to C.A. 296.0 ft -foliation at 55 to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present sulphide banding is at 65 to C.A. 304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65 to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30° to C.A. 281.0-287.6 ft -major fault gouge section with lamp-rophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces contact at 60° to C.A. 287.6 ft -contact at 60° to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py -foliation at 55° to C.A. 291.0 ft -foliation at 55° to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present; sulphide banding is at 65° to C.A. 304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65° to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30 to C.A. 281.0-287.6 ft -major fault gouge section with lamprophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces 287.6 ft -contact at 60 to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py -foliation at 55 to C.A. 291.0 228.0 287.6 291.0 3.4 4.5 287.6 291.0 3.4 4.5 287.6 291.0 3.4 4.5 287.6 291.0 3.4 4.5 287.6 291.0 3.6 4.5 2	-very reactive due to numerous carbonate veinlets oriented at 30 to C.A. 281.0-287.6 ft -major fault gouge section with lamprophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces -contact at 60 to C.A. 287.6 ft -contact at 60 to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py -foliation at 55 to C.A. 291.0 ft -foliation at 55 to C.A. 304.0-306.4 ft -sulphides decrease to 2% mostly py and lesser po; foliation at 65 to C.A.	-very reactive due to numerous carbonate veinlets oriented at 30° to C.A. 281.0-287.6 ft -major fault gouge section with lamprophyre and limestone fragments in carbonaceous mud matrix -py appears coating fragment surfaces 287.6 ft -contact at 60° to C.A. RENO FORMATION (LOWER TRUMAN ?) -dark grey/black, fine grained, well laminated/banded, weakly to moderately reactive with dilute HCI acid -py is ubiquitous, overall 3-5%; po is present in much lesser percent; sulphides tend to concentrate on foliation surfaces; po increases downhole 288.3-289.3 ft -feldspar porphyritic granitoid dyke with less than 1% disseminated py foliation at 55° to C.A. 298.3-289.3 ft -foliation at 55° to C.A. 301.2-304.0 ft -sulphide content increases to 15-20%, mostly po; equant cubic and/or hexagonal light grey mineral is present; sulphide banding is at 65° to C.A. 304.0-306.4 ft -sulphides decrease to 2% mgstly py and lesser po; foliation at 65° to C.A.

NAME OF PROPERTY JACKPOT

HOLE NO. JP83-2 SHEET NO. 8 Of 11

FOOTAGE	DESCRIPTION	3		SAMP	LE			ASSAYS	
FROM TO	DESCRIPTION	NO	% SULPH	FROM	FOOTAGE	TOTAL	Au	Ag	
	RENO/TRUMAN FM. cont.		1003	FRUM	10	TOTAL	(ppb)		-
	308.1-310.3 ft -unusual metasedimentary rock, appears	0080 0081			310.3 313.8	2.2	4 5 4 5	< 0.2 < 0.2	
	310.3-311.2 ft -mafic lamprophyre, contacts obscured								
	311.2-313.8 ft -unusual metasediment as described above but more strongly brecciated								
	313.8 ft -contact at 40° to C.A.		2						
313.8 316.1	REEVES FORMATION								
	-white, medium grained massive limestone	0082		313.8	316.1	2.3	50	< 0.2	
	313.8-314.2 ft -siliceous light green skarn								1
	314.2-316.1 ft -limestone; no apparent mineralization 316.1 ft -contact at 85° to C.A.								
316.1 321.0	TONALITE								
	-contains inclusions of Reno/Truman metasediments as described above								
	321.0 ft -contact at 60° to C.A.								
321.0 324.0	TRUMAN FORMATION								
	-siliceous, well laminated								
	321.5 ft —laminations at 65° to C.A.								
	324.0 ft -contact at 70° to C.A.								
						e as			-

NAME OF PROPERTY____JACKPOT

HOLE NO. JP83-2 SHEET NO. 9 Of 11

FOOT.	AGE	DESCRIPTION			SAMP	LE				ASSAYS	
ROM	то	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au	Ασ	Мо	
324.0	345.5	REEVES FORMATION						(ppb)	(ppm)	(ppm)	
		<pre>-massive, fine to medium grained, white limestone -banding indistinct, becoming more distinct downhole -overall sulphide content is less than 1%, only py identified</pre>	0048 0049 0050 0051 0052		327.6 331.0 334.0	327.6 331.0 334.0 337.0 339.4	3.4 3.0 3.0	45	<0.2 0.2 0.2 <0.2 <0.2		
		324.0-325.5 ft -siliceous skarn, upper part may be tonalite dyke material, appears to grade into skarn; lower skarn contact is 70° to C.A.	0053 0054		339.4	342.4 345.5		100 < 5	0.2 0.4		
		325.5-327.0 ft -limestone as described above; some lime-green diopside or serpentine-rich patches present		-							
		327.0-327.6 ft -siliceous green skarn at 45° to C.A. less than 1% po present									
		327.6-339.5 ft -limestone as described above									
		338.0 ft -banding at 75° to C.A.				1					
		339.5 ft -banding at 65° to C.A.									
		339.5-345.5 ft -garnetiferous skarn; lower contact at 80° to C.A.									
345.5	350.5	GABBRO									
		-fine grained, massive	1					1		1	1
1		350.5 ft -contact at 65° to C.A.	3								1
350.5	351.6	REEVES FORMATION							M.		
		-garnetiferous skarn, diopside and wollastonite present	0083		350.5	351.6	1.1	< 5	<0.2		
		349.8 ft -banding at 75° to C.A.									
		351.6 ft -contact at 55° to C.A.									
											-

NAME OF PROPERTY____JACKPOT

HOLE NO JP83-2

SHEET NO. __ 10 of 11

FOOTAGE		DESCRIPTION			SAMP	LE				ASSAYS	
ROM TO		DESCRIPTION	NO	T SULPH	FROM	FOOTAGE	TOTAL	Au	Act		
51.6 378.0	TRUMAN FORMATIC	DN .		1000	7,104	1	TOTAL		(ppm)		
	-well banded, d	dark brown with light green siliceous band limestone bands de content is 1-2%, only py & po recognize	0085		363.5 366.0	363.5 366.0 368.9	2.5	5 4 5 4 5	0.8 < 0.2 < 0.2		
	352.7-354.7 ft	-tonalite dyke; upper contact at 80° to C.A., lower contact at 45° to C.A.	0087		368.9	372.0	3.1	< 5	0.6		
	354.7-363.5 ft	-well banded Truman skarn (biotite-rich) in contact with minor tonalite dykes; py and po are concentrated on foliation planes, overall 1-2% sulphides									
	357.0 ft	-banding at 65° to C.A.			1	1				- 1	
	361.0 ft	-banding at 70° to C.A.				1 1					1
	363.5-368.9 ft	-limestone bands increase, banding at 70° to C.A.; sulphide content decreases to negligible amount									
	368.9-378.0 ft	-limestone bands disappear; biotite-rich brown bands increase, banding is at 75° to C.A.	8								
	378.0 ft	-contact at 80° to C.A.								- 1	
78.0 381.5	TONALITE					1 1					
		e green colour, locally calcareous obscured by broken core	0088		378.0	381.5	3.5	< 5	0.2		
81.5 383.0	TRUMAN FORMATIC	DN .				1 1					
	-biotite-rich,	banding at 40° to C.A.		3				1		,	
83.0 384.6	MUD SEAM -possible fault										-

HOLE NO. JP83-2 SHEET NO. 11 of 11

FOOTAGE	DESCRIPTION.			SAMPL	_E				ASSAYS	
ROM TO	DESCRIPTION	NO.	" SULPH		FOOTAGE					T
HUM 10			IDES	FROM	10	TOTAL				_
84 6 400 0	DENO (MDUMAN, EO DIA MTON									
84.6 400.0	RENO/TRUMAN FORMATION	1				ľ				
	-banding moderately contorted; banding disappears downhole as metasediment becomes massive									
	387.0 ft -foliation at 35° to C.A.						- 4			
	388.6-400.0 ft -metasediment becomes massive, porphyroblastic with white 2-4 cm porphyroblasts (mineralogy unknown)									
00.0	END OF HOLE									
										1
							1			
								, 1		
100										
						* *			.07	

-

NAME OF	PROPERTY	JACKPOT
HOLE NO.	JP83-3	LENGTH 60.0 ft
LOCATION	77 ft south	h of Hunter V
LATITUDE		DEPARTURE 1+15S
ELEVATION	F74F C.	AZIMUTH 338° DIP -75°
STARTED	July 6,1983	3 FINISHED July 6,1983

AZIMUTH	DIP	FOOTAGE	AZIMUTH	DIP	FOOTAGE
					-

HOLE NO. JP83-3 SHEET NO. 1 of 1

REMARKS 10 ft east of section (LINE 335 AZ) 77 ft south of Hunter V

LOGGED BY J.R.FOSTER

-00	TAGE		D.C.C.D.I.D.T.I.O.W			SAMF	LE			ASSAYS			
FROM	то		DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	Au	Ag			
0	2.0	CASING							(ppb)	(ppm)			
2.0	16.4	REEVES FORMATI	ON (Unit 4c)										
		rusty coloure	to coarse-grained marble; bands are d bedding plane shears ide content is negligible	0796		13.0	16.4	3.4	10	< 0.2			
		9.0 ft	-banding at 80° to C.A.										
		16.4 ft	-contact set at disappearance of orange shears; contact at 80° to C.A.										
16.4	60.0	REEVES FORMATI	ON (Unit 4b)										
		limestone wit	medium-grained limestone/dolomitic th occasional coarse bands nide content is negligible	0 7 97 0798 0940		22.0 34.0 42.0	25.0 37.0 43.5	3.0 3.0 1.5	10 4 5 4 5	0.5			
	× 1	22.0 ft	-banding at 75° to C.A.	0939		43.5	45.0	1.5	< 5 < 5	2.3			
		28.0 ft	-banding at 80° to C.A.	0799		48.0	51.0	3.0	45	5.6			
		34.0 ft	-banding at 85° to C.A.	0945		51.0	54.0	3.0	< 5 < 5	0.6			
	i	39.0 ft	-banding at 85° to C.A.	0947		57.0	60.0	3.0	45	1.0			
		43.5-45.0 ft	mineralization: 1 mm discontinuous laminae with sphalerite and galena at 44.5 ft, also very rare disseminated galena at 44.0 ft; banding at 80° to C.A.	4									
		50.0 ft	-banding at 85° to C.A.	ii		-							
		58.0 ft	-banding at 60° to C.A.					~ ∓					
60.0		END OF HOLE											

NAME OF	PROPERTY	JA	CKPOT			
HOLE NO.	JP83-4		LENGTH	163.0	ft	
LOCATION	177 ft	SE of	Hunter V			
LATITUDE	2+40E		DEPARTURE	1+5	5S	
ELEVATION	5764 ft		AZIMUTH	337	O DIF	-75°
STARTED_	July 6,1	1983	FINISHED	July 6,	1983	7- IIII

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO. JP83-4 SHEET NO. 1 of 4
REMARKS 157 AZ from
Hunter V for 177 ft

LOGGED BY J. R. FOSTER

00	TAGE				5 A M P	LE			A	SSAY	5
ROM	то		DESCRIPTION	NO. SULPH	FROM	FOOTAGE TO	TOTAL	Au	Ag	- 3	
0	9.0	CASING & rubbl	e					(pph)	(ppm)		
9.0	57.3	REEVES FORMATI	ON (Unit 4C)								
-		banded -features rust 2-3 mm wide	d massive white dolomite marble, vaguely y stained fractures or shears, usually ent is negligible	0103 0104 0105 0106 0107	9.0 13.0 17.0 21.0 25.0	13.0 17.0 21.0 25.0 29.0	4.0	4 5 4 5 4 5	<0.2 <0.2 <0.2		
		10.0 ft	-rusty shears at 75° to C.A.								
		15.0 ft	-rusty bands at 70° to C.A.	0108	29.0	33.0		< 5 < 5	< 0.2		
		21.5-21.7 ft	-dark grey fine grained carbonaceous bands present at 65° to C.A.; minor disseminated po and py present	0109 0110 0111 0112	33.0 37.0 41.0 45.0	37.0 41.0 45.0 49.0	4.0	< 5 < 5 < 5	<0.2 <0.2 <0.2		
	1	29.0-30.3 ft	-carbonaceous laminae at 75° to C.A. containing very minor py mineralization	0113 0114	49.0 53.0	53.0 57.3	4.0	< 5 < 5	<0.2 <0.2		
		33.0-57.3 ft	-grain size decreases, unit becomes less dolomitic, sulphide content negligible banding becomes more prominent								
		34.0 ft	-banding at 75° to C.A.						1		
		40.0 ft	-banding at 80° to C.A.								
		46.5-47.2 ft	-fine-grained medium grey carbonaceous laminae appear, well foliated at 80° to C.A.; appears weakly brecciated with wispy fragments; negligible sulphide content								
		54.0 ft	-banding at 80° to C.A.								

HOLE NO. JP83-4 SHEET NO. 2 of 4

FOOTAGE SAMPLE ASSAYS DESCRIPTION FOOTAGE NO. FROM Au An FROM TOTAL (ppb)) ppm) -lower contact at 80° to C.A., set where 57.3 ft Reeves becomes less reactive in HCI acid and fine-grained 57.3 77.5 REEVES FROMATION (Unit 4b) < 5 | < 0.2 0115 57.3 61.0 3.7 -fine to medium grained light grey dolomite/dolomitic 45 < 0.2 0116 61.0 65.0 4.0 limestone with occasional coarse marble bands 69.0 4.0 < 5 < 0.2 0117 -negligible sulphide content 65.0 **4** 5 人 0.2 -rusty fracture/shears common in Unit 4C do not occur 0118 73.0 4.0 69.0 ₹0.2 45 4.5 0119 in Unit 4b 73.0 77.5 58.0-63.0 ft -2½ ft of core missing -banding at 85° to C.A. 58.0 ft -banding at 80° to C.A. 65.0 ft -banding at 85° to C.A. 70.0 ft -banding at 85° to C.A. 75.0 ft -contact arbitrarily set where dolomite bands decrease; contact at 85° to C.A. 77.5 ft REEVES FORMATION (Unit 4a) 77.5 163.0 -mixed unit of light grey limestone, dolomitic lime-0120 77.5 82.0 4.5 4 5 140.2 3.0 **<** 5 140.2 82.0 85.0 stone and coarse-grained marble; fine grained lime-0121 stone is dominant 0122 85.0 88.0 3.0 4 5 8.3 3.0 4 5 0123 88.0 91.0 0.4 -sulphide content negligible, little 77.5-98.3 ft 0124 91.0 94.0 3.0 0.2 strong silicification present 0125 3.0 4 5 40.2 94.0 97.0 -well banded at 75° to C.A. 85.0 ft -carbonaceous laminae present 86.5-87.1 ft -minor S or Z-fold, banding at 70° to C.A. 88.0 ft -banding at 75° to C.A. 90.0 ft -first appearance of cherty bands at 95.8-96.1 ft 75° to C.A.

NAME OF PROPERTY___ JACKPOT

HOLE NO. JP83-4 SHEET NO. 3 Of 4

FOOT	AGE		DESCRIPTION			SAMP	LE		1		ASSAYS		
ROM	10		DESCRIPTION	NO.	- SULPH	FROM	FOOTAGE	TOTAL	Au	Ag			
		98.3-98.4 ft	-mineralized zone: first appearance of silvery mineralization, possibly argentite or unknown silver sulphosalt; mineralization usually associated with darker grey dolomitic limestone bands and patches	0091		97.0 100.0	100.0 104.0 107.0	3.0	(ppb	(ppm) 49.9 158.0 16.6		0.99 6.50	
		100.8-104.0 ft	-mineralized zone: 1% disseminated grain of silvery minerals, possible tetrahed rite, some galena and other argentiferous minerals; banding at 65° to C.A. py and possible one speck of cpy are present	-									
		105.8-106.1 ft	-mineralized zone: minor metallic mineralization weakly concentrated in bands at 55 to C.A.' po,py, argentif- erous mineral(s) and cpy are present										
	1 1 1 1	107.0-109.0 ft	-no apparent mineralization, banding at 50° to C.A.	0093		109.0	109.0	1.5	4 5 4 5	6.2			
		109.0-110.5 ft	-mineralized zone: argentiferous mineralization weakly to strongly concentrated in irregular bands, lamin and patches, also as fine dissemination banding contorted moderately, from 40°-60° to C.A.	0094 0170 0171 ns		114.0	114.0 118.0 121.0	4.0	< 5 < 5 < 5	4.5 5.3 14.9			
		110.5 ft	-first appearance of wollatonite bands										
		111.9-112.3 ft	-limestone breccia band at 60° to C.A.										
	1: 1: 1:	113.5 ft	-mineralization: rare Ag mineral(s) pres	ent						6			
		115.0 ft	-mineralization: rare Ag mineral(s) in 1 mm fracture								4		
		118.3-119.0 ft	-appearance of contorted laminae and discontinuous wisps of black carbon- aceous material with are Ag mineral(s) at 118.3-118.6 ft			+11							

NAME OF PROPERTY___JACKPOT

HOLE NO. JP83-4

SHEET NO. 4 of 4

NAME OF	PROPERTY	JACKPOT			
HOLE NO.	JP83-5	LENGTH	153.0	ft	
LOCATION	177 ft SE	of Hunter V			
LATITUDE	2+65E	DEPARTURE	1+20S		
ELEVATION	5761 ft	AZIMUTH	348.50	DIP	-75°
STARTED	July 6 1983				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO. JP83-5 SHEET NO. 1 of 3
REMARKS 50 feet East of
JP83-4

LOGGED BY _ J. R. FOSTER

00	TAGE					SAMP	LE			A	5 5 A Y	s
FROM	то		DESCRIPTION	NO.	SULPH-	FROM	TO	TOTAL	Au	Ag		
ū	4.0	CASING							(ppb)	(ppm)		
4.0	7.0	RUBBLE										
	(A1390)	A SMIRSON PORPOS	OV (11-14-40)					3				
7.0	44.4	REEVES FORMATI	after a superior and the superior of the super	030		7.0	,,,,		/ 5	۷0.2		
		rusty shears	ed massive white marble; numerous 1-10 mm eralization is negligible overall	018 018 018		7.0 12.0 17.0	12.0 17.0 22.0		< 5 < 5	< 0.2		
		10.0 ft	-banding at 75° to C.A.	018		22.0	27.0 32.0		< 5 < 5			
		15.0 ft	-banding at 80° to C.A.	018	8	32.0	37.0		45	0.2		
		22.0 ft	-rusty fractures/shears to 70° to C.A.	018		37.0 41.0	41.0		4 5 4 5	< 0.2		
		27.0 ft	-banding at 70° to C.A.	1013		11.0	15.0					
		33.0 ft	-banding at 75° to C.A.									
	4	33.4-35.7 ft	-fine-grained dark grey limestone; 1-2% py and po disseminated throughout; folitation at 80° to C.A.									
		38.0-43.0 ft	-85% core recovery only					10 8			- 1	- 1
44.4	64.8	44.4 ft REEVES FORMATI	-contact set at first appearance of dolomitic limestone; contact at 80° to C.A. ON (Unit 4b)				3					
		-dolomitic lim sulphides	estone, vaguely banded, negligible	019	2	45.0 50.0	50.0 54.0	5.0 4.0	< 5	< 0.2		
		50.0 ft	-banding at 75° to C.A.	019		54.0 57.0	57.0	3.0	< 5 < 5	40.2		
		55.0 ft	-banding at 80° to C.A.	019	200	60.0	64.0	- 4.0	The second secon	0.2		
		60.0 ft	-banding at 80° to C.A.									

NAME OF PROPERTY___JACKPOT

HOLE NO. JP83-5

SHEET NO. 2 of 3

		DESCRIPTION			SAMPI	LE				ASSAYS	
FROM TO		DESCRIPTION	NO.	*, SULPH		FOOTAGE		7	Ag		2 2 30
	64.8 ft	-lower contact set at appearance of coarse marble bands; contact at 80° to	C,A.	IDES	FROM	TO	TOTAL	Au (ppb	+		
64.8 153.	0 REEVES FORMAT	ION (Unit 4a)									
		f limestone, dolomitic limestone and marbland wollastonite-rich bands, very well cm scale	0095 0096		64.0 67.0 70.0	70.0 73.0	3.0 3.0 3.0		<0.2 <0.2 4.4		
	67.5 ft	-banding at 85° to C.A.	0097 0098		73.0	76.0	3.0	4 5 4 5	<0.2 <0.2		
	67.6 ft	-1 cm patch with disseminated po	0099		79.0	82.0	3.0	< 5	0.8		
	71.7-72.0 ft	-mineralized zone: disseminated tetra- hedrite(altering to malachite) present in coarse marble band, maximum of 1% tetrahedrite in band	0100 0101 0102 0297 0298		82.0 85.0 88.0 91.0 94.0	88.0 91.0 94.0	3.0 3.0 3.0 3.0	< 5 < 5 < 5 < 5 < 5 < 5	14.1 1.4 0.2 0.4 0.4		
	73.0 ft	-banding at 85° to C.A.	0299		97.0	100.0	3.0	45	0.4		
	· 77.0 ft	-banding at 85° to C.A.	0300		100.0	103.0	3.0	45	0.4		
	82.0 ft	-banding at 85° to C.A.									
	84.3-84.4 ft	-mineralized zone: disseminated tetra- hedrite (altering to malachite) in coarse marble band									
3	86.0-87.0 ft	-probable fracture,1.0 ft of missing core						ĺ			4
	87.7-89.9 ft	-po concentrated in two 1 mm wide laminae at 85° to C.A.									
	94.0 ft	-vague banding at 90° to C.A.	0197			108.0	5.0	4 5	0.2		
	101.0 ft	-banding at 90° to C.A.	0198 0199			113.0	5.0	4 5 4 5	40.2		
	108.0 ft	-first appearance of wollastonite bands oriented at 80° to C.A.				123.0	5.0	人 5	<0.2		
	113.0 ft	-wollastonite bands at 75° to C.A.									
	119.0 ft	-vague banding at 70° to C.A.						1			
	123.0 ft	-banding at 65° to C.A.								2 4	-

NAME OF PROPERTY_____JACKPOT

HOLE NO. JP83-5

_____ SHEET NO. 3 Of 3

FOOTAGE	DESCRIPTION			SAMPL	E			ASSAYS	
FROM TO	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL			
	128.0 ft -banding at 75° to C.A. 133.0 ft -banding at 70° to C.A.; first appearance of black laminae; very minor pois associated with the laminae 138.0 ft -banding at 60° to C.A. 143.0 ft -banding at 55° to C.A. 148.5-149.3 ft -zone of tight fractures filled with carbonaceous material; up to 1% sulphides present, at least one grain of sph present; banding at 55° to C.A.	0201 0202 0285 0203 0204 0205		123.0 128.0 132.0 133.0 138.0 143.0	128.0 132.0 133.0 138.0 143.0 148.0	5.0 4.0 1.0 5.0 5.0	0.2 0.2 0.2 < 0.2		
153.0	END OF HOLE					~			

OTHOUGH STOCKED

NAME OF	PROPERTY	JACKPOT		
HOLE NO.	JP83-6	LENGTH _	158.0	
LOCATION	177 ft SE	of Hunter V	1	
		DEPARTUR	E 1+80S	
	5764 ft	AZIMUTH	3370	DIP -750
STARTED	July 7,198	3 FINISHED	July 7,1983	

TOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
-					-

HOLE NO. JP83-6 SHEET NO. 1 of 4
REMARKS 25 feet west of
JP83-4

LOGGED BY J.R.FOSTER

OOTAGI					SAMP	LE			A	5 5 A	Y S	
пом то	DES	CRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	Au	Ag			
0 2.0	CASING REEVES FORMATION (Unit	4c)						(dad)	(ppm)			
.0 61.5	-coarse grained white m zones up to 1 cm wide bands 8.0 ft -bandin 18.0 ft -bandin 22.0 ft -rusty 28.0 ft -rusty 35.0 ft -bandin 40.0 ft -bandin 48.0 ft -bandin 49.4-50.5 ft -dark g lamina 50.5-61.5 ft -marble finer 55.0 ft -bandin 61.5 ft -contact	marble, locally with rusty shear & occasional dark purple-brown og at 80° to C.A. ag at 50° to C.A. bands at 75° to C.A. laminae at 70° to C.A.	0207 0208 0209 0210 0211 0213 0214 0215 0216 0217		2.0 7.0 12.0 17.0 22.0 27.0 32.0 37.0 43.0 48.0 53.0 58.0	7.0 12.0 17.0 22.0 27.0 37.0 43.0 48.0 53.0 63.0		く 11 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 0.2 < 0.2			

NAME OF PROPERTY___JACKPOT

HOLE NO. JP83-6 SHEET NO. 2 of 4

F00	TAGE		DESCRIPTION			SAMPL	,E				ASSAYS	
FROM	10		DESCRIPTION	110.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au	Ag	Au	Ag
61.5	95/7	REEVES FORMATI	ON (Unit 4b)						(ppb)	(ppm)	oz/t	oz/t
		-no apparent A	ell banded dolomite/dolomitic limestone g-mineralization; overall sulphide sch less than 1%	0269 0270 0271		63.0 68.0 73.0		5.0 5.0 5.0 5.0 5.0 5.0 2.7	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2		
		64.8 ft	-banding at 85° to C.A.	0272 0273		78.0 83.0	83.0 88.0	5.0	< 5 < 5	< 0.2 < 0.2		
		70.0 ft	-banding at 85° to C.A.	0274		88.0	93.0	5.0	45	40.2		
		73.0 ft	-banding at 85° to C.A.	0275		93.0	95.7	2.7	< 5	<0.2		
		78.0 ft	-banding at 80° to C.A.									
		83.0 ft	-banding at 80° to C.A.									6
		88.0 ft	-banding at 70° to C.A.									
		93.0 ft	-banding at 80° to C.A.						1			
		95.7 ft	-contact set at first appearance of siliceous bands, contact at 70° to C.A	۸.								
95.7	153.0	REEVES FORMATI	ON (Unit 4a)									
		with occasion -Ag-mineraliza dissemination	edium grained white to light grey limesto al siliceous and wollastonite bands tion occurs, locally concentrated as fine s in patches and narrow 1-10 mm laminae .8 ft and at 152.8 ft	0219		95.7 98.0 99.1 99.5		2.3 1.1 0.4 1.2	< 5 < 5 < 5 < 5	22.0 170.0 130.0 20.2		6.31 4.85 0.78
		95.7-99.1 ft	-barren limestone with siliceous and wollastonite bands at 75° to C.A.									
		99.1-99.5 ft	<pre>-mineralization: Ag minerals galena + tetrahedrite in bands at 75 to C.A.; overall less than 1%</pre>									
		99.5-100.7 ft	-barren; some carbonaceous laminae and wollastonite bands at 75° to C.A.									
	5.											
			*									

NAME OF PROPERTY____JACKPOT

HOLE NO. _JP83-6

SHEET NO. 3 Of 4

FOOTAGE		DECEMBER			SAMP	E				ASSAYS	
ROM TO		DESCRIPTION	NO.	", SULPH		FOOTAGE					
	101.9-109.1 ft	-mineralization: Ag mineral(s) as fine disseminated grains and in narrow 1-3 mm laminae; overall less than 1% -barren medium-grained massive marble -mineralization: much less than 1% po	0222 0223 0224 0225 0226 0227		101.9 105.0 108.0 109.1	101.9 105.0 108.0 109.1 110.2 111.0	1.2 3.1 3.0 1.1 1.1 0.8	15 4 5 4 5 4 5	0.4 72.6 126.0		2.3 5.18
	110.2-111.0 ft	and Ag mineral(s); some carbonaceous laminae at 75° to C.A.	0228 0229 0230 0231		112.0 114.0 116.0	112.0 114.0 116.0 117.0	1.0 2.0 2.0 1.0	< 5 < 5 < 5 173	20.4 0.2 0.8 400.0		5.12
	Thoragon is common or seen	-mineralization: rare Ag mineral(s) at 111.4 in 3 mm band at 80° to C.Abarren limestone/marble/wollastonite	0232 0233 0234 0235		118.6 119.4	118.6 119.4 121.0 123.0	1.6 0.8 1.6 2.0	< 5 < 5 < 5 < 5	6.4		
	116.0-117.0 ft	<pre>-mineralization: overall much less than 1% Ag mineral(s), sph & cpy located at 116.5 ft</pre>	0236			124.0	1.0	25			
		-barren; banding at 85° to C.A. -mineralization: Ag mineral(s), sph & cpy in 1 cm band at 119.0 ft; overall much less than 1%									
	119.4-121.0 ft	-mineralization: only po and py ident- ified as disseminations and weakly concentrated in 1-3 mm bands; overall less than 1%									
	121.0-123.9 ft	-barren limestone						1			
	123.0-124.0 ft	-mineralization: less than 1% dissem- inated po + py, may be very fine Ag minerals present; banding at 80° to C.	A.								

HOLE NO. ___ JP83-6 ____ SHEET NO. _4 Of 4

131.8-	131.8 ft -barren limestone; banding at 45° at 127.0-129.0 ft; strong folding indicated at 129.0-134.8 ft -134.8 ft -mineralization: 1-2% Ag mineral(s), py, po, cpy, sphalerite and galena as disseminations and concentrated in 1-	0237 0238 0238 0240 0241	9	124.0 127.0	127.0 129.0 131.8	2.0	Au (pph) 4 5 4 5 4 5 4 5	Ag (ppm) 0.4 0.6 2.0	Ag oz/tor
131.8-	127.0-129.0 ft; strong folding indicated at 129.0-134.8 ft -mineralization: 1-2% Ag mineral(s), py, po, cpy, sphalerite and galena as disseminations and concentrated in 1-	0238 0239 0240 0241	7 3 9	124.0 127.0 129.0	127.0 129.0 131.8	3.0 2.0 2.8	(pph) < 5 < 5	(ppm) 0.4 0.6	
152.0 53.0 • END OF	Ag mineral(s) HOLE	2 0243 0244 te 0245	2 3 4 5 5	134.8 138.0 143.0 148.0 152.0	138.0 143.0 148.0 152.0 153.0	3.2 5.0 5.0 4.0 1.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	47.0 0.4 40.2 40.2 40.2 0.6	1.21

NAME OF	PROPERTY	JACKPOT		700
HOLE NO.	JP83-7	LENGTH	163.0 ft	
LOCATION	180 fee	t south of H	lunter V	
LATITUDE	2+20E	DEPARTUR	E 2+00S	The state of the s
ELEVATION	5763 ft		2270	-75°
STARTED	July 7.1	1983 FINISHED	July 8,1983	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
					-
77.					

HOLE NO. JP83-7 SHEET NO. 1 of 3

REMARKS 50 feet west of JP83-4

LOGGED BY J.R.FOSTER

-coarse-grained massive white marble, with minor amounts of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	то		THE STATE OF THE S										
0 6.0 CASING REEVES FORMATION (Unit 4c) -coarse-grained massive white marble, with minor amounts of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft				NO. 50	LPH FR			TOTAL	Au	Ασ			
REEVES FORMATION (Unit 4c) Coarse-grained massive white marble, with minor amounts of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears 10.0 14.0 4.0	6.0	CASING							(ppb)	(ppm)			
-coarse-grained massive white marble, with minor amounts of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft			ON (Unit 4c)								1		
11.0 ft		-coarse-graine of fine-grain and rusty-sta -overall sulph are identifie	d massive white marble, with minor amounts ed light grey dolomitic limestone bands ined fractures or shears ide content is negligible; only po & py d, associated with the fine-grained	0127 0128 0129 0130 0131	10 14 18 22 26	.0	14.0 18.0 22.0 26.0 30.0	4.0 4.0 4.0 4.0	5 5 5 5 5 5 5 5 5 5 5 5 6	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2			
19.0 ft	1	11.0 ft	-banding at 70° to C.A.										
27.0 ft		19.0 ft		0134	38	.0	42.0	4.0	4 5	< 0.2	1		
37.0 ft		27.0 ft	The state of the s	CO. 1. C.	F 24 Carl	ELISCH E			4 5				
45.0 ft —banding at 70° to C.A. 50.0 ft —banding at 70° to C.A. 51.8-53.6 ft —fine-grained limestone band, finely laminated at 80° to C.A. 55.0 ft —banding at 70° to C.A. 60.0 ft —banding at 70° to C.A. 65.0 ft —banding at 80° to C.A.		37.0 ft	-banding at 70° to C.A.	0137	50	.0	54.0	4.0	45	0.2	1		
50.0 ft -banding at 70° to C.A. 51.8-53.6 ft -fine-grained limestone band, finely laminated at 80° to C.A. 55.0 ft -banding at 70° to C.A. 60.0 ft -banding at 70° to C.A. 65.0 ft -banding at 80° to C.A.		45.0 ft	-banding at 70° to C.A.						4 5				
51.8-53.6 ft -fine-grained limestone band, finely laminated at 80° to C.A. 55.0 ft -banding at 70° to C.A. 60.0 ft -banding at 80° to C.A. 65.0 ft -banding at 80° to C.A.		50.0 ft	-banding at 70° to C.A.	0140	62	.0	66.0	4.0	< 5	< 0.2			1
60.0 ft -banding at 70° to C.A. 65.0 ft -banding at 80° to C.A.		51.8-53.6 ft	-fine-grained limestone band, finely laminated at 80° to C.A.	0141	66	.0	70.0	4.0	45	< 0.2			
65.0 ft -banding at 80° to C.A.		55.0 ft	-banding at 70° to C.A.										
		60.0 ft	-banding at 70° to C.A.								3		
70.0 ft -contact gradational, set at 75° to C.A.	ŧ	65.0 ft	-banding at 80° to C.A.			1							
CONTROL 1974. SERVICE SERVICE SERVICE SERVICE TO THE CONTROL OF TH		70.0 ft	-contact gradational, set at 750 to C.A.										1
						1		* *					1
1			of fine-grain and rusty-sta -overall sulph are identifie light grey and 11.0 ft 19.0 ft 27.0 ft 37.0 ft 45.0 ft 50.0 ft 51.8-53.6 ft 55.0 ft 60.0 ft 65.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft	of fine-grained light grey dolomitic limestone bands and rusty-stained fractures or shears -overall sulphide content is negligible; only po & py are identified, associated with the fine-grained light grey and/or brown bands and fractures 11.0 ft

HOLE NO. JP83-7 SHEET NO. 2 Of 3

FOO	TAGE	DECOMPANY			SAMP	LE		1		ASSAYS	
FROM	то	DESCRIPTION	NO.	- SULPH	FROM	FOOTAGE		Au	Acc	Au	Acı
70 0	99.0	DEFUES FORMATION (Unit 4b)		IDES	FRUM	TO	TOTAL	191.77/67	(ppm)		
70.0	88.0	reeves formation (Unit 4b) -well banded dolomite/dolomitic limestone -sulphide content negligible 75.0 ft -banding at 75° to C.A. 79.5 ft -5 mm patch of disseminated py, banding at 75° to C.A. 85.0 ft -banding at 70° to C.A. 88.0 ft -contact set at first appearance of siliceous bands and carbonaceous laminae; banding at 70° to C.A.	0142 0143 0144 0145 0146		70.0 74.0 78.0 82.0 86.0	78.0 82.0 86.0	4.0 4.0 4.0 4.0 4.0	4 5 4 5 4 5 4 5	<0.2 <0.2 <0.2 <0.2 <0.2		
88.0	163.0	REEVES FORMATION (Unit 4a) -mixed unit of limestone, marble, cherty and dolomitic bands, very well banded 88.0-103.0 ft -60% core recovery 93.0 ft -banding at 70° to C.A. 100.0 ft -banding at 80° to C.A. 102.1 ft -mineralization: speck of soft silvery mineral, possibly argentite or galena 104.1-104.4 ft -mineralized zone: up to 1% finely disseminated silvery minerals (argentite)? in weakly silicified dolomitic limeston 107.8-112.0 ft -coarse grained barren white marble 112.0-121.5 ft -fine to medium grained barren limeston	ne		102.0 105.0 108.0 111.0 115.0 119.0	96.0	3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 3.0		<0.2 <0.2 <0.2 <0.2 <0.2 <149.0 10.7 1.0 <0.2 <0.2 <0.2		7.61
							e 44				

FORM :

JACKPOT NAME OF PROPERTY___

HOLE NO. __ JP83-7 _____ SHEET NO. __ 3 Of 3

Unco	rrec	ted	Cori	recte	d
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-67°	339.5°	0	-67 ⁰	339.50
250	-73		250	-68º	
460	-74°		460	-69°	
	The second				

REMARKS 30 feet southwest of 6+40S on Line 337

LOGGED BY J. R. FOSTER

001	AGE				SAMP	LE		-	Α.	5 5 A Y	5	
ROM	то	DESCRIPTION	NO.	SULPH- IDES	FROM	TO	TOTAL	Au	Ag			
0	12.0	CASING						(ppb)	(ppm)			
2.0	74.7	DIORITE							l f			
		-medium-grained, biotite-rich; rusty tinge due to iron leaching from biotite -no apparent significant mineralization; sulphides less than 1%; only py + po recognized	0279 0306			74.7 58.4	1.5	4 5 4 5	0.9			
		37.0-38.0 ft -rusty fracture zone										
- 1		57.6-58.4 ft -pink aplite dyke at 55° to C.A.										
- 1		68.0-78.0 ft -only 75% core recovery										
	- 1	74.7 ft -contact at 60° to C.A.										
4.7	86.2	GRANOPHYRE										
		<pre>-felsic phase of diorite; medium-grained, white with purple and green tinge -very rare py grains present</pre>	0280 0281		74.7 84.7	76.2 86.2	1.5	4 5 4 5	0.6			
		86.2 ft -lower contact at 35° to C.A.										
6.2	91.0	DIORITE/GABBRO										
		-slightly greater mafic content than above diorite -biotite content decreases; dark green amphibole is common	0282 0283			89.5 91.0		∠ 5 ∠ 5	0.8			
		91.0 ft -lower contact at 60° to C.A.										
							14 H			174		

NAME OF PROPERTY____JACKPOT

HOLE NO. JP83-8

SHEET NO. 2 Of 9

FOOTAGE		DESCRIPTION			SAMP	LE				ASSAYS	
FROM TO	V.	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	Au	Aa		
91.0 104	0 RENO/TRUMAN	FORMATION	1				10.20		(ppm)		
		n black argillaceous metasediment up hole to ated green and purple skarn similar to Truma le	n 0286 0287	5% 5%	95.0	95.0 97.3	2.5	4 5 4 5 4 5	0.8 1.1 1.3		
	91.0-92.5	ft -well laminated siliceous skarn with 19 disseminated po+py; laminae at 55 to C.	0288 0289		101.3	101.3 102.5 104.0	1.2	4 5 4 5	1.3 0.3 0.3		
	92.5-97.3										
	97.3-101.3	ft -siliceous calc-silicate skarn, little or no argillaceous material; sulphide content negligible, only py + po re- cognized; contact with lower siliceous dyke is at 70° to C.A.									
	101.3-102.5	ft -siliceous dyke/vein; quartz rich with pale green altered (?) amphibole; over all less than 1% sulphides as coarse p blebs and minor py in fractures									
	102.5-104.0	ft -pale green siliceous skarn, may be par of Reeves Fm.	t								
	104.0 ft	-lower contact at 60° to C.A.	1								
04.0 203.	9 REEVES FORM	ATION (Unit 4c)									
		massive white medium-grained limestone, vaquely or poorly banded	0291		104.0	105.0	1.0	۷ 5	2.9		
	104.0-105.0	ft -mineralization: disseminated po and galena concentrated in a 1 cm band at 104.7 ft;overall less than 1% sulphide	s								
			s				* **			4	

FORH 2

NAME OF PROPERTY____JACKPOT

OLE NO. JP83-8

SHEET NO. 3 of 9

FOOT	AGE		DESCRIPTION			SAMP	LE				ASSAYS	
FROM	TO		DESCRIPTION	NO.	SULPI	FROM	FOOTAGE	TOTAL	Au	Ag	Au	7.0
		105.0-106.2 ft	-barren well laminated limestone, banding at 75° to C.A.; two 1-3 cm bands of green siliceous skarn present	0292			106.2	1.2	(pph)		E E.	Ag oz/t 5.96
		106.2-107.3 ft	-mineralization: overall 1-2% sulphides mostly po; sphalerite and possible Ag minerals are concentrated at 106.2-106.3 ft in coarse marble	0293 0294 0295 0296 0334		107.3 108.0 113.0	107.3 108.0 113.0 118.0 121.0	1.1 0.7 5.0 5.0 3.0	4 5 4 5 4 5 4 5 4 5	40.5 2.5 15.4 0.2 0.3		0.85
2:		108.0-118.0 ft	-only 30% core recovery; much less than 1% po present	0335 0336	1%	121.0	125.0	4.0	5	< 0.2 < 0.2		
		118.0-121.0 ft	-mineralization:very weak sph mineral- ization present, overall much less than 1%; accompanied by very rare po grains; banding at 85° to C.A.									
		121.0-128.1 ft	-mineralization:overall 1% po and py in medium grey medium-grained massive limestone, no sphalerite recognized; banding at 85° to C.A.	7 () () () () () () () () () (
		128.1-176.8 ft	-medium to coarse-grained massive marble vaguely banded; overall sulphide content is less than 1%, only po and py and very rare sph recognized	0338 0339 0340		130.0 132.0 135.0	130.0 132.0 135.0 138.0	1.9 2.0 3.0 3.0	4 5 4 5 4 5	0.8		
		130.0-132.0 ft	-mineralization: up to 1% sulphides over- all, mostly po+py and lesser sph; band- ing at 80 to C.A.; possible Ag mineral at 130.6 ft	0341 0342 0343 0344 0345		143.0 148.0 153.0	143.0 148.0 153.0 158.0 163.0	5.0 5.0 5.0 5.0	< 5 < 5 < 5	<pre>< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2</pre>		
		132.5 ft	-banding at 90° to C.A.	0346			168.0	5.0		< 0.2		
		139.0 ft	-banding at 80° to C.A.									
		145.0 ft	-banding at 50° to C.A.									
		151.0 ft	-banding at 80° to C.A.									
		158.0 ft	-banding at 85° to C.A.			1						
		163.0 ft	-banding at 85° to C.A.					≥ 44				

HOLE NO. JP83-8 SHEET NO. 4 Of 9

FOOTAGE		DESCRIPTION			SAMPLE					ASSAYS											
FROM TO				NO.	T, SULPH		FOOTAGE		1			-									
		168 0 51	handing at 00° to 0.		IDES	FROM	10	TOTAL	(ppb)	(ppm)											
		168.0 ft	-banding at 80° to C.A.																		
		173.0 ft	-banding at 80° to C.A.																		
		176.8-203.9 ft	-dominantly coarse grained massive marble with fine grained dark grey to dark brown bands, possible shear zones; po and py are generally weakly concentrate in these shear zones; overall marble contains much less than 1% sulphides																		
		178.0 ft	-banding at 85° to C.A.	0347		160 0	173.0	5.0	, ,	< 0.2		- 4									
		183.0 ft	-banding at 85° to C.A.	0348		173.0	176.8	3.8		40.2											
		188.0 ft	-banding at 80° to C.A.	0349			182.0			< 0.2											
		191.0-194.0 ft	-dark purple-brown laminae and patches are present, suggesting some strong folding in marble; po + py is weakly concentrated in dark patches & laminae, overall much less than 1% sulphides	0351 0352 0353	2000	187.0 191.0 194.0	191.0 194.0 199.0 203.9	4.0 3.0 5.0	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2											
		195.0 ft	-banding at 80° to C.A.	1						V-1	1										
		203.9 ft	-contact at 55° to C.A.									- 4									
3.9	207.5	MAFIC LAMPROPHY	RE																		
		-altered olivin	e(?) and biotite phenocrysts	0355		203.9	207.5	3.6	< 5	40.2											
7.5	247.2	REEVES FORMATION	N (Unit 4b)	0356		207.5	210.0	2.5	4 5	40.2											
		limestone with -sulphide conte	e to medium-grained dolomite/dolomitic some coarse-grained marble bands nt is negligible overall; locally rare d Ag-mineral(s) are present	0359 0360 0361	0357 0358 0359 0360 0361		213.0 216.0 219.0	213.0 216.0 219.0 222.0 225.0	3.0 3.0 3.0 3.0	< 5 < 5 < 5	40.2										
		207.5-233.5 ft		0362		225.0	228.0	3.0	< 5	1.6											
		233.5-235.0 ft	-mineralization:locally very weakly	0363 0364 0365		231.0	231.0 233.5 235.0	3.0 2.5 1.5	4.5 4.5 4.5	1.8 2.7 < 0.2	7										

ANGORDES TODONTO

NAME OF PROPERTY_____JACKPOT

HOLE NO. JP83-8

SHEET NO. 5 of 9

FOOTAGE		DESCRIPTION	SAMPLE					ASSAYS									
FROM	10	DESCRIPTION	NO.	" SULPH		FOOTAGE		1									
	215 0	235.0-246.5 ft -apparently barren dolomite/dolomitic limestone, banding at 85° to C.A. 246.5-247.2 ft -pale green siliceous skarn, lower contact at 25° to C.A.	0366 0367 0368 0369 0370		237.0 240.0 243.0	237.0 240.0 243.0 246.5 247.2	3.0	4 5 4 5 4 5 4 5	1.6								
247.2	315.2	GRANODIORITE -massive, medium-grained, pink colour, CI = 5-6 -overall sulphide content is negligible 282.0-285.0 ft -dioritic phase of granodiorite intrusive 315.1 ft -contact at 35° to C.A.	0403 0414			248.0 315.1			0.5 40.2								
315.1	374.0	REEVES FORMATION (Unit 4a) -well banded limestone/marble/dolomitic limestone/ wollastonite unit, banding on 1 cm scale -medium to coarse-grained, occasional fine-grained carbonaceous laminae present in local concentrations	0415 0416 0417 0418	1%	315.5 317.0 320.0	315.5 317.0 320.0 324.0	1.5 3.0 4.0	人 5 人 5	0.3 <0.2 <0.2 <0.2								
		315.1-315.5 ft -pink feldspar-rich(?) skarn 315.5-316.0 ft -pale green wollastonite + diopside skarn; adjacent marble is slightly silicified to 317.0 ft	0419 0420 0421 0422		1.%	1.%	1.%	1.%	18	1%	328.0 329.0	328.0 329.0 332.0 335.0	4.0 1.0 3.0 3.0	20	<0.2 <0.2 <0.2 <0.2		
		-dominantly fine to medium grained medium grey limestone; wollastonite bands are rare; no evident mineralization -banding at 55° to C.A. -banding at 60° to C.A.															

NAME OF PROPERTY_____JACKPOT

HOLE NO. __ JP83-8

SHEET NO. 6 Of 9

FOOTAGE		DESCRIPTION	1		SAMP	LE				ASSAYS		
ROM TO		DESCRIPTION	NO.	T, SULPH	FROM	FOOTAGE	TOTAL	Au	Aσ	Pb	Zn	
	337.8-338.0 ft	-appearance of black carbonaceous laminae concentrated at 337.8-338.5 ft; laminae at 65° to C.A.	0424		335.0 336.8	336.8 338.0	1.8	(ppb),	0.4 0.4	*	*	
3	341.5-346.5 ft	-black carbonaceous laminae become very common; po and py are weakly concent- rated in laminae; overall sulphide cont ent is up to 1%; laminae at 70 to C.A.	0425 0426 0427 0428 0429	1%	341.0 344.0 346.5	341.0 344.0 346.5 350.0 354.0	3.0 2.5 3.5 4.0	4 5 15 4 5	40.2 0.2 40.2 40.2			
	346.5-363.0 ft	<pre>-dominantly white limestone; no significant mineralization</pre>	0430 0431		354.0	358.0 363.0	4.0	< 5 < 5	<0.2 <0.2			
	350.0 ft	-banding at 70° to C.A.	0432 0433			367.0	4.0	75 4 5			- "	
	355.0 ft	-banding at 60° to C.A.	0434			374.0			40.2			
	360.0 ft	-banding at 65° to C.A.	1									
	363.0-374.0 ft	-dominantly white to light grey well banded dolomitic limestone with minor wollastonite and cherty bands; overall no significant mineralization										
	365.0 ft	-banding at 50° to C.A.				1						
	374.0 ft	-contact set at disappearance of wollas- tonite bands, first appearance of dark to medium grey limestone/dolomitic limestone; contact at 80° to C.A.										
4.0 461.7	REEVES FORMATION	N (Unit 4b)										
	with limestone tonite bands as -black carbonace -sulphides are massive bands of	ium grey fine-grained dolomitic limestone and occasional marble bands; no wollas- re present eous laminae & fractures are common locally concentrated in semi-massive to over short core lengths; sulphides are and sphalerite										

JACKPOT NAME OF PROPERTY_

HOLE NO. __ JP83-8

SHEET NO. 7 Of 9

			DESCRIPTION			SAMP	LE				ASSAYS	
ROM TO			DESCRIPTION	NO.	SULP	FROM	FOOTAGE	TOTAL	Au	Ah	рb	Zn
	375.0 ft		-banding at 65° to C.A.					10142	The state of the s	(ppr)	-5	611
	379.0-380.	l ft	-mineralization:overall 10% po, concentrated as a band of massive po at 387. 380.0 ft; less than 1% sphalerite overemainder of sample interval; sulphid banding at 550 to C.A.	9 - D436 r D437 e D438 D439	1% 5% 1% 1%	377.0 379.0 380.1 383.0	377.0 379.0 380.1 383.0 386.0	2.0 1.1 2.9 3.0	4 5 4 5 4 5 4 5 4 5	0.2 <0.2 <0.2 <0.2 <0.2	<.01 <.01	.08
	388.5-400.) ft	-dominantly medium grey carbonaceous rich dolomitic limestone; overall sulphide content drops to 1-2%, mostly po, lesser sphalerite	0694 7 0695	10% 2%	387.5 388.5 392.4	387.5 388.5 392.4 392.9	1.0 3.9 0.5	45 45 45	<0.2 0.2 <0.2 1.0 <0.2	.01 .03 .03 .07	
	392.4-392.	ft	<pre>-quartz vein containing dolomite inclusions; no apparent mineralization in vein</pre>	0696 0697 0698 0699	3	393.9	393.9 397.0 400.0 403.0	3.1	< 5 < 5 < 5	< 0.2 < 0.2 0.5	4.01	.35
	392.9-393.) ft	-mineralization:minor galena, po, py a sphalerite appears in host dolomite adjacent to quartz vein; overall 1-2%	0700 0701 0702		403.0 406.0 408.6	406.0 408.6 409.2	3.0 2.6 0.6	4 5 100 35	<0.2 <0.2 <0.2 0.2	₹.01 ₹.01	.17 .03
	394.0 ft		-banding at 45° to C.A.	0703 0704			412.0		15	<0.2		
	398.0 ft		-banding at 550 to C.A.			413.5			50	1.0	4.01	3.59
	400.0-429.	5 ft	-dominantly light grey to white medium grained dolomitic limestone, sulphide content locally concentrated into massive and semi-massive bands	+								
	408.0 ft		-banding at 60° to C.A.	1								
	408.6-409.	2 ft	-siliceous zone, fractured at 60° to C very rare py present	Α.								- (4)
	409.2-413.	ft	-less than 1% po + sphalerite								0	
	413.5-414.	ft	-mineralization: 30% sulphides,includin 8-10% sphalerite (5-6% Zn) and 20% py + po; no gelena observed; sulphide banding at 60° to C.A.	ng								

HOLE NO. JP83-8 SHEET NO. 8 OF 9

SAMPLE FOOTAGE ASSAYS DESCRIPTION " SULPH FOOTAGE FROM TO Acr Au Pb IDES TOTAL FROM (pph) (ppm) 02/t 02/t 02/t 414.4-420.7 ft -barren medium-grained white limestone; much less than 1% sulphides; banding at 70° to C.A. -mineralization: 6-7% sulphides includ-420.7-422.2 ft ing 2% sphalerite (less than 1% Zn); sulphide banding at 65° to C.A. 414.4 417.0 0706 2.6 20 40.2 4.01 .04 422.2-426.0 ft -barren white limestone .03 (0.2 ..01 0707 417.0 420.7 3.7 15 426.0-429.5 ft -mineralization:overall 2-3% sphalerite 0708 78 420.7 422.2 1.5 < 5 1.24 1.8 .01 and rare py concentrated into bands up 0709 422.2 426.0 4 5 3.8 0.4 .01 .05 to 1 cm wide; banding at 65° to C.A. 38 426.0 429.5 0.9 0710 3.5 4 5 .92 - 01 0.4 4.01 429.5-435.9 ft -mostly barren to weakly mineralized 0711 429.5 433.0 3.5 . 20 limestone/dolomitic limestone; less 0712 433.0 435.9 2.9 0.4 1.0-. 42 0.3 4.01 than 1% sphalerite and minor py present 0713 435.9 436.5 0.6 .36 banding at 433.0 ft at 60° to C.A. 5.26 0714 436.5 440.3 3.8 400 8.0 .012 .35 4 5 0.3 4.01 3.7 0.16 0715 440.3 444.0 435.9-436.5 ft -mineralization:possible Ag mineral(s) < 0.2 < .01 0716 4 5 0.10 444.0 447.8 3.8 on a fracture surface occur at 436.1 ft 0717 0.6 .02 < 5 5.86 447.8 449.8 2.0 much less than 1% overall 436.5-440.3 ft -mineralization:overall 5-6% sphalerite (2-3% Zn); lesser po and minor py are also present; sulphide banding at 438.0 ft is at 55 to C.A. -mostly barren massive white dolomite; 440.3-447.8 ft overall sulphide content is much less than 1% 447.8-449.8 ft -mineralization:20-25% sulphides, approx. equal amounts of py and sphalerite (Zn=5-6%); only very rare galena crystals present; banding at 70° to C.A. at 449.0 ft

NAME OF PROPERTY____JACKPOT

HOLE NO. __ JP83-8

SHEET NO. 9 of 9

то		DESCRIPTION										
			NO.	S SULPH		FOOTAGE		2		Di	I. I	
	449.8-458.5 ft	-dominantly barren to weakly mineralized		IDES	FROM	TO	TOTAL	(ppb)	(ppm)	Pb oz/t	Zn oz/t	
	.,,,,,	massive white dolomite; overall less than 1% sulphides concentrated in several bands of sphalerite + py up to 2 cm wide from 465.5 to 456.1 ft	0718 0719		453.0		3.1	< 5		<.01		
	458.5-461.7 ft		0721		458.5	461.7	3.2	4 5				
	461.7 ft	-contact set at first appearance of coarse massive marble; contact at 65° to C.A.										
72.0	REEVES FORMATIO	N (Unit 4c)	0956	- 1	461.7	465.3	3.6	4 5	40.2			
	-dominantly coar mineralization	se white massive marble; no significant	957		466.1	468.5	2.4	4 5	0.2			
•	465.3-466.1 ft	-breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A.	0723		468.5	470.0	1.5	< 5	< 0.2			
	468.5-470.0 ft	-wollastonite-calcite-garnet skarn									1 1	
141	470.0-472.0 at	-well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A.										
	END OF HOLE											
							41					
	•	461.7 ft 72.0 REEVES FORMATION -dominantly coarmineralization 465.3-466.1 ft 468.5-470.0 ft 470.0-472.0 at	2 cm wide from 465.5 to 456.1 ft 458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn similar to Truman Fm; laminations at 50° to C.A.	458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn 470.0-472.0 at -well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present; no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn 470.0-472.0 at -well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 2957 matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn 470.0-472.0 at -well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn 470.0-472.0 at -well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	2 cm wide from 465.5 to 456.1 ft 0720 458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE 2.4 458.5 4458.5 2.4 458.5 461.7 3.2 465.3 466.1 0.8 465.3 466.1 0.8 465.3 466.1 0.8 465.3 468.5 0.7 468.5 470.0 1.5	2 cm wide from 465.5 to 456.1 ft 0720 456.1 458.5 2.4 4 5 458.5 461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 0956 -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn 470.0-472.0 at -well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	2 cm wide from 465.5 to 456.1 ft 458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	2 cm wide from 465.5 to 456.1 ft 0720 458.5-461.7 ft -fine to medium grained medium grey limestone; overall 1-2% po + py present no sphalerite noted 461.7 ft -contact set at first appearance of coarse massive marble; contact at 65° to C.A. 72.0 REEVES FORMATION (Unit 4c) -dominantly coarse white massive marble; no significant mineralization 465.3-466.1 ft -breccia zone; limestone fragments are cemented in dark green (Chloritic?) matrix; banding at 80° to C.A. 468.5-470.0 ft -wollastonite-calcite-garnet skarn 470.0-472.0 at -well laminated calc-cilicate skarn similar to Truman Fm; laminations at 50° to C.A. END OF HOLE	2 cm wide from 465.5 to 456.1 ft 0719 (458.5 461.7 ft) 1 2 cm wide from 465.5 to 456.1 ft 0720 (458.5 461.7 ft) 1 2 cm wide from 465.5 to 456.1 ft 0720 (458.5 461.7 ft) 1 2 cm wide from 465.5 to 456.1 ft 0720 (458.5 461.7 ft) 1 2 cm wide from 465.3 ft 0721 (458.5 461.7 ft) 1 2 cm wide from 465.3 ft 0721 (458.5 461.7 ft) 1 2 cm wide from 465.3 ft 0721 (458.5 461.7 ft) 1 2 cm wide from 465.3 ft 0721 (458.5 461.7 ft) 1 2 cm wide from 465.3 ft 0721 (458.5 461.7 ft) 1 2 cm wide from 465.3 ft 0721 (465.3 466.1 ft) 1 2 cm wide from 465.3 ft 0722 (465.3 466.1 ft) 1 2 cm wide from 465.3 ft 0722 (466.1 ft) 1 2 cm wide fr

FORM !

Unco	rrec	ted	Cor	recte	d
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-75°	337 ⁰	0	-75°	337°
150	-770		150	-73°	
328	-75°		328	-70°	

REMARKS 100' behind a point midway between holes JP83-4 and 6

LOGGED BY J.R.FOSTER

	AGE					SAMP	LE			A	SSA	Y S	
FROM	то		DESCRIPTION	NO. S	ULPH	FROM	TO	TOTAL	Au	Ag			T
0	2.0	CASING								(ppm)			
2.0	89.1	REEVES FORMATI	ON (Unit 4c)	1 1									l
		dark purple t bedding plane -overall sulph	parse-grained white marble with numerous to brown fine-grained bands, probably shears aide content is negligible; only minor post as fine disseminations in black bands -banding at 80° to C.A.	0724 0725 0726 0727 0728 0729 0730		9.0 21.0 30.0 44.0 58.0 64.0 75.0	12.0 24.0 33.0 47.0 61.0 67.0 78.0	3.0 3.0 3.0 3.0 3.0 3.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	< 0.2 < 0.2 < 0.2 < 0.2			
		15.0 ft	-banding at 75° to C.A.			,,,,,	,	3.0	1586				
		20.0 ft	-banding at 80° to C.A.										
		25.0 ft	-banding at 70° to C.A.										
		31.0 ft	-banding at 75° to C.A.										
	4	36.0 ft	-banding at 75° to C.A.	1 1	- 1								1
		40.0 ft	-banding at 80° to C.A.	1									
- 1		47.0 ft	-banding at 80° to C.A.	1 1									
		54.0 ft	-banding at 85° to C.A.		1								
	3	58.0 ft	-banding at 75° to C.A.										
		63.0 ft	-banding at 70° to C.A.		- 1								ı
- 1		68.0 ft	-banding at 75° to C.A.	1 1									1
		68.0-78.0 ft	-85% core recovery	1 1									
- 1		78.0 ft	-banding at 75° to C.A.										

FORM I

NAME OF PROPERTY____JACKPOT

HOLE NO. JP83-9

SHEET NO. 2 of 7

FOOT	AGE		DESCRIPTION			SAMP	LE				ASSAYS	
FROM	то		DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au	Ag		
		83.0 ft	-banding at 70° to C.A.	0731		78.0	81.0	3.0	< 5	<0.2		
		88.0 ft	-banding at 70° to C.A.	. 1								
		89.1 ft	 contact set at disappearance of major coarse marble bands; contact obscured by broken core 	i i								
9.1 1	123.5	REEVES FORMA	TION (Unit 4b)									- 1
		marble bands -overall sulp -dolomitic l	dolomitic limestone with minor coarse s phide content is negligible imestone is fine to medium-grained, light banded on 1-10 mm scale	0732 0733 0734 0735		109.0 116.0	93.0 112.0 119.0 123.5	3.0	4 5 4 5 4 5 4 5	<0.2 <0.2 <0.2 <0.4		
		93.0 ft	-banding at 80° to C.A.									
		98.0 ft	-banding at 80° to C.A.	- 1								
	(4)	103.0 ft	-banding at 80° to C.A.									
		108.0 ft	-banding at 80° to C.A.	- 1								
		115.0 ft	-banding at 80° to C.A.	1								
		123.0 ft	-banding at 80° to C.A.							1 1		
		123.5 ft	-contact set at first appearance of Agmineralization in well banded marble/ limestone/dolomitic limestone mixed of the contact of the contact and the contact are set of the contact and the contact are set of the contact and the contact are set of th	/								
23.5 2	242.9	REEVES FORMA	TION (Unit 4a)				1					
		dolomitic 1: -Ag minerali:	of light grey limestone, coarse marble and imestone, locally with wollastonite bands zation is locally concentrated over short als; overall mineralization rarely exceeds			123.5	124.5	1.0	۷ 5	19.0		
		123.5-124.5	ft -mineralization:some specks of tetra- hedrite(altering to malachite) in medium grained marble at 123.9 ft; banding at 75° to C.A.; overall much less than 1% mineralization									

-

NAME OF PROPERTY____JACKPOT

HOLE NO. _ JP83-9

SHEET NO. 3 of 7

-001	AGE		DESCRIPTION			SAMPI	_E				ASSAYS	
ROM	TO		DESCRIPTION	NO.	T SULPH		FOOTAGE					T
		124.5-125.5 f	t -barren banded limestone at 75° to C.A.		IDES	FROM	TO	TOTAL	Au (ppb)	(ppm)	Au oz/t	Ag oz/t
			t -mineralization:rare Ag-mineral(s) in tight fracture at 126.1 ft;overall muc less than 1%, banding at 75 to C.A.	h 0247		125.5	125.5 126.5	1.0	< 5 < 5	12.1		
		126.5-131.0 f	 -barren limestone/medium grained marble banding at 75° to C.A. 	0249 0250 0251)	129.0	129.0 131.0 132.0	2.5 2.0 1.0	4 5 4 5	0.2 5.9 113.0		5.06
		131.0-132.0 f	-Mineralization: Ag-mineral(s), galena, and rare po occur as disseminated grain weakly concentrated in patches, overall less than 1%	0252 n 0253		132.0 132.9 134.0	132.9 134.0 136.2	0.9 1.1 2.2	4 5 4 5 4 5	2.2 60.0 49.9		1.78 0.81
Ī		132.0-132.9 f	t -barren limestone	0256			138.3	1.5	4 5	38.8		0.96
	•	132.9-134.0 f	-mineralization: Ag-mineral(s), galena, and py occur partially coating cleavage surfaces of calcite crystals in coarse grained marble, overall less than 1% mineralization									
		134.0-136.2 f	-mineralization: rare Ag-mineral(s) weakly concentrated in discontinuous laminations at 70° to C.A.; sphalerite present in laminations at 135.7 ft; overall less than 1% mineralization	and the second								
		136.2-136.8 f	-mineralization:coarse brown sphalerite lesser galena and other Ag-mineral(s) concentrated in 1-10 mm bands at 65° to C.A.; 1 cm pod of coarse sphalerite and galena at 163.3 ft; overall 5% mineralization, up to 2% Zn+Pb									
		136.8-138.3 f	-mineralization: rare sphalerite + galer + Ag-mineral(s) weakly concentrated in I mm laminae, overall less than 1% mineralization; bands at 75° to C.A.									
								-				

NAME OF PROPERTY_____ JACKPOT

HOLE NO JP83-9

__ SHEET NO. 4 OF 7

THE STATE OF THE S	1	DESCRIPTION	D		SAMP	LE		1		ASSAYS	
то то		DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au	Ag	Au	Ag
	138.3-143.8 ft 139.0 ft 142.0 ft	-barren banded limestone -banding at 70° to C.Abanding at 75° to C.A.		1025	HOM	10	IDIAL		(ppm)	oz/t	oz/t
	TO SHOULD BE WALL A STORY	-mineralization:1% fine disseminated po + rare sphalerite + Ag-mineral(s) in fine-grained limestone at 143.9-144.2 ft much less than 1% disseminated Ag- mineral(s) found in coarse marble at 144.2-145.0 ft									
	145.0-146.0 ft	<pre>-mineralization:less that 1% Ag-mineral (s) in white medium-grained limestone; coarse 15 mm pod of galena and argentite (?) at 145.5 ft</pre>	0257	2.45	138.3	141.0	2.7	4 5	2.5		
	146.0-147.2 ft	-mineralization:much less than 1% Ag- mineral(s) in white medium-grained limestone; vague banding at 50° to C.A.; first appearance of wollastonite	0258 0259		141.0 143.8 145.0	143.8 145.0 146.0 147.2	2.8 1.2 1.0 1.2	45 40 45	0.8 20.8 153.0		0.70 5.46 0.90
	147.2-148.5 ft	-barren white limestone	0262			148.5	1.3	< 5	3.1		
1 4	148.5-150.0 ft	-mineralization:much less than 1% very fine Ag-mineral(s) at 149.0 ft and at 149.9 ft; banding at 85° to C.A.; rare wollatonite bands present	0263 0264 0265 0266		150.0 151.0	150.0 151.0 153.0 155.0	1.5 1.0 2.0 2.0	4 5 4 5 4 5 4 5	20.6 2.0 43.8 0.8		1.01
	150.0-151.0 ft	-barren medium-grained limestone								VI 3	
	151.0-153.0 ft	-mineralization:much less than 1% Ag- mineral(s) weakly concentrated into diffuse patches and bands at 151.2 ft, 151.4 ft, 152.2 ft; contorted banding indicates strong folding									
	153.0-155.0 ft	-barren limestone with wollastonite bands at 85° to C.A.									

NAME OF PROPERTY_____ JACKPOT

HOLE NO. JP83-9

___ SHEET NO. 5 of 7

FOOT	AGE		DESCRIPTION	1		SAMP	LE				ASSAYS	
FROM	70		DESCRIPTION	NO.	*. SULPH		FOOTAGE		7	1		
	1000	155.0-156.0 ft	-mineralization:much less than 1% Ag- mineral(s) in diffuse patch at 155.7 ft		iD€S	FROM	10	TOTAL	(ppb)	(ppm)		
		156.0-158.0 ft	-barren limestone with minor wollastonite bands									
		158.0-162.0 ft	-barren light grey limestone with some wollastonite bands and free quartz present at 159.5 ft									
		162.0-198.2 ft	-dominantly white medium grained lime- stone with wollastonite bands, some sky blue marble bands present; no significant mineralization	0267		156.0	156.0 158.0	1.0	۷.5 ٤5	5.0 0.2		
		168.0 ft	-banding at 75° to C.A.	0958 095 9			174.0	2.0	4 5	.8		1
		178.0 ft	-banding at 75° to C.A.	0960			178.0	2.0	× 5	.4		
	•	178.0-179.0 ft	-mineralization:possible Ag-mineral(s) present in 1 mm lamination at 178.2 ft; occurs in wollastonite rich section	0962		181.0	181.0 183.0	1.0 2.0 2.0	4 5 25	7 25 .4 4 0.2	3.68	
		187.7 ft	-mineralization: 2 mm lamination of po; banding at 70 to C.A.	0963 0964 0927		186.0 189.3	186.0 189.3 191.8	3.0 3.3 2.5	2 5	The second second		
	ia,	190.3 ft	-mineralization: 1 cm patch of dissem- inated po; banding at 60° to C.A.	0928 0929 0930		213.0	200.1 215.5 222.6	2.1 2.5 1.5	4 5 4 5	40.2		
		198.0 ft	-banding at 65° to C.A.	0932		229.5	231.0	1.5	4 5	2.3		
		198.2-240.5 ft	-dominantly well banded limestone/coarse marble, wollastonite bands become less numerous; first appearance of carbon- aceous laminae and fractures; no significant mineralization	0968 0969		233.5	233.5 236.5 239.5	1.1 3.0 3.0	5 4 5 4 5	< 0.2		
		208.0 ft	-banding at 70° to C.A.				1			- 1		
		218.0 ft	-banding at 75° to C.A.									
		228.0 ft	-banding at 70° to C.A.		9							
		229.5-231.0 ft	-mineralization:1% po in stringers over 1.5 ft interval					e; :+				
		238.0 ft	-banding at 75° to C.A.									

NAME OF PROPERTY____ JACKPOT

HOLE NO. JP83-9

SHEET NO. 6 Of 7

200	FAGE		DESCRIPTION			SAMP	LE				ASSAYS	5
FROM	TO		DESCRIPTION	NO.	5 SULP		FOOTAGE		2	Ac	Pb%	Zn%
		239.5-240.5 ft	-mineralization:overall 5-6% po with rare sphalerite grains	0840 0965			240.5 242.9	1.0	10	(ppm) 1.3 <0.2	oz/t	oz/t
		240.5-242.9 ft	-coarse wollastonite-rich section with minor sky blue marble bands									
		242.9 ft	-contact set at disappearance of wollastonite; contact at 70° to C.A.						5	2		
242.9	312.8	REEVES FORMATIO	N (Unit 4b)	0966			245.0	2.1		<0.2 -0.2		1 1
		limestone; med light to dark -overall sulphi closely associ	bonaceous-rich limestone and dolomitic ium-grained with coarse marble sections; grey de content ranges up to 2%; sulphides an ated with carbonaceous bands; mineral- ts mostly of po with lesser py and minor	0841 0978 0979 e 0980 0981	2% 2% 2% 2% 2% 2%	262.0 265.0 268.0 271.0 274.0 276.0	265.0 268.0 271.0 274.0 276.0 278.0 280.0	3.0 3.0 3.0 3.0	20	40.2	.04 .02 <.01 <.01 <.01 <.01	1 2015/46
		248.0 ft	-banding at 45° to C.A.	0972 0842		280.0	282.6	2.6			< .01	.02
		258.0-270.0 ft	-mineralization:2% po, py and lesser sphalerite in carbonaceous-rich limesto	0973 ne0974		283.4	283.4 286.0 288.0	0.8 2.6 2.0	2403	1.5	<.01 .03 <.01	1 1.04 .04 .01
	1	258.0 ft	-banding at 60° to C.A.	0975		288.0	290.8	2.8			4.01	.03
		268.0 ft	-banding at 65° to C.A.			1						
	9	270.0-282.6 ft	-carbonaceous material decreases; sulphicontent decreases to less than 1% overa	de 11								
	1	278.0 ft	-banding at 70° to C.A.								/	
		282.6-283.4 ft	-mineralization:overall 5% py,po and sphalerite in possible fault zone; wea silicification occurs at 282.9-283.2 f fault oriented at 65° to C.A.	k t;								
		283.4-290.8 ft	-barren dolomite									
		286.0 ft	-banding at 70° to C.A.									

HOLE NO. JP83-9 SHEET NO. 7 Of 7

FROM TO	3% 15% 1% 2% 15%	290.8 294.0 297.0 301.5 304.0 307.0	304.0	3.0 4.5 2.5	20 60 10	0.5	Pb% < .01 0.06 0.14	1.23
290.8-301.5 ft -mineralization:overall 9-10% sulphides concentrated into bands of disseminated to massive sulphides, Zn=2-3%; sulphide banding at 70° to C.A. at 198.0 ft 0844 33 0845 158 0845	2% 3% 15% 1% 2%	290.8 294.0 297.0 301.5 304.0 307.0	294.0 297.0 301.5 304.0 307.0	3.2 3.0 4.5 2.5	(ppb) 20 60 10	(ppm) 0.2 0.5	< .01 0.08	1.46 1.23
312.8 318.8 REEVES FORMATION(Unit 4c) -coarse-grained massive white marble, no apparent mineralization 318.8 ft —contact at 70° to C.A. 318.8 328.0 REEVES FORMATION (SKARN ZONE) -dominantly siliceous calc-silicate skarn with occasional unaltered marble sections; no apparent mineralization 327.0 ft —banding at 60° to C.A. END OF HOLE	106	1	310.3	0.7 2.6	10		<.01 <.01 <.01 <.01 <.01	.21 .01 9.30

NAME OF	PROPERTY _	JACKPOT	Si.			
HOLE NO.	JP83-10	LENGTH	105.	.0 f	t	
LOCATION	Drilled	under south	chute	of	Double	Standard
LATITUDE	11+60W	DEPART	URE 24	+30S		
LEVATION		AZIMUTH	06	66.5	0 011	-35°
		1983 FINISHE			11,1983	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
					ues -

REMARKS 35 ft west of south shaft; also 28' at 319 AZ from crossing of lines JP83-9,10 and JP83-2

LOGGED BY J.R.FOSTER

001	AGE		DESCRIPTION			SAMP	LE			A	5 S A	Y S	
ком	то		DESCRIPTION	NO.	SULPH- IDES	FROM	TO TO	TOTAL	Au	Ag	Au	Ag	
0	2.0	CASING							(ppb)	(mqq)	oz/t	oz/t	
. 0	12.5	RUBBLE -mainly broke	n limestone, only 25% core recovery	0301		2.0	7.0		4 5	0.4			
2.5	14.5	GRANITOID DYK -contacts obs	E cured by broken core	0302 0303		7.0 12.5	12.5	5.5	4 5	0.4			
1.5	105.0		ION (Unit 4a) limestone/dolomitic limestone with bands; banding is on 1 cm scale	0304 0305 0307		14.5 16.8 20.3	16.8 20.3 22.0	3.5	5	0.4		2.40	
		14.5-20.3 ft	-dominantly white and pale green siliceous calc-silicate skarn; so well laminated limestone bands ar present; no apparent mineralizati	e 0310		22.0 23.0 24.0	23.0 24.0 25.0	1.0 1.0 1.0	4 5	63.6 < 0.2 < 0.2		2.48	
		20.3-22.0 ft	-well banded limestone with numero serpentine-rich laminae; banding a to C.A.; may be one speck of Ag m	t 50°									
		22.0-23.0 ft	-mineralization:very fine dissemin Ag mineral(s) in dark grey limest overall less than 1% mineralizati contorted black carbonaceous lami are closely associated with Ag zo	one, on; nae									
-		23.0-24.0 ft	-mineralization(?):may be extremel grained Ag mineral(s) present in grey limestone, banding at 75° to	medium									
		24.0-25.0 ft	<pre>-mineralization(?):as for preceedi section; banding indicates strong folding</pre>					-			74		

NAME OF PROPERTY___JACKPOT

HOLE NO. _ JP83-10

SHEET NO. 2 of 3

FOOT	AGE		DESCRIPTION			SAMPL	E				ASSAYS	
FROM	to		DESCRIPTION	NO	SULPH	FROM	FOOTAGE	TOTAL	Au	Ag		
		25.0-42.0 ft 25.0 ft 27.0 ft 30.0 ft 31.0-33.0 ft	-dominantly white to light grey limestone with cherty & wollastonite bands; few serpentine or carbonaceous laminae are present; no apparent mineralization -banding at 50° to C.Abanding at 45° to C.Abanding at 50° to C.Abanding locally brecciated, no apparent mineralization	0311 0312 0313 0314 0315 0316 0317 0318 0319 0320		25.0 27.0 29.0 31.0 33.0 36.0 39.0 42.4 45.0 48.0	27.0 29.0 31.0 33.0 36.0 39.0 42.4 45.0 48.0 51.0	2.0 2.0 2.0 3.0 3.0 3.4 2.6 3.0	pph) 4 5 4 5 4 5 4 5 4 5 5			
		33.0-42.4 ft	-dominantly light grey dolomitic lime- stone with considerable white siliceous and/or wollastonite bands; banding , variable from 0° to 70° to C.A. no apparent mineralization									
		42.4-52.0 ft	-dominantly medium grey dolomite/ dolomitic limestone; very mottled, patchy or brecciated appearance with dolomitic "fragments" in carbonaceous matrix; no apparent mineralization; radical banding changes indicate moderate to strong folding									
		47.0 ft	-banding at 70° to C.A.						1	0		
		52.0-105.0 ft	limestone with numerous white wollastonite bands up to 1 cm wide; banding more regular than preceding sections, but still shows evidence	0321 0322 0323 0324 0325 0326		51.0 54.0 57.0 60.0 64.0 68.0	54.0 57.0 60.0 64.0 68.0 72.0	3.0 3.0 4.0 4.0	< 5 < 5 < 5 < 5 < 5 < 5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2		
								-				

FORM 2

NAME OF PROPERTY JACKPOT

HOLE NO. JP83-10

SHEET NO. 3 of 3

FOOTA	AGE		DESCRIPTION			SAMP	_E				ASSAYS	
FROM	то		DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	Au	Ag		
105.0		57.0 ft 64.5 ft 70.0 ft 74.0 ft 85.0 ft 85.0-98.0 ft 99.0 ft END OF HOLE	-banding angles variable from 0° to 70° to C.A.	0327 0328 0329 0330 0331 0332 0333		72.0 76.0 80.0 85.0 90.0 95.0	76.0	1.0	(ppb) 4 5 4 5 4 5 4 5 4 5 4 5 4 5			

NAME OF	PROPERTY	JACKPOT	
HOLE NO	JP 83-1	LENGTH_	242.0 ft
LOCATION	Feldspar	Porphyry targ	et NW of Double Standard
LATITUDE	15+60W	DEPARTUR	E _2+75S
ELEVATIO			
STARTED.	July 12,	1983 FINISHED	July 14, 1983

Unocr	rec	ted	Co	rrec	ted
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
				_	
		-	-		

HOLE NO. JP83-11 SHEET NO. 1
REMARKS LINE 15+74W 2+85S

LOGGED BY J. R. FOSTER

F 0 0 1	FAGE				5 A M P	LE			A	SSA	Y S	
FROM	то	DESCRIPTION	NO.	SULPH-		FOOTAGE					T	Т
	, .			IDES	FROM	то	TOTAL	Au (nnh)	Ag			\vdash
0	10.0	CASING						(ppb)	(ppm)			
10.0	26.5	RUBBLE - broken core, some Truman-like skarn, gabbro										
26.5	33.0	GRANODIORITE - medium-grained felsic dyke, contacts obscured by broken core 28.0 - 38.0 ft - only 50% core recovery										
33.0	139.5	GABBRO -dominantly medium-grained biotite-bearing gabbro, other fine-grained phases present in minor amounts 79.6-80.3 ft -granitoid dyke										
39.5	148.0	MAJOR FAULT/FRACTURE ZONE -dominantly dioritic and tonalitic debris, with some siliceous metasedimentary debris at the end of this section										
48.0	153.4	<pre>RENO FORMATION -very siliceous, massive to weakly laminated at 50° to c.adark purple brown, overall less than 1% finely disseminated py -core is very blocky</pre>	0371		148.0	0153.4	5.4	4 5	<0.2			

FORM

NAME OF PROPERTY_____JACKPOT

HOLE NO. JP 83-11 SHEET NO. 2 Of 5

FOOT	AGE	DESCRIPTION			SAMPI	LE				ASSAYS	
FROM	10	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	Au	Ag		
153.4	158.6	TONALITE						ppb)	(ppm)		
			0372		153.4	154.8	1.4	< 5	<0.2		
		154.8-155.3 ft -Reno inclusion oriented at 55° to c.a.	0373 0374			155.3	0.5	4 5 4 5	40.2		
		158.6 ft -contact obscured by blocky core									
58.6	162.0	RENO FORMATION -siliceous, dark purple-brown metasediment; very massive			158.6	159.6	1.0	< 5	0.3		
		no apparent laminations except in contact with feldspa porphyry -overall 1% py concentrated in fractures and as very	r 0376		159.6	162.0	3.0	< 5	0.5		
		fine disseminations -unit is very well fractured, but not obviously altered 162.0 ft -contact obscured by blocky core									
62.0	171_8	FELDSPAR PORPHYRY									
		-very siliceous, feldspar phenocrysts up to 2mm, very well fractured; porphyry has pale green colour, possibly due to alteration	0377 0378 0379	3%	162.0 166.0 168.0	168.0	2.0	< 5 < 5 < 5	0.2 0.3		
		-overall sulphide content is 2-3% py occuring as discrete disseminated grains and as coarse coatings on fracture surfaces 171.8 ft -contact obscured by blocky core									
71 8	177.0	RENO FORMATION									
71.0	177.0	-massive, fine-grained, dark purple where unaltered -altered to light green about lmm on either side of fractures; overall 2-3% py concentrated mainly along	0380 0381 0382 0383	3% 3%	171.8 173.0 174.5 176.0	174.5	1.5	45	0.3 0.3 0.3		
										22	+
					9						

HOLE NO. __JP 83-11 _____ SHEET NO. __3 of 5

100	AGE	DESCRIPTION			SAMP	LE				ASSAYS	
FROM	TO	DESCRIPTION	140.	5 SULP		FOOTAGE		7			- 1
77 0	193.7	PELDEDAD DODDUVOV		IDES	FROM	10	TOTAL	Au (ppb	Ag (ppm)		-
	193.7	complex; py occurs as disseminations and coating fractures, sph and rare galena locally occur as fine to medium aggregates; overall 2-3% sulphides and less than 1% sphalerite + galena 177.0-183.7 ft - 2-3% py, sphalerite not identified; porphyry is well fractured	0385 0386 0387 0388 0389 0390	3% 3% 2% 5% 3%	180.9 183.7 184.5 187.0	180.1 180.9 183.7 184.5 187.0 190.0 193.7	2.8 0.8 2.5 3.0	4 5 4 5 5 5 5 0 4 5	0.6 0.3 0.2 0.6 4.9 0.8 0.2		
		183.7-184.5 ft -porphyry appears brecciated; overa 1-2% sulphides, mostly py and mino sphalerite	11								
		184.5-187.0 ft -mineralization: overall 3-5%, sulphides, mostly py, up to 1% sphalerite; first appearance of galena									
		187.0-193.7 ft -mineralization; sulphide content decreases to 2-3% overall, only py, minor sphalerite and rare po recognized									
		197.3 ft -contact obscured by blocky core									
93.7	197.2	RENO FORMATION									
		-overall sulphide content is up to 1%, only py recognized as very fine disseminations and occasional coarse fracture surface coatings	0391 0392 0393		194.7	194.7 196.2 197.2	1.0 1.5 1.0		0.3 0.3 0.3		
		197.2 ft -contact obscured by blocky core									
							1				-
					3						

NAME OF PROPERTY JACKPOT

HOLE NO. JP 83-11 SHEET NO. 4 OF 5

FOO	TAGE		ESCRIPTION			SAMP	LE				ASSAYS		
FROM	то	В	ESCRIPTION	NO.	" SULP	The second second second	FOOTAGE						_
		****		t	IDES	FROM	то	TOTAL	ppb)	ppm)		=	
197.2	215.2	increase, overall fractions overall 3-5% sulphides, sphalerite, with rare 197.2-208.0 ft -mine sph 208.0-211.0 ft -mine in fel mos min fractions and 211.0-212.3 ft -mine less and 213.0-215.2 ft -mine sph	ries, grain size shows slight sturing is very intense mostly py with lesser po and galena locally present ralization: 3-5% py and minor nalerite ralization: up to 5% sulphides a zoneof Reno inclusions in dspar porphyry; sulphides are stly finely disseminated py and nor po, py also appears along actures ralization: 5% sulphides, mostly lesser sphalerite and po, and nor galena, less than 2% sph + lena ralization: 3-5% po, py and ser sphalerite in quartz veining in feldspar porphyry host rock ralization: 5% po. py and minor nalerite present sact obscured by broken core	al .	3% 3% 5% 5% 5% 5%	200.0 203.0 205.2 207.1 208.0 211.0 212.3	200.0 203.0 205.2 207.1 208.0 211.0 212.3 213.0 215.2	3.0 2.2 1.9 0.9 3.0 1.3 0.7	5 45 45 45 10 45	0.2 <0.2 0.3 0.5 0.5 0.5 0.5			
								* +					

NAME OF PROPERTY JACKPOT

HOLE NO. __ JP 83-11

____ SHEET NO.____

5 of 5

F001	TAGE				SAMP	LE				ASSAYS		
FROM	70	DESCRIPTION		*, SULPH		FOOTAGE		1	No.		-	
TO M				IDES	FROM	TO	TOTAL	Au ppb)	Aq (ppm)			-
215.2	242.0	RENO FORMATION -siliceous, dark purple brown; less intensely fractured -mineralization drops to 1-2% overall, mostly finely disseminated po and minor py coating fracture surfaces -lcm quartz vein present at 241.0 ft -core is very blocky -no obvious alteration is apparent	0404 0413 0405 0406 0407 0408 0409 0410 0411		216.7 218.0 221.0 224.0 227.0 230.0 233.0 236.0	216.7 218.0 221.0 224.0 227.0 230.0 233.0 236.0 239.0 242.0	1.3 3.0 3.0 3.0 3.0 3.0 3.0	5 4 5 4 5 4 5 4 5	0.6 0.6 0.5 0.5 0.4 0.5 0.5 0.5			
242.0		END OF HOLE.										
										,		
		25										

NAME OF	PROPERTY	JACKPO	T			
HOLE NO.	JP83-12	LENGTH_				
LOCATION	Anomaly45,	700 ft South	of Doubl	e Standard	Glory I	H
LATITUDE	6+30W	DEPARTURE _	7+20S			
			101°	DIP -885		
STARTED _	July 14, 19	983 FINISHED	July 14,	1983		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
•					
- 1	-				

HOLE NO.JP83-12 SHEET NO. __1 of 2

REMARKS <u>East Boundary of</u>

Vulgar Fraction, 34.0 ft at
AZ 281° from LINE 6W-7+00S

LOGGED BY J.R. FOSTER

F 0 0	TAGE				SAMP	LE			A	SSAY	5	
FROM	то	DESCRIPTION	NO.	SULPH- IDES	FROM	TO	TOTAL	Au (ppb	Ag) (ppm)			
0	12.0	CASING						1.22				
12.0	18.4		0505 0506		12.0 15.0	15.0 18.4	3.0 3.4	∠ 5 < 5				
18.4	44.5	<pre>-laminations indicate strong folding is locally present -actinolite-rich fractures are present -laminations are variable from 60° to c.a. to parallel to c.a.; in general laminations are parallel or at very low angles to c.aoverall less than 1% sulphides, mostly py on fracture surfaces and lesser po</pre>	0512 0513 0514 0515		18.4 20.4 23.0 26.0 29.0 32.0 35.0 38.0 41.0	20.4 23.0 26.0 29.0 32.0 35.0 38.0 41.0 44.5	2.0 2.6 3.0 3.0 3.0 3.0 3.0 3.0 3.5	< 5 < 5 < 5 < 5	0.4 0.4 0.6 < 0.2 < 0.2 0.2			
14.5	48.0		0519 0520		44.5 46.0	46.0 48.0	1.5 2.0	₹ 5 ₹ 5		12		

FORM

JACKPOT

HOLENO JP83-12

SHEET NO.__

2 of 2

FOOTAGE				SAMPI	LE			,	ASSAYS	
FROM TO	DESCRIPTION	NO.	% SULPH		FOOTAGE		Au	Ag	-	
		+	IDES	FROM	TO	TOTAL	100000	(ppm)		
48.0 49.8	TRUMAN FORMATION -similar to above; laminations at 20° to c.aup to 3% sulphides, mostly weakly magnetic po and some py 49.8 ft -contact at 40° to c.a.	0521	3%	48.0	49.8	1.8	< 5	1.3		
49.8 53.3	MAFIC LAMPROPHYRE -less chloritic than above lamprophyre 53.5 ft -contact at 30° to c.a.	0522 0523		49.8 52.0	52.0 53.3	2.2	4 5 4 5	0.2		
53.3 68.6	TRUMAN FORMATION -calc-silicate skarn with biotite-rich bands; bands and laminae are contorted, indicating strong folding -overall sulphide content is less than 1% 63.0 ft -bands at 45° to c.a.	0524 0525 0526 0527		56.0 59.0	56.0 59.0 62.0 65.0	2.7 3.0 3.0 3.0	< 5 30 < 5 < 5	0.2 <0.2 0.2 0.2		
	66.0 ft -bands at 60° to c.a. 68.6 ft -contact at 75° to c.a.	0528		65.0	68.6	3.6	< 5	< 0.2		
68.6 100.0	GRANODIORITE -massive, medium-grained, slight pink colour -rare metasedimentary inclusions are present -overall much less than 1% py present	0530 0531 0532		73.0	69.6 76.0 93.0	1.0 3.0 3.0	< 5 < 5 < 5	<0.2 <0.2 <0.2		
00.0	END OF HOLE.								-	
						2				-

FORM .

NAME OF	PROPERTY	JACKPOT	
OLE NO.	JP83-13	LENGTH	
OCATION	420 ft Sout	h of Double	Standard Glory Hole
ATITUDE	8+6 1W	DEPARTURE _	5+35S
LEVATION		_ AZIMUTH	079° DIP -50°
STARTED _	July 15,198	FINISHED	July 16,1983

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
			TOTAL STATE		
			1		

HOLE NO. JP83-13 SHEET NO. 1 of 3
REMARKS 61.0 ft at AZ 3090
from LINE 8W-5+35S

LOGGED BY J.R. FOSTER

	TAGE				SAMP	LE			^	SSAY	5
ROM	то	DESCRIPTION	NO.	SULPH- IDES	FROM	TO	TOTAL	Au	Ag		
0	12.0	CASING						(ppb)	(ppm)		
2.0	13.0	RUBBLE									
13.0	30.4	REEVES FORMATION UNIT 4b (?) -dominantly medium-grained light grey do dolomitic limestone, vague to good ban lcm scale -overall much less than 1% sulphides, on recognized 13.5 ft -banding at 80° to c.a -patch of semi-massiv overall 1-2% po fro overall 1-2% po fro fault zone, sandy de dolomitic limestone, becomes very vague -banding at 75° to c. -weakly mineralized, than 1% sulphides, with very rare py; to c.a. 27.0-28.0 ft -contact obscured by	ding on 0443 0444 1y po 0445 0446 0447 e po present, 0448 bris present 0450 banding a. everall less almost all po banding at 80° on at 27.9 ft, be po		13.0 14.5 15.5 18.8 21.0 24.0 26.0 27.0 28.0	14.5 15.5 17.7 21.0 24.0 26.0 27.0 28.0 30.4	1.5 1.0 2.2 2.2 3.0 2.0 1.0 2.4	< < < < < < < < < < < < < < < < < < <	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		

NAME OF PROPERTY______JACKPOT

HOLE NO. __JP83-13 _____ SHEET NO. __

HEET NO. 2 of 3

FOOT	AGE	DESCRIPTION			SAMP	LE				ASSAYS	
FROM	TO	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL				
30.4	39.8	no significant mineralization is associated with them 39.0-39.8 ft -wollastonite skarn -contact uncertain, may be at 40° to	0451 0452 0453 0454		30.4 33.0 36.0 39.0	33.0 36.0 39.0 39.8	2.6 3.0 3.0 0.8		Aq (ppm) <0.2 <0.2 <0.2 <0.2		
39.8	62.6	TONALITE -dominantly medium grained massive biotite tonalite, locally with metasedimentary inclusions -sulphide content is insignificant 41.0-41.9 ft -metasedimentary inclusion, probably Truman Fm.; brown biotite-rich, sulphide content negligible 42.5-45.9 ft -metasedimentary inclusion as above, foliation at 60° to c.a. 53.4-54.6 ft -metasedimentary inclusions of calc-silicate skarn; foliation at 90° to c.a. 58.5-62.0 ft -metasedimentary inclusion as above; foliation at 80° to c.a. -contact is gradational into underlying fine-grained subvolcanion set at final disappearance of coarser granitoid material	0455 0456 0457		39.8 42.5 53.4	41.0 45.9 54.6	1.2 3.4 1.2	5 30 5	0.2		
							ů i				-

NAME OF PROPERTY______JACKPOT

HOLE NO. JP83-13 SHEET NO. 3 OF 3

87.2		0458 0459 0460 0461		62.4 63.8	63.8	1.4	4 5	Aa (ppm) 0.3			
	<pre>-white feldspar phenocrysts are set in a very sileceous light grey aphanitic matrix; only mafic mineral identified is biotite -locally contains partially assimilated tonalite and</pre>	0459 0460		62.4	63.8	1.4	(ppb)	(ppm)			
	-locally contains partially assimilated tonalite and	10.4 O T		66.8	66.8 70.0 73.1		< 5 < 5 < 5	0.3 0.5 0.2			
	-patchy rusty staining is common near fractures -overall sulphide content is less than 1%, only py and po identified	0462 0463 0464 0465 0466		73.1 74.6 76.1 77.2 79.8	74.6 76.1 77.2 79.8 82.4	1.5 1.5 1.1 2.6 2.6	< 5 < 5 < 5 < 5 < 5	0.2 0.3 0.3 0.3			
	"intrusive breccia" near end of hole in JP82-4 73.1-87.2 ft -essentially inclusion-free massive feldspar porphyry; overall less			82.4 84.0	84.0 87.2	1.6	< 5 < 5	0.6			
	83.5 ft -weak concentration of py, overall less than 1% -contact at 60° to c.a.										
171.0		0469		87.2	88.2	1.0	< 5	0.6			
	END OF HOLE										
						- +					100
	71.0	-inclusion-rich section, similar to	62.6-73.1 ft -inclusion-rich section, similar to "intrusive breccia" near end of hole in JP82-4 73.1-87.2 ft -essentially inclusion-free massive feldspar porphyry; overall less than 1% mineralization 83.5 ft -weak concentration of py, overall less than 1% 87.2 ft -contact at 60° to c.a. 71.0 MAFIC TONALITE/DIORITE -medium grained, slightly more felsic than diorites encountered in other drill holes -weakly foliated at 65° to c.ano apparent mineralizaton END OF HOLE	62.6-73.1 ft -inclusion-rich section, similar to "intrusive breccia" near end of hole in JP82-4 73.1-87.2 ft -essentially inclusion-free massive feldspar porphyry; overall less than 1% mineralization 83.5 ft -weak concentration of py, overall less than 1% 87.2 ft -contact at 60° to c.a. MAFIC TONALITE/DIORITE -medium grained, slightly more felsic than diorites encountered in other drill holes -weakly foliated at 65° to c.ano apparent mineralizaton END OF HOLE	## 100 ## 100	62.6-73.1 ft	62.6-73.1 ft	62.6-73.1 ft -inclusion-rich section, similar to "intrusive breccia" near end of hole in JP82-4 73.1-87.2 ft -essentially inclusion-free massive feldspar porphyry; overall less than 1% mineralization 83.5 ft -weak concentration of py, overall less than 1% -contact at 60° to c.a. 71.0 MAFIC TONALITE/DIORITE -medium grained, slightly more felsic than diorites encountered in other drill holes -weakly foliated at 65° to c.a. -no apparent mineralizaton END OF HOLE -inclusion-rich section, similar to 0467 0467 0468 82.4 84.0 87.2 3.2 <5 84.0 87.2 3.2 <5 84.0 87.2 3.2 <5 84.0 87.2 3.2 <5 84.0 87.2 3.2 <5 84.0 87.2 3.2 <5 85.4 84.0 87.2 3.2 <5 86.5 to c.a.	62.6-73.1 ft -inclusion-rich section, similar to	62.6-73.1 ft -inclusion-rich section, similar to "intrusive breccia" near end of hole in JP82-4 73.1-87.2 ft -essentially inclusion-free massive feldspar porphyry; overall less than 1% mineralization 83.5 ft -weak concentration of py, overall less than 1% -contact at 60° to c.a. 71.0 MAFIC TONALITE/DIORITE -medium grained, slightly more felsic than diorites encountered in other drill holes -weakly foliated at 65° to c.a. -no apparent mineralizaton END OF HOLE 82.4 84.0 87.2 3.2 < 5 0.5 84.0 0.6 84.0 87.2 3.2 < 5 0.5 85.2 0.6 87.2 88.2 1.0 < 5 0.6	62.6-73.1 ft -inclusion-rich section, similar to "intrusive breccia" near end of hole in JP82-4 73.1-87.2 ft -essentially inclusion-free massive feldspar porphyry; overall less than 1% mineralization 83.5 ft -weak concentration of py, overall less than 1% -contact at 60° to c.a. 71.0 MAFIC TONALITE/DIORITE -medium grained, slightly more felsic than diorites encountered in other drill holes -weakly foliated at 65° to c.ano apparent mineralizaton 82.4 84.0 87.2 3.2 <5 0.6 84.0 87.2 3.2 <5 0.6 84.0 87.2 3.2 <5 0.6 84.0 87.2 3.2 <5 0.6 84.0 87.2 3.2 <5 0.6 84.0 87.2 3.2 <5 0.5

NAME OF	PROPERTY _	JACKPOT	La v		
HOLE NO.	JP83-14	LENGTH .	150.0	ft	
LOCATION		#45,450 ft S	outh of	Double	Standard
LATITUDE	9+45W	DEPARTU	RE 6+30S		
		AZIMUTH			- 50°
STARTER	July 16.	1983 FINISHER	Tuly	16.198	3

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

REMARKS East Boundary of Vulgar Fraction, also 65' perpendicular to southeast from L10W-6+36S

LOGGED BY J.R. FOSTER

001	AGE		0.5.5.5.0.10.5.1.0.4			SAMP	LE			A :	5 5 A Y 5	
FROM	то		DESCRIPTION	NO. 5	UL PH-	FROM	FOOTAGE TO	TOTAL	Au	Ag		
										(ppm)		
0	12.0	CASING										
12.0	15.5	RUBBLE		1 1								- 1
15.5	64.8	featuring pate green serpent -some white to -dolomite is va-	N UNIT 4b k grey fine to medium-grained dolomite ches or discontinuous laminae of dark ine-carbonaceous material pale orange dolomite bands are present guely to well banded de content is negligible -banding at 65° to c.a.	0470 0471 0472 0473 0474 0475 0476		15.5 18.0 21.0 24.0 27.0 30.0 33.0	24.0 27.0 30.0 33.0 35.4	3.0 3.0 3.0 3.0 2.4	< 5 < 5 < 4 < 5 < 5 < 5 < 5	1.6 1.6 3.4 1.6 3.0 1.8 1.8		
		23.0 ft	-banding at 80° to c.a.	0477		35.4	38.0 41.0	2.6	< 5 < 5	1.6		
		28.0 ft	-banding at 80° to c.a.	0479		41.0	44.0	3.0	< 5	1.4		
	4	33.0 ft	-banding at 75° to c.a.	0480 0481		44.0		1.4	< 5 < 5	1.6		
		35.4-38.0 ft	-white to orange dolomite band; no apparent mineralization	0482		47.1	49.5	2.4	35	1.3		
		39.0 ft	-banding at 70° to c.a.									
		44.0 ft	-banding at 75° to c.a.		- 1							
		45.4-47.1 ft	-white dolomite with pale green serpentine-filled fractures; no apparent mineralization									
		47.1-64.6	-light grey dolomitic limestone									

HOLE NO. JP83-14 SHEET NO. 2 Of 4

FOOTAGE	DESCRIPTION			SAMPL	.€				ASSAYS	
FROM TO	DESCRIPTION	NO.	", SULPH		FOOTAGE				T	- 1
	REEVES FORMATION UNIT 4b (contd.)		10ES	FROM	10	TOTAL	pph)	(bbm)		
	49.5-50.5 ft -mineralization: less than 1% sphalerite weakly concentrated	0483 0484		49.5	50.5	2.5	< 5 < 5 < 5	2.2		
		0485 0486 0487		53.0 57.0 60.0	57.0 60.0 64.8		45	2.4 2.3 1.4		
	64.6-64.8 ft -pale green siliceous serpentine- rich skarn, exact contact obscured by blocky core									
64.8 81.0	TONALITE -medium-grained, light grey, C.I. 5-10; very few inclusions of metasediment are present	0489		64.8	65.8	1.0	₹5	0.5		
	78.0-79.0 ft -metasedimentary inclusion oriented at 50° to c.a.; overall 1% py + po is present	0507 0490 0508		74.0 78.0 79.0		1.0	₹5 ₹5 ₹5	0.6 0.6 0.5		
81.0 101.6	partially to almost totally assimilated inclusions	0491 0492		81.0 84.0	87.0	3.0	4 5 4 5	0.3		
	-overall less than 1% sulphides, mostly po and lesser	0493 0494 0495		87.0 90.0 93.0	90.0 93.0 95.0	3.0 3.0 2.0	k 5	0.3 0.3 0.3		
						* *				

NAME OF PROPERTY______ JACKPOT

HOLE NO. ____ JP83-14

SHEET NO._

3 of 4

FOO	TAGE	DESCRIPTION			SAMP	LE				ASSAYS	
FROM	TO	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	Au	Aa		
		SUBVOLCANIC FELDSPAR PORPHYRY (contd.) 95.0-101.6 ft -possible alteration zone; greenish mineral (serpentine?) appears as disseminated grains; overall sulphide content is negligible 101.6 ft -contact at 30° to c.a.			95.0 98.0	98.0 100.0 101.6	3.0	(ppb) 4 5 4 5 4 5	(ppm) 0.5 0.3 <0.2		
101.6	111.1	more common; inclusions are generally well- brecciated 101.6-104.3 ft -possible altered tonalite: slight	0499 0500 0501 0502 0503		104.3	104.3 105.9 107.1 108.3 111.1	1.6 1.2 1.2	<5 <5 <5 <5 <5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		
111.1	115.5		0504 0509 ft			113.0 115.5		< 5 < 5	<0.2 0.2		

FORM 2

HOLE NO. ____ JP83-14 ____ SHEET NO. ___ 4 Of 4

F001	TAGE			-		SAMPL	E				ASSAYS		
FROM	10		DESCRIPTION	NO.	~ SULPH		FOOTAGE						
FROM	10				IDES	FROM	TO	TOTAL	Au	(ppm)		-	-
115.5	134.7	SUBVOLCANIC FELDS: -similar to above appear in very apparent altera	porphyry: white feldspar phenocrysts siliceous aphanitic matrix; no tion is present	0534 0535 0536 0537		118.0 119.0 120.0 122.0	118. 119. 120. 122. 123. 125.	1.0 1.0 2.0 1.0	4 5 4 5 4 5 4 5 4 5	<0.2			
		119.0-120.0 ft	<pre>content is up to 1%, mostly po, py, rare cpy and rare galena -mineralization: coarse blebs of po, rare cpy, py and galena occur in quartz vein and porphyry host;</pre>	0539 0540 0541 0542		125.0 126.1 127.1 128.5 130.0	126. 127. 128. 130. 132. 134.	1.1 1.0 5 1.4 0 1.5 0 2.0	< 5 < 5 < 5 < 5 < 5	<0.2 <0.2 <0.2 <0.2			
		122.0-123.0 ft	-mineralization: rare galena and minor py present in porphyry host overall less than 1% sulphides			132.0	154.	2.,		3.7.2			
		126.1-127.1 ft	-mineralization: po and rare cpy occur in a pegmatite vein, overal 1-2% sulphides; no galena noted										
		128.5-134.7 ft	-intrusive breccia; features numerous partially assimilated diorite inclusions in porphyry host; foliation is at 70° to c.a.										
	15	128.5-130.0 ft	-mineralization: rare galena present with some cpy; overall less than 1% sulphides present										
		134.7 ft	-contact at 55° to c.a.			0 5				L X			
134.7	150.0	DIORITE - medium-grained;	negligible sulphide content	0559 0545		134.7				<0.2 <0.2			
150.0		END OF HOLE											
											.5		

-

NAME OF	PROPERTY	JACKPOT
HOLE NO.	JP83-15	LENGTH 168.0 ft
LOCATION	160 ft south	h of Double Standard Glory Hole
LATITUDE	10+72W	DEPARTURE 3+685
		AZIMUTH 051° DIP -42.5°
STARTED	JIIIv 17 198	83 FINISHED July 18, 1983

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	201501				

HOLE NOJP83-15 SHEET NO. 1 Of 3
REMARKS 72' Northwest of
L10W-3+68S

LOGGED BY J.R. FOSTER

F 0 0 1	AGE			s	AMP	LE			A	5 5 A	r 5	
FROM	то	DESCRIPTION	NO. SUI	LPH-	FROM	FOOTAGE TO	TOTAL	Au	Ag			
0	12.0	CASING						(ppb)	(ppm)			
12.0	86.5	GABBRO -massive, medium grained mafic intrusive, CI=35-40 -overall sulphide content is insignificant 13.0-18.0 ft -only 40% core recovery 18.0-68.0 ft -only 70-80% core recovery 68.0-86.5 ft -core recovery up to 95-100% 86.5 ft -contact at 65° to c.a.	0800		85.5	86.5	1.0	4 5	0.4			
36.5	106.2	TRUMAN FORMATION -very well foliated, biotite-rich metasedimentary rock -overall sulphide content is negligible 88.0 ft	0801 0802			87.5 100.0	1.0	£ 5 £ 5	0.6 0.2			
.06.2	168.0	REEVES FORMATION UNIT 4c -dominantly medium grained massive white marble, compositional banding is vague to non-existant -overall sulphide content is negligible; locally po + py are weakly concentrated up to several percent over short core intervals										
							~ +-			N.		

FORM

NAME OF PROPERTY______JACKPOT

HOLE NO. JP83-15

SHEET NO.__

2 of 2

FOOT	AGE					SAMPL	E		1		ASSAYS	
FROM	10		DESCRIPTION	NO.	5 SULPH		FOOTAGE					
					1085	FROM	70	TOTAL	(pph)	(ppm)		
		REEVES FORMATION (106.2-110.3 ft	-marble, light grey, vaguely	0803 0804			117.	3.0	< 5 < 5	۷ 0.2 0.4		
		110.3-110.6 ft	-wollastonite skarn with 1-2mm garnet-rich band adjacent to	0948 0949 0950 0951		122.0	125. 127.	2.7 3.0 2.0	45	<0.2 <0.2 <0.2 <0.2		
		110.6-111.7 ft	-diorite dyke; no significant alteration or mineralization, lower contact at 60° to c.a.	0805 0952 0953	5%	129.0	130.	2.2 5 1.4 0 2.4 0 3.0	< 5 < 5	1.6	. 8	
		111.7-112.3 ft 112.3-118.2 ft	<pre>-wollastonite-garnet skarn -light grey marble, becoming finer- grained downhole; no significant mineralization; lower contact at 60° to c.a.</pre>	0954 0955		136.0	139.	3.0	45	<0.2 <0.2		
		118.2-119.3 ft	-granodiorite dyke; no significant mineralization; lower contact at 45° to c.a.									
		119.3-129.2 ft 129.2-130.6 ft	-barren marble; weakly banded at 70° to c.a.									
		129.2-130.6 10	-mineralization: overall 5% po disseminated over sample interval rare sphalerite grains are also present									
		130.6-158.8 ft 136.0 ft 149.0 ft	-essentially barren marble -vague banding at 50° to c.abanding at 55° to c.a.									

JACKPOT

HOLE NO JP83-15

SHEET NO.

3 of 3

FOOT	AGE				SAMP	LE				ASSAYS	
FROM	TO	DESCRIPTION	NO.	% SULP	н	FOOTAGE			T		
ROM	10		-	IDES	FROM	то	TOTAL	- 40	-		
		REEVES FORMATION UNIT 4c (contd.) 151.8-152.5 ft -mineralization: coarse po with minor cpy occurs in a dark gree serpentine + carbon-rich section overall 1-2% sulphides present,	n 0807	7	152.5	152.5 153.5 154.5	0.7 1.0 1.0	<pre></pre>	0.2 < 0.2 < 0.2		
		banding at 55° to c.a. 152.5-153.5 ft -barren marble 153.5-154.5 ft -mineralization: up to 2% po, associated with carbonaceous laminae									
		154.5-168.0 ft -barren medium grained marble -banding at 40° to c.a.									
168.0		END OF HOLE.									
	1										
							+ =				

NAME OF PROPERTY JACKPOT

HOLE NO. JP83-16 LENGTH 212.0 ft

LOCATION 690 ft south of Double Standard Clory Hole

LATITUDE 8+20W DEPARTURE 8+28 S

ELEVATION JUly 18, 1983 FINISHED July 19,1983

Ur	corre	ected	Cor	recte	d
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-49°	078	0	-49°	0780
212	-51°		212	-43°	
	-		-		

HOLE NOJ<u>P83-16</u> SHEET NO. <u>1 of</u> 5
REMARKS 35 ft at AZ 268°
from LINE 8+00W-8+00S

LOGGED BY J.R. FOSTER

F 0 0 1	AGE					SAMP	LE			Α :	SSAY	S
FROM	то		DESCRIPTION	NO.	SULPH- IDES	FROM	TO TO	TOTAL	Au	Ag		T
7			*						(pph)	(mgq)		
0	10.0	CASING					4				- 1	
10.0	13.0	RUBBLE									1	1
13.0	19.3	limestone; vagu		0546 0547			16.0 19.3		< 5 < 5	< 0.2 < 0.2		
19.3	36.5	-dominantly calca skarn, with mir (Truman Fm?)	nor biotite-rich metasediment	0548 0549 0550		22.3	22.3 24.0 26.8	1.7	< 5 < 5	< 0.2 < 0.2 < 0.2		
		19.3-22.3 ft	<pre>-dark purple biotite-rich metasediment, possibly Truman Fm.; overall sulphide content is 1-2% po; foliation at 45° to c.a.</pre>	0551		26.8	28.0	1.2	4 5	0.4		
		22.3-26.8 ft	-calcite-wollastonite-garnet skarn, banded at 60° to c.a.; no apparent mineralization									
		26.8-28.0 ft	-dark purple-brown metasediment, overall 1% po present	İ								
		28.0-33.5 ft	-rubble zone, possible fault or	552 553			33.5 34.6	5.5	< 5 < 5	< 0.2		
		33.5-34.6 ft	그는 그녀를 하게 가득하는 생각하게 하셨다면 한 경험을 하는 것이 하셨다면 하는 것이 되었다면 살아가는 그는 그는 그는 그를 다 하는데 살아	554			36.5	1.9	4 5	< 0.2		
		34.6-36.5 ft	-calcite-wollastonite-garnet- diopside-epidote skarn; no apparent mineralization								ě ju	
		36.5 ft	-contact at 50° to c.a.								- 1	

FORM I

JACKPOT NAME OF PROPERTY_

HOLE NO. __ JP83-16

SHEET NO.

2 of 5

FOO	TAGE		DESCRIPTION			SAMPL	E				ASSAYS	
FROM	то		DESCRIPTION	NO.	SULPH.	FROM	FOOTAGE	TOTAL	Au	Ag		1
36.5	44.6	metasedimentary to c.a. -overall 1-2% sul	contains numerous purple y inclusions which are foliated at 70° lphides, directly proportional to sedimentary inclusions; amount of rease downhole -contact at 85° to c.a.	D555 D556 D557 D558		36.5 38.5 41.0 43.0	38.5 41.0 43.0 44.6	2.5		<0.2 0.4 0.4 <0.2		
44.6	113.0	REEVES FORMATION -dominantly fine generally well material -overall less tha		0560 0561 0562 0563 0564		44.6 46.0 49.0 52.0 55.0	46.0 49.0 52.0 55.0 58.0	3.0	25 15 〈 5 〈 5 〈 5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2		
		64.0 ft 69.0 ft 77.0 ft 82.0-87.0 ft 93.0 ft 95.5-97.0 ft	<pre>-banding at 80° to c.abanding at 75° to c.abanding at 70° to c.azone of brecciation; considerable carbonaceous material is present, in both fragments and matrix; no apparent mineralization; banding at 80° to c.acarbonaceous banding at 80° to c.amineralization: overall 1-2% po, locally concentrated in 1cm bandsand as disseminations;</pre>	0569 0570 0571 0572 0573 0574 0575 0576 0577		58.0 61.0 64.0 67.0 70.0 73.0 76.0 79.0 82.0 85.0 85.0 91.0 94.0	61.0 64.0 67.0 70.0 73.0 76.0 79.0 82.0 85.0 88.0 91.0 94.0 95.5 97.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	4 5 6 7 8 8 7 8	<pre>< 0.2 < 1.3 1.0 < 0.2 < 0</pre>		

NAME OF PROPERTY___JACKPOT

JP83-16

SHEET NO. 3 of 5

FOOT	AGE		DECORPORA	1		SAMP	LE				ASSAYS	
ROM	TO		DESCRIPTION	NO.	% SULPH		FOOTAGE					
		DEGLEG BODMASTON II	NIM Ab (cont.d.)		IDES	FROM	to	TOTAL	(ppb)	(ppm)		
		REEVES FORMATION U 98.0-100.0 ft	-mineralization: rare sphalerite	0579 0580 0581		99.0	99.0 100.0 103.0	2.0 1.0 3.0		< 0.2 < 0.2 < 0.2		
		102.0 ft 107.0-108.0 ft	concentrated from 107.5-107.6 ft,	0582 0583 0584		103.0	106.0 107.0 108.0	3.0 1.0	< 5 < 5 < 5	1.3 0.8 0.8		
		110.0-111.0 ft	20-25% po + lesser sphalerite	0585 0586 0587	2%	108.0	111.0 112.0 113.0	3.0		0.2 0.2 0.2		
		113.0 ft	-contact at 25° to c.a.									
13.0	120.2	colour; molybden 113.0-114.9 ft	green serpentine, no apparent mineralization	0587 0588 0589 0590 0591		114.9 116.0 117.5	114.9 116.0 117.5 120.0 120.4	1.1		0.2		
	4	114.9-120.0 ft 116.0-117.5 ft	-medium-grained pale green to light grey; becomes less altered at 119.0-120.0 ft									
		116.0-117.5 16	<pre>-mineralization: less than 1% finely disseminated molybdenite present</pre>									
		120.0-120.2 ft	<pre>-pale pink contact zone; very rare molybdenite grains present</pre>				k					
		120,2 ft	-contact at 45° to c.a.									
								15 T II				

NAME OF PROPERTY______JACKPOT

HOLE NO. __ JP83-16 ____ SHEET NO. ___ 4 of 5

FOO	TAGE	DETERMINATION			SAMPL	.E				ASSAYS	5	
FROM	10	DESCRIPTION	NO.	1 SULPH		FOOTAGE			T			T
r nom	,,,			1085	FROM	10	TOTAL	Au			_	1
20.2	146.0	REEVES FORMATION UNIT 4a						(ppb)	(ppm)			
20.2	140.0	-mixed unit of medium to coarse-grained limestone,	592		120 4	122.	1 6	4 5	40.2		1	1
		dolomitic limestone, marble and occasional	593			125.					1	1
		wollastonite bands; bands are on 1-10cm scale	594	1		128.			< 0.2			1
	1 1	120.2-120.4 ft -pale green siliceous skarn	595			131.			<0.2			1
	1 1	121.0 ft -banding at 65° to c.a.	596			134.			< 0.2			1
		128.0 ft -banding at 60° to c.a.	597			137.		< 5	40.2		1	
		136.0 ft -banding at 60° to c.a.	598			140.		< 5	<0.2			1
		141.0 ft -banding at 70° to c.a.	0599			142.		< 5	0.2			1
	1 1	144.0-145.0 ft -mineralization: rare Ag minerals	600			144.		< 5	1.2		1	1
		in marble unit; overall much	6601			145.		45	0.6			1
		less than 1%	POOL		144.0	145.	, 1.0	1	0.0			
	1 1	145.6-146.0 ft -wollastonite-diopside skarn	602	1 5	145.0	146.	1.0	1 5	K 0.2			1
		146.0 ft -contact at 60° to c.a.	1002		113.0	1.0.		1	7			1
	1 1	140.0 12 Concact at 00 to c.a.	1					1			1	
146.0	149.3	GRANODIORITE	1						1 3			
		-similar to above granodiorite at 113.0-120.2 ft	0603		146.0	149.	3.3	45	0.2	10		1
		-contains 2-3% cream-coloured sphene	1				T. 7. 7. 7.		1.000			1
		-very rare molybdenite grains present										1
		149.3 ft -contact at 55° to c.a.						1			1	
								1	1			1
149.3	161.1	REEVES FORMATION UNIT 4a										
		-dominantly fine to medium-grained white limestone/	0604		149.3	152.	2.7	< 5	<0.2			1
		dolomitic limestone with minor serpentine-carbon	0605		152.0	155.	3.0				1	
		bands	0606		155.0	158.	3.0		40.2		1	1
		-sulphide content is negligible	0607		158.0	160.	2.0	< 5	0.3			
	4	160.8-161.1 ft -wollastonite-serpentine skarn; no	0608		160.0	161.	1.1	4 5	40.2	la i	1	1
		apparent mineralization	- Constitution		190000000000000000000000000000000000000	Chromital Control						1
		-contact at 10-15% to c.a.						1	1.			1
		161.1 ft							1 .			1
			1	i				1			1	
161.1	173.3	TONALITE										
		-medium-grained biotite tonalite, no apparent	0628					< 5	< 0.2			
		alteration	0629		172.3	173.	3 1.0	< 5	< 0.2			
		-negligible sulphide content										1
		173.3 ft -contact at 80° to c.a.						1				10
			1				* #			17		-
			1									
								1				
			1					1			1	

FOOTAGE		DECONOTION	SAMPLE					ASSAYS				
FROM	TO	DESCRIPTION	NO.	", SUL PH		FOOTAGE						
173.3	178.6	TRUMAN FORMATION -pale green to light purple fine-grained siliceous calc-silicate skarn, no laminations preserved due to strong folding -sulphide content negligible, much less than 1% po present 178.6 ft -contact at 45° to c.a.	0630 0631			176.0 178.6		ppb) < 5 < 5	Ag (ppm) <0.2 0.3			
178.6	180.6	TONALITE	0654 0982		Editor Control	179.6 180.6		4 5 4 5	<0.2 <0.2			
L80.6	191.9		D632 D633 D634 D635 D636	1% 3% 5%	182.0 185.0 188.0	182.0 185.0 188.0 190.5 191.9	3.0 3.0 2.5	<pre><5 <5 <5 <5 <5 </pre>	0.3 0.3 0.5 0.4 0.5			
191.9 212.0	212.0	TONALITE -similar to above tonalites -locally contains minor biotite-rich inclusions -overall sulphide content is negligible END OF HOLE.										

FORM

NAME OF PROPERTY______JACKPOT

HOLE NO JP83-17

SHEET NO.__

F001	TAGE		DESCRIPTION			SAMP	LE				ASSAYS	
FROM	10		DESCRIPTION	NO	5 SULPH		FOOTAGE		1	1 200		
The same				-	IDES	FROM	TO	TOTAL	Au	(ppm)		_
									(bbt)	(bond)		
7		REEVES FORMATION U								Parent constant		
		103.0 ft	-banding at 85° to c.a.	0655			103.0					
		108.0 ft	-banding at 80° to c.a.	0656			108.0	5.0	< 5	< 0.2		
		113.0 ft	-banding at 75° to c.a.	0657			113.0		< 5	< 0.2		
		118.0 ft	-banding at 75° to c.a.	0658			118.0		4 5	40.2		
		123.0 ft	-banding at 75° to c.a.	0659			123.0	5.0	< 5	< 0.2		
		128.0 ft	-banding at 80° to c.a.	0660			128.0	5.0	< 5	< 0.2		
		133.0 ft	-banding at 80° to c.a.	0661		128.0	133.0	5.0	< 5	<0.2		
		135.5-142.0 ft	-brecciated zone; small scale	0662		133.0	138.0	5.0	2 5	20.2		
1			faulting is shown in core, fault	0663		138.0	143.0	5.0	< 5	0.9		
			planes are at very low angles or	0664		143.0	148.0	5.0	< 5 < 5	0.4		
			parallel to c.a.; no apparent mineralization	0665		148.0	150.0	2.0	4 5	1.3		
		145.0 ft	-banding at 60° to c.a.	1 1					1			
		146.0-147.0 ft	<pre>-minor micro-faulting/brecciation is present</pre>			l:						
		149.8 ft	-contact set at disappearance of dolomite bands; contact at 65° to c.a.			β						
49.8	253.0	<pre>and minor silic: -overall minerali; are locally weal intervals</pre>	mestone, marble, dolomitic limestone ified bands zation is less than 1%; Ag-minerals kly concentrated over short core	0610		150.0	152.0	2.0	< 5	6.8		
		150.0-152.0 ft	-mineralization: rare Ag-minerals (tetrahedrite?) are present in fracture and as rare disseminated grains in brecciated silicified limestone									

HOLE NO. JP83-17 SHEET NO. 3 Of 5

FOOTAGE		2000230.00			SAMP	LE				ASSAYS	
ROM TO		DESCRIPTION	NO	". SULPH		FOOTAGE	27-22	1.			n
1.0				IDES	FROM	TO	TOTAL	(pph)	(ppm)	Au oz/t	Ag oz/t
	REEVES FORMATION U 152.0-153.0 ft 153.3-153.4 ft 155.5-155.7 ft 156.0-158.0 ft	<pre>-no apparent mineralization; banding at 65° to c.amineralization: rare Ag minerals present, overall much less than l% -mineralization: mostly disseminated galena and tetrahedrite (?), rare py and possibly native silver are also present -mineralization: very rare disseminated Ag minerals are</pre>	0611 0612 0613 0614 0615 0616 0617 0618 0620 0621 0622		153.0 154.0 155.0 156.0 158.0 159.5 162.0 164.0 166.0 168.5 169.5	153.0 154.0 155.0 156.0 158.0 159.5 162.0 164.0 166.0 168.5 170.5 170.5 171.0	1.0 2.0 1.5 2.5 2.0 2.0 2.5 1.0	< 5 < 5 < 5	2.9 10.0 8.1 170.0 5.2 180.0 16.7 2.2 1.3 0.4 < 0.2 < 0.2 < 0.2 < 0.2	02/ 0	7.5
	159.5-169.5 ft 169.5-170.5 ft	including native silver are weakly concentrated at 158.6 ft and 159.2 ft in bands, patches and fractures; bands at 65° to c.a. -apparently barren limestone with considerable wollastonite and minor blue marble bands; possible Ag mineral(s) at 165.8 ff -no apparent Ag minerals; but rare	ft								
	170.5-171.0 ft	po and py occur weakly concentrated in bands at 80° to c.amineralization: very rare Agmineral(s) present									

FORM :

FORM I

Unc	orrec	ted	Co	rrect	ed
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-75	3370	0	-75°	3370
253'	- 78°			-74°	
			-		

HOLE NOJ<u>P83-17</u> SHEET NO. <u>1 of</u> 5 REMARKS <u>100 ft behind JP83-9</u> 50 ft to west-southwest

LOGGED BY J.R. FOSTER

ATC	GE				SAMP	LE			A	5 5 A	Y S	
4. Т	то	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE	TOTAL	Au	Ag			
,	12.0	CASING						(ppb)	(ppm)			
0 9	97.6	REEVES FORMATION UNIT 4c	1									
		-dominantly coarse grained massive white marble, contains minor amount of fine-grained metasedimen- tary (?) bands containing sulphides	0637 0638 0639		12.0 18.0 23.0	23.0	6.0 5.0 5.0	< 5 < 5	< 0.2			
		-overall sulphide content is much less than 1% 20.0 ft -banding at 75° to c.a. 38.0 ft -banding at 75° to c.a.	0640 0641 0642		28.0 33.0 38.0	33.0 38.0 43.0	5.0 5.0 5.0	20 < 5 < 5	< 0.2 < 0.2			
		48.0 ft -banding at 75° to c.a. 54.0 ft -banding at 80° to c.a. 63.0 ft -banding at 70° to c.a.	0643 0644 0645		43.0 48.0 53.0		5.0 5.0 5.0	√ 5 √ 5 √ 7	< 0.2 < 0.2 < 0.2			
		74.0 ft -banding at 75° to c.a. 81.0 ft -banding at 75° to c.a. 87.0 ft -banding at 80° to c.a.	0646 0647 0648		58.0 63.0 68.0	63.0 68.0 73.0	5.0 5.0 5.0	< 5 < 5 < 5	<0.2 <0.2 <0.2			
		97.6 ft -contact set at disappearance of marble bands; contact at 75° to c.a.	0649 0650 0651		73.0 78.0 83.0	78.0 83.0 88.0	5.0 5.0 5.0	< 5 < 5 < 5	< 0.2			
6 14	49.8	REEVES FORMATION UNIT 4b -dominantly well banded dolomitic limestone	0652 0653		88.0 93.0	93.0 97.6	5.0 4.6	< 5 < 5	<0.2 <0.2			
		-fracturing occurs locally at low angles to c.a.										
							- 14			-		-
6 14	49.8	-dominantly well banded dolomitic limestone -overall sulphide content is much less than 1%					4.6					

AME OF PROPERTY JACKPOT

HOLE NO. __ JP83-17

SHEET NO.

REEVES FORMATION UNIT 4a (contd.) 171.0-176.4 ft -wollastonite banded white	56 57 58 59 70	173.0 175.0 176.4 178.0	175.0 176.4 178.0	1.4	< 5 < 5	Ag) (ppm) < 0.2 < 0.2	
171.0-176.4 ft -wollastonite banded white limestone, banding at 65° to c.a. 0667 172.5 ft -mineralization: two specks of Ag-mineral(s) present 0669 176.4-178.0 ft -dark grey limestone, well 0670 brecciated, no apparent 0671 mineralization 0672 181.5-182.5 ft -mineralization: possible speck of 0673 Ag-mineral at 181.9 ft 0674 182.5-207.1 ft -no apparent mineralization; pale 0675 blue marble bands are common 0676	56 57 58 59 70	173.0 175.0 176.4 178.0	175.0 176.4 178.0	2.0	(ppb < 5 < 5	(ppm)	
184.0 ft 191.0 ft 191.0 ft 198.0 ft 203.0 ft 207.1-212.2 ft -banding at 70° to c.a. -dark grey fine grained limestone, 9681 some carbonaceous fractures 9682 present; no apparent mineraliza- tion -dominantly medium-grained light 9685 grey limestone and coarse-grained 9686 massive marble; no wollastonite bands are present; minor carbonaceous laminae/fractures are locally common; no apparent mineralization 214.0 ft 219.0 ft 223.0 ft -banding at 70° to c.abanding at 85° to c.a.	73 74 75 76 77 78 79 30 81 82 83 84	181.5 182.5 184.0 187.0 190.0 193.0 196.0 202.0 205.0 207.1 212.2 216.0 219.0 222.0	180.0 181.5 182.5 184.0 190.0 190.0 193.0 196.0 205.0 207.1 212.2 216.0 229.0 225.0 228.0	2.0 1.5 1.0 1.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	\$5555555555555555555555555555555555555	<pre>< 0.2 1.1 10.9 < 0.2 < 0.</pre>	

NAME OF PROPERTY JACKPOT

HOLE NO. _ JP83-17

SHEET NO. _

5 of 5

FOOT	AGE					SAMP	LE				ASSAYS	
FROM	то		DESCRIPTION	NO.	", SULPH		FOOTAGE			1970		
1					IDES	FROM	ТО	TOTAL	Au (ppb)	(ppm)		
53.0		REEVES FORMATION (228.2-228.3 ft) 236.0 ft 241.0 ft 246.0 ft END OF HOLE.	JNIT 4a (contd.) -mineralization: 10% po and rare cpy concentrated in 0.1 ft band; banding at 60° to c.a. -banding at 65° to c.a. -banding at 80° to c.a. -banding at 90° to c.a.	0687 0688 0689 0690 0691 0692 0693		229.0 232.0 236.0 240.0 244.0	229.0 232.0 236.0 240.0 244.0 248.0 253.0	3.0 4.0 4.0 4.0	<pre>55 55 55 55 55 55 55 55 66</pre>	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2		
				1								
									i i			
								.				
1												-

FORM 2

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-75°	337°	0	-75°	337°
328	-78°		328	-74°	1

HOLE NO. P83-18 SHEET NO. 1 of 6

REMARKS 135 ft behind JP83-17

30 ft to west-southwest
(247° AZ)

LOGGED BY J.R. FOSTER

OOTAG								SAMP	LE			A	SSA	Y 5
FROM TO			DESCRIPT	1 O N		NO.	รบั้น PH-	FROM	TO	TOTAL	Au	Aσ	Au	Ag
0 10	0 CASING										(ppb)	(ppm)	oz/t	oz/t
10.0 11	0 RUBBLE													
11.0 18	-siliceous -well lamin -sulphide o	dark gr ated at ontent	60° to c.a negligible, fractures	apparently	confined to ed by broken	4								
18.0 158	-coarse-gra numerous shears up -overall su sulphides	fined whe fine-group to low alphide stare we mes; cor	rained purple wide content is takly concent is takly concent is eakly concent is eakly concent in the content i	core recove <u>zation</u> : base disseminated ena (combine are cpy and p minerals; b	ing plane ss than 1%; ne-grained ry metal zone, sphalerite d Zn + Pb = o, possibly anding at	0736 0625 0626 0627		18.0 24.0 25.0 25.5	24.0 25.5 28.0	6.0 1.0 1.5 2.5		< 0.2 0.6 190.0 6.6		11.6

FORM

JACKPOT NAME OF PROPERTY_ 2 of 6 HOLE NO. JP83-18

SHEET NO ..

FOOTAGE					SAMP	LE				ASSAYS	
ROM TO	-	DESCRIPTION	NO.	SULPH		FOOTAGE		1.	1 2		
10			-	IDES	FROM	TO	TOTAL	(ppb)	Ag (ppm)		-
	REEVES FORMATION 48.0 ft 58.0-68.0 ft 66.0 ft 68.0-78.0 ft 76.0 ft 88.0-142.0 ft 92.0 ft 104.0 ft 113.0 ft 119.0 ft 126.0 ft 133.0 ft 142.0-157.3 ft 145.0 ft 153.0 ft 158.3 ft	-banding at 70° to c.a. -purple-brown shears become less prominent downhole; sulphide content much less than 1% -banding at 75° to c.a. -banding at 80° to c.a.	0737 0738 0739 0740 0751 0752 0753 0755 0756 0757 0758		107.0 116.0 129.0 134.0 145.0 149.0	61.0 68.0 79.0 86.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		<0.2 <0.2 <0.2		

NAME OF PROPERTY______JACKPOT

HOLE NO. JP83-18

SHEET NO. ___ 3 of 6

FOO	TAGE	DECOMPOSITION OF THE PROPERTY	t .		SAMPL	E				ASSAYS	
FROM	то	DESCRIPTION	NO.	5 SULPH		FOOTAGE	- 10	1.			I
FHOM	15			1085	FROM	to	TOTAL	Au	Aq	-3-5	 -
158.3	195.6	REEVES FORMATION UNIT 4b -dominantly dolomitic limestone with minor coarse marble -overall mineralization is much less than 1% po + py -fine to medium-grained, light grey, well banded on 1-10mm scale 164.0 ft	0759 0760 0761 0762		173.0 180.0	166.0 176.0 183.0 195.6	3.0 3.0 3.0 2.6	< 5 < 5 < 5	(ppm) <0.2 <0.2 <0.2 <0.2 <0.2		
195.6	232.7	REEVES FORMATION UNIT 4a -mixed unit of dolomitic limestone, limestone, marble, and siliceous bands, well banded on lcm scale -overall mineralization is insignificant, only po + py present 201.0 ft	0764 0765 0766 0767 0768 0769 0770 0771 0772		198.0 201.0 204.0 207.0 210.0 213.0 216.0 210.0 222.0 225.0	198.0 201.0 204.0 207.0 210.0 213.0 216.0 219.0 222.0 225.0 228.0 232.7	3.0	< 5	<pre>< 0.2 < 0.3 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3 < 0.2 <</pre>		
232.7	286.5	GRANODIORITE -medium-grained, biotite bearing, CI=6-7; biotite is often altered to chlorite -less than 1% sulphides present; only py recognized	0774 0775 0776		232.7 249.0	233.7 252.0	1.0	₹ 5	0.5 <0.2		

FORM :

NAME OF PROPERTY_____JACKPOT

HOLE NO. JP83-18

HEET NO. 4

FOO	TAGE		DESCRIPTION	1		SAMP	LE		1		ASSAYS	
FROM	то		DESCRIPTION	NO.	" SULPH	_	FOOTAGE		۸.,	2 -		
					IDES	FROM	70	TOTAL	(ppb)	(ppm)		
		GRANODIORITE (conto 259.0-262.0 ft 278.0-283.0 ft 286.5 ft	-granodiorite is weakly altered; biotite alters to pale green mica, some feldspar alters (sericitized?) to pale green colour; no apparent change in sulphide content, which remains much less than 1% py -minor oxidization staining -contact obscured by broken core	0777 0778 0779		280.0	262.0 283.0 286.5	3.0	< 5 10 < 5	< n.2 0.6 0.2		
86.5	289.5	REEVES FORMATION U-white massive coa 286.5-286.8 ft 286.8-289.5 ft	JNIT 4c arse-grained marble -wollastonite skarn -marble, weakly banded, overall much less thatn 1% py + po confined to rare carbonaceous bands; banding at 50° to c.alower contact set where carbonaceous bands and fractures become prominent; contact at 55° to c.a.									
89.5	314.6	amounts of coars	rey dolomitic limestone with lesser	0790 0791 0878 0879 0792 0880	1%	290.3 290.8 293.0 295.4	290.3 290.8 293.0 295.4 297.4 301.0	0.8 0.5 2.2 2.4 2.0 3.6	5 10 4 5 15	<0.2 <0.2 <0.2 <0.2 0.6 <0.2	4	

NAME OF PROPERTY_____JACKPOT

HOLE NO JP83-18

SHEET NO. 5 of 6

SAMPLE FOOTAGE ASSAYS DESCRIPTION FOOTAGE NO. FROM TO DES FROM An (ppb) (ppm) REEVES FORMATION UNIT 4b (contd.) 301.0 302.1 15 < 0.2 301.0-302.1 ft -mineralization: 3cm band with 35% 0780 1.1 5 < 0.2 302.1 306.0 3.9 py + po in coarse marble at 0881 10 40.2 293.0-293.1 ft; overall 1% 0882 306.0 308.8 2.8 308.8 312.0 3.2 10 < 0.2 sulphide present in marble; 0781 2.6 0782 312.0 314.6 0.2 banding at 50° to c.a. 302.1-308.8 ft -barren white coarse marble, very few carbonaceous laminae present -dominantly carbonaceous-rich 308.8-314.6 ft limestone; overall up to 1% po + py; banding at 65° to c.a. -contact obscured by broken core 314.6 ft 314.6 320.0 REEVES FORMATION UNIT 4a (?) 314.6 317.6 3.0 45 40.2 -wollastonite-bearing medium-grained white limestone; **b**783 5 40.2 317.6 320.0 0784 2.4 weakly to strongly silicified -overall sulphide content is negligible, only very rare py is present; wollastonite section is unmineralized -considerable coarse wollastonite 314.6-317.6 ft present, banded at 60° to c.a. -medium-grained white limes tone, 317.6-320.0 ft banding at 75° to c.a. -contact at 70° to c.a.; set at 320.0 ft reappearance of carbonaceous laminae 320.0 348.0 REEVES FORMATION UNIT 4b -dominantly carbonaceous-rich limestone/ dolomitic limestone with minor coarse marble sections -carbonaceous bands are commonly contorted, indicating strong folding -overall mineralization is 1-2%, almost entirely po, rare py and very rare sphalerite

HOLE NO. JP83-18 SHEET NO. 6 Of 6

FOOTAGE				SAMP	LE				ASSAYS		
nou 1 70	DESCRIPTION	NO.	5 SULPH		FOOTAGE			2000	T		
ROM 10			IDES	FROM	70	TOTAL	-			-	-
ROM TO	REEVES FORMATION UNIT 4b (contd.) 320.0-323.0 ft -dominantly coarse marble wat minor carbonaceous bands; at 60° to c.a.; overall 1 1% py 323.0-339.0 ft -numerous contorted, patchy carbonaceous laminae are angles to c.a. are variab subparallel to 50° to c.a sulphide content ranges foverall -mineralization: rare galen at 323.8 ft; patchy sphal occurs at 323.3 ft; remai core interval contains up po + rare sphalerite -mineralization: overall 3% sulphides, mostly po and very rare sphalerite prese banding at 60° to c.a. -carbonaceous bands decreas overall mineralization is than 1% po + py -mineralization: overall 2-sulphides, mostly po and minor sphalerite; specks galena occur at 336.6 ft -dominantly barren white ma -numerous carbonaceous lami patches present; overall	ith 0785 banding0786 ess than0787 0788 0789 present;0793 le from .; rom 1-3% a grains erite nder of to 3% py, ent; e, less 3% py with of rble nae and 0794 sulphide0795	3% 3% 3%	320.0 323.0 326.0 328.0 333.6 338.0	FOOTAGE	3.0 3.0 2.0 5.6 4.4 4.1	15 10 10 20 15	Ag (ppm) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.2 0.2	ASSAYS		
48.0	content is 1%, mostly po, rare sphalerite END OF HOLE.	py and									

-

FORM 1

NAME OF PROPERTY JACKPOT

HOLE NO. JP83-19 LENGTH 431.0 ft

LOCATION 545 ft South of Hunter V Glory Hole

LATITUDE 4+60E DEPARTURE 4+80S

ELEVATION 5786 ft AZIMUTH N/A DIP 90°

STARTED JULY 21, 1983 FINISHED JULY 23, 1983

Unce	orrec	cted	Corrected						
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH				
0 -	-90°	NA	0	-90°	NA				
175	-890		175	-890					
348	-88°		348	-87°					

HOLE NO. JP83-19 SHEET NO. 1 of 6

REMARKS 100 ft West-southWest (247° AZ) from JP83-18

LOGGED BY J.R. FOSTER

F 0 0 T	AGE	DESCRIPTION			SAMP	L E				SSA	Y S	
ROM	то	DESCRIPTION	NO.	SUL PH-	FROM	TO	TOTAL	Au	Ag			
								(ppb)	(ppm)			
0	12.0	CASING										
12.0	62.7	TRUMAN FORMATION -well foliated biotite-rich wacke metasediment -rusty weathering fractures are common -overall sulphide content is negligible 18.0 ft -foliation at 40° to c.a. 27.0 ft -foliation at 45° to c.a. 38.0 ft -foliation at 50° to c.a. 48.0 ft -foliation at 30° to c.a. 58.0 ft -foliation at 55° to c.a. 61.0 ft -foliation at 50° to c.acontact obscured by broken core										
62.7	78.4	GABBRO -medium grained, weakly foliated; overall sulphide content is negligible 68.0 ft -foliation at 40° to c.a. 76.0 ft -foliation at 55° to c.a. 78.4 ft -contact obscured by broken or lost core	080	8	77.4	78.4	1.0	< 5	0.4			
							35 77			7		

FORM 2

NAME OF PROPERTY______JACKPOT

HOLE NO. __ JP83-19

SHEET NO.__

F00	AGE	DECOMPTION			SAMP	LE				ASSAYS	
FROM	to	DESCRIPTION	NO.	SULPH		FOOTAGE		1.		-	
	143.4	REEVES FORMATION UNIT 4c -dominantly coarse-grained white massive marble with minor dark purple-brown fine-grained bedding plane shears up to 1cm wide -overall sulphide content is negligible 78.4-88.0 ft -only 23% core recovery 88.0-98.0 ft -only 66% core recovery 89.0 ft -banding at 50° to c.a. 98.0 ft -banding at 50° to c.a. 103.0 -banding at 60° to c.a. 113.0 ft -banding at 60° to c.a. 123.0 ft -banding at 50° to c.a. 123.0 ft -banding at 50° to c.a. 123.0 ft -banding at 50° to c.a. 128.0 ft -banding at 50° to c.a. 133.0 ft -banding at 50° to c.a. 134.4 ft -banding at 60° to c.a.	0809 0926 0925 0810 0811	S SULPH IDES	92.7 105.0 113.0 127.0	88.0 95.2 107.5 116.0 130.0 143.4	2.5 2.5 3.0 3.0		Aq (ppm) < 0.2 0.3 0.3 < 0.2 < 0.2 < 0.2		
143.4	210.7	contact with diorite; contact oriented at 65° to c.a. DIORITE/GRANODIORITE -medium-grained; mafic content variable from 10-25% -both phases contain cream-coloured sphene similar to granodiorite at 146.0-149.3 ft in JP83-16 -no significant mineralization present; overall much less than 1% py occurs in granodiorite 207.3-209.7 ft -minor rusty oxidation staining in granodiorite 210.7 ft -contact obscured by broken core	0813 0814			209.7 210.7		₹5 ₹5	<0.2 <0.2		
										ā.	

NAME OF PROPERTY_______JACKPOT

HOLE NO. JP83-19

SHEET NO. 3 of 6

F00	TAGE		DECEMBER 184	1		SAMPI	_E				ASSAYS	
FROM	то		DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	Au	Ag		
				1-	IDES	PROM	TO	TOTAL		(ppm)		-
210.7	218.3	<pre>-medium-grained, -upper contact ha corroded, sugge</pre>	UNIT 4b banded dolomite/dolomitic limestone light to medium grey s no skarn zone but is locally sting possible fault contact zation is insignificant -banding at 60° to c.abanding at 45° to c.acontact obscured by broken core; set at first appearance of coarse limestone bands	0815 0816 0817		211.7	211.7 215.0 218.3	3.3	< 5 < 5	<0.2 <0.2 <0.2 <0.2		
218.3	421.5	marble bands an on 1-10 cm scal occurs at 231.8	banded limestone with minor coarse d some wollastonite bands; banding is e: wollastonite and silicification	0820 0821 0822 0823 0824 0825 0826 0883 0827 0828		221.0 224.0 227.0 230.0 236.0 251.0 263.0 269.0 272.0 275.0	221.0 224.0 227.0 230.0 233.0 247.0 254.0 266.0 272.0 275.0 278.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	<pre><</pre>	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2		_ 5

NAME OF PROPERTY______JACKPOT

HOLE NO. __ JP83-19

SHEET NO._

FOOTAGE	7		DESCRIPTION			SAMPL	LE				ASSAYS	
FROM T	0		DESCRIPTION	NO.	% SULPH	EBOU	FOOTAGE	7071	Δ11	Aa		
					IDES	FROM	10	TOTAL		(ppm)		
FROM T	•	REEVES FORMATION (268.0 ft 273.0 ft 278.0 ft 280.0-301.2 ft 280.0-301.2 ft 283.0 ft 288.0 ft 295.0 ft 301.2-318.0 ft 308.0 ft 315.0-318.0 ft 315.0-318.0 ft 334.0 ft 339.7-377.0 ft	-banding at 50° to c.abanding at 50° to c.abanding at 55° to c.adominantly barren medium to coarse grained marble; very few wollastonite or silicified bands are present -banding at 35° to c.abanding at 40° to c.abanding at 40° to c.a.	0829 0830 0885 0886 0887	IDES	301.0 304.0 307.0 311.0 315.0 324.0 333.0 348.0	70	3.0 3.0 3.0 4.0 4.0 3.0 3.0 3.0	<pre> 5 4 5 4 5 4 5 20 4 5 4 5 4 5 </pre>	Ag (ppm) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.		

NAME OF PROPERTY_____JACKPOT

F00	TAGE		1		SAMP	LE				ASSAYS	
FROM	то	DESCRIPTION	NO.	*, SULPH		FOOTAGE					
ROM	10			IDES	FROM	TO	TOTAL	Au (ppb)	(ppm)		 -
	•	REEVES FORMATION UNIT 4a (contd.) 349.0 ft -banding at 20° to c.a. 377.0-415.0 ft -dominantly medium-grained medium grey banded limestone with few marble sections and little or no wollastonite bands; sulphides are locally concentrated in narrow bands or laminae 377.0-377.3 ft -mineralization: overall 2% po concentrated in lmm laminations; laminae at 30° to c.a. 379.0-386.0 ft -banding variable from 30° to parallel to c.a.; no apparent mineralization 388.0 ft -banding at 20° to c.a. 393.0-397.0 ft -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 1-2% po point ploading at 20° to c.a. -mineralization: overall 2% po point ploading at 20° to c.a. -mineralization: overall 2% po point ploading at 20° to c.a.	0835 0836 0837	2%	393.0	377.7 397.0 415.0	4.0	(Ppb) く 5 5 く 5 5 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<0.2 <0.2 <0.2		
	2									l*	-

NAME OF PROPERTY__JACKPOT

HOLE NO. __JP83-19 SHEET NO. ____ 6 of 6

		DESCRIPTION			SAMP	LE				ASSAYS		
		DESCRIPTION	NO	~, SULPH		FOOTAGE						-
		THE COURT OF THE C	1 07/20	IDES	FROM	то	TOTAL	_				
-	dominantly fine to dolomitic limesto very similar to a tonite banding	medium-grained limestone and ne with coarse marble bands;			428.0	431.0	3.0	∠ 5	< 0.2			
E	END OF HOLE.											
												0.000
							U =					-
-	4	.0 REEVES FORMATION UN -dominantly fine to dolomitic limesto very similar to a	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollas tonite banding 428.0-431.0 ft -mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft -mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft -mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft -mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft -mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft —mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft —mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft —mineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft —ineralization: 2% sulphides, mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. END OF HOLE.	REEVES FORMATION UNIT 4b -dominantly fine to medium-grained limestone and dolomitic limestone with coarse marble bands; very similar to above unit but without any wollastonite banding 428.0-431.0 ft mostly po and minor py; rare galena present at 432.9 ft; banding at 30° to c.a. D838 428.0 431.0 3.0 428.0 431.0 3.0 428.0 431.0 3.0 5

FORM 2

NAME (OF	PROPERTY	JA	CKPOT					
HOLE N	10.	JP83-20		LENGTH		100.0	ft		
LOCATI	ON	Anomaly	#53,	1740'	sou	th of	Doubl	e St	andard
LATITUI	DE	0+00E		DEPART	URE	14	1+70S		
ELEVAT				AZIMUT	н	038.	50	DIP	36°
STARTE	D	July 23,	1983	FINISHE	ED	July	24,19	83	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
		100000000000000000000000000000000000000			

HOLE NO. JP83-20_{SHEET NO.} 1 of 1

REMARKS Anomaly 53, South
extension of major silver
geochemical anomaly trending south of Double Standard

LOGGED BY _ J.R.FOSTER

0 O T	AGE	DESCRIPTION			SAMP	LE				A	5 5 A	Y S	
ROM	то	DESCRIPTION	NO.	SUL PH-	FROM	TO	TOTAL	An		Aq			
0 :	12.0	CASING						1		ppm)			123.47
2.0	13.0	GRANODIORITE											
3.0	23.6	MAFIC LAMPROPHYRE											
		-fine to medium-grained, olivine or pyroxene-porphyritic -fracturing indicated by friable weathered core intervals	0849 0850 0851		13.0 17.0 20.0	17.0 20.0 23.6	3.0	<	5 4	0.2			
		23.6 ft -contact obscured by broken core											
3.6	100.0	GRANODIORITE	0852		65.0	69.0	4.0	<	5 4	0.2			
		<pre>-magnetite-bearing biotite granodiorite, subtly feldspar porphyritic -no apparent mineralization</pre>											
		65.0-69.0 ft -weakly weathered zone, no apparent mineralization											
00.0		END OF HOLE											
									0.000				
							~ #						141

FORM

NAME OF	PROPERTY _	JACKPOT	100	
		LENGTH	208.0 ft	
LOCATION		t south of Doub		rd
	0+00E	DEPARTURE	15+50S	
ELEVATION		AZIMUTH	038.50	DIP -360
STARTED_	July 24,1	983 FINISHED	July 25,	1983

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
		April Del			

HOLE NO.JP83-21 SHEET NO. 1 of 1
REMARKS Anomaly 53, south
extension of Double
Standard silvertrend

LOGGED BY J.R.FOSTER

FOO	TAGE					SAMP	LE			A	5 5 A	/ S	
FROM	то		DESCRIPTION	NO.	SUL PH IDES	FROM	TO	TOTAL	Au	Ag			
0	7.0	CASING							(agg)	(ppm)			
7.0	208.0	GRANODIORITE											
		<pre>-magnetite-bearing medium-grained, we -no significant min</pre>	akly feldspar-porphyritic	0847 0848 0992		124.5	85.3 128.5 134.0	0.3 4.0 5.5	5	4 0.2 0.4 4 0.2			
		85.0-85.3 ft	<pre>-mud seam; possible fault or deep fracture</pre>										
		124.5-138.0 ft	<pre>-zone of tight fracturing; no apparent mineralization; fractures are spaced at varying intervals from 1-10 mm, oriented at 30 to C.A.</pre>										
	4	138.0-208.0 ft	<pre>-very few fractures present; no apparent mineralization or alteration</pre>										
08.0		END OF HOLE											
												į.	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0 -	-50°		0	-50°	
300 -	-58°		300	-51°	

HOLE NOJ<u>P83-22</u> SHEET NO. <u>lof</u> 6
REMARKS <u>101.0 ft at AZ</u>
277.5 from JP83-5

LOGGED BY J.R. FOSTER

FOOTA	GE				SAMP	LE			A	SSAYS	3
FROM T	то	DESCRIPTION	NO.	SULPH-		OOTAGE		0.02.00	12000		
	-			IDES	FROM	то	TOTAL	Au (ppb)	Ag (ppm)		\neg
0 2	24.0	CASING									
24.0 7	79.2	DIORITE -medium-grained, deeply weathered, very friable to within several feet of lower contact -no apparent mineralization 77.5-79.2 ft -contact zone is weakly silicified, finer-grained; no apparent mineralization; actual contact obscured by broken core	0 853		77.5	79.2	1.7	10	<0.2		
79.2	81.5	SKARN -white calcite-wollastonite-garnet skarn; no apparent mineralization 81.5 ft -contact at 70° to c.a.	854		79.2	81.5	2.3	< 5	<n.2< td=""><td></td><td></td></n.2<>		
81.5	85.1	GABBRO -no apparent mineralization 85.1 ft -contact at 70° to c.a.									
85.1 10	03.2	TRUMAN FORMATION -fine-grained siliceous dark grey metasediment with occasional very siliceous calc-silicate skarn sections -dark grey metasedimentary sections are well foliated, lighter calc-silicate sections are brecciated					~ +				

FORM I

NAME OF PROPERTY JACKPOT

JP83-22

HOLE NO. SHEET NO. 2 OF 6

FOOT	AGE					SAMP	E				ASSAYS	
FROM	10		DESCRIPTION	NO.	5 SULPH		FOOTAGE		1.			
		MRUMAN FORMATION	(contd.)		‡DES	FROM	10	TOTAL	(pph)	(ppm)		
		TRUMAN FORMATION -85.1-89.0 ft	-dominantly well foliated dark grey metasediment; overall 2-3% py + po concentrated on		6% 4%	93.5	93.5	1.0	4 5	0.2		
		89.0-94.4 ft	-dominantly brecciated siliceous calc-silicate skarn									
		89.0-92.5 ft	-mineralization: 8-10% finely disseminated po and py in brecciated skarn; laminae at 70° to c.a.									
		92.5-93.5 ft	<pre>-mineralization: overall 5-6% sulphides, mostly po + py with minor sphalerite and rare galena or Ag-mineral at 92.9 ft</pre>									
		93.5-94.4 ft	-mineralization: 3-4% po + py in very well brecciated skarn									
		94.4-101.0 ft	-dominantly well foliated metasediment; foliation at 80° to c.a.									
	,	101.0-103.2 ft	<pre>-dominantly siliceous calc-silicate skarn; less than 1% po, sphalerite and rare cpy occur at lower contact</pre>									
		103.2 ft	-contact at 85° to c.a.									
103.2	207.2		um to coarse-grained massive marble own finer-grained bands, possibly shears									
								T T			-	

-

JACKPOT NAME OF PROPERTY_

HOLE NO. JP83-22

__ SHEET NO. ____ 3 of 6

FOOTA	AGE	DETCHISTION			SAMPL	.E				ASSAYS	
FROM	70	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au	Aq		
		REEVES FORMATION UNIT 4c (contd.) -overall mineralization is less than 1% po + py, mostly confined to purple-brown bands 108.0 ft	0924 0923 0922 0921 0919 0918 0916		140.4 154.5 163.2 170.7 178.6 191.3	118.0 130.2 142.9 156.5 165.7 171.7 181.1 192.6 206.7	2.5	44444 255555555555555555555555555555555	(ppm) 0.5 0.3 0.3 0.5 0.5 0.6 < 0.2		
07.2 2	237,2	REEVES FORMATION UNIT 4b -dominantly limestone and dolomitic limestone with occasional coarse massive marble sections -well banded, light grey, no significant mineralization	1				· +			÷	

NAME OF PROPERTY______JACKPOT

HOLE NO. JP83-22

SHEET NO ._

F001	AGE	DECEMBER 1			SAMPL	E				ASSAYS	
FROM	TO	DESCRIPTION	NO.	". SULPH		FOOTAGE					
CVM SERV	222		-	1005	FROM	10	TOTAL	Au			
		REEVES FORMATION UNIT 4b (contd.) 211.0 ft	0917		212.4	213.4	1.0		(ppm) <0.2		
37.2	239.4	REEVES FORMATION UNIT 4a -dominantly medium-grained white limestone -no apparent mineralization 239.4 ft -lower contact very irregular	0891		237.2	239.4	2.2	15	40.2		
239.4	241.6	MAFIC LAMPROPHYRE -olivine and/or pyroxene phenocrysts present -some serpentine-filled fractures present 241.6 ft -lower contact obscured by broken core									
241.6	243.7	REEVES FORMATION UNIT 4a -dominantly dolomitic limestone, weakly brecciated -no apparent mineralization 243.0-243.1 ft -calcite-chlorite-serpentine fracture at 45° to c.a. 243.7 ft -lower contact obscured by broken core	0892		241.6	243.7	2.1	10	∠0.2		
243.7	247.8	MAFIC LAMPROPHYRE -similar to above lamprophyre 247.8 ft -lower contact crosscuts limestone banding; contact at 235° to c.a.	0893 0894			246.8 247.8	3.1		40.2 40.2		
										*	-

NAME OF PROPERTY______JACKPOT

HOLE NO. ___ JP83-22

SHEET NO.

5 of 6

FOOT	AGE	DECENTED OF THE PROPERTY OF TH			SAMP	-E				ASSAYS	5		1
FROM	TO	DESCRIPTION	NO.	" SULPH		FOOTAGE				Γ.	1		1
HUM	- 10		1	1065	FROM	70	TOTAL	(pph)	Ag (nnm)	Au oz/t	Ag oz/t	-	1
247.8	302.0	l% disseminated Ag-mineral(s), possibly tetrahedrite and galena; banding at 60° to c.a.; no apparent silicification -mixed limestone/marble/dolomitic limestone, no apparent mineralization or silification -mineralization: less than 1% Ag-mineral(s) weakly concentrated into several lcm bands, also as rare disseminated grains in	0747 0748		249.7 252.9 255.1 256.3 256.8	249.7 252.9 255.1 256.3 256.8 258.0 258.6	2.2		190.0 14.7 61.6 3.1 20.7				114
		medium-grained limestone; lcm band with weakly concentrated sphalerite occurs at 254.4 ft; banding at 75° to c.a. -barren dolomitic limestone -mineralization: rare disseminated Ag-mineral(s) at 256.6 ft; banding at 70° to c.a. -mineralization: several grains of Ag-mineral(s) and/or sphalerite present at 257.8 ft in dolomitic limestone -mineralization: very rare disseminated Ag-mineral(s) and cpy in a patch at 258.3 ft; banding at 65° to c.a.	0749		258.6	261.0	2.4	4 5	0.4				
							-1 -			4		E	

FORM :

JACKPOT

OLE NO. _______ 5 Of 6

FOOTAGE				- Y	SAMP	LE				ASSAYS	
FROM TO	7	DESCRIPTION	NO.	*, SULPH	F8011	FOOTAGE		7.,	7.0		
	REEVES FORMATION 258.5-268.0 ft	<pre>-apparently barren limestone/ marble</pre>		IDES	FROM	70	TOTAL		Aq (ppm)		
	268.0-302.0 ft	<pre>-no silicification apparent -variably silicified limestone/ marble; wollastonite bands first appear at 269.8 ft, become more prominent downhole; no significant mineralization</pre>	0749 0942 0943 0944 0863		261.0 263.0 265.0	261.0 263.0 265.0 268.0 270.0	2.0 3.0	4 5 4 5 4 5	0.2 0.2 40.2 0.2 0.2		
	270.0 ft 278.0 ft 288.0 ft 298.0 ft	-banding at 75° to c.abanding at 60° to c.abanding at 60° to c.abanding at 55° to c.a.	2								
02.0	END OF HOLE.										
							-				

FORM 1

Uncor	recte	d	Cor	recte	ed
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-69°		200	-64°	
328	-73°		328	-68°	
400	-76°	-	400	-72°	
548	-77°		548	-73°	
903	-79°		903	-75°	SND14

HOLE NO. <u>IP83-23</u> SHEET NO. <u>lof</u> 8

REMARKS 495.0 ft at AZ 150°

from JP83-22

LOGGED BY J.R. FOSTER

F 0 0	TAGE					SAMF	LE			A	5 5 A Y	s	
ROM	то		DESCRIPTION	NO,	SULPH	FROM	FOOTAGE	TOTAL	Au	Ag			
0	4.0	CASING							(ppb)	(ppm)			
	1.0	CADING							1				
4.0	491.3	GRANODIORITE -medium-grained b: -no significant m: -157.2 ft	iotite granodiorite ineralization -weak oxidization of granodiorite,	0933			119.1 119.7	1.6	<5 <5	0.5			
		97.5-104.4 ft		0935	1	119.7	122.3		45	0.6			
			Truman Fm. calc-silicate skarn; laminations at 40° to c.a.; upper contact at 45° to c.a., lower contact at 90° to c.a.										
		117.5-123.5 ft	-Truman inclusion, laminations at 10° to c.a.; upper contact at 45° to c.a.; lower contact at 90° to c.a. 1 cm quartz vein at 1	9.5	ft.								
		157.2-168.0 ft	-unweathered granodiorite						1	1 1	1		
		168.0-173.8 ft	-weakly altered granodiorite, pale green colour due to chlorite (?) and amphiboles; no mineralization apparent										
		173.8-178.0 ft	-mafic lamprophyre mixed with granodiorite; core badly broken										
		178.0-182.4 ft	-weakly altered granodiorite										
													-

HOLE NO. ____ JP83-23 ____ SHEET NO. ___ 2 of 8

FOOTAG	GE		75-28-712-714-71	1		SAMP	LE			A	SSAYS	
POM	TO		DESCRIPTION	NO.	5 SULPH		FOOTAGE					
				-	IDES	FROM	TO	TOTAL	(ppb	(ppm)		+-
		GRANODIORITE (con- 182.0-183.0 ft	-wollastonite-amphibole-garnet	0866 0867			183.0 266.0	1.0		0.2 40.2		
		183.0-259.9 ft	-dominantly unaltered granodiorite; locally weakly altered or rusty stained over short core lengths; no mineralization apparent									
		201.1-203.4 ft	-1.7 ft of missing core indicates open fracture; granodiorite is abruptly aphanitic for 0.1 ft on either side of this interval									
		259.9-266.0 ft	-altered granodiorite; includes minor wollastonite skarn at 259.9-260.2 ft, and Reeves Fm. inclusion from 263.0-266.0 ft; no apparent mineralization									
		266.0-387.0 ft	-dominantly unaltered granodiorite; rare metasedimentary inclusions are present; no mineralization apparent									
		387.0-467.0 ft	<pre>-granodiorite becomes less mafic, more siliceous; CI drops from 6-7 to 3-4; no mineralization apparent</pre>									
		431.5-435.5 ft	<pre>-rare specks of py in greenish granodiorite</pre>									
		467.0-476.9 ft	-Truman Fm. calc-silicate skarn inclusion; laminations sub- parallel to c.a.; contacts at 85-90° to c.a.									
		476.9-487.1 ft	-siliceous granodiorite as at 383.0-467.0 ft									
								T			3	-

HOLE NO. JP83-23 SHEET NO. 3 Of 8

FOO	TAGE				SAMP	LE				ASSAYS	
FROM	10	DESCRIPTION	NO.	7, SULP		FOOTAGE		Au	200		
6/25590				IDES	FROM	10	TOTAL		(ppm)		-
		GRANODIORITE (contd.) 487.1-490.3 ft -Truman Fm. inclusion, laminations at 25° to c.a., upper contact at 85° to c.a., lower contact at 210° to c.a. crosscutting laminations 490.3-491.3 ft -granodiorite 491.3 ft -contact at 50° to c.a.							12.22		
191.3	509.2	TRUMAN FORMATION -well laminated siliceous medium green calc-silicate skarn -laminations are very contorted, indicating strong	0936 0937 0938		492.0	490.0 494.2 497.1	2.2	4 5 4 5 4 5	1. 279104200		
		dragfolding -overall mineralization is 1-2% py + po as disseminations and in minor fractures 492.0-494.2 ft -minor granitoid dykelets (1-3mm) present; up to 20% granitoid component 496.0-497.1 ft -possible weak carbonate alteration zone									
		507.3-507.1 ft -granodiorite dyke 509.2 ft -contact at 15° to c.a.									
509.2	516.8	515.8-516.8 ft -mineralization: 10% po + py in amphibole-rich altered contact zone	987 0	10%	515.8	516.8	1.0	5	0.2		
516 0	633.4	516.8 ft -contact at 50° to c.a. REEVES FORMATION UNIT 4c(?)									
,10.9	033.4	-very coarse grained vaguely banded marble, calcite crystals up to 2cm -locally wollastonite banding is prominent -Ag mineralization and base metal mineralization occurs in a zone of coarse unsilicified marble at 536.0- 544.5 ft; remainder of marble unit has insignificant mineralization					- +-				

OOTAGE	DESCRIPTION		SAMPLE					ASSAYS				
w 10		DESCRIPTION		T. SULPH	-	FOOTAGE		A11	Ag	Pb%	Zn%	Cu
	REEVES FORMATION 516.8-517.8 ft 517.8-523.0 ft 523.0-529.0 ft 529.0-536.0 ft 536.0-537.0 ft 537.0-539.0 ft 539.0-540.0 ft 540.0-541.0 ft	UNIT 4c(?) (contd.) -amphibole-wollastonite-garnet- calcite skarn with rare galena and sphalerite -marble with considerable wollastonite bands containing garnet and amphibole; no mineralization apparent; banding at 30° to c.a. -marble with minor carbonaceous fractures, rare wollastonite bands at 60° to c.a.; no mineralization apparent -barren very coarse marble; banding at 55° to c.a. -mineralization: disseminated Ag-mineral(s) and/or galena, much less than 1% present; banding at 50° to c.a. -barren coarse marble -mineralization: less than 1% Ag-mineral(s), rare cpy and po; banding at 40° to c.a. -mineralization: coarse galena, cpy, py and po concentrated in two fractures at 540.2-540.6 ft, also some disseminated cpy, sphalerite, possibly galena and/ or Ag-mineral(s) occur in well silicified limestone -barren coarse marble	0868 0869 0871 0872 0873 0874 0875 0858 0859 0860 0876	IDES	516.8 517.8 523.0 526.0 529.0 532.0 534.0 536.0 537.0 539.0 540.0	517.8 523.0 526.0 529.0 534.0 536.0 537.0 540.0 541.0 543.0	5.2 3.0 3.0 3.0 2.0 2.0 1.0 2.0 1.0	10 4 5 4 5 4 5 5 5 5 5 5 5 5 5 75	Ag (ppm) 0.4 40.2 40.2 40.2 40.2 40.2 40.2 18.7 Ag oz/t 10.93 1.52 45.45	0.13 0.01 0.95	7 .12	chec

FORM 2

NAME OF PROPERTY_____JACKPOT

HOLE NO. JP83-23

SHEET NO. 5 OF 8

FOOTAGE		DESCRIPTION		SAMPLE					ASSAYS				
HOM	70	DESCRIPTION		NO.	T SULPH		FOOTAGE						
HOM	TO	REEVES FORMATION 543.0-544.5 ft 544.5-549.3 ft	-coarse marble weakly silicified with wollastonite bands at 545.5-546.6 ft; much less than	0877 0890 0895 0896 0897 0898 0899	IDES	543.0 544.5 546.6 549.3 551.5 554.0 557.0	544.5 546.6 549.3 551.5 554.0 557.0 559.2 561.9	2.1 2.7 2.2 2.5 3.0 2.2	10 15 10 10	Ag (ppm) 0.4 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2			
		549.3-608.6 ft 549.3-551.5 ft	is essentially barren -dominantly coarse barren marble with minor dark grey carbonaceous or pink siliceous patches and bands; much less than 1% po + py is associated with carbonaceous and siliceous patches; overall silicification is very weak -contorted siliceous bands present;	0901		561.9	565.0	3.1	4.5	<0.2			
		551.5-559.2 ft	no significant mineralization -dominantly barren marble, only very weak silicification present; overall much less than 1% po + py present										
		559.2-561.9 ft	-marble with carbonaceous and weakly silicified bands; overall less than 1% po present, po is weakly concentrated at 559.2-559.5 ft, 560.5ft, 560.9-561.2 ft and 561.9 ft; banding is at 55° to c.a.										
		561.9-576.3 ft	<pre>-essentially barren marble; number of wollastonite bands increasing slightly downhole</pre>					+			ť		

JACKPOT NAME OF PROPERTY_

JP83-23

SHEET NO. _

JACKPOT NAME OF PROPERTY

HOLE NO _ JP83-23

SHEET NO. 7 of 8

FOOTAGE SAMPLE ASSAYS DESCRIPTION SULPH FOOTAGE NO. FROM Au Ag FROM TOTAL (magat (dag 633.4 676.4 REEVES FORMATION UNIT 4b(?) <0.2 -dominantly well banded limestone with medium-grained 1906 638.0 641.0 4 5 3.0 653.0 656.0 < 0.2 marble sections: similar to Unit 4b in JP83-22 but 0907 3.0 10 < 0.2 661.0 664.0 lacking dolomitization 0908 3.0 10 K 0.2 -overall no significant mineralization; unit is 673.0 675.4 0909 2.4 K 0.2 675.4 676.4 1.0 10 essentially barren 0910 -banding at 50° to c.a. 638.0 ft 643.0 ft -banding at 45° to c.a. -banding at 50° to c.a. 648.0 ft 650.0-669.0 ft -limestone becomes darker grey due to increase in carbonaceous material; no significant mineralization -banding at 40° to c.a. 653.0 ft 658.0 ft -banding at 35° to c.a. 663.0 ft -banding at 50° to c.a. -banding at 40° to c.a. 668.0 ft 669.0-676.4 ft -dominantly white massive marble, carbonaceous-rich bands disappear; no significant mineralization 676.4 ft -contact at 45° to c.a., no skarn zone is present 676.4 896.2 GRANODIORITE 676.4 679.0 90 0.6 -medium-grained, similar to more siliceous granodiorite 0911 2% 2.6 5 2.0 0.2 679.0 681.0 0987 at 0.2 681.0 682.6 1.6 0988 -mafic content is variable from 2-10% 0.2 682.6 683.7 1.1 0989 -very few greenish weakly altered sections are present 0.2 691.5 693.3 1.8 0990 -overall mineralization is insignificant -dark green amphibole-rich 676.4-679.0 ft contact zone; 1-2% po + py in fractures

NAME OF PROPERTY______JACKPOT

HOLE NO. JP83-23 SHEET NO. 8 Of 8

FOOTAGE		DESCRIPTION				SAMP	LE	ASSAYS					
FROM TO	TO	DESCRIPTION	NO.	5 SULPH	FROM	FOOTAGE		Au	Aq				
		GRANODIORITE 768.0-778.0 ft 770.0-777.0 ft	-only 60% core recovery -mineralization: up to 1% py crystals are present on fracture surfaces in apparently unaltered granodiorite	0912 0913 0914		770.0 877.0	777.0 880.0 888.0	3.0		(ppm) 0.2 0.4			
		870.0-896.2 ft 896.2 ft	<pre>-weak alteration zone: feldspars alter to pale cream colour (carbonatized?)mafics disappear or alter to chlorite; no mineralization apparent -contact obscured by broken core</pre>										
896.2	901.5	MAFIC LAMPROPHYRE -no mineralization 901.5 ft	apparent -contact extremely irregular										
901.5	903.0	GRANODIORITE -weakly altered wi -no mineralization	ith greenish tinge n apparent										
903.0		END OF HOLE.							ŀ				
								~ +			y		