83-#607-11514

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

GOLDEN ZONE PROPERTY

located in the

OSOYOOS MINING DIVISION

N.T.S. 82E/5W

49°27'N LATITUDE 119°29'W LONGITUDE

owned by:

AGUR LOGGING COMPANY, BOX 930, SUMMERLAND, B.C. VOH 120

Operated by :

MIDLAND ENERGY CORPORATION, #463-1155 WEST GEORGIA STREET, VANCOUVER, B.C. VOE 3H4

report written by:

PETER PETO, Ph.D., F.G.S.C. #207-669 Martin St., PENTICTON, B.C. V2A 5L5

> GEOLOGICAL BRANCH ASSESSMENT REPORT 16 JULY 1983

.51 1

TABLE OF CONTENTS

TEXT

Summary	
Introduction	1
Property location, Access, Title and History	2
Regional Geology	2
Property Geology	ź
Soil Survey	6
VLF-BM16 Survey	7
Conclusion	8
Recommendations	9
References cited	10
Itemized cost statement	10
Authors' qualifications	11

10

ILLUSTRATIONS

Figure 1:	Location Map (1:50,000)
Figure 2:	Claim Map
Figure 3:	Regional Geology Map (1"=1 mile)
Figure 4:	Property Geology Map (1:2000)
Figure 5:	Detailed sketch map of trenched area (1:1000)
Figure 6:	Soil Geochemical Survey Map (1:2000)
Figure 7:	VLF-EM16 Survey Map(1:2000)

APPENDICIES

Appendix	#1:	Rock	ICP	Assay Results	
Appendix	#2:	Soil	ICP	Geochemical Results	į.

ï

÷

SUMMARY

A property evaluation program consisting of 10km of grid preparation, geological mapping, soil sampling and VLF-EM-16 geophysical surveying was undertaken on the Golden Zone property, 22 to 27 June, 1983. The property is underlain by hornfelsed, sediments that have been mineralized by precious metal bearing quartz veins, replacements and fault gouge along a persistent east trending fracture system. The fracture system has been explored along a strike length of some 100 metres to a depth of about 30 metres resulting in the average indicated grades of 0.008 oz. Au and 3.22 oz. Ag in quartz veins, 0.235 oz. Au and 2.19 oz. Ag, in replacements, 0.266 oz. Au and 0.41 oz. Ag in fault gouge. Tailings from underground workings yeilded 0.035 oz. Au and 0.95 oz. Ag and percussion drill hole intersections yeilded 0.03 oz. Au and 1.33 oz. Ag on average. Soils adjacent to the mineralized area carry anomalous concentrations of Ag, Zn and As and on this basis the mineralized zone may extend at least 120 metres to the north and east of the workings. A VLF-EM-16 survey indicates that the mineralized zone is characterized by high negative amplitude responses which extend 300 metres to the east and that a strong NE trending conductor, coincident with anomalous soils, can be traced 300 metres away from the main workings. A surface program consisting of grid extension, soil sampling, ground magnetometer and induced polarization surveying is recommended over the "B.C." crown grant to better trace the mineralized structure for a subsequent diamond drilling program. The structure is presently untested to the east and at depth and in the writers estimation merits further investigation.

INTRODUCTION

At the request of Mr. Arnold Kucherhan, president of Midland Energy Corporation, a property evaluation program was undertaken on the Golden Zone crown grants from the 22nd to the 27th of July, 1983. The program consisted of claim staking (9 units), establishing 10 line km. of chained, blazed and flagged grid with 30 metre station intervals and 60 metre line spacings, the collection of 62 soil samples and 25 rock chip samples for chemical analysis, a VLP-EM16 survey totaling 9 line km., combined with geological mapping and prospecting, in conjunction with additional information obtained from other sources, are presented in this report.

PROPERTY LOCATION, ACCESS, TITLE AND HISTORY

The property is situated at the headwaters of Hedley Creek, between the Nickel Plate and Broken Creek tributaries, on gently rolling plateau at elevations between 5700 and 6100 feet above sea level. (Figure 1) The claims are accessed by road from Penticton, a distance of some 45 km. The first 37 km. is by all weather gravel road to Apex Village, however the final 9 km. is suitable only for 4-wheel drive vehicles. The property consists of three crown grants, namely the Silver Bell, Golden Zone and B.C., comprising some 120 acres designated by lot numbers 905, 904 and 903 respectively. (Figure 2).

The property was originally claimed in 1900, underground exploration was carried out between 1905 to 1909, subsequently

2

abandoned, reactivated between 1930 to 1932 and again from 1936 to 1937 resulting in the construction of some 1292 feet of underground workings. The property remained idle for 43 years until Agur Logging initiated a program of road upgrading, bulldozer trenching and 1364 feet (415 metres) of percussion drilling (Holt 1980). The property was subsequently optioned to MID-LAND ENERGY CORP. in 1982 which commissioned a property examination (Cruz, 1982) and the present investigation.

REGIONAL GEOLOGY

According to regional geological mapping by Bostock (1940), the property occupies a contact zone between a roof pendant of Triassic volcanics and sediments belonging to Hedley Formation (Nicola Group?) and granodioritic to granitic intrusions of the Okanagan batholith of Middle Jurassic age. (Figure 3) The geological environment is therefore condusive to both fissure vein and contact metamorphic deposits. The area is blanketed by a variable covering of glacial till deposited by Pliestocene glaciers which advanced in a south-easterly direction.

PROPERTY GEOLOGY

The property was mapped initially by Camsell (1908) on a scale of 1:7200 wherein he reported that a persistent, east trending quartz vein, 2 to 4 feet wide, carrying pyrite, arsenopyrite, sphalerite and chalcopyrite _ can be traced for 1200 feet (365 metres) through granite into siliceous, hornfelsed sediments consisting of limestone, quartzites and tuffs. A

.....3

- 2 -

belt of fine grained, foliated biotite granite separates coarse grained granite from the metasediments and both are intruded by a leucocratic quartz-porphyry situated to the south of the claims. Values are in gold and silver with gold showing higher grades in the sediments. Assays reported in the Minister of Mines annual reports (1931) wary from 1.18 to 0.04 oz. gold and from 1.0 to 3.7 oz. silver per ton. According to Hedley (1937) the character of the mineralization changes underground inasmuch as arsenopyrite gives way to pyrite, quartz occurs as small fissure fillings and replacement bodies up to widths of 12 feet, nearby ground is shattered and blocky due to fault zones which host broad zones of gouge, mineralization occurs as pyrite stringers, smears, scattered aggregates and pockets of massive sulphide with small amounts of arsenopyrite, sphalerite and jamesonite. In general the sediments dip 30° to 60° westerly and are cut by apophysis of granite and post-mineral, northtrending and east dipping dolerite dykes. Mineralized widths, attitudes and values are irregular but the better gold values (0.7 - 1.8 oz. per ton) appear to occur in narrow (1 to 10 inches) east-west strands. The character of the mineralization also changes laterally inasmuch as quartz-arsenopyrite-pyrite replacements in the sediments gives way to a narrow drusy, ribbon-banded to cox-comb milky quartz wein carrying sphalerite and pyrite in the granite. Gold values drop off to 0.02 oz. per ton but silver

....4

- 3 -

- 4 -

values increase to as much as 10 oz. per ton!

During the course of this investigation, the property was mapped on a scale of 1:2000 and the resulting map is shown on figure 4. Mapping was hindered by the paucity of outcrops, particularly on the north grid, however the geological configuration reported by Camsell (1908) was confirmed. The old diggings, Agur's trenching and roadwork and rockchip sample locations are plotted. The assay and rock geochem results are listed in appendix #1.

The geological configuration lends itself to the following interpretation. The sediments and volcanic rocks have been hornfelsed by successive intrusion of a fine grained, foliated. biotite granite, a marginal chill zone, which was subsequently intruded by the main mass of the coarse grained "McNulty" granite batholith and still later a small satellitic body of "Empress" leucogranite porphyry. The occurance of McNulty granite to the south and west in relation to the NW trending wedge of fine grained, biotite granite chill zone suggests that the Golden Zone property covers an epizonal "roof" zone above the batholith. The zone is probably down-faulted to the north and tilted upward to the south along a prominant system of east trending fracture and fissure zones which have acted as channelways for mineralizing hydrothermal solutions emanating from the McNulty or Empress granites. It is also probable that other such easttrending mineralized fracture systems may occur adjacent to and

.....5

most likely to the north of the main Golden Zone fracture system. The mineral and metal distribution patterns observed are indicative of a hypogene metal zonation proceeding from Ag, Zn, As, Fe and Au, or mineralogically from sphalerite to arsenopyrite to pyrite, with depth. However, metal distribution patters might also be complicated by mineral paragenesis as indicated by the variety of ore textures: fracture, breccia, drusy, disseminated, massive, stringer, quartz vein, replacement, gouge, etc. In any case, there is little doubt that mineralization was episodic and essentially mesothermal in character.

A sketch map of the main workings on the Golden Zones (Figure 5) indicates that it is at least 140 metres long and 25 metres wide. To the north it is defined by a 2 to 4 foot wide quartz vein (R17 to 24) which appears to terminate at about 75W-10N and is replaced by a 12 foot wide zone of shattered quartz and arsenopyrite (R24-25) over an exposed distance of 30 metres to about 40W - 10N. To the south, the zone is defined by an east trending fault zone shich hosts mineralized gouge (R34, 40 & 41), and quartz replacements (R26, 27). Samples from the ore dump (R36-38) were collected to provide an estimate of the average grade underground. These and other assays compiled from various sources (listed in table #1) were used to estimate some average grades. namely: quartz vein - 0.008 oz. Au and 3.22 oz. Ag over 1.3m. replacement pods - 0.235 oz. Au and 2.19 oz. Ag over 1.5m. Fault gouge - 0.266 oz. Au and 0.41 oz. Ag over 0.3m. Tailings from dumps - 0.035 oz Au & 0.95 oz. Ag.

....6

- 5 -

Percussion Drilling intersections - 0.03 oz. Au & 1.33 oz. Ag over 6.7m.

Silver is highest in quartz veins cutting granite whereas gold is highest in quartz replacements and fault gouge in the sediments. Furthermore the average grade from percussion drill hole intersections are similar to those from underground tailings fines collected from the surface of the dumps. However, caution is required inasmuch as drill hole recoveries in mineralized zones were low (66%) and the surface samples from the dump probably reflect the grades from the last stage of underground exploration. There is also a considerable discrepancy between grades from surface samples and underground samples with a bias to higher values taken at the surface. Inspection of table #1 reveals that underground samples taken by Hedley (1937) are systematically lower than samples collected at surface by others. The average indicated grades collected from that portion of the Golden Zone presently explored (ON-15E to 90W). valued at todays metal prices (\$400 U.S./oz. gold and \$12U.S./oz. silver) yields a net value of about \$30/ton of ore.

SOIL GEOCHEMICAL SURVEY

A total of 62 soil samples were collected in an attempt to trace the extent of the mineralization in areas obscured by transported glacial till. (Figure 6) Soils adjacent to quartz veins were anomalous in Ag, As and Zn and appear to have traced the vein from 330W-20S to 420W-15S. Strong metal concentrations

7

- 6 -

were also found from 0 to 120W and 90S to 120N. The samples collected near the workings were probably mechanically contaminated by trenching and stripping operations. Pronounced metal dispersion occurs to the north of this area, up to the limit of sampling, and may reflect underlying mineralization or down-slope hydromorphic (secondary) metal dispersion from the workings. However, since anomalous concentrations of Ag and As also occur to the south and east, it is more likely due to underlying mineralized rock. In any case, it is clear that either the main mineralized zone extends to the ENE or there is another zone trending northeasterly in the vicinity of 90W-30N, 60W-60N and 60E-90N. Further sampling is in order.

VLF-EM16 SURVEY

A geophysical survey was undertaken, on the recommendation of Cruz (1982) to trace the mineralized structures in areas of overburden. A Geonics EM-16 was used and measurements were taken every 30 metres over grid lines by monitoring the signals from Cutler, Maine and Seattle, Washington. The signals from Cutler were judged to be weak and less sensitive than those from Seattle and hence the responses for Seattle (18.6 khz) are plotted on figure 7. In general, the frequency and amplitude of responses detected over the sediments were greater than those over the granites. Moreover, very strong amplitudes were noted along the south grid at stations 300E-90S, 180E-30S, 120E-60S and 60E-90S and corresponding aberrations at 60W-60N and 120W-30N. A relatively strong cross-over (conductor) was noted

....8

- 7 -

on the NE grid at stations 300E-60N, 240E-120N, 180E-60N, 120E-40N and 60E-60N(?). The mineralized zone appears to give a high, negative amplitude response but no clear conductor axis appears to be indicated. Nevertheless the present data suggests that the zone dies out at 180E but continues eastward to the limit of the survey at 300E. Furthermore a conductor axis, broadly coincident with anomalous metal concentrations trending to the NE, is indicated.

CONCLUSIONS

On the basis of the foregoing considerations I have come to the following conclusions.

(1) The "Golden Zone" occupies the edge of a roof pendant which is mineralized by epizonal fissure veins and replacement pods bearing minerals of a mesozonal character.

(2) Precious metal values are erratic but clearly show that gold is concentrated in replacements and fault zones in country rock whereas silver is concentrated in quartz veins cutting granite.

(3) The best gold values occur in narrow, east trending fault zones.

(4) On average the underground tailings yeild precious metal values similar to those obtained by percussion drilling but underground values tend to be lower than those obtained at surface.

(5) Assays obtained from percussion drill hole sampling of the mineralized horizon are suspect due to low recoveries (average

- 8 -

....9

66%; range: 15 to 90%).

(6) The indicated grades, from the zone presently explored, about 105 metres of strike length to a depth of 30 metres, is subeconomic at this time.

(7) Anomalous concentrations of Ag, As and Zn in soils collected adjacent to the mineralized area indicate that the mineralized area can be extended to the north and east by at least 120 metres.
(8) The EM-16 survey has indicated that the mineralized zone is characterized by high negative amplitudes which extend to the east and that a strong NE trending conductor, broadly coincident with anomalous metal concentrations in soils, can be traced at least 300 metres beyond the area of known mineralization.
(9) That the mineralized structure(s) most probably continues to the east and that it remains untested both along strike and at depth in this direction.

RECOMMENDATIONS

In my estimation the Golden Zone is a strongly mineralized, persistent structure that has been insufficiently tested to date and therefore merits further investigation as to its economic potential. The findings of this investigation gives reason to believe that the mineralized structure continues to the east for a distance of at least 300 metres and thereby triples the indicated strike length. It is plausible that higher grade mineralization may occur both along strike and at depth along this structure. With this in mind, I recommend that the following course of action be taken:

(1) That the existing grid be extended to cover the area of the10

- 9 -

"B.C." crown grant.

(2) That the soil sampling be extended to better delineate the mineralized area.

(3) That a ground magnetometer survey be taken over the extended grid to delineate possible alteration zones (magnetic lows) and the granite-country rock contact (by magnetic contrast).

(4) That an induced polarization survey be undertaken over the Golden Zone and B.C. crown grants to better delineate zones of sulphide concentration along the structure.

(5) That pending favourable results from the above surface program, the best geophysical targets by drilled and tested. Since core recovery from mineralized zones are known to have been poor, due to badly broken ground and zones of clay gouge carrying good gold values, care should be taken to collect drill cuttings. It might also be necessary to use mud.

Respectfully submitted.

Peter Peto, Ph.D., F.G.S.C. (Consulting Geologist)

REFERENCES CITED

B.C. Dept. Mines Annual Report (1930) Golden Zone, p.216-219 B.C. Dept. Mines Annual Report (1931) Golden Zone, p.133 Bostock, H.S. (1940) G.S.C. Map 628A, Olalla

Camsell, C. (1908) Hedley Mining District, G.S.C. Memoir #2, Map 4A, p.204-206

Cruz, E.D. (1982) Report on Golden Zone Group, VSE prospectus report, 15p.

Hedley, M.S. (1937) Golden Zone Mines Ltd., B.C. Dept Mines Annual Report, p.D14-17

Holt, E.S. (1980) Report of Examination and percussion drilling results Golden Zone Mineral Claims, private report, D. Agur.

ITEMIZED COST STATEMENT

Field Salaries

Peter Peto: 6 days @\$200/day\$1200.0	00	
Lance Parrish: 60 hours @ \$10/hour	00	
	\$	1800.00
Accommodationno char	-	
Food	14	
		17.74
Analytical Services 596.5		
Freight	0	<i></i>
		615.20
Courier Service	0	
Telephone	6	
	_	15.06
Truck Rental (6 days and milage) 457.4		
Gasoline	0	548.56
VLF-EM16 Rental (Direct Billing)		240.00
Chain Saw Rental	0	
Supplies: (plastic bags, flagging, copies)		
62 soil sample bage @10¢/bag 6.9	0	
Report Preparation		41.80
Drafting, report writing, typing, etc. 41 days 900.0	0	
Reproduction charges		
Stationary	6	960.46
	T 1	# 399883

CERTIFICATE OF QUALIFICATION

I, Peter S. Peto, of #207-669 Martin Street, town of Penticton, Province of British Columbia, DO HEREBY CERTIFY:

That I am a consulting geologist with the above business address.

That I am a graduate of the University of Alberta where I obtained my B.Sc. and MSc. degrees in geology in 1968 and 1970 respectively. I am also a graduate of the University of Manchester where I obtained my doctoral degree in geology in 1975.

That I am a fellow of the Geological Association of Canada That I have practiced my profession actively since 1975.

That I have no interest in the Golden Zone property, nor in the securities of Midland Energy Corp., nor do I expect to receive any.

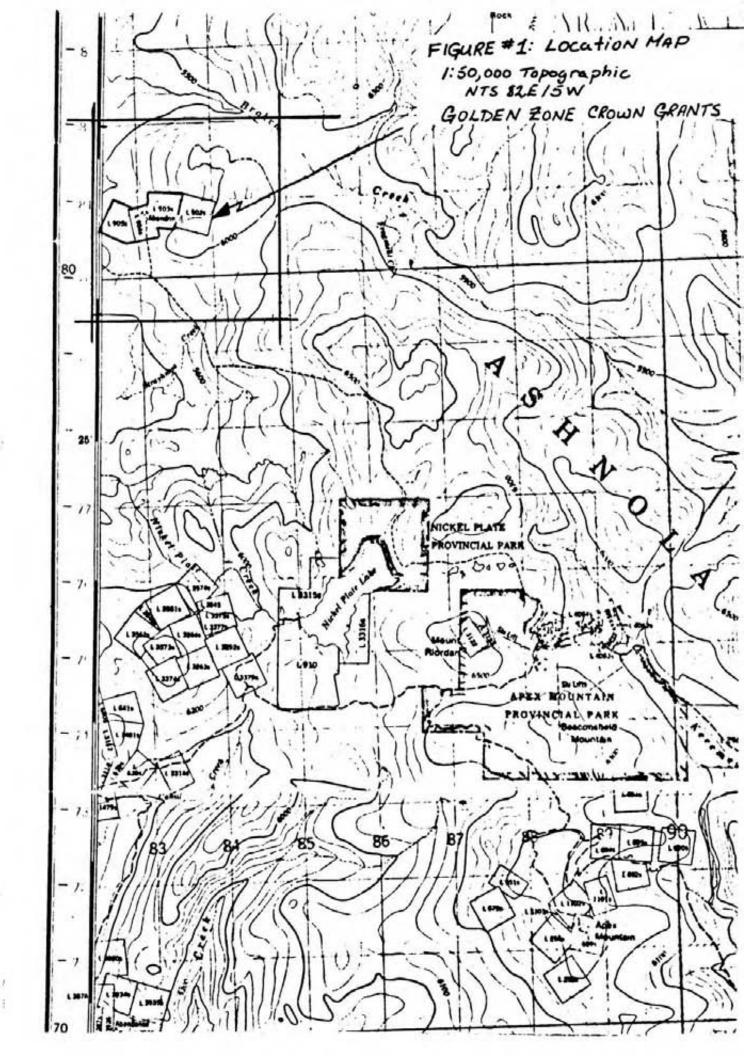
That information contained in this report is the result of my field investigation and literature made available to me.

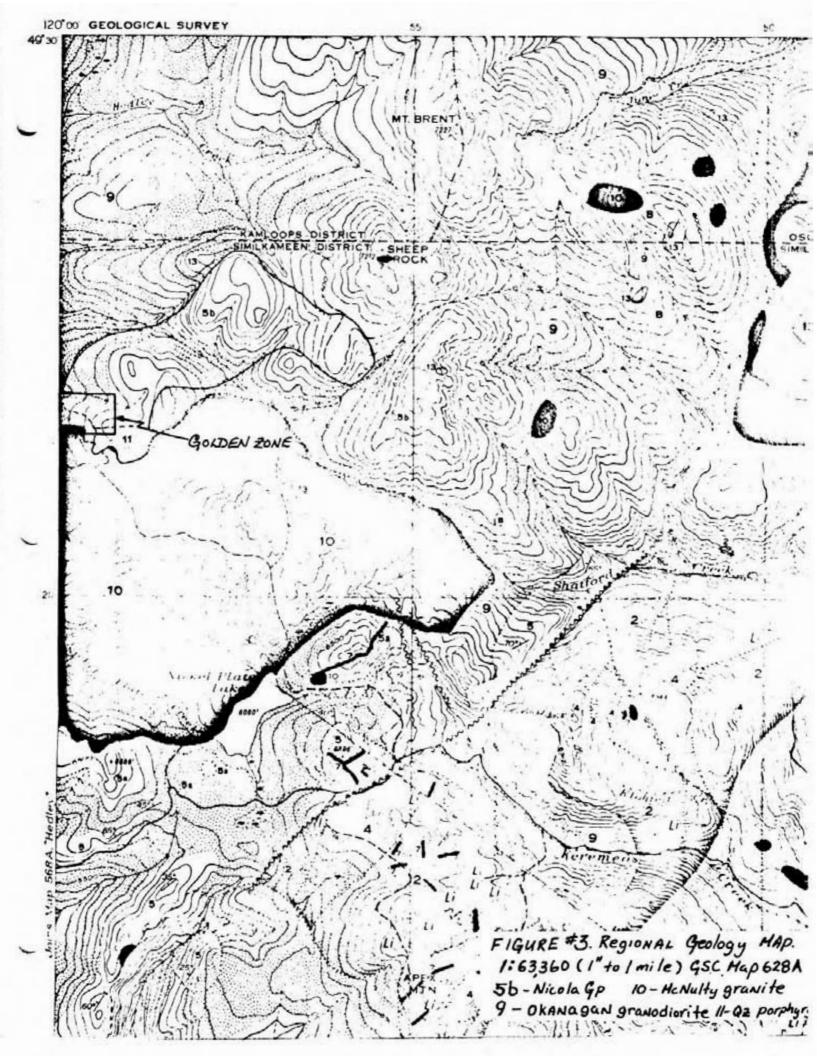
That I hereby consent to the publication of my report on the Golden Zone property, dated 16 July 1983, in a prospectus or statement of material facts.

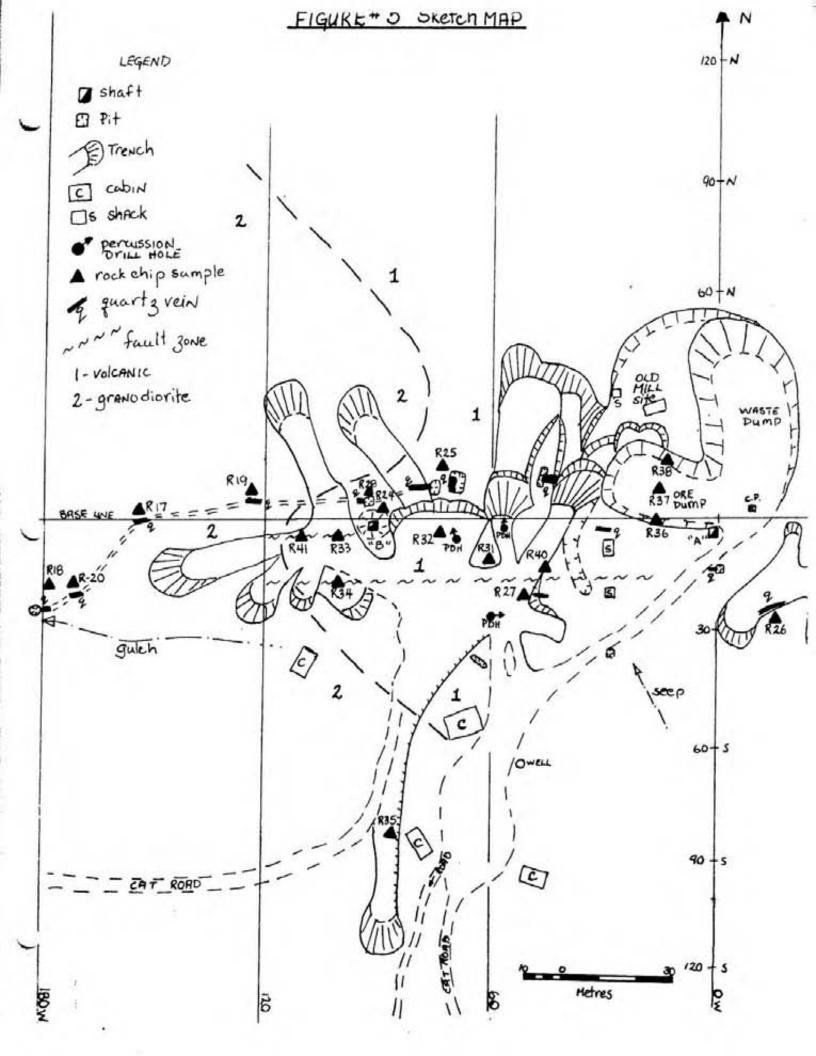
Dated this //_ day of July, 1983, at Penticton, B.C.

Poler Petr

Peter Peto, Ph.D., F.G.S.C.




R-51017	On Wede				
R=31017	Qz Vein	2.0	ND	0.5	This report
R-51018	"	Grab	ND	1.5	"
R-51019		2.0	0.003	2.31	п
R-51020	n	1.3	0.002	1.87	
R-51021		1.5	0.003	2.94	
R-51022		1.4	0.010	4.69	
R-51023		1.0	0.004	3.01	
R-51028		1.6	0.010	0.95	
R-51039		1.0	0.010	0.95	
		1.0	0 001	7 00	W-1+ (4000)
R-2417		1.0	0.001	3.22	Holt (1980)
R-2418		0.7	0.001	3.72	
829		Grab	0.022	6.56	Cruz (1982)
830		1.1m	0.028	1.24	"
831	"	1.1m	0.002	2.22	
A	11	Grab	0.02	8.0	Hedley (1937
В	"	Grab	trace	1.2	"
#1	"	1.3m	0.02	10.8	BCDM (1930)
AVERAGE		1.3m	0.008	3.22	
R-51024	Qz Pod	Grab	0.085	0.66	This report
R-51025	"	4.0	0.169	1.56	
R-51026		3.0	0.015	3.22	
R-51027		1.0	0.031	1.75	
2414		3.1	0.148	1.60	Holt (1980)
2415		Grab	0.422	5.07	"
2416		1.0	0.071	0.44	
832		Grab	0.568	1.24	Cruz (1982)
833		0.3	0.208	1.41	1 (1902)
834		Grab	0.272	0.92	
#1		1.9	Trace	0.5	Hedley (1937)
#2		Grab	0.10	10.5	neurey (19)//
#3		1.0	0.01		
#4	Pyrite	0.1	0.10	0.6	
#4					
#0	Qz Pod	2.4	0.06	0.60	
#0	Pyrite	0.1	0.74	1.2	
# (#0	Qz Pod	1.1	Trace	0.4	"
#8		0.25	1.30	0.6	
#2		Grab	0.12	0.8	BCDM (1930)
#1	"	0.9	0.46	3.7	BCDM (1931)
#2	"	3.0	0.26	3.0	"
#3	"	1.5	0.06	1.0	
#4	tr .	Grab	0.04	4.8	
#567821 #######56	"	Grab	0.04	1.0	H
#6	Pyrite	Grab	0.64	2.3	"
VERAGE		1.5	0.235	2.19	


TABLE 1. ASSAY COMPILATION

~

SAMPLE	NO. T	YPE	WIDTH(<u>m)</u>	Au oz/T	Ag oz/T	SOUR	122-1-2012-000 M
R51036	Ta	ilings	10.0(1	in.es)	0.034	1.13	Hedle	y(1937)
51037		"	n	n	0.065	1.06	"	
51038					0.031	1.42	"	
2411			6.0		0.041	0.68	Holt	(1980)
2412					0.032	0.50		
11828			7.5		0.017	0.95		
11829			6.0	**	0.024	0.88		
(834)				ab	0.272	0.92	Cruz	(1982)
(#3)			"		0.76	4.30	BCDM	(1930)
(#7)	Cond	centrate	gr	ab	1.18	3.7	BCDM	(1931)
(#8)	10101071	ilings		ab	0.13	1.4	"	1.55
AVERAGE					0.035	0.95 ,		
PDH #3	25-85%	recover	v 6.	10	0.018	0.32	Holt	(1980)
PDH #4	20-85%	"		23	0.033	0.82		
PDH #5	25-90%			62	0.043	2.23		
PDH #9	15-90%			62	0.005	1.69		
PDH #13	85%	"		04	0.053	1.60	"	
AVERAGE	66%		6.	72	0.030	1.33		
							12	

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED JUNE 28 1983

DATE REPORTS MAILED July 4/83

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppm. SAMPLE TYPE - P1-2 SOIL _P3-ROCK

ASSAYER ____ DEAN TOYE, CERTIFIED B.C. ASSAYER

MR	PE	TER	PET	O
----	----	-----	-----	---

PROJECT # GOLDEN ZONE FILE # 83-0984

PAGE# 1

SAMPLE	CU	ZN	AG	AS	AU	
	ppm	ppm	ppm	ppm	ppm	
30N 420W	11	99	.2	16	ND	
15N 420W	10	135	. 1	15	ND	
05 420W	14	123	- 3	19	ND	
155 420W	17	141	. 4	20	ND	
305 420W	11	150	.4	13	ND	
05 360W	10	142	. 4	8	ND	
155 360W	23	341	1.2	21	ND	
305 360W	17	209	. 9	20	ND	
105 330W	16	112	.5	10	ND	
120N 180W	27	73	.9	8	ND	
90N 180W	25	93	.3 .2 1.3	7	ND	
60N 180W	26	76	.2	10	ND	
05 180W	15	162	1.3	23	ND	
305 180W	29	113	2.1	16	ND	
05 150W	22	159	2.1	22	ND	
120N 120W	10	41	.1	4	ND	
90N 120W	16	72	. 4	13	ND	
60N 120W	19	93	:4	19	ND	
30N 120W	19	157	.4	18	ND	
OS 120W	17	162	1.9	37	ND	
305 120W	31	266	1.1	396	ND	
605 120W	11	127	1.0	344	ND	
60N 90W	15	120	.3	71	ND	
30N 90W	155	678	4.0	3913	ND	
305 90W	35	276	1.0	413	ND	
120N 60W	23	134	.7	337	ND	
90N 60W	25	118	.6	376	ND	
60N 60W	18	287	.8	488	ND	
30N 60W	41	239	3.1	1242	ND	
05 60W	44	247	.9	699	ND	
JON 60W	23 23	164	.7	166	ND	
60N 60W		126	. 4	126	ND	
90N 60W	14	113	.2	29	ND	
1205 60W	20	60	.2	63	ND	
STD A-1	30	186	.3	10	ND	

IR	PETER	PETO	PROJECT	#	GOLDEN	ZONE	FILE	#	83-0984		PAGE#	2
	SAM	PLE			CU ppm	ZN ppm	AG ppm		AS ppm	AU PPm		
	05 3 30N	30W	*		55 68 27 39 14	253 318 99 55 109	6.9 1.7 .5 1.9 .5		3936 1827 227 53 27			
	90N 60N 30N 30S 60S	000			17 14 233 17 19	98 68 732 142 115	.4 .4 18.4 1.2 .4		47 65 2841 362 160			
	45N				23 18 14 26 49	107 92 72 119 139	1.1 .3 .4 .4 .8		82 56 35 31 49	22222		
	30S 45S	60E 60E 60E 60E 60E			18 16 22 20 24	89 80 176 104 89	.34734		67 34 30 37 53		зà:	
	90N 60N 30N	120E 120E 120E 120E 120E			13 13 13 13	66 195 87 69 67	488888		48 63 27 28 23	22222		
	205 305	120E 120E 120E A-1			13 13 13 29	64 69 62 184	.33.13		23 17 12 9	NDDD NDDD NDDD		

4

e.

1 1 -

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

DATE RECEIVED on Hand DATE REPORTS MAILED July 6/83

ASSAY CERTIFICATE

SAMPLE TYPE : PULP A6** AND AU** BY FIRE ASSAYS Assay check of 100

ASSAYER ____ DEAN TOYE, CERTIFIED B.C. ASSAYER

MR PETER PETO PROJECT # GOLDEN ZONE FILE # 83-09848

PAGE# 1

SAMPLE		AU**	
	OZ/TON	DZ/TON	
R51019	2.31	.003	
R51020	1.87	.002	
R51021	2.94	.003	
R51022	4.69	.010	
R51023	3.01	.004	
R51024	.66	.085	
R51025	1.56	.169	
R51026	3.22	.015	
R51029	1.75	.031	
R51030	.95	.010	
R51034	.39	.262	
R51036	1.42	.031	
R51037	1.06	065	
R51038	1.13	.034	

.

MR	PETER	PETO	PROJECT	#	GOLDEN	ZONE	FILE	# 83-09	784	PAGE#	3
	SAMP	LE			CU	ZN	AG	AS	AU		
					ppm	ppm	PPm	PPm	ppm	1	
	R510				4	11	15.7	13	NE)	
	R510				4	86	47.4	6	NE		
	R510	191			19	1666	81.7		NE		
	R510	201			67	55	69.0	16	NE)	
	R510	214			7	348	103.4	56	NE)	
	R510	22 ¥			31	3799	133.9	32	NE)	
	R510				21	802	99.9	45	, NE		
	R510	24*			10	17	22.7	45167	2		
	R510	251			24	11	52.0		5		
	R510	264			17	69	104.9	1258	NE		
	R510	27			23	116	1.8	580	NE	,	
	R510	28			10	38	6.1	233	NE)	
	R510	291			5	3	58.3		ND)	
	R510				74	2488	31.4	4068	ND)	
	R510	31*			43	305	6.7	4334	NE		
	R510	32			56	310	9.9	4481	NE	¥7.	
	R510				34	818	1.4	646	NE)	
	R510				21	10	13.2	35551	7		
	R510				18	25	.7	387	ND		
	R510				30	106	46.7	5276	NE		
	R510	374			36	304	34.1	12347	2		
	R510				74	840	36.3	9324	ND		
	R510				7	160	10.9	103	NE		
	STD				29	182	.3	10	ND		
	515				27	102			144		

+ An An Assay Suggested.

1

	CTA .
	\mathbf{U}
10	
1	Canadian Teening

TO

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

2095 WEST TRANS CANADA HIGHWAY - KAMLOOPS B.C. VIS 1A7 PHONE (604) 372-2784 - TELEX: 048-8320 CERTIFICATE OF ASSAY

Midland Energy Corp.

8121 Wiltshire Blvd,

North Delta. B.C. V4C 4B5

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

REVISED

Kral No	Marked	GOLD	SILVER	Pb	Zn	Cu				
		Ounces Per Ton	Ounces Per Ton	Percent	Percent	Percent	Percent	Percent	Percent	Percent
1 2 3	G20 0-0 EAST TRENCH G2 1-W MAIN DUMP G2 10-W WEST TRENCH	.05 .10 .468	8.16 2.69 4.28	- .13 .06	1.83 .01	.03 -	LAST C WEST (NORTH D		SHAFT	
4										

NOTE: Rejects retained three weeks. Pulos retained three months

Qual Mo. 1

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

Certificate No. __K-2932

Date _

July 18, 1980

(

C TA		BORAT	RATORY LTD.			B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS				
_	North Delta	nire Blvd. B.C. V4C 4B	15				Date _	July	K-2962 31, 1980	
Kral No.	Jereby certify that the fo	GOLD	s of assays mad SILVER	de by us upon	the nerein	described		Sä	ampies	
		Ounces Per Ton	Ounces Per Ton	Percent	Percent	Percent	Percent	Percent	Percent	Percent
1 2	G-2 # 1 G-2 # 3	.40 .44	2.89 2.63	50' oF 12' CHI	HIAIN Stonph	OUMP W. Th	MINER SEXCH	nL12ED	SAMPL	
			ι.	-						
							*			
						•				

Rejects relained three weeks. Pulps relained three months unless otherwise arranged.

OS-B DAG .

Registered Assayer, Province of British Columbia

	c/o 197 Pen	TO Midland Energy Corp. c/o John Kucherhan 197 Granby Ave, Penticton. B.C. W2A 221				1001 EAST PENDER BT. VANCOUVER B.C., CANADA VE PHONE (604) 254-1647 TELEX 04-507514 CABLE SUP CERTIFICATE OF AS				
	olden Zo	ne Crow		s Claims	No.:	8110-1551	DATE: CO	DATE: Cot. 27/81		
hereby certily that the f	GOLD GOLD	salver	Copper	Ore	Zino	Silica	Arsenic	X11X		
MARKED	os/st	oz/st	C u (5)	Pb (%)	2n (%)	S102 19) As (\$)			
<i>E</i>										
829 T	0.022	6.56	0.03	0.33	4.80					
830 1	0.028	1.94	0.01	0.01	0.07	1				
831 T	0,002	2.22	0.01	0.09	1.84					
832 T	0.568	1.24	0.01	0.10	0.01		-			
833 2	0.208	1.41	0.01	0.07	0.01					
834 7	0.272	0.92	0.01	0.04	0.11			*		
	1	1	•	Ъ.,				1.4		
	1	1								
	۰.	1						14		
		10.00								
1 1										
	÷.						1			
				_			i i			
							1			
•	4				-			1.1		
TE REJECTS RETAINED ONE MO	TH PULPS RETAR	ED THREE MON	THS ON REQUES	T PULPS	~					
AND REJECTS WILL BE STOR LI REPORTS ARE THE CONFIDENTI DICLUSION OR EXTRACTS FROM UR WRITTEN APPROVAL ANY LIAB	E FOR A MAXIMUN	OF ONE YEAR	TATION OF STATE	MENTS	L	. Kone				

and the second second a strate and a strate was a strate of the second strate of the second strate of the second

provide a filled the second and a second second

MEMBER: American Society For Testing Materials + The American Oil Chemists Society + Canadian Testing Associal REFEREE AND OR OFFICIAL ONEMISTS FOR: National Institute of Orseed Products + The American OI Chemists' Soci

GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILLING REPORT

on the

GOLDEN ZONE PROPERTY

located in the

OSOYOOS MINING DIVISION

N.T.S. 82E/5W

49°27'N LATITUDE & 119°29'W LONGITUDE

owned by:

AGUR LOGGING COMPANY, BOX 930, SUMMERLAND, B.C. VOH 1ZO

operated by:

MIDLAND ENERGY COPRORATION, #463-1155 WEST GEORGIA STREET, VANCOUVER, B.C. VOE 3H4

report written by:

PETER PETO, Ph.D., F.G.S.C., #207-669 MARTIN ST., PENTICTON, B.C. V2A 515

10 September 1983

SUMMARY

An exploration program consisting of grid preparation, soil sampling, detailed IP measurements, bulldozer trenching, rock chip sampling and diamond drilling on the "Golden Zone" precious metal property was carried out between 24 July and 31 August, 1983 by MIDLAND ENERGY CORPORATION. The property is underlain by hornfelsed felsites, limestone and granite which host an east trending, mineralized zone, up to 60 metres wide and at least 500 metres long. An area of anomalous Zn, Ag and As concentrations in soils, measuring 240 by 60 metres, was delineated. Induced polarization measurements indicate that the mineralized structure can be traced 180 metres east of the underground workings. Bulldozer trenching has exposed a mineralized fault, up to 1 metre wide, which yielded assays as high as 0.55 Au and 1.33 Ag (oz/T). Exploratory diamond drilling of 193 metres of BQ core in 6 holes resulted in the following intersections: DDH#2-0.133Au & 3.74 Ag over 26 feet, DDH#3-0.131 Au & 0.33 Ag over 5 feet, DDH#4-0.032 Au & 0,04 Ag over 4.5 feet, DDH#5-0.139 Au & 1.2 Ag over 9 feet (oz/T). Grades of 0.141 Au & 5.37 Ag over 5 feet and 0.028 Au & 10.32 Ag over 6 feet were attained in DDH#2. Further, grades of 0.312 Au &4.10 over 1 foot and 0.237 Au & 2.46 Ag over 1.5 feet were recovered in DDH#5. In the writer's estimation, the results are sufficiently encouraging to recommend an additional 3000 feet of diamond drilling to further test the mineralized zone along strike and at greater depths.

~

TABLE OF CONTENTS

TEXT

Summary	
Introduction	1
Property location, access, title and history	1
Property Geology	2
Geochemical soil survey	3
Induced polarization survey	4
Bulldozer trenching and sampling	5
Diamond drilling program	7
Conclusions	10
Recommendation	11
References cited	12
Itemized cost statement	1.1
Authors' qualifications	13

ILLUSTRATIONS

Figure	1:	Location Map (1:50,000)	14
Figure	2:	Claim Map (1:50,000)	15
Figure	3:	Geochemical soil survey map (1:2,000)	in pocket
Figure	4:	I.P. survey map	in pocket
Figure	5:	Sketch map of trench, rock sample and drill hole locations (1:1,000)	20
Figure	6:	Diamond drill log and assay profiles	21

APPENDICIES

Appendix	1:	Assay certificates
Appendix	2:	Soil ICP geochemical reports
Appendix	3:	I.P. survey readings (P. Walcott)
Appendix	4:	Diamond drill hole logs and assays

t

INTRODUCTION

A mineral exploration program consisting of grid preparation, systematic collection of 65 soil samples, 1.17 line km. of detailed induced polarization measurements, bulldozing of 7 trenches, collection of 10 rock chip channel samples and the drilling of 6 BQ diamond drill holes totalling 635 feet (193.5 metres), was carried out between 24 July and 31 August, 1983, on behalf of MIDLAND ENERGY CORPORATION. The above program was undertaken to follow-up an earlier surface evaluation program consisting of geological mapping, rock chip and soil sampling and VLF-EM16 surveying between 22 to 27 July, 1983.

PROPERTY LOCATION, ACCESS, TITLE AND HISTORY

The Golden Zone property is located west of Penticton and north of Hedley, in the Okanagan highlands, at elevations between 5700-6100 feet above sea level (Figure 1). The claims are accessed by road from Penticton, via the road to Apex Village, a distance of some 45 km. The property consists of three crown grants, namely the Silver Bell (L.905), Golden Zone (L.904) and B.C. (L903), comprising some 120 acres (Figure 2). The showings were originally claimed in 1900, underground exploration was carried out between 1905 to 1909, subsequently abandoned, reactivated between 1930-1932 and 1936-1937, resulting in the construction of some 1292 feet of underground workings. No further work was recorded on the property until Agur Logging initiated a program of road construction, bulldozer trenching and percussion drilling (415 metres) in 1980. The property was subsequently optioned to MIDLAND ENERGY CORP-ORATION in 1982 which commissioned the present investigations.

PROPERTY GEOLOGY

According to Bostock (1940) the property is situated along the contact between a roof pendent of Triassic cover rocks belonging to the Hedley Formation and granodioritic to granitic intrusions belonging to the Middle Jurassic Okanagan batholith. The Golden Zone was initially mapped by Camsell (1908) and he showed a persistent, east trending quartz vein, 2 to 4 feet wide, carrying pyrite, arsenopyrite, sphalerite and chalcopyrite which extended 1200 feet through granite into siliceous, hornfelsed sediments. A zone of fine grained biotite granite separates coarse grained granite from hornfelsed tuffs and limestones and both are intruded by lucocratic quartz porphyry intrusion to the south of the claims. Mineral values are mainly in precious metals with gold and silver assays reported as high as 1.8 and 10.00z./ton respectively.

According to Hedley (1937), the character of mineralization changes from arsenopyrite with depth, quartz occurs as fissure fillings and replacement bodies with widths of up to 12 feet. Nearby rock is shattered due to fault zones which host clay gouge and stringers, smears and pockets of pyrite. In general, the sediments dip 30 to 60 degrees westerly and are cut by postmineral granite and dolerite dykes. Mineralized widths, attitudes and values are irregular but higher gold values (0.7-1.8 oz. /ton) occur in narrow, 1 to 10 inch, east trending fault strands.

- 2 -

The character of the mineralization also changes laterally inasmuch as quartz replacements bearing pyrite-arsenopyrite in hornfelsed sediments give way to narrow, drusy, cox-comb milky quartz veins carrying sphalerite in granite.

The present investigation has largely corroborated the findings of previous investigators but in addition it has also delineated mineralized fault zones to the immediate south of the main system of mineralized quartz veins and replacements, which are further elaborated in this report.

GEOCHEMICAL SOIL SURVEY

A total of 65 soil samples were collected to augment the 62 samples previously reported and the combined results are shown in Figure 3 and in appendix 2. Soil samples were collected from the "B" horizon by means of a mattock, placed in kraft paper bags, dried, seived to -80 mesh, and analyzed for Cu, Pb, Zn, Ag and As by induced coupled plasma spectrometry (ICP) at Acme Analytical Laboratories. The analytical procedure used consisted of taking a 0.5 gram sample split, digesting it in 3 ml. of 3:1:3 hydrochloric acid to nitric acid to water at 90°C for one hour and subsequent dilution to 10 mls with water before analysis.

Anomalous concentrations of Zn (100-732ppm), Ag (0.5-184ppm) and As (20-3936ppm) in soils originate in an area measuring 120x250 metres which is coincident with an area hosting precious metal mineralization. The 100ppm As contour defines an

- 3 -

L-shaped anomaly with extreme co-ordinates situated at 120W-60S, 120E-120S and 60W-330N. The conspicuous tongue or apron of high As concentration situated along lines 0 and 60 west is thought to be due to secondary, hydromorphic, downslope dispersion of surface mineralization leached from ore dumps and stripped areas. Supergene sulphide cementing unconsolidated soil fines, observed to occur immediately north of the ore dumps, would support this interpretation. However, another tongue also defined by the 100ppm As contour projecting uphill to 120E-120S is more indicative of mineralized bedrock. Areas underlain by limestone and granite to the NE and W of the workings respectively, are characterized by much lower metal concentrations, but areas to the NW, underlain by volcanic hornfels still carry relatively high metal concentrations. INDUCED POLARIZATION SURVEY

An induced polarization survey, over the mineralized area, was undertaken by Peter Walcott and four assistants from 26 to 29 July, 1983 and the results are shown in Figure 4 and Appendix 3. A Huntec 7.5 Mark 2 transmitter and Crone Mark 4 receiver was used to make time domain IP measurements every 15 metres, in a pole-dipole electrode configuration, for two separations per station. A total of 1.17 line kilometres were completed in which apparent chargeability and apparent restivity were measured in milliseconds and ohmetres respectively. Chargeability profiles and restivity for n=1 are shown in Figure 4. A very well defined IP anomaly characterized by relatively high chargeability and

- 4 -

low resistivity was observed to coincide with the mineralized zone. The IP anomaly characterized by relatively high chargeability and low resistivity was observed to coincide with the mineralized zone. The IP anomaly is at least 180 metres long and 60 metres wide with maxima situated at 60W-15S, 0W-30S, 60E-15S and 120E-15S. The amplitude of the anomaly diminishes gradually eastward but is open and untested to the west of line 60W.

Another lesser, partially defined, IP anomaly also occurs to the south with maxima at about 60W-105S, OW-150S and 120E-105S. An abrupt contrast in resistivity occurs at 60E-45S and 120E-45S and is thought to coincide with a pyritic volcanic hornfels to limestone contact zone. Another abrupt change at 120E-195S coincides with the hornfels to quartz porphyry intrusive contact. These resistivity contrasts are broadly coincident with previously reported VLF-EM16 anomalies and are now believed to be their underlying cause. It should be noted that IP maxima do not coincide with the surface trace of the mineralized quartz vein system but rather occur, about 15 to 30 metres to the south, along the trace of previously inferred, east trending, fault zone.

BULLDOZER TRENCHING & SAMPLING

Several bulldozer trenches were dug to better expose and sample the mineralized fault zone at surface and to uncover areas with anomalous metal concentrations in soils. The locations and rock chip samples collected from these trenches are shown in Figure 5 and listed as follows:

- 5 -

SAMPLE NO.	TYPE	LOCATION	WIDTH(M)	Au(oz/ton)	Ag(oz/ton)	
51142	gouge	48W-105	0.7	0.113	0.32	
51143	gouge	46W-95	1.1	0.551	1.33	
51144	gouge	50W-25S	2.4	0.013	0.08	
51145	gouge	100W-105	2.1	0.067	0.11	
51146	gouge	95W-10S	1.4	0.031	0.18	
51147	gouge	95W-105	2.0	0.036	0.08	
51175	gouge	100W-105	grabs	0.285	0.56	
51180	hornfels	60W-150N	grabs	tr	0.02	
51181	hornfels	60W-210N	grabs	tr	0.02	
51182	hornfels	0W-240N	grabs	tr	0.02	

Gouge samples previously reported yielded the following assays, #51034: 0.262 Au & 0.39 Ag, #51040: 0.391 Au & 0.86 Ag and 51041: 0.147 Au (ounces per ton). The mineralized fault zones consist of highly fractured, rusty rock which carry seams of clay + chlorite + epidote + pyrite gouge up to a metre in width, with 5 to 10mm wide quartz veinlets and irregularly distributed pods of quartz, pyrite and arsenopyrite up to 0.5 metres wide, which carry the best gold values. The fault zone trends easterly, dips steeply, and is 30 to 60 metres in width and coincident with the IP anomaly previously discribed. It is thought that this broad fault zone hosts much narrower mineralized quarty vein fissure fillings, quartzsulphide replacement bodies and propylitic-sulphide gouge zones in which previous metal values are concentrated. The tenor of these variously mineralized zones has been estimated in my previous report and is now further refined using the assays given above.

- 6 -

MINERAL TYPE	TYPICAL WIDTHS(M)	GOLD(oz/t)	SILVER(oz/t)
quartz fissure fillings	0.3-1.3	0.008	3.22
quartz-sulphide replacements	1.0-4.0	0.235	2.19
propylitic-sulphide gouge	0.1-1.0	0.291	0.69
aggregate	2.0	0.03	0.8
volcanic hornfels		0.001	0.01

DIAMOND DRILL PROGRAM

A program of exploratory diamond drilling, totalling 635 feet (193.5 metres) of EQ core in six inclined holes, were completed between 14 to 24 August, 1983 by Beaupre Drilling of Princeton, B.C., using a skid mounted E-15 Boyles Bros. rig. The purpose of the program was : (1) to test the persistence and grade of precious metal values with depth in quartz sulphide replacements and mineralized fault zones, (2) to determine the nature of the IP anomaly, and (3) to extend further and comapre assays with percussion drill holes reported by Holt (1980). The location of the drill holes are shown in Figure 6, assay results are shown in Appendix 1 and core logs are given in Appendix 4. The core recovered is held in storage by Mr. John Kucherhan at 197 Granby Avenue, Penticton, B.C. A brief account of each hole and an interpretation of the drilling results is presented below.

Drill hole #1 was intended to intersect a 12 foot quartzsulphide pod at shallow depths (figure 6C) but the hole had to be abandoned for lack of core recovery in highly shattered regolith. Another attempt was made at -66° and hole #2 encountered highly fractured granite and felsite hosting arsenopyrite and pyrite as fracture fills, disseminations and in quartz veinlets in the hanging wall at 30-32.5 and 44-50 feet that yielded 0.126 and 0.153 oz/T gold respectively. The main vein was intersected between 50 and 76 feet; it consisted of milky quartz carrying up to 25% sulphide in fractures and pockets, became richer in sphalerite from 70-76 feet, until it broke into the old workings. The average grade over a true thickness of 13 feet was 0.133 gold and 3.74 silver associated with 1.1 to 3.9 percent arsenic.

Drill hole #3 was intended to test an IP anomaly which was three times background and to intersect a fault zone which yielded a surface assay of 0.391 oz/T gold (figure 6C). The hole encountered highly fractured, oxidized felsite which would collapse around the drill rods. At 32 to 37 feet it intersected a zone of sulphide-rich gouge which yielded 0.131 oz. Au, 0.33 oz. Ag and 3.94% As. The felsite carried 5-15% very finely disseminated pyrite, very low Au-Ag values, which in conjunction with the fault zone, could account for the IP anomaly.

Drill hole #4 was intended to intersect the down-dip extension of a 12 foot quartz-sulphide pod which yielded 0.244 oz. Au and 1.96 oz. Ag at surface and 0.053 to 0.06 oz. Au and 1.61 to 3.37 oz. Ag in percussion drill hole intersections (figure 6B). The hole was collared in granite, intersected a a post-mineral dolerite dyke, penetrated highly fractured fel-

- 8 -

sites, water circulation was lost 95 feet down and it eventually encountered the quartz pod at 131.4 to 135.8 feet before entering another dolerite dyke. Unfortunately the hole had to be abandoned after an unsuccessful attempt to cement the collapsing bore hole. The first 4.4 feet of quartz yielded 0.042 oz. Au and 1.05 oz. Ag.

Drill hole #5 was aimed to intersect the same fault zone as in hole #3, to broadly test the IP anomaly between lines 60 and 0 West and to sample the down dip extension of the main quartz-sulphide vein below the underground workings (figure 6a). The hole encountered a 1 foot pod of sulphide in fractured felsite at 90 feet and a mineralized gouge zone from 99.5 to 104 feet. Grey to pale green fractured felsites with disseminated pyrite (5-10%), quartz-sulphide veinlets, sulphide stringers and pockets were cored from 165 to 186.5 feet in the hanging wall but resulted in modest Au and Ag values in both core and sludge assays. Milky quartz, with arsenopyrite, pyrite and sphalerite stringers, was cut between 186.5 to 194 feet and it yielded 0.139 oz. Au and 1.2 oz. Ag over a true thickness of 6.2 feet, a sludge assay between 185 to 191 feet yielded 0.118 oz. Au and 1.30 oz. Ag. The foot wall consisted of highly fractured felsite and fault gouge between 194-197 feet after which the hole had to be abandoned.

Drill hole #6 was intended to test at depth a zone of mineralized gouge zones which at surface yielded encouraging assays of 0.285 to 0.147 oz. Au (figure 6d). The hole was

- 9 -

collared near mineralized gouge in fine grained granite which was locally altered to pyrite-epidote-chlorite bearing zones but these carried low values. Felsite was cut after 86 feet and at 110 and 115 feet quartz veins were cut; these also yielded low assays. In general, the drilling program has resulted in the following conclusions: (1) quartz-sulphide veins dip steeply to the south, persist to depths of at least 130 feet below surface, possibly taper down and have slightly lower grades than at surface. (2) The IP anomaly, is probably due to a broad, highly fractured zone of pyritic felsite which carries local concentrations of mineralized gouge, quartzsulphide veins, veinlets and sulphide fracture fillings with erratic Au values of 0.55 to 0.1 oz/T, over 1 to 5 foot intervales. (3) A narrow zone of well mineralized gouge trending N70E-vertical situated 20 to 30 metres south of the main quartzsulphide fissure system can be traced from 105W to 45W and is open to the east. (4) Hanging wall felsites are mineralized at least 10 feet away from quartz fissure fillings and may carry from 3 to 0.4 percent arsenic.

CONCLUSIONS

On the basis of the foregoing investigation I have concluded the following:

(1) An area measuring 120 x 250 metres carries anomalous concentrations of Zn, Ag and As in soils and overlies an area of precious metal mineralization.

(2) An induced polarization anomaly, measuring at least 240 x 260 metres, is coincident with the mineralized area, but diminishes in intensity eastward from the main workings.

- 10 -

(3) Trenching has exposed a mineralized fault zone from 105 to 45 west which carry values of 0.55 to 0.03 Au and 1.33 to 0.08 Ag (oz/T) over widths of 0.7 to 2.4 metres.

(4) Diamond drilling indicated the quartz-sulphide veins extend at least 130 feet below surface and where tested over a 200 foot strike length, it typically grades 0.081 oz. Au and 1.71 oz. Ag over 11 foot intervals.

RECOMMENDATIONS

Clearly mineralized quartz-sulphide veins and mineralized fault zoneshave been tested over a limited strike length of some 200 feet and to shallow depths of 130 feet below surface. The present investigation has indicated that precious metal mineralization occurs over minable widths (in excess of 5 feet), in at least two separate structures, and that economic grades are attained locally. In my estimation, there is sufficient encouragement to warrant 3000 feet of diamond drilling to further test the mineralized structure at greater depth and along strike to the east. I therefore recommend that further drilling be carried out on the Golden Zone at a cost estimated below:

COST ESTIMATE

(1)	3000 feet of diamond drilling (NQ) @ \$30/ft\$	90,000
(2)	Assaying 300 samples @ \$12.50/sample	3,750
(3)	Travel & accommodation 90 mandays @ \$50/day	4,500
(4)	Geological supervision 30 days @ \$200/day	6,000
(5)	Freight	500
(6)	Supplies.etc	1,000
(7)	Report preparation 6 days @ \$200/day	1,200
	TOTAL \$1	06,950

- 11 -

ITEMIZED COST STATEMENT, GOLDEN ZONE

Field Salaries

•

Peter Peto: 16 days @ \$200/day \$ 3,200.00	
Carl Polhman: 2 days @ \$60/day 120.00	
Brian Holmes: 3 days @ \$70/day 210.00	
A. Kucherhan: 2 days @ \$100/day 200.00	
J. Kucherhan: 2 days @ \$100/day 200.00	\$ 3,930.00
Accommodation & Food (19 man days @ \$50/day) 950.00	
Gasoline	1,000.82
Induced Polarization Survey Costs (as per invoice)	2,618.36
Road Repair (Frontend loader & labour)	175.00
Truck Rentals (as per invoice)	707.31
Analytical Services (rock & soil assays) (as per invoices) - Acme Analytical Laboratories Ltd	1,278.81
Diamond Drilling Costs (as per invoice) Beaupre Diamond Drilling Ltd	13,827.00
Report Preparation (as per invoice)	800.00
TOTAL	\$24,337.30

The sum of \$107,000 should be made available for the above program.

Respectfully submitted, Peter Peto, Ph. D., F.G.S.C.

REFERENCES CITED

Bostock, H.S. (1940) G.S.C. Map 628A, Olalla (1"=1mi.)

Camsell, C. (1908) Hedley Mining Districk, G.S.C. Memoir #2, Map 4A, p.204-206

Hedley, N.S. (1937) Golden Zone Mines Ltd., B.C. Department of Mines Annual Report, p. D14-17

Holt, E.S. (1980) Report of Examination & percussion Results, Golden Zone Mineral Claims, private report, (D. Agur) 21p.

Peto, P. (1983) Geological, Geochemical and Geophysical Report on the Golden Zone Property, assessment report, 11p.

SURVEY SPECIFICATIONS.

The induced polarization (I.P.) survey was carried out using a pulse type system, the principal components of which are manufactured by Grone Geophysics Ltd. and Huntec Limited of Metropolitan Toronto, Ontario.

The system consists basically of three units; a receiver (Crone), a transmitter and a motor generator (Huntec). The transmitter, which provides a maximum of 7.5 kw d.c. to the ground, obtains its power from a 7.5 400 c.p.s. three phase alternator driven by a gasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through electrodes C_1 and C_2 , the primary voltage (V) appearing between the two potential electrodes, P_1 and P_2 , during the "current-on" part of the cycle, and the apparent chargeability (M_a) presented as a direct readout using a 450 millisecond delay and a 450 millisecond sample window by the Crone receiver.

The apparent resistivity (P_a) is ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of the array used. The chargeability and resistivity are called apparent as they are values which that portion of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous the calculated apparent chargeability and resistivity are functions of the actual chargeability and resistivity of the rocks.

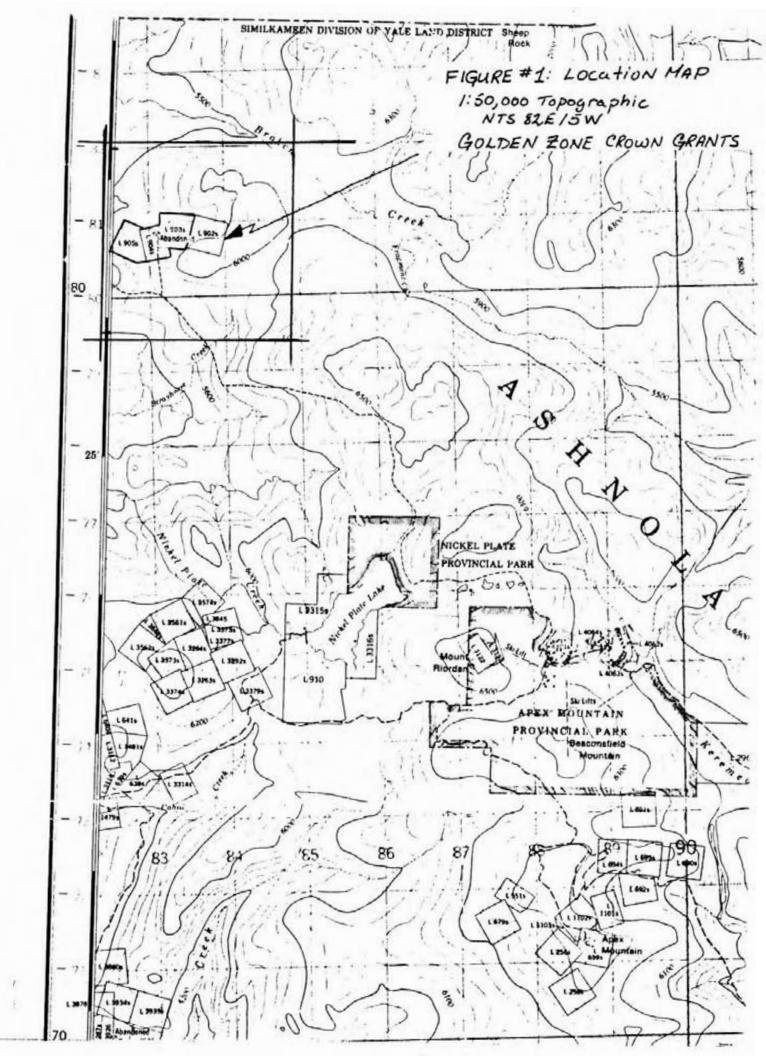
The survey was carried out using the "pole-dipole" method of surveying. In this method the current electrode, C_1 , and the two potential electrodes, P_1 and P_2 , are moved in unison along the survey lines. The spacing "na" (n an integer) between C_1 and P_1 is kept constant for each traverse at a distance roughly equal to the depth to be explored by that traverse, while that of P_1 and P_2 (the dipole) is kept constant at "a". The second current electrode C_2 is kept constant at "infinity".

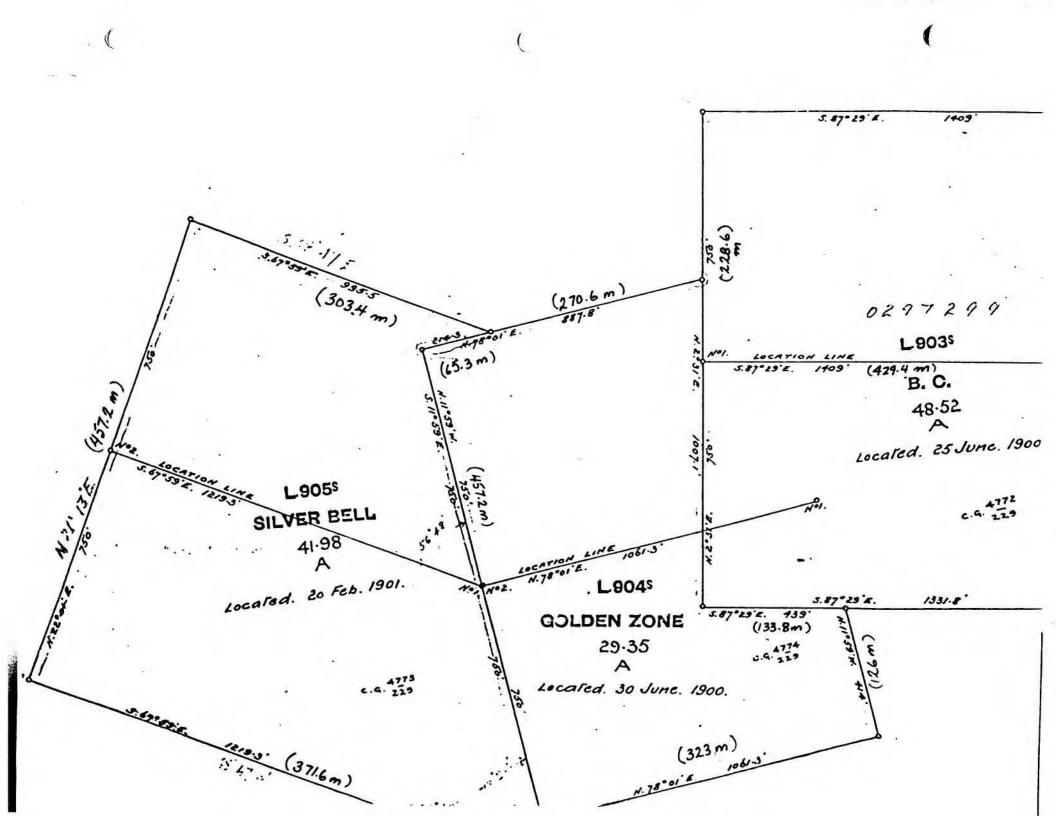
Thus usually on a "pole-dipole" array traverse with an electrode spacing of 100 metres a body lying at a depth of 50 metres will produce a strong response, whereas the same body lying at a depth of 100 metres will only just be detected. By running subsequent traverses at different electrode separations, more precise estimates can be made of depth, width, thickness and percentage of sulphides of causative bodies located by the I.P. method.

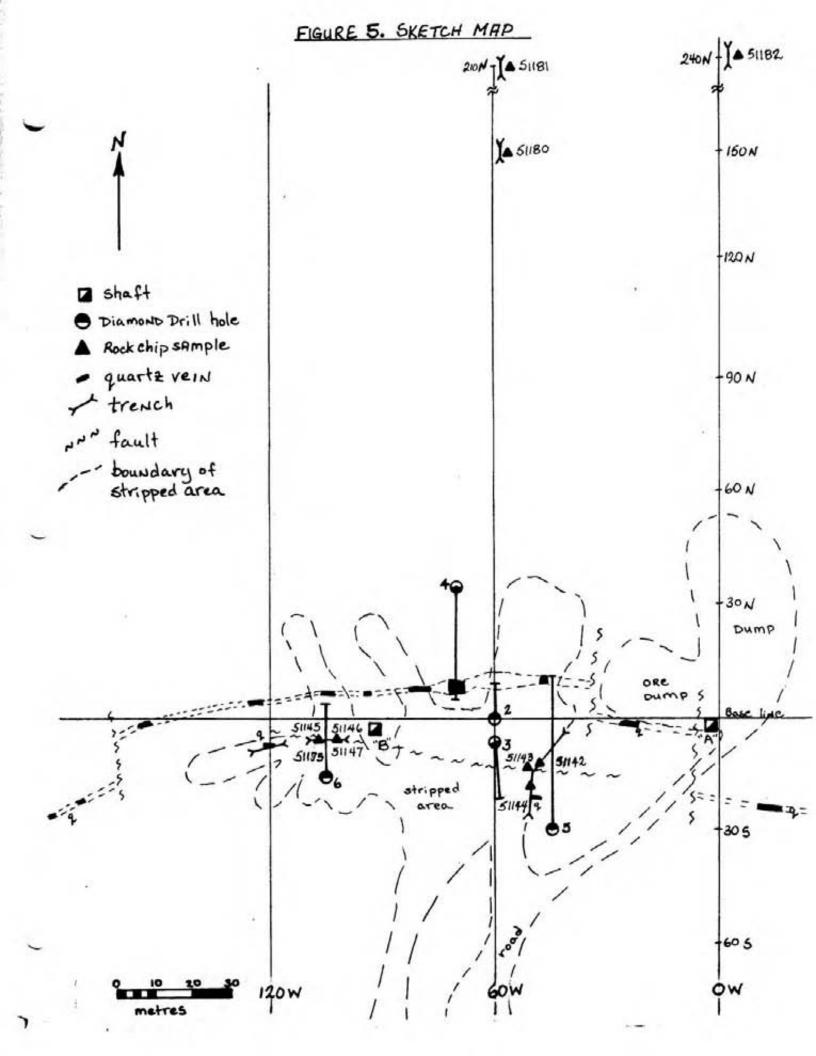
The survey was carried out using a 30 metre dipole and obtaining first and second separation measurements. In all some kilometres of surveying were completed. PETER E. WALCOTT & ASSOC. LTD.

STATEMENT OF QUALIFICATIONS.

I, Peter E. Walcott, of the Municipality of Coquitlam, British Columbia, hereby certify that:

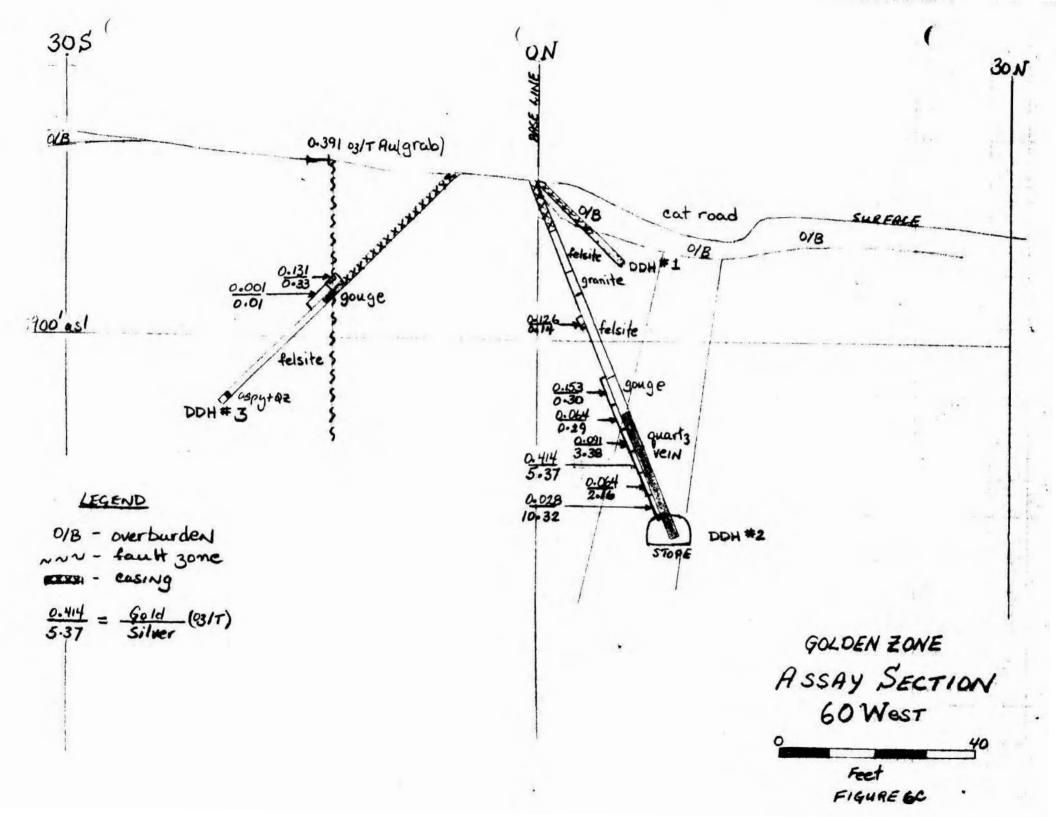

- I am a Graduate of the University of Toronto with a B.A.Sc. in Engineering Physics, Geophysics Option, in 1962.
- I have been practising my profession for the last 21 years.
- I am a member of the Association of Professional Engineers of British Columbia and Ontario.
- 4. I personally carried out the I.P. survey for Midland Energy Corporation on the property near Apex Mountain between July 27th and 29th, 1983.

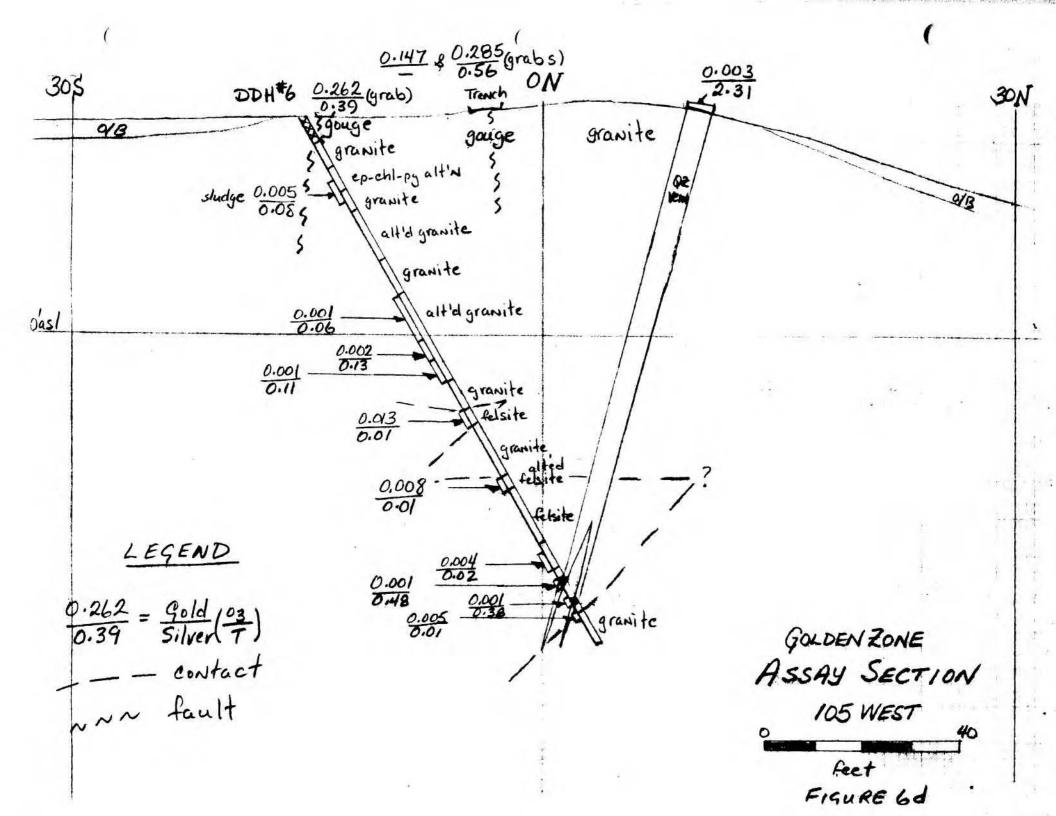

m


Peter E. Walcott, P.Eng.

Vancouver, British Columbia, September 1983

GEOPHYSICAL SERVICES





DATE RECEIVED AUG 19 1983

DATE REPORTS MAILED Hues

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 NL DF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Ng,A1,Ti,La,Ma,K,W,Bu,Si,Sr,Cr AND B. Au DETECTION 3 ppm.

SAMPLE TYPE - SLUDGE

ASSAYER ______ DEAN TOYE, CERTIFIED B.C. ASSAYER

PETER PETO PROJECT # GOLDEN ZONE FILE # 83-1741A

PAGE# 1

SAMPLE	CU ppm	ZN PPm	AS ppm	AG PPm	,	AU PPm	
51102 CORE 51103 CORE 51104 CORE 51076 51077	70 43 17 160 221	52 50 11 169 173	796 243 30200 415 12014	1.0 .4 7.8 .5		ND N	
51078 51079 51080 51081 51082	122 112 136 165 143	110 125 118 340 206	9125 8037 27672 39287 11402	2.9 1.6 6.2 11.7 8.4		200 M DD	
51083 51084 51085 51092 51093	148 146 122 277 298	179 281 295 288 281	21026 26299 11852 39434 16440	29.6 43.4 11.7 12.1 8.2		4 NDND	
51094 51095 51096 51097 51098	129 87 81 87 81	255 148 129 115 110	19940 9891 10978 8357 10773	11.4 4.7 4.9 3.7 4.5			
51099 STD A-1	133 30	148 183	11192 10	3.5		ND ND	

DATE RECEIVED AUG 19 1983 DATE REPORTS MAILED Aug 25/03

ASSAY CERTIFICATE

SAMPLE	AG OZ/TUN	AU OZ/TON	
51086	.30	.153	
51087	.29	.064	
51088	3.38	.091	
51089	5.37	.414	
51090	2.16	.064	
51091	10.32	.028	
51100	.33	.131	
51101	.01	.001	

DATE RECEIVED AUG 23 1983 DATE REPORTS MAILED Aug 278

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK & CORE DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER PROJECT # GOLDEN ZONE FILE # 83-17868 FETER PETO PAGE# 1 SAMPLE AG AU DZ/TON DZ/TON .32 51142 .113 51143 .551 .08 51144 .013 .11 51145 .067 51146 .031 .18 51147 .08 .036 .022 DDH-4 131.4-135.7 .84

...

DATE RECEIVED AUG 23 1983

DATE REPORTS MAILED Aug2

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HND3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppm. SAMPLE TYPE - SLUDGE

N 1989 21-22 YO C.Y

ASSAYER

DEAN TOYE, CERTIFIED B.C. ASSAYER

MR. PETER PETO FILE # 83-1786A Project # Golden Zox PAGE# 1

SAMPLE	CU	ZN	AG	AS	AU
	ppm	ppm	ppm	ppm	,₽pm
51105 51106 51107 51108 51108 51109	94 245 115 99 128	759 828 623 621 873	.4 .3 .2 2.1	262 301 157 99 58	
51110 51111 51112 51113 51114	121 88 77 53 104	828 604 665 218 265	NDND4	47 74 33 91 165	
51115 51116 51117 51118 51118 51119	421 403 220 100 89	366 350 205 117 95	.6667	38 33 73 210 219	
51120 51121 51122 51123 51123 51124	160 135 128 123 179	1105 197 204 147 176	2.0 .8 .7 .7	372 767 195 97 79	ND DD N N N N N N N N N N N N
51125 51126 51127 51128 51128 51129	224 113 154 147 123	205 133 166 168 144		82 128 132 95 585	22222 22222
51130 51131 51132 51133 51133 51134	263 170 160 156 140	328 505 197 174 161	2.12 1.24 0.4	3399 220 196 203 155	
51135 51136 51137 STD A-1	199 192 197 30	221 162 1443 166	22	373 258 3001 10	

DATE RECEIVED AUG 26 1983 DATE REPORTS MAILED Aug

ASSAY CERTIFICATE

SAMPLE TYPE : CORE - CRUSHED	AND PRULVERI	ZED TO -100 M	IESH.				
ASSAYER No Dep	DEAN	TOYE,	CERT	IFIED	B.C.	ASSAYER	
PETER PETO PROJECT .	GOLDEN	ZONE	FILE	# 8 3-1	842	PAGE#	1
SAMPLE			AG	AU			
		OZ/	TON C	Z/TON			
51162			.01	.005			
51163			38	.001	,		
51164			. 48	.001	'		
51165			.02	.004			
51166			.01	.008			
51167			01	.013			
51168			. 11	.001			
51169			13	.002			
51170			.06	.001			
51171			08	.005			
			~ .			45	
51172			.01	.001			
51173			.04	.001			

DATE RECEIVED JULY 25 1983

DATE REPORTS MAILED

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR I HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Ng,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppm.

SAMPLE TYPE - SOIL

DEAN TOYE, CERTIFIED B.C. ASSAYER

PETER PETO

ASSAYER

FILE # 83-1344

PROJECT: GOLDEN ZONE

PAGE# 1

SAMPLE	CU	PB	ZN	AG	AS	
	ppm	ppm	ppm	ppm	4pm	
330N 60W 300N 60W 270N 60W 240N 60W 210N 60W	25 14 20 25 24	64 64 44	71 63 57 80 128	30845	139 92 169 319 338	
180N 60W 150N 60W 330N 0W 300N 0W 270N 0W	29 52 19 16 15	54734	141 266 73 62 80	1.0 .5 .3	330 400 57 110 107	
240N OW 210N OW 180N OW 150N OW 330N 60E	44 15 12 15 54	67665	87 64 58 81 67	.7.3.2.2.9	308 68 24 34 42	
300N 60E 270N 60E 240N 60E 210N 60E 180N 60E	27 21 16 17 11	77965	78 73 75 69 67	.84253	35 48 46 56 46	
150N 60E 120N 60E 90N 60E 60N 60E 30N 60E	13 12 14 20 18	36946	75 109 103 70 79	.2 .3 .4 .2 .2	109 20 22 46 58	
ON 60E 305 60E 605 60E 905 60E 330N 120E	25 16 17 22 21	65 16 83	109 90 99 88 72	.328 .78	26 154 225 84 25	
300N 120E 270N 120E 240N 120E 210N 120E 180N 120E	11 14 26 44 33	66797	55 81 74 93 88	.1 .2 .7 .8	36 44 30 33 23	
150N 120E 120N 120E STD A-1	14 13 31	7 7 36	79 68 180	.3 .1 .3	26 16 10	

DATE REPORTS MAILED AUG 25 1983

ASSAY CERTIFICATE

SAMPLE TYPE : SLUDGE & CORE OLAN DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER A PAGE# 1 PROJECT # GOLDEN ZONE FILE # 83-1832B PETER PETO AU SAMPLE AG OZ/TON DZ/TON .01 .002 51148 .032 .11 51149 .15 .056 51150 .10 .058 51151 51152 .05 .012 .118 1.30 51153 .074 51154 .86 .017 -.23 51155 .079 .20 51156 .013 51157 .06 .01 .003 51158 .142 .55 51159 .139 2.50 51160 .026 .13 51161

42

DATE RECEIVED AUG 25 1983

DATE REPORTS MAILED Aug ?

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,Al,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppa. SAMPLE TYPE - SLUDGE

ASSAYER __ DEAN TOYE, CERTIFIED B.C. ASSAYER

MR. PETER PETO FILE # 83-1832A Aged # Golden Zone PAGE# 1

SAMPLE	CU	ZN	AG	AS	AU
	ppm	ppm	ppm	ppm	ppm
51138	209	756	1.3	1843	ND
51139	226	560	1.2	1152	ND
51140	176	1956	2.0	1787	ND
51141	135	387	1.0	555	ND

PETER PETO	FILE #	83-1344	PROJE	CT:GOLD	EN ZONE	Pf	GE# 2
SAMPLE		CU PPm	PB ppm	ZN PPm	AG PPM	AS PPm	
90N 120E 60N 120E 30N 120E 0N 120E 30S 120E	*	11 14 12 13 25	9 8 7 8 8	67 70 65 79 91	.1 .1 .5 .3	16 22 21 10 39	
605 120E 905 120E 1205 120E 1505 120E 1505 120E 1805 120E		26 23 46 28 21	7 11 12 10 10	84 98 88 125 87	.4 .7 .4 .2	39 , 47 119 51 40	
240N 180E 210N 180E 180N 180E 150N 180E 120N 180E		10 10 9 13 11	97567	65 59 51 49 67	.1 .2 .2 .1	12 19 14 28 11	
90N 180E 60N 180E 30N 180E 0N 180E 240N 240E		16 15 20 41 10	7 8 6 12 7	71 85 81 106 56	.2 .3 1.2 .1	18 15 23 48 8	
210N 240E 180N 240E 150N 240E 120N 240E 90N 240E		11 15 13 36 16	645 810	61 66 55 70 79	.1 .1 .5 .1	12 12 12 23 15	
60N 240E 30N 240E 0N 240E STD A-1		22 24 21 28	5 9 38	102 117 126 173	.33.22	28 36 30 10	

. .

12

τ.

*

4

+

 \mathcal{F}

18

14

PROPER	onv (Cour		17.	JE
PROPER	11	7000	EN	20	NE
DRILL				1	
DRILL	TYPE		0		
DATES		14 F	luig	ustr	983

	LOG & ASSAYS
LOCATION	BL-GOW
ELEVATION	5930 ft
BEARING	North
DIP -	45°

LENGTH % RECOVERY LOGGED BY PAGE / OF 24 feet 0 PiPeto ONE

۲

SAMPLE	PROM	M TO LENGTH NOTES			ASSAYS			
			DBNGIN		oz Au	OZ AR		
	0	14	14	Casing				
	14	24	10	overburden & shattered rock				
				Hole abandonical in shattered rock				-
	-			Hole abandoned in shattered rock				
	-			which did Not core but was washed Away instead.				-
				washed AwAy INStead.				-
				V				
Transfer S.A. Solver B.							16 C .	
			1		-			-
			1					
_								-
							-	
				3				
					1			
				and the second				\vdash
								⊢
	-							
					-			+

 \mathbf{x}

PROPE	ATY G	7011	DEI	VZ	ONC
DRILL	HOLE	NO.		2	
DRILL				wire	line
DATES	14 -				1983
Section Section		and the second second	0	and the second second	and the second division of the second divisio

DRILL HOLE LOG & ASSAYS LOCATION B.L. - 60 W ELEVATION 5930 feet BEARING North DIP -66°

LENGTH	79 feet
% RECOVERY	78
LOGGED BY	P. Peto
PAGE / OF	TWO

1

SAMPLE	FROM	TO LENGTH NOTES				ASSAY	S		
SAMPLE, PRO	FROM	10	LENGTH	NOIE2	oz Au	oz Ag			
51174	30	32.5	2.5	grey, med to fn gr., argillic granite, aspi-py fracedist.	0.126	0.14			
51086	44	50	6.0	Quartz-arsenopyrite vein in grey felsite	1.153	0.30			
51087	50	55	5.0	Fractured, milky of vein E 25% sulphides	0.064	0.29			
51088	55	60	5.0	Drusy, chalcedonic QZ Vein, as above.	0.091	3.38			
51089	60	65	5.0	as above, 20cm py- aspy seam @ 62.5, blk chal.	0.414	5.37			
51090		70	5.0	as above, py-aspy frace & breccia matrix	0.064	2.16			
51091	70	76	6.0	as above, coarse sphalerite in Milky QZ.	0.028	10.32			
•	-			sludge geochem in ppn:	As	ZN	Cu	Ag 0.5	Au
51076	19	25	6.0	studae	A15	169	160	0.5	ND
51077	25	30	5.0	sludge	12014	173	221	0.6	ND
51078	30	35	5.0	Sludge	9125	110	122	2.9	ND
510 79	and the second sec	40	5.0	Sludge	8037	125	112	1.6	ND
510 80	a concernance of the second se	45	5.0	sludge	27672	118	136	6.2	3
510 81	45	50	5.0	sulphide rich sludge	39 287	340	165	11.7	3
510 82		55	5.0	sulphide rich sludge	11402	206	143	8.4	ND
51083		60	5.0	salutide rich studar	21026	179	148	29.6	4
51084	10 M	65	5.0	sulphide rich studge	26299	281	146	Street Provide and the second	
01085		10	5.0	sulphide rich studge	11852		122	11.7	ND
				- prime security					
and contra									

PROPER		0.040		
DRILL	HOLE	NO.	2	
DRILL				
DATES	Concerta.			

DRILL	HOLE	LOG	æ	ASSAYS
LOCATI	ION			
ELEVAT	NOI			
BEARIN	IG T			
DIP		2-94		

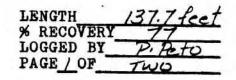
LENGTH	
% RECOVERY	
LOGGED BY	
PAGE 20F	TWO

١

SAMPLE	PROM	TO	LENGTH	NOTES		ASSAYS			
	FROM	TU	LENGTH	NOIBS	oz Au	oz Ag			
				CORE LOG			_		
	0	11	11	CUSING					
	11	20	9	grey, v.fn.gr. felsite, pyritic, chlorite fracs		1.1			
	20	25	5	area to white accilling median aranite					
	25	44	19	grey, highly fractured, pyritic felsite, aspy-py highly fractured felsite gauge 2 aspy-py reins milky az rein 2 aspy-py-sphalerite clots strass No core; intersect stope; stop hale.	Frace				
	44	52	B	highly Grant and Palsite and a second related					
	52	74.5	22.5	miler az veiniz ason - pu- scholerite class strace					
	74.5	79.0	4.5	No core intersect stop i stop hale.					
	110			No core, intersect stop) stop mus					
				CORE loss at 15-19, 42-44, 49.6-51.6,				-	
1100 55				71.5-74.5.					
					1.1				
							-		-
									\vdash
									-
									-
									-
	-								\vdash
									-
								1000	

.

PROPER	RTY (Gow	DEN	Zo	Ne
DRILL	HOLE	NO.		3	and the second second
DRILL	TYPE	B	Qu	irel	ine
DATES	15-	16	Auc	ust	1983
			V		1997 - 19 S.


DRILL		LOG	å	AS	SAYS
LOCATI		65	-	60	W
ELEVAT	ION	59	3	0	feet
BEARIN	G	170	0		
DIP	_	450			

LENGTH	67.5 feet
% RECOVERY	72
LOGGED BY	P. Reta
PAGE / OF	ONE

CANDE D	FROM TO		TANODI	NOREC		ASSAY	S		5.4
SAMPLE.	FROM TO		LENGTH		oz Au	oz Ag		ZN	Cu
51100	32	35	3.0	core loss py-aspy-02 goude zone infelsite	0.131	0.33	1	-	-
51101	35	41	6.0	core loss, py-aspy-az gouge zone infelsite core loss, compact grey felsite E 5% sulphides	0.001	.01	-	-	-
51102	41	45	4.0	highly fractured felsite E pg-chlor fracs 2 Dz vits	ND	1.0	796	52	70
51103	45	55	10.0	highly fractured felsite E pg-chlor fracs p. QZ vits core loss, fractured felsite E 10% pyrite	ND	0.4	243	50	43
51104		66.5	0.5	QZ-py-aspy VeiN	2	7.8	30200	11	17
				cludge geochem. in ppm	As	ZN	Cu	Ha	Au
51092	32	37	5.0	sulphide rich sludge	39 434	288	277	12.1	2
51093		41	4.0	sludge	16440	281	298	8.2	NC
51094		45	4.0	Sludge	19940	255	129	11.4	NI
51095		50	5.0	Sludge	9891	148	87	4.7	NI
51096		55	3.0	Studie	10978	129	81	4.9	NL
51097		60	5.0	Sludge	8357	115	87	3.7	NI
51098	the second se	65	5.0	Sludge	10773	110	81	4.5	N
51099	65	67.5	2.5	Studge	11 192	148	133	3.5	NI
				CORE LOS					
	0	32	32	Casing					
	15	32	17	highly fractured, grey, v. fn. gr., rusty felsite, diss py					
	32	37	5	asabove, 92-py-aspy gouge in faultzone				0	
	37	67.5	30.5		-				
				CORE loss at 15-19, 27.5-35, 37-41, 43-45, 46.6-5	8.				
				Hole abandoned due to tight rods, cave					
				& excessive bit wear.					

PROPER	RTY (JOLT.	EN	ZONE	
DRILL	HOLE	NO.		4	
DRILL	TYPE	BQ	WITE	line	
DATES				U.ST 198.	3
	A REPORT OF		11	100 Cale 100 Cale 100 Cale 100	-

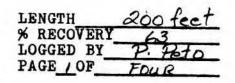
	S LOG & ASSAYS
LOCATION	70W-35N
ELEVATION	5920 feet
BEARING	1800
DIP	-450

SAMPLE.	FROM	то	LENGTH	NOTES		ASSAY	S	-	
omit bb.					oz Au	oz Ag			
-	131	136	5.0	milky QZ-sulph vein, py-aspy-sp, IDCm lens@134.5	0.022	0.84			
51178	131	135	4.0	as above, replicate assign	0.042	1.05			
				Sludge geochem reported in ppm	As	ZN	Cu	Ag	A
51105	32	40	8.0	Sludge	262	759	94	0.4	N
51106	40	45	5.0	sludge	301	828	245	0.3	N
51107	45	60	15.0	sludge	157	623	115	0.2	NI
51108	60	65	5.0	Sludde	99	621	99	0.3	N
51109	65	70	5.0	Sludge	58	873	128	2.1	NZ
51110	70	75	5.0	Sludge	47	828	121	0.2	N
51111	75	80	5.0	Sludge	74	604	88	0.3	N
51112	80	85	5.0	Sludge	33	665	77	0.2	N
51/13		90	5.0	Sludge	91	218	- trating	0.3	N
51114	90	95	5.0		168	265			1022 22
Ollin	40	-70	0.0	Sludge	100	A60	104	0.4	M
		20		CORE LOG	in the second				-
	0	28	28	Casing				-	-
	28	_72	44	fractured, Into med. gr. biotite granite					
teres in these	72	80	8	dkgreen, massive anygdaloidal dyke					
	80	109.5	29.5	fractured, dkgree, compact felsite 5-10% diss py					
	109.5	111.5	2.0	palegrey, Q2-feldspar porshury duke					
	111.5	115	3.5	dkgrey felsite					
	115	131.4	16.4	dk green, porphyry dyke, ep-chl fracs, 1%py		1			
	131.4	135.8		milky QZ vein c py-sob clots, 20% sulphides		Street Street			1

PROPE	RTY	the second second	
DRILL	HOLE	NO.	4
DRILL	TYPE		
DATES			

\$

DRÍLL HOLE	LOG	æ	ASSAYS
LOCATION			
ELEVATION			
BEARING			
DIP			


LENGTH	
% RECOVERY	
LOGGED BY	
PAGE 20F	TWO

AMPLE	RROM	TO	LENGTH	NOTES		ASSAYS	
APR DD.		1				oz Ag	
	135.8	137.7	1.9	palegreen, v. m. cr. 98 leld. porphyry cluke			
				palegreen, v. fn. gr. Q2 feld. parphyry clyke END	74		
				1 1 1 22 22 21 11 12 15-72 5			-
				Lore loss of 32-36, 61-63, 63-12.5,			
-				79- 70.5, 101.5- 106, 128-131,			
		-	1	Hole abandoned due to excessive			
				cave & bit wear, water returnlast			
				Core loss at 32-36, 61-63, 65-72.5, 79-90.5, 101.5-106, 128-131, Hole abandoned due to excessive cave & bit wear, water return lost at 95 feet. (attemp to cement hole 19 Aug 1983, hole deviation starts at about 95 feet.)			
				12 Partices I la de intra el de			
	-			11 Hug 1983, hole deviation starts			
				at about 95 feets)			
		100					_
			-				
							-
				and a second	+		
					1		_
					-		
					2		
		•		*	1 G		
			1				

(

PROPE	ATY C	OLDE	NZO	NC
DRILL	HOLE'	NO.	5	
DRILL	TYPE	BG)	
DATES	2	1-23	Augus	+ 1983
2	an entres car	1000 200 XX	17	No. Contraction

	LOG & ASSAYS
LOCATION	305-45W
ELEVATION	5950 feet
BEARING	NORTH O.
DIP -	46.50

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY	S		
SAPIPLE	FROM	10	DENGIN	NOIBS	oz Au	oz Ag	1999		
51172	37.5	47	9.5	pale green felsite, ep-chl-py altin, py fracs	0.001	0.01			
51173	47	54	7.0	as above fractured, 10-15% diss. parte	0.001	0.04			
51176	99.5	104	4.5	highly fractified, chiloritic telsite gouge E pg-aspy-Qz	0.018	0.15			
51179	90	91	1.0	niassive py-aspy-sp-02 pocket	0.312	4.10			
51156	170	175	5.0	Iractured presto palegreen felsite 24-aspy 10%	0.079	0.20			
51157	175	180	5.0	fractured greyto palegreen felsite, py-aspy 10% as above, 1-2mm pystringers, 1-5mm 02 vits, ep-chilaltin	0.013	0.06			
511 58		185	5.0	as above	0.003	0.01			
511 59	185	191	6.0		0.142	0.55		·	
51160	191	194	3.0	milky Qz vein Epy-aspy-sp? stringers to 5mm, 15%	0.139	2.50	-		
511 61	194	197	3.0	CORE loss, highly fractured grey felsite, 10% sulph.	0.026	0.13			
				Sludge geochem reported in pom	As	ZN	Cu	Ag	Au
51115	25	30	5.0	sludge	38	366	421	0.6	ND
51116	30	35	5.0	sludge	33	350	403	0.6	ND
51117	35	40	5.0	sludge	73	205	220	0.6	ND
51119	40	45	5.0	studge	210	117	100	0.7	ND
51119	45	50	5.0	sludge	219	95	89	0.8	ND
51120		35	5.0	sludge	372	1105	160	2.0	
51121	55	60	5.0	sludge	767	197	135	0.8	ND
51122		65	5.0	studie	195	204	128	100 March 100	
51123	65	70	5.0	sludge	97	147	123		ND
51124		715	5.0	sludge	79	178	179		
5112		80	5.0	sludge	82	205	224		

ROPEI			
RILL	HOLE	NO.	5
RILL	TYPE		
ATES	-		

DRILL	HOLE	LOG	å	ASSAYS
LOCAT.		2000000		
ELEVA	FION		-	
BEARI	NG			
DIP				

LENGTH	
% RECOVERY	All the second se
LOGGED BY	
PAGE 2 OF	Four

and second in the

SAMPLE	FROM	TO	LENGTH	NOTES	T	ASSAYS			
SAFIT DE	FROM		DENGIN	NOIES	oz Au-	08 Ag	Cu	Ag	Au
51126	80	85	5.0	sludge	128	133	113	0.6	ND
51127	85	90	5.0	sludge	1.32	166	154	0.6	ND
51128	90	95	5.0	sludge	95	168	147	0.5	ND
51129	95	100	5.0	sludge	585	144	123	-	
51130	100	105	5.0	sulphide rich sludge	3399	328	263	2.1	NO
51131	105	110	5.0	Judge	220	505	170	1.2	ND
51132	110	115	5.0	sludge	196	197	160	0,6	ND
51133	115	120	5.0	Sludge	203	174	156	0.5	ND
51134	120	125	5.0	sludge	155	161	140	0.4	
51135	125	130	5.0	sludge	373	221	199		
51136	130	135	5.0	sludge	258	182	192	0.4	ND
51137	135	140	5.0	sludge	3001	1443	197	2.3	ND
511.38	140	145	5.0	studie	1843	756	209	1.3	ND
51139	145	150	5.0	studge .	1152	560	226	1.2	ND
51140	150	155	5.0	Sludge	1787	1956			
51141	155	160	5.0	sludge	555	387	1 14		1522
51148		165	5.0	Sludge assaus for Au & Ag only	0.002				
511 49	165	170	5.0		0.032	0.11			
511 50		174	4.0	а <u>и</u> и и и	0.056				
51151	174	180	6.0		0.058				
51152	180	185	5.0		0.012	0.05			
51153		191	6.0	n n n n n n n	0.118	1.30			

•	
•	

PROPER				
DRILL	HOLE	NO.	5	
DRILL	TYPE	_		
DATES				

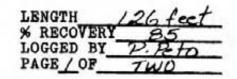
DRILL	HOLE	LOG	æ	ASSAYS
LOCATI				
ELEVAT	TION			
BEARIN	NG T	-		
DIP				
Constitute and				

LENGTH	•
% RECOVERY	
LOGGED BY	
PAGE 3 OF	FOUR

SAMPLE	PROM	то	LENGTH	NOTES		ASSAYS	
SAMPLE.	FROM	10	DENGTH		oz Au	oz Ag	
511.54	191	195	4.0	sludge assays for Au & Ag only	0.074	0.86	
51155	195	200	5.0	» " " " " » " U	0.017	0.23	
				CORE LOG		4	
	0	20	20	Cusiny			
51172	20	43	23	highly fractured, rusty, grey compact felsite			
	43	49	6	pale green, fractured felsite or oz porplyrydyk	e		
51173	49	58	9	hight fractured, grey-green felsite, ep-chialtin, 10%	24		
	58	68	10	mottled green, grey, white, med gr. granite, 10-15% py	5		
	68	83	15	grey compact felsite, 10% py, py-chil fracs			
	83	89	6	grey compact felsite, 10% pin, py-chil fracs chil-ep alt'd, med gr. gramite, 25% py			
	89	92	3	streaky, siliceous altered felsite			
	92	99.5	7.5	as above, 1-2mm Q2-py vHs, 5-10% diss py			
511769	99.5	104	4.5	highly breaking and and and and			
'	104	125	21	highly fractured, aren felsite, 10-15% diss pu	2		
	125	127.5	2.5	highly fractured, grey felsite, 10-15% diss py pale green felsite			
	127.5	128	0.5	dark green porphyry dyke			
	128	132	4	pale green felsite, 5-10% disspy, py-chlor fracs			
	132	137	5	dkgreen, Ingr., Qz-feldsporporphyrin dyke			
	137	144	7	palequeen, felsite, 1-2mm QZ-pyv/fs.			
	144	165	21	Arachived are lesite, 1-5mm 02-p-aspyrits, 5-10% dispy			
51157-60	165	186.5	19.5	akgrey, forger. felsite, as above, massive Aspy 173-174			
51161	186.5	194	7.5	milky oz veiNE py-Aspy-sph stringers to 5mm,			

PROPERTY DRILL HOLE NO. 5 DRILL TYPE DATES

		LOG	å	ASSAYS
LOCATI	ION	1.1.1		S
ELEVAT	TION			
BEARIN	NG		-	
DIP		-		


LENGTH	
% RECOVERY	
LOGGED BY_	
PAGE4OF	FOUR

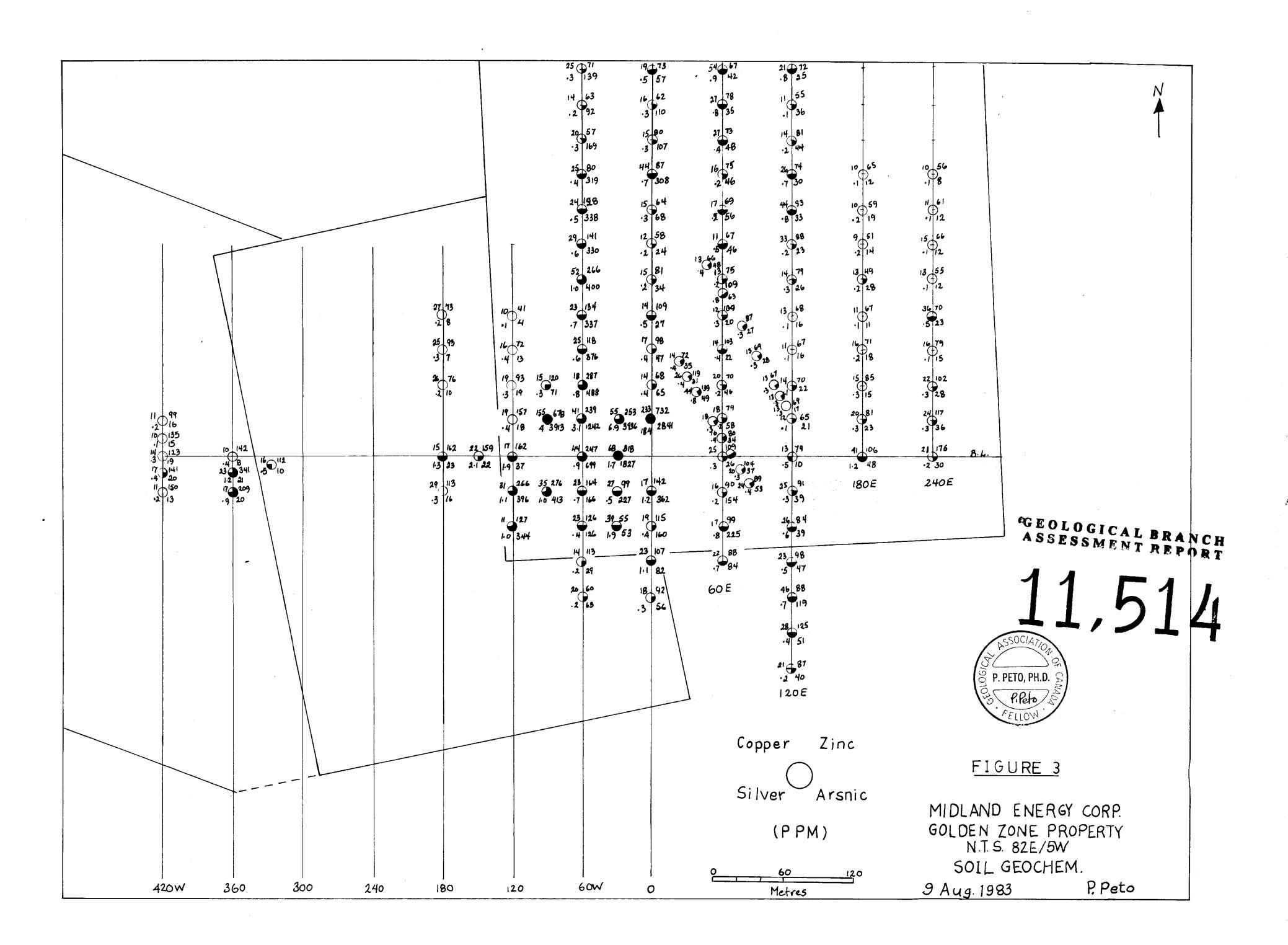
SAMPLE	FROM	TO	LENGTH	NOTES		ASSAYS	
SALE DP	FROM	10	a construction of the second		oz Au	oz Ag	
	CONT			190-191' massive aspy,			
51161	194	197	3	190-191' massive aspy, fractured, grey felsite & gouge, 10% diss py No CORE, No water return, fault zone?			-
	197	200	3	NO CORE, NO water return, fault zone?			
				END			
				Core loss at 20-23.6, 27.6-29.6, 35.5-43.0,			
				92-102, 104-108, 116-119, 122-127.5			
				92-102, 104-108, 116-119, 122-127.5, 137-144, 165-169, 171-172.5, 183.5-200.			
				abandon hole e 200 ft due to tight rods,			
				No water return & core recovery.			
				ADENDUM			
51183	191	192.5	1.5		0.158	1.92	
51184	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	194	1.5		0.237	2.46	
51185	186.5	190	3.5		0.115	0.92	
51186			1.5		0.01	0,07	
51187			2.0		0.008	0.05	
_							
							_

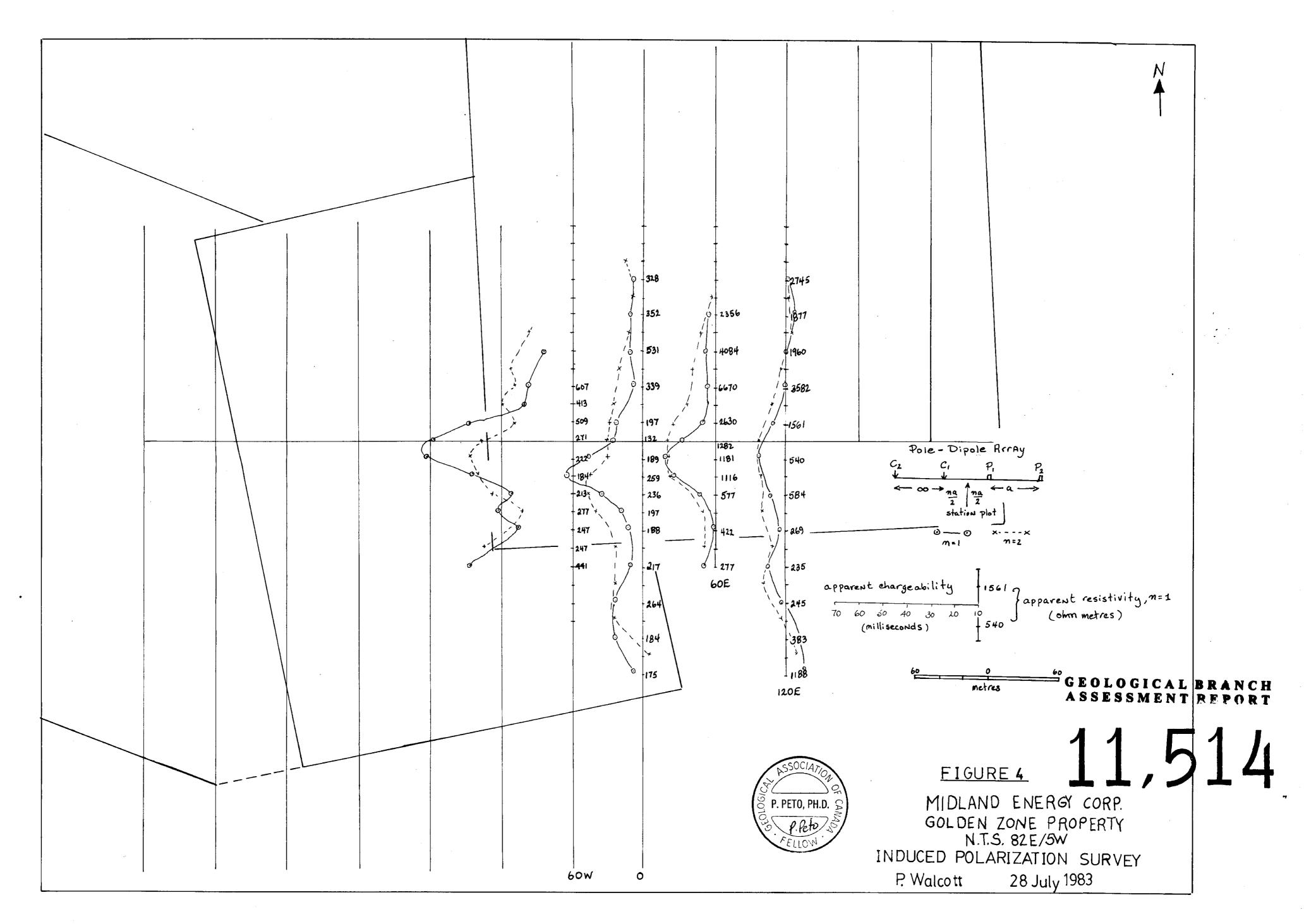
(

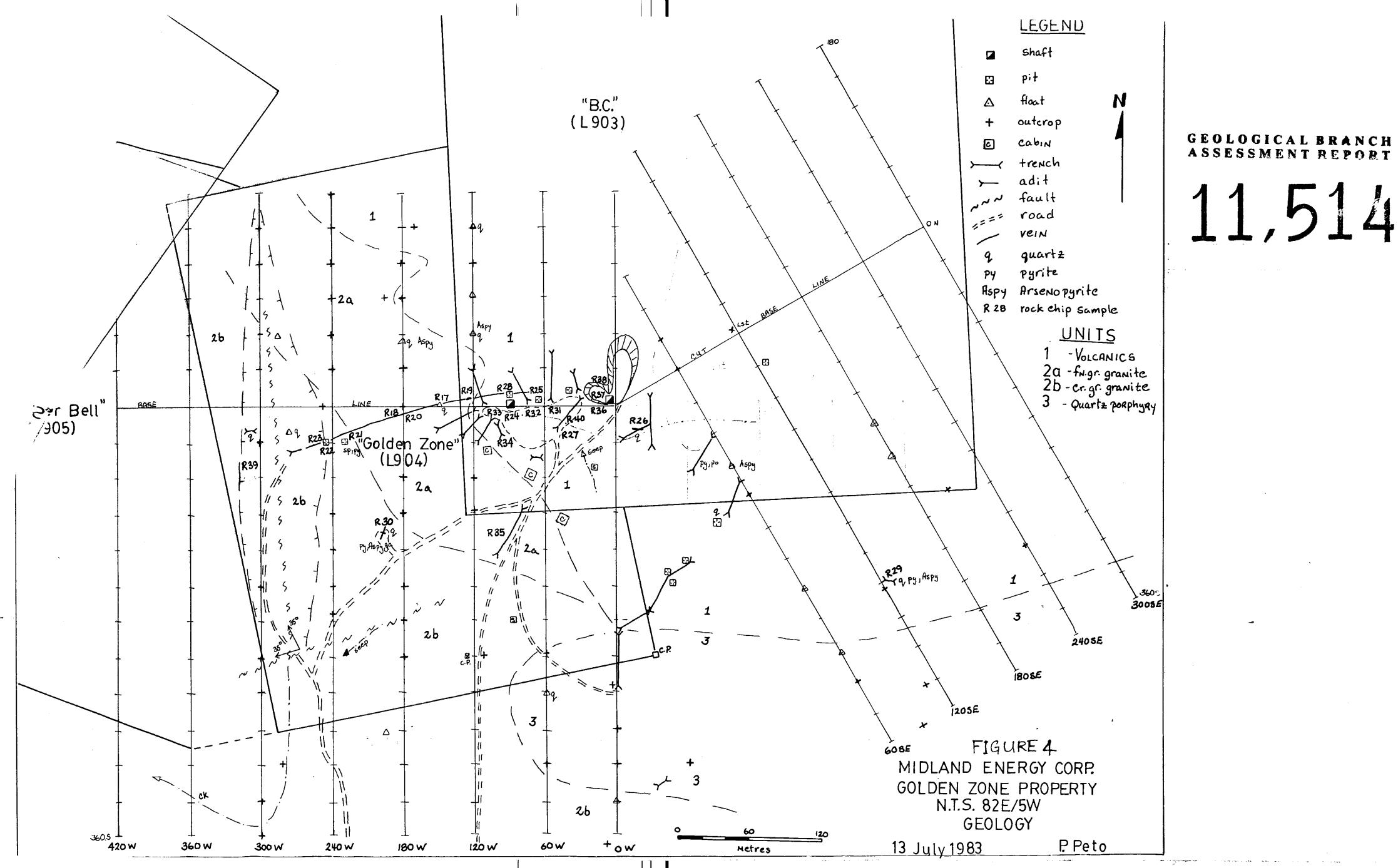
PROPER	TTY	GOLI	ENI	ZON	e.
DRILL	HOLE	NO.		6	
DRILL	TYPE	B	2		
DATES	2	3-24	Hu	aust	1983
2000 E 400 M		ADD STREET, ST	1	1	

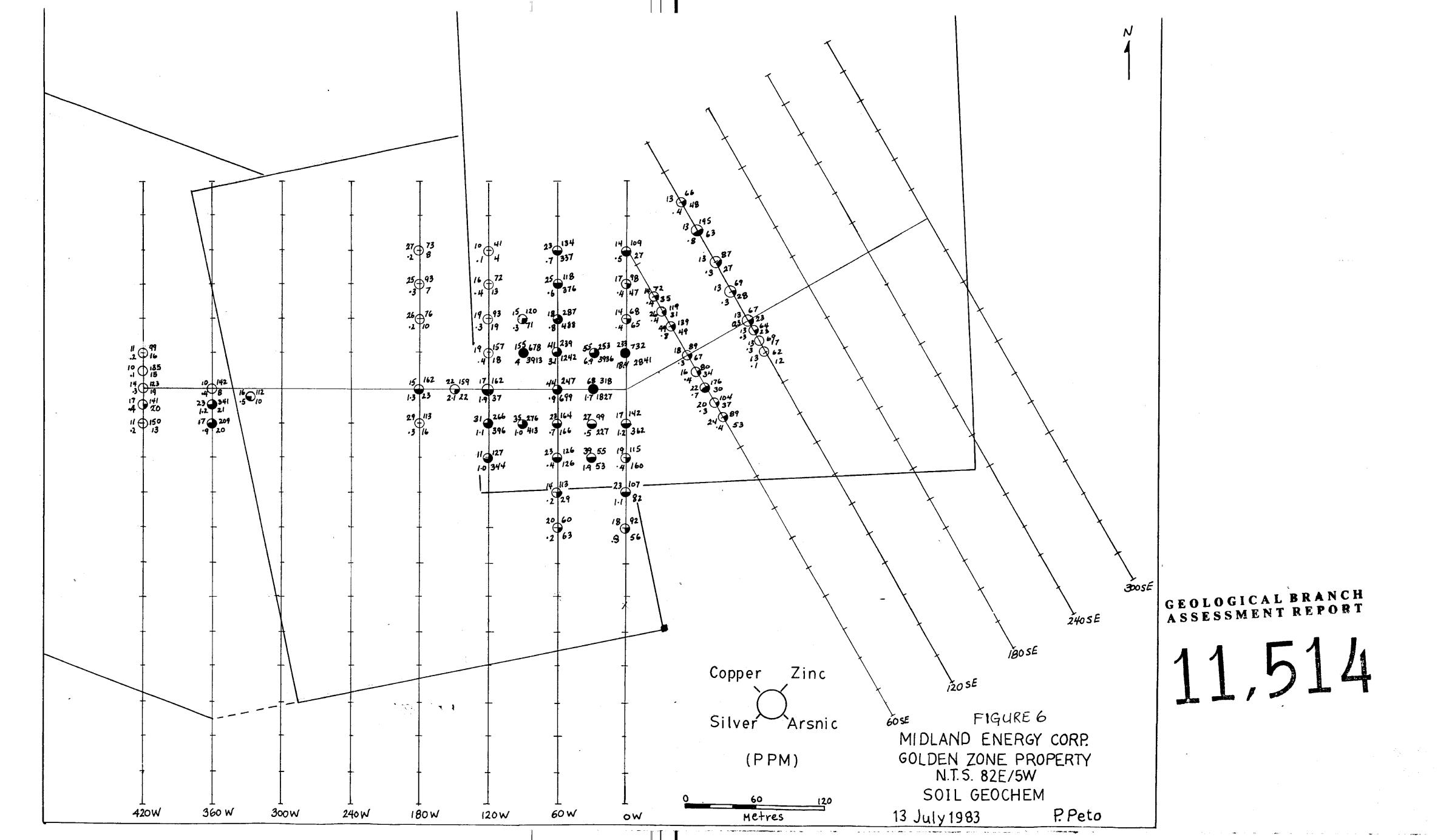
	LOG & ASSAYS
LOCATION	155-105W
ELEVATION	5945 feet
BEARING	North 0º
DIP -	.60°

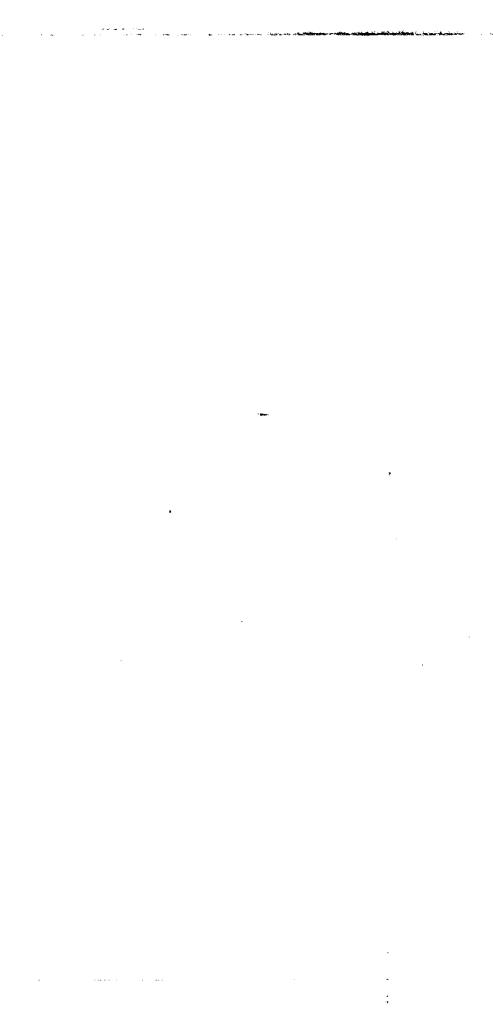
SAMPLE.	FROM	TO	LBNGTH	NOTES	ASSAYS			
					oz Au	oz Ag		
51171	15	20	5.0	sludge	0.005	0.08		
51170	43	53	10.0	CORE Yloss, palegreen felsite, ep-chloratta, 5% py	0.001	0.06	_	
51169		58	5.0	as above, bleached frac envelopes, Q2 seams	0.002	0.13		
51168		63	5.0	as above	0.001	0.11		
51167	70	73		sale green felsite, sulph smears, c. py cubes, p2 vits.	0.013	0.01		
51166	87	89	2.0	Q2-aspin-pin vein	0.008	0.01		
51165		108	4.0	palegreen felsite, ep-chl-py altin, QR seams	0.004	0.02		
51164	110	112	2.0	Q7 - Dy- son vein (110-110.5) area felsite	0.001	0.48	1	
51163		116	2.0	Q2-pg-sph very, grey felsite	0.001	0.38		
51162			2.0	Qz-pg-sph veini, grey felsite pale green felsite	0.005			
1999 - S 65				CORE LOG				
	0	6	6	CasiNG				
	6	12	6	fractured, rusty, fine grained biotite granite			_	
	12	17.5	5.5	pale weeks en-chi-pa alt is 1-2mm AZ Vits				
	17.5	22.5	5.0	aren wer highite cranite				
	22.5	34	11.5	palle per alt'el granite				
	34	42	8.0	grey fine gr. histite granite				
	42	63	11.0	pule green, alt'd graninte				
	63	70	7.0	dk grey, bio granite, ep-chl fracs				
	70	73.5		alt'd granite, ep-chl-py, sulph smears				
	73.5	86	12.5	dkgrey, streaky, for granite 1-Smm Azvits				
	86	89	3.0	pale green felsite, E7-88" BZ-aspy-py VEIN				


.


PROPERTY DRILL HOLE NO.______ DRILL TYPE_____ DATES_____


DRILL	HOLE	LOG	å	ASSAYS
LOCATI	ON			
ELEVAT	NOI			
BEARIN	IG			
DIP			_	


LENGTH	
% RECOVERY	
LOGGED BY	
PAGE 2 OF	TWO


SAMPLE	FROM	TO	LENGTH	NOTES	ASSAYS				
					oz Au	oz Ag			
	89	102	13	dkaren, streake, bio granite, 1-32 pyclots			_		
	102	108	6	pale green felsite					
	108	110	2	grey felsite E 1-2mm Q2 Seams, 5% diss py					
	110	110.5	0.5	dkgrey, streaky, bio granite, 1-3% pyclots pale green felsite grey felsite i 1-2mm Q2 seams, 5% diss py Q2-py-sph vein					
	110.5	115	4.5	QZ-py-sph vein gray felsite QZ-py-sph vein pale green felsite E QZ vit to 5mm dk gray, fr. gr. bistite gramite. END Core loss between 37-41, 44.5-46.5, 48.5-55, 74.5-76.5. water discharge					
- Andread and a state	115	116	1.0	02-py-sph vein		January 1	_	-	
	116	118	2.0	pale green felsite E 02 vit to 5mm.	-				
_	118	126	8.0	dk grey fry. gr. bistite gramite.			1	⊥	
				O'O'O END			-	1	
		-		Core loss between 37-41, 44.5-46.5,				+	
				48.5-55. 74.5-76.5. water discharge	_			1	
				Core loss between 37-41, 44.5-46.5; 48.5-55, 74.5-76.5. water discharge lost at 20-25 feet.	-			1	
						- van a	-	1	
								1	
					-				
					-				
			1.000					T	

