$$
\begin{gathered}
83-\# 494-11719 \\
7184
\end{gathered}
$$

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT on the BAG 1-2 CLAIMS
LOCATED in the NICOLA MINING DIVISION N.T.S. $92-\mathrm{I}-8 \mathrm{~W}$

Latitude: $50^{\circ} 22^{\prime}$ North; Longitude: $120^{\circ} 24^{\prime}$ ' West
: GEOLOGICAL BRANCH 11,719

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT
on the BAG 1-2 CLATMS

LOCATED in the NICOLA MINING DIVISION

$$
\text { N.T.S. } 92-\mathrm{I}-8 \mathrm{~W}
$$

Latitude: $50^{\circ} 22^{\prime}$ North; Longitude: $120^{\circ} 24^{\prime}$ ' West
Owned and Operated by
CANADIAN NICKEL COMPANY LIMITED

```
E.J. Debicki
District Geologist
B.C. and Yukon
Canadian Nickel Company Limited
80-10551 Shellbridge Way
Richmond, British Columbia
V6X 2W8
September, }198
```


Table of Contents

Page
1.0 SUMMARY 1
2.0 INTRODUCTION 2
2.1 Location, Access, Physiography 2
2.2 Property Definition 2
2.3 Previous History 3
2.4 1983 Exploration Program 3
3.0 REGIONAL GEOLOGY 4
4.0 PROPERTY GEOLOGY 4
4.1 Geological Units 4
4.2 Structure 5
4.3 Alteration 5
4.4 Mineralization 6
5.0 GEOCHEMICAL SURVEYS 7
5.1 Rock Geochemical Survey 7
5.2 Soil Geochemical Survey 8
5.3 Stream Sediment Geochemical Survey 8
6.0 GEOPHYSICAL SURVEYS 9
6.1 Magnetometer Survey 9
6.2 VLF-RADEM Survey 10
7.0 CONCLUSIONS AND RECOMMENDATIONS 10
8.0 REFERENCES 119.0 STATEMENT OF EXPENDITURES10.0 AUTHOR'S QUALIFICATIONS

Appendices

Appendix A - Analytical Results
Appendix B - Rock Sample Descriptions
Appendix C - Stream Sediment (Heavy Mineral) Sample Descriptions
Appendix D - Goldhound Concentrating Wheel Specifications/Operating Instructions

Figures

Figure	1 - Location Map	Scale $1: 4,750,000$
Figure	2 - Location Map	Scale $1: 250,000$
Figure 3 - Claim Location Map	Scale $1: 50,000$	

(Back Pockets)
Figure 4 - Grid Location Map Scale 1:10,000
Figure 5 - Geology Map, Rock Sample Locations and Results Scale 1:10,000
Figure 6 - Soil Sample Locations Scale 1:10,000
Figure 7 - Soil Sample Results: Au (p.p.b.) Scale 1:10,000
Figure 8 - Soil Sample Results: Ag (p.p.m.) Scale 1:10,000
Figure 9 - Soil Sample Results: Λ (p.p.m.) Scale 1:10,000
Figure 10 - Heavy Mineral Pan Concentrate and Goldwheel Concentrate Sample Locations

Scale 1:10,000
Figure 11 - Heavy Mineral Pan Concentrate and Goldwheel Concentrate Sample Results

Scale 1:10,000
Figure 12 - Magnetometer Survey
Scale 1:10,000
Figure 13 - VLF-RADEM Survey
Scale 1:10,000

1.0 SUMMARY

The BAG $1-2$ claims (35 units), located 40 kilometres northeast of Merritt, British Columbia in the Nicola Mining Division were staked in 1982 by Canadian Nickel Company Limited (Canico). Access is by Highway No. 5 which cuts through the southern portion of the claims.

Geologically, the BAG claims area is underlain by a TriassicJurassic Nicola Group sequence of interbedded volcanics, volcaniclastics and sediments trending north to northwest, dipping moderately to steeply eastward. The sequence lies on the west limb of a syncline with axis trending northeast-southwest through the south portion of the property. The claims were staked to protect the northwest strike-length continuation of the former $\mathrm{Au}-\mathrm{Ag}-\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{W}$ producer, the Stump Lake (Enterprise) Mine, lying immediately to the south of the BAG claims on the south shore of Stump Lake.

During May-June, 1983, exploration by Canico consisted of prospecting, geological, geochemical and geophysical surveys. Two areas of interest were outlined. On the western edge of the claims, the northwest strike-length continuation of the Stump Lake (Enterprise) Mine structure was located. A 6-10 centimetre wide episodically-veined, quartz-chalcedony shected vein is exposed over a strike length of 325 metres. Highest analytical results were $35 \mathrm{ppb} \mathrm{Au}, 0.4 \mathrm{ppm} \mathrm{Ag}$, and 58 ppm As . Extensive clay alteration borders the vein. The vein is interpreted to represent the upper level of an epithermal vein system. In the central portion of the claim, a mafic volcanic unit of the Nicola Group is characterized by weak brecciation, fracturing, quartz-carbonate veining, silicification and pyritization. The zone is up to 200 metres wide and has been traced the full length of the claims for 2200 metres. An arsenic soil anomaly with values up to 29 ppm As is coincident with the zone. The north portion of the zone is characterized by narrow quartz veins with highest values up to $880 \mathrm{ppb} \mathrm{Au}, 3.7 \mathrm{ppm} \mathrm{Ag}, 429 \mathrm{ppm} \mathrm{As}, 115 \mathrm{ppm} \mathrm{Mo}, 162 \mathrm{ppm} \mathrm{Cu}$.

Further work during 1983 to evaluate the two zones of interest will consist of detailed prospecting, geological and geochemical surveys. A gas chromatography survey will be conducted over the area of the northwest strike-length continuation of the Stump Lake (Enterprise) Mine structure.

2.0 INTRODUCTION

This report covers the work done on the BAG $1-2$ claims between May 18,1983 and June 13, 1983. A crew consisting of up to six personnel completed the program from accommodation located at Kokanee Beach and Resort Ltd., on Highway No. 5, approximately 20 kilometres south of the claim group.

2.1 Location, Access, Physiography

The BAG $1-2$ claims (35 units) are located 40 kilometres northeast of Merritt, British Columbia. The claim group occurs on the north shore of Stump Lake (Figures 1 and 2).

Access to the property is by Highway No. 5 (Merritt-Kamloops Highway) which cuts through the southern portion of the property along the north shore of Stump Lake. A dirt trail utilized for access to grazing land cuts east-west through the claims immediately north of the BAG 1 and 2 boundary. Access to this road is from Highway No. 5 to the east. Permission from grazing rights owners is required to utilize this dirt road. All portions of the property are readily accessible on foot. Numerous fences criss-cross the area.

The BAG $1-2$ claims cover rolling arid grasslands utilized primarily for ranching (cattle grazing). The property rises gently northwest from the shores of Stump Lake at 756 metres above sea level to the highest point in the north approximately 1200 metres above sea level. Vegetation consists primarily of assorted grasses and weeds rarely exceeding 0.5 metres in height. Depressions and incised creek beds are óccasionally covered by scrub brush and small spruce 'trees. 'Grazing cattlé, and-in' particular bulls are a consistent nuisance in performing exploration in the area.

2.2 Property Definition

The BAG $1-2$ claims are located in the Nicola; Mining Division, claim sheet N.T.S. 92-I-8W (Figure 3);

Canadian Nickel Coppany Limited (exploration subsidiary of Inco Limited) is the owner and operator of the BAG claims.

Claim Name	$\underline{\text { Units }}$	Record No.	Date Staked	Date Recorded	
BAG 1	$15(3 \mathrm{Sx5W})$	$1276(7)$		July 21, 1982	July 23, 1982
BAG 2	$\frac{20}{35}(4 \mathrm{~N} \times 5 \mathrm{~W})$	$1277(7)$	July 21, 1982	July 23, 1982	

All ground surrounding the BAG claims is staked. Portions of the BAG claims appear to overstake claims previously located, namely the ANDERSON 4 in the northwest, the MICROGOLD and STUMP in the northeast and ARGUS and ARGUS 4 in the southeast.

The BAG claims cover land held in part in the name of the crown and in part by leases granted by the crown for the purpose of grazing. Leases $8,9,16,793,839$ and 4270 are held by:

Frolek Cattle Company Limited
P.O. Box 188

Kamloops, British Columbia
V2C 5K6
(604) 376-8919

Verbal permission was granted by Mr. Denis Frolek, owner of the Frolek Cattle Company Limited, which allowed Canico access to the grazing lands in order to carry out the exploration program.

2.3 Previous History

The Stump Lake area has undergone considerable exploration since the early 1900^{\prime} s. Most significant was production from the Stump lake (Enterprise) Mine located on the south shore of Stump Lake. During the period 1926-1952, production totalled 71,304 tonnes grading $3.57 \mathrm{~g} / \mathrm{t}$ (0.104 $\mathrm{oz} /$ ton) $\mathrm{Au}, 109.02 \mathrm{~g} / \mathrm{t}(3.181 \mathrm{oz} / \mathrm{ton}) \mathrm{Ag}, 0.695 \mathrm{~kg} / \mathrm{t}(0.07 \%) \mathrm{Cu}, 14.58$ $\mathrm{kg} / \mathrm{t}(1.46 \%) \mathrm{Pb}, 3.29 \mathrm{~kg} / \mathrm{t}(0.33 \%) \mathrm{Zn}$ plus unreported WO_{3}. Most recently Celebrity Energy Corporation has consolidated land holdings of the former Stump Lake Mine and is planning a $\$ 1$ million exploration program on the property. Minor production is reported from other similar deposits in the area.

On the ground covered by the BAG claims, no records have been located indicating any previous work has been completed. A shallow pit or collapsed shaft found in the northeast corner of the claims indicates some attempt by previous workers to evaluate one of the several quartz veins on the property.

Most recently extensive exploration has taken place or is in progress on claims surrounding the BAG claims. On the MICROGOLD claim located to the northest, diamond drilling was completed in May 1983 by Chevron. On the TIC TAC TOE claims located to the southwest, diamond drilling was conducted by Seymour Resources Inc, during August 1983. On the LANCE/ ANDERSON claims to the north, previous exploration was performed by Oliver Resources Ltd., Dynamic Oil, Esperanza Explorations Ltd., Sumitomo Metal Mining Canada Limited and most recently by Glen E. White Geophysical Consulting \& Services Ltd.

2.4 1983 Exploration Program

The 1983 Canico exploration program was carried out by a four man crew increased at times to six men during the period May 18, 1983 to June 13, 1983. Work on the claims was completed from accommodation located approximately 20 kilometres to the south. Access to and from the property on a daily basis was by means of two four-wheel drive Chevrolet Suburbans.

The program consisted of gridding, prospecting, geological, geochemical and geophysical surveys on both the BAG 1 and 2 claims. All work was restricted to areas north of Highway No. 5. Grid lines (pickets and flagging) were established at 400 metre intervals at right angles to a base line trending 320° for a length of 2,500 metres ($1+00 \mathrm{E}$ to $24+00 \mathrm{~W}$). Grid lines reached a maximum length of 2,000 metres south of the base line and 2,300 metres north of the base line. Sample interval varied at 50 metres or 100 metres dependent on the type of survey completed. A total of 19,400 metres of grid was established.

A total of 44 rock samples, 194 soil samples, $1-80$ mesh stream sediment sample and 7 heavy mineral stream sediment samples were collected during the program.

Figure 4 outlines the grid location in relation to the BAG 1-2 claim boundaries.

3.0 REGIONAL GEOLOGY

The general geology of the BAG $1-2$ claims area is outlined by G.S.C. Map 886A (Cockfield, 1948).

Carboniferous-Permian Cache Creek Group and Triassic-Jurassic Nicola Group volcanics and sediments underlie much of the map area in the vicinity of the BAG 1-2 claims. These sequences are intruded by Cretaceous Coast Intrusions composed of granite, granodiorite and gabbro. Tertiary (Miocenc) Kamloops Group Volcanics, tuffs, breccias and agglomerates cap all other sequences.

On the BAG $1-2$ claims, only the Triassic-Jurassic Nicola Group volcanics and sediments were noted. The sequence is interpreted to lie on the northwest limb of a syncline with the axis trending in a northeastsouthwest direction parallel to the north shore of Stump Lake.

4.0 PROPERTY GEOLOGY

The BAG $1-2$ claims are underlain by Triassic-Jurassic Nicola Group volcanics and sediments subdivided into five distinct lithologies. The geology of the BAG $1-2$ claims is outlined on Figure 5.

4.1 Geological Units

Unit 1 consists of volcanics subdivided into Unit la, a fine to medium grained dark green, often amygdaloidal andesite-basalt, and Unit lb, feldspar porphyry, fine grained, dark green matrix with white to grey ' feldspar phenocrysts.

Unit 2 is subdivided into Unit $2 a$, rhyolite which is fine grained, white to grey coloured, siliceous, often with well developed banding, and Unit 2b, a lapilli tuff, Eine to medium grained, white to green coloured, and siliceous.

Unit 3 consists of coarse grained massive andesite to basalt locally with coarser grained gabbroic zones. This unit may represent a synvolcanic intrusive phase of Unit 1.

Unit 4 is a coarse grained, polymictic volcanic breccia-agglomerate, with conglomeratic-like phases. The breccia matrix is fine grained, mafic and often epidote rich.

Unit 5 is composed of a fine grained, aphanitic, grey to black, well bedded argillite. The unit is pervasively gossan stained.

Two types of quartz veins occur throughout the sequence, namely sheeted quartz-chalcedony veins and white, bull quartz veins. These are further discussed in section 4.4 Mineralization.

4.2 Structure

The Triassic-Jurassic Nicola Group volcanic-sediment sequence on the BAG $1-2$ claims trends roughly north-south to northwest-southwest. Bedding and foliation, where observed, dip moderately to steeply eastward. The sequence occurs on the west limb of a syncline. The syncline axis as plotted on G.S.C. Map 836A trends northeast-southwest and lies along the south boundary of the claim parallel to the north shore of Stump Lake. The stratigraphic succession of the Nicola Group lithologies becomes progressively older from east to west across the claim group as a result of topography, erosion and structural setting. The east-west succession consists of Units $4,1 \mathrm{a}$ and $1 \mathrm{~b}, 5,2 \mathrm{a}$ and $2 \mathrm{~b}, 3$ and 1 a . Contacts between these units trend north-south.

No major faulting was located on the claims except for the area around $4+00 W / 7+00 S$ where a narrow sheeted quartz-chalcedony vein interpreted to be the northwest strike-length extension of the Stump Lake (Enterprise) Mine structure appears to have been emplaced along a fracture zone oriented at 320°.

Minor brecciation and fracturing associated with quartz-carbonate alteration were noted throughout Unit la in the central portion of the claim group.

4.3 Alteration

Alteration on the BAG $1-2$ claims was noted in two areas. In the southwest corner of the property (northwest corner of BAG 1) clay or argillite alteration of Unit 2 rocks occurs adjacent to a sheeted, episo-dically-veined quartz-chalcedony vein. The alteration occurs on either side of the vein over an exposed width of 5 metres. The width of the alter-1 ation may be wider but is overburden covered. Exposure is restricted to an incised creek bed. Coincident with Unit la and 1 b rocks in the central portion of the claim group, quartz-carbonate alteration zones, usually gossanized, are weakly brecciated, fractured, silicified and pyritized. The extent of this alteration is not pervasive throughout Unit la and $1 b$ but does occur over a width of up to 200 metres and along the full length of the claim group for 2200 metres.

4.4 Mineralization

On the BAG 1-2 claims, two styles of mineralization or mineralizing events have been outlined:

1. In the southwest corner of the property (northwest corner of BAG 1), the northwest strike-length continuation of the Stump Lake (Enterprise) Mine structure has been located. At $4+00 \mathrm{~W} / 7+00 \mathrm{~S}$ a $6-10 \mathrm{~cm}$ wide quartz-chalcedony sheeted vein strikes $305^{\circ}-310^{\circ}$ and dips 75° SW. Parallel, en echelon quartz-chalcedony veins up to 3 cm wide occur adjacent to the main vein. The vein structure is exposed intermittently in a creek bed over a length of 325 metres and a width of up to 5 metres. Overburden covers the vein structure at either end. Extensive clay, argillic alteration is present on either side of the vein. The vein is interpreted to represent the upper level of an epithermal vein system. Characteristics of this vein are typical of this type of system, i.e. episodic veining, alteration, quartz-chalcedony composition, low precious metal and base metal values, enchanced values in arsenic and mercury. A $1: 2,500$ scale enlargement of this vein structure is outlined on Figure 5 .

To the southeast, on the adjacent leases, production from the pastproducing Stump Lake (Enterprise) Mine during the period 1926-1952 (intermittent producton) yielded 71,304 tonnes grading $3.57 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au}, 109.02 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.695 \mathrm{~kg} / \mathrm{t} \mathrm{Cu}, 14.58 \mathrm{~kg} / \mathrm{t} \mathrm{Pb}, 3.29 \mathrm{~kg} / \mathrm{t} \mathrm{Zn}$ and unceported W_{3}. Quartz veins in fissures and shear zones up to 3 metres wide, trending 315° to 025°, dipping $45^{\circ}-85^{\circ} \mathrm{E}$ contain pyrite, galena, sphalerite, tetrahedrite, chalcopyrite, bornite and sheelite with minor arsenopyrite, pyrrhotite and native gold. Characteristics of epithermal mineralization are noted in old reports i.e. ore minerals occur in thin bands parallel to the vein walls, the wallrock is altered, bleached and pyritized, and the ore occurs in shoots.
2. Coincident with Unit la and 1 b andesite-basalts in the central area of the claim group, intermittent quartz-carbonate veining occurs with brecciation, fracturing, silicification, pyritization ($1-2 \%$) and is weakly gossanized. This veining occurs throughout the Unit 1 rocks over a maximum width of 200 metres and along the full length of the Unit 1 exposure for 2200 metres extending off the claims to the north and to the south into overburden and Stump Lake. At the north end of the Unit, numerous quartz and quartz-chalcedony veins were located, oriented at various azimuths but generally steeply to vertically dipping. The veins are narrow, generally 0.5 to 3 metres, and can be traced intermittently for distances up to, 1,200 metres. The relationship of these veins to those at the Stump Lake (Enterprise) Mine is not known but is assumed to be of same generation. The location of these quartz veins is outlined on Figure 5.

5.0 GEOCHEMICAL SURVEYS

The 1983 program completed exploration over a grid on the BAG 1-2 claims totalling 19,400 metres. A 2,500 metre base line oriented at 320° was established with cross-lines at 400 metre intervals extending up to 2000 metres south and 2,300 metres north of the base line. Sample intervals along the cross-lines were at 50 metre or 100 metre dependent on the survey. Rock and soil geochemistry were completed on the grid. A total of 44 rock samples and 194 soil samples was collected. In addition 1 stream sediment (-80 mesh) and 7 stream sediment (heavy mineral concentrate) samples were collected from streams on the property.

Geochemical rock, soil, -80 mesh and heavy mineral concentrate samples were submitted to Acme Analytical Laboratories Ltd. for analysis. Samples were analyzed for 30 elements utilizing Inductively Coupled Plasma (ICP). A 0.5 gram sample is digested with 3 mls of $3: 1: 3 \mathrm{HCl}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $90^{\circ} \mathrm{C}$ for 1 hour and then diluted with 10 mls of $\mathrm{H}_{2} \mathrm{O}$ and analyzed by standard ICP techniques. Au was analyzed by atomic absorption utilizing a 10 gram sample and Hg was analyzed by flameless atomic absorption utilizing a 0.5 gram sample. Both Au and Hg_{g} sample preparation/leaching was identical to that for the standard 30 clement ICP package. The soil samples were not analyzed for Hg . Geochemical results are listed in Appendix A.

5.1 Rock Geochemical Survey

A-total of 44 rock samples was collected from various locations throughout the BAG 1-2 claims. Rock sample locations and results (Au, Ag, As) are plotted on Figure 5. Rock sample descriptions and results (Au, $\mathrm{Ag}, \mathrm{As}, \mathrm{Sb}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}$) are listed in Appendix B .

The analytical results obtained from samples collected from the quartz-chalcedony vein in the southwest corner of the property did not return any anomalous values in Au and Ag . Highest results were 35 ppb Au and 0.4 ppm Ag . As is enhanced up to a maximum of 58 ppm . A high value of 250 ppb Hg was obtained from the clay-argillite alteration adjacent to the vein. Low precious metal and base metal values and increased values in As and Hg are as expected if this vein is at an upper level of a typical epithermal vein system.

Quartz and quartz-chalcedony veins associated with the Unit la and Ib andesite-basalt in the central portion of the claims returned the most anomalous values. Several of the sampled veins returned values up to 880 $\mathrm{ppb} \mathrm{Au}, 3.7 \mathrm{ppm} \mathrm{Ag}, 429 \mathrm{ppm} \mathrm{As}, 115 \mathrm{ppm} \mathrm{Mo}, 162 \mathrm{ppm} \mathrm{Cu}$.

Units 2 a and 2 b , rhyolite and rhyolitic lapilli tuff contain a very weak enhancement in gold values up to 35 ppb Au versus normal background of $5-10 \mathrm{ppb} \mathrm{Au}$. No samples were collected from the quartz-carbonate alteration associated with the Unit $1 a$ and $1 b$ andesite-basalt in the central portion of the property.

5.2 Soil Geochemical Survey

A total of 194 soil samples was collected on the BAG 1-2 grid. Sample interval on the base line and each of the cross-lines was 100 metres. Soil sample locations are plotted on Figure 6, and soil sample results for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}$ are plotted on Figures 7, 8 and 9, respectively.

The soil profile on the property is poorly developed. No distinctive B-horizon is present. The sampled soil consists of a light to dark brown, very dry, loess-like material which is normally capped by a thin layer of black loess-like material high in organic content derived from decaying grass and weeds. The soil horizon is interpreted to be less than 1 metre thick over much of the property. Many of the soil samples contain rock chips of broken bedrock (felsenmeer).

Au results are $5-15 \mathrm{ppb}$ for all but five of the soil samples. Of these five values greater than 15 ppb , the maximum value was 50 ppb Au in soils over the area where quartz veins contained gold values in rock samples up to 880 ppb Au .

Ag results in soil attain a maximum of 0.4 ppm Ag and do not outline any weakly anomalous zones.

As results, up to a maximum of 29 ppm As versus a background of 2-4 ppm, are coincident with the quartz-carbonate, quartz, and quartz-chalcedony veining in the Unit $1 a$ and $1 b$ andesite-basalt rocks in the central area of the claim. The As soil anomaly widens dramatically on the north end of the property coincident with the quartz and quartz-chalcedony veins.

The other ICP elements analyzed from the soil samples have not been plotted but are tabulated in Appendix A.

5.3 Stream Sediment Geochemical Survey

In 1982, several heavy mineral pan concentrate samples were collected from southeast flowing streams draining into Stump Lake off the BAG claims. The magnetite fraction of these samples was not removed. Sample locations and results are plotted on Figures 10 and 11, respectively. Highest value obtained was 140 ppb Au. This value was in part responsible for staking the BAG 1-2 claims. The results of the 1982 heavy mineral pan concentrate samples are included as part of this report but expenditures for this work is not claimed as sampling was carried out prior to staking.

During 1983, an orientation heavy mineral survey was conducted on two of the drainages sampled in 1982. For the purposes of the 1983 heavy mineral survey carried out on the BAG claims and other surrounding areas, a Goldhound Concentrating Wheel (goldwheel) was utilized to isolate the heavy mineral fraction. At each sample site, approximately 20 kg of stream sediment are wet-sieved utilizing a 0.5 metre diameter -20 mesh stainless steel screen to obtain approximately $2-3 \mathrm{~kg}$ of material. This -20 mesh material is processed on the goldwheel to yield approximately $50-100$ grams
of heavy mineral concentrate. This concentrate is dried, magnetite fraction is removed with a strong magnet and the remaining non-magnetic fraction submitted for ICP analysis (30 elements) and AA analysis for Au and Hg . Specifications and operating instructions for the goldwheel are included as Appendix D. Use of this apparatus is more efficient and removes operator error compared to normal panning techniques.

Results from the first stream returned a value of 935 ppb Au from the non-magnetic fraction of the sample processed on the goldwheel. This compared to a value of 5 ppb obtained from a pan concentrate sample with magnetite not removed. This is the same creek which hosts the northwest strike-length continuation of the Stump Lake (Enterprise) Mine vein structure.

Sampling of the second stream did not provide as drastic a contrast between the pan concentrate versus goldwheel concentrate results. This stream returned a value in 1982 of 140 ppb Au from pan concentrate. The magnetite was not removed. The 1983 sampling was more extensive in order to carry out an orientation survey. A listing of the sample type and results is included in Appendix C. In summary; pan concentrate and goldwheel concentrate heavy mineral concentrates with magnetite removed, and a -80 mesh stream sediment sample failed to duplicate the 1982 value of 140 ppb Au. The 1982 result is attributed to a "nugget" effect of one flake of gold being contained in the analyzed portion of the sample. The results of this orientation is in contrast to results obtained elsewhere where gold values in heavy mineral goldwheel concentrate versus heavy mineral pan concentrate are enhanced by a factor of ten or twenty.

6.0 GEOPHYSICAL SURVEYS

Geophysical work on the BAG $1-2$ claims consisted of magnetometer and VLF-RADEM surveys.

6.1 Magnetometer Survey

Canico personnel carried out 16,900 metres of ground magnetometer survey taking readings at 50 metre intervals. A Scintrex MF-2 fluxgate magnetometer was used to measure the relative vertical field strength in gammas. Corrections were made for diurnal and instrument drift by reading a base station at one to two hour intervals. The corrected survey results are plotted on Figure 12 with 100 gamma contour intervals.

The readings vary only over a range of about a thousand gammas. The magnetic anomalies found are relatively small. Their narrow size and elongated shape indicate that their sources are thin, near the surface and therefore that the overburden is shallow where present. The spatial relationship to the geology suggests that the cause for the anomalies is contact alterations in the basalts close to the rhyolite.

6.2 VLF-RADEM Survey

A 16,900 metre VLF-RADEM survey was conducted on the 400 metre grid using a transmitting station at Seattle, Washington (NPG) which operates at 18.6 kHz . A Crone "RADEM" receiver was employed at 50 metre station intervals to record tilt angle of the resultant field in degrees. The data are plotted on Figure 13.

The profiles show some scatter in the reading which is caused by a relatively large angle between the geological strike and the direction to the best available VLF transmitter station (NPG) and the variable topographical slope. No continuous conductor axis could be established from the results. There are some scattered cross-overs indicating possibly short and weak conductive zones that may be from minor fractures. None of those cross-overs can help in the interpretation of the geological structure of the area.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The BAG $1-2$ claim group is underlain by volcanics and sediments of the Triassic-Jurassic Nicola Group. The sequence trends roughly northsouth and dips moderately to stecply east. Exploration during May-June, 1983 outlined two areas of further interest on the claim group. The first area in the southwest corner of the property is the northwest strike-length continuation of the Stump Lake (Enterprise) Mine vein structure. A 6-10 centimetre wide, episodically veined sheeted quartz-chalcedony vein is exposed over a strike length of 325 metres. Rock results are up to 35 ppb $\mathrm{Au}, 0.4 \mathrm{ppm} \mathrm{Ag}$, and 58 ppm As . The vein is interpreted as the upper level of an epithermal vein system. Low values in Au and Ag are expected at the upper levels of this type of system. The second area, in the central portion of the claim group, is coincident with an andesite-basalt unit up to 200 metres wide and exposed for a length of 2200 metres on the claim group. Quartz-carbonate veining with silicification, brecciation, fracturing, pyritization ($1-2 \%$) and weak gossan development is ubiquitous throughout the unit. At the north end of the unit, quartz and quartz-chalcedony veins, randomly oriented and up to 3 metres wide contain values up to $880 \mathrm{ppb} \mathrm{Au}, 3.7 \mathrm{ppm} \mathrm{Ag}, 429 \mathrm{ppm} \mathrm{As}, 115 \mathrm{ppm} \mathrm{Mo}, 162 \mathrm{ppm} \mathrm{Cu}$. An arsenic soil anomaly with values up to 29 ppm As is coincident with the andesitebasalt unit containing the quartz-carbonate and quartz veining.

Further work during 1983 to evaluate the two zones of interest will consist of detailed prospecting, geological and geochemical surveys. A gas chromatography survey will be conducted over the area of the northwest strike-length continuation of the Stump Lake (Enterprise) Mine structure.

CRONE GEOPHYSICS LIMITED

3607 WOLFEDALE ROAD, MISSISSAUGA, ONTARIO, CANADA, L5C 1V8

Phone: (416) 270-0096
Cable: CRONGEO, TORONTO

RADEM

AN EM RECEIVER MEASURING THE FIELD STRENGTH, DIP ANGLE AND QUADRATURE COMPONENTS OF THE VLF COMMUNICATION STATIONS

This is a rugged, simple to operate, ONE MAN EM unit. It can be used without line cutting and is thus ideally suited for GROUND LOCATION OF AIRBORNE CONDUCTORS and the CHECKING OUT OF MINERAL SHOWINGS. This instrument utilizes higher than normal EM frequencies and is capable of detecting DISSEMINATED SULPHIDE DEPOSITS and SMALL SULPHIDE BODIES. it accurately isolates BANDED CONDUCTORS and operates through areas of HIGH HYDRO NOISE. The method is capable of deep penetration but due to the high frequency used its penetration is limited in areas of clay and conductive overburden.

The DIP ANGLE measurement detects a conductor from a considerable distance and is used primarily for locating conductors. The FIELD STRENGTH measurement is used to define the shape and attitude of the conductor.

SPECIFICATIONS

SOURCE OF PRIMARY FIELD:
NUMBER OF STATIONS:
STATIONS AVAILABLE:
Code Station \& LocationVLF Communication Stations 12 to 24 Khz
7 switch selectable
The seven stations my be selected from:CM Cutler, Maine
17 .8 KHz
Frequency
${ }^{J}$ Seattle, Washington SW 'Seattle, Washington 新: $6 . \mathrm{KHz}$
. AM Annapolis, Maryland 21.4 KHz
H Laulualei, Hawali 23.4 KHz
BOF Bordeaux, France 15.1 KHz
E Rugby, England. 16.0 KHz
MS Gorki, Russia 17.1 KHz
OD Odessa (Black Sea) 15.6 KHz
NC Australia, N.W.C. 22.3 KHz
YJ Yosamal, Japan 17.4 KHz
HN - Hegaland, Norway 17.6 KHz
TJ Tokyo, Japan 20.0 KHz
BA Buenos Aires 23.6 KHz

CHECK THAT STATION IS TRANSMITTING: Audible signal from speaker.

PARAMETERS MEASURED:

(1) DIP ANGLE in degrees of the magnetic field component, from the horizontal, of the major axis of the polarization ellipse. Detected by a minimum on the field strength meter and read from an inclinometer with a range of $\pm 90^{\circ}$ and an accuracy of $\pm 1 / 2^{\circ}$.
(2) FIELD STRENGTH (total or horizontal) of the magnetic component of the VLF field, (amplitude of the major axis of the polarization ellipse). Measured as a percent of normal field strength established at a base station. Accuracy $\pm 2 \%$ dependent on signal. Meter has two ranges: $0-300 \%$ and $0-600 \%$.
(3) OUT-OF-PHASE component of the magnetic field, perpendicular in direction to the resultant field, as a percent of normal field strnegth, (amplitude of the minor axis of the polarization ellipse). This is the minimum reading of the Field Strength meter obtained when measuring the dip angle. Accuracy $\pm 2 \%$.

OPERATING TEMPERATURE RANGE: $-30^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{F}\right)$ to $+50^{\circ} \mathrm{C}\left(120^{\circ} \mathrm{F}\right)$

DIMENSIONS AND WEIGHT:

SHIPPING:

BATTERIES:

$9 \times 19 \times 27 \mathrm{~cm}-2.7 \mathrm{Kg}(6 \mathrm{lb})$
Instrument with foam lined wooden case, shipping wt. -6.0 Kg (13 lb)

2 of 9 volt - Eveready 216
Average life expectancy -20 hours for continuous operation

The MF-2 is a completely new concept in vertical force fluxgate magnetometers. These instruments, which are designed for fast and accurate mineral ground surveys, are orientation independent, self levelling and require no tripod.
The MF-2 combines in one compact $51 / 2 \mathrm{lb}$. package electronics, sensor and rechargeable batteries. With the latest I.C. and F.E.T. circuitry and high precision components, a temperature stability better than 1 gamma per degree is standard (with .25 gamma on special order) over a range of - 40° to $+40^{\circ}$ centigrade.
The instrument has a built-in hemisphere polarity switch providing two overlapping ranges. For the Northern hemisphere the full range is +80.000 to - 20,000 gammas, and reversible for the Southern hemisphere.
A calibrated feedback system can be provided which makes it possible to determine the total vertical component strength,
Measuring accuracy, on the 100 gamma scale is 0.5 gamma, and on the 1000 gamma scale 5 gemmas.
The Scintrex MF series of magnetometers have been in use for many years in varied applications, e.g. ground reconnaissance, base station recording and monitoring, study of magnetic properties of rocks, observatory monitoring and recording of both vertical and horizontal components.

OPTIONAL

a) MF-2G

The MF-2G Fluxgate Magnetometer has the same electronics and specifications as the

MF-2, but the sensor is detached and enclosed in a small cylindrical tube which permits it to be oriented and tilted in any desired direction. A 25 foot cable connects the sensor to the instrument housing. This version is particularly suitable for the study of the magnetic properties of rocks, and the measurement of magnetic field components of any orientation. etc.
b) MF-2GS

The MF-2GS Magnetometer again has the same electronics and specifications as the MF-2 but has two sensors, the enclosed self-levelling sensor of the MF-2 as well as the detached geoprobe of the MF-2G, either one of which can be employed at any one time. Thus, this instrument can be employed as the standard MF-2 as well as for vertical gradient measurements, and for the determination of the magnetic properties of rocks, etc.

8.0 REFERENCES

1. Cockfield, W.E., 1948; Stump Lake Deposits; in Structural Geology of Canada Ore Deposits, A Symposium, Canadian Institute of Mining and Metallurgy, pp. 183-186.
2. Cockfield, W.E., 1948; Geology and Mineral Deposits of Nicola Map Area, British Columbia; G.S.C. Memoir 249, with G.S.C. Map 886 (Geology Map) and G.S.C. Map 887A (Mineral Map), Scale 1:253,440.
3. George Cross Newsletter, March 14, 1983; Seymour Resources Inc.; Issue No. 50 (1983).
4. George Cross Newsletter, July 13, 1983; Celebrity Energy Corps.; Issue No. 134 (1983).
5. Ministry of Energy, Mines and Petroleum Resources, 1982; Natural Geochemical Reconnaissance 1:250,000 Map Series, Aschroft, British Columbia (NTS 92I), Regional Geochemical Survey; BC RGS-8, 1981 and G.S.C. Open File 866.
6. Ministry of Energy, Mines and Petroleum Resources, 1983; MINFILE - Mineral Occurrences in British Columbia; Planet, Enterprise, King William, 92ISE029, 3p.
7. Northern Miner, June 30, 1983; Celebrity Energy Corp., Launches B.C. Program; p. 5.

9.0 STATEMENT OF EXPENDITURES

BAG 1-2 CLAIMS - 1983

Labour
E. Debicki
M. Mason
B. Booth
G. Beischer
C. Ravnaas
E. Makela

June 7-9, 11-12
June 7-8
May 18-19, June 1, 6-12
June 1, 6-13
June 1, 6-13
June 1, 6-12

5 days @ $\$ 230$	$\$ 1,150$
2 days @ 250	500
10 days @ 101	1,010
9 days @ 86	774
9 days @ 81	729
8 days @ 76	608

9 days @ $86 \quad 774$
9 days @ $81 \quad 729$
8 days @ $76 \quad 608$
$\$ 4,771.00$

Report Preparation

Report Writing - E. Debicki
Drafting - W. Saftic
Personnel Expenses
Accommodation - Hotel
Meals

Transportation

Truck Rental 2×9 days @ 53.50
3 days @ 230
690

3 days @ 206

618

Gasoline

1,308.00
176.00

Travel - Airfares
600.00

1,739.00

Analytical

$\begin{aligned} \text { Rock } & -44 \text { ICP, Au @ } 9.25 \\ & -9 \mathrm{Hg} 3.00 \\ & -44 \text { Sample Preparation @ } 2.50 \end{aligned}$	$\begin{array}{r} 407.00 \\ 27.00 \\ 110.00 \end{array}$
```Soil/Stream - 195 ICP, Au @ 9.25 -1 Hg @ 3.00 - 195 Sample Preparation @ 0.50```	$\begin{array}{r} 1,803.75 \\ 3.00 \\ 97.50 \end{array}$
$\begin{aligned} \text { Heavy Mineral } & -7 \text { ICP, Au, Hg @ } 12.25 \\ & -7 \text { Sample Prepration @ } 1.25 \end{aligned}$	$\begin{array}{r} 85.75 \\ 8.75 \\ \hline \end{array}$

## Miscellaneous

Exploration Equipment and Supplies, Freight
Total Expenditures: $\quad \frac{235.79}{12,155.22}$
 July 13, 1983

### 10.0 AUTHOR'S QUALIFICATIONS

I, EDWARD J. DEBICKI, of the City of Richmond, in the Province of British Columbia, HEREBY CERTIFY:

1. THAT I reside at 11351 Seahurst Road, Richmond, British Columbia, V7A 3P3
2. THAT I am a graduate of McMaster University, Hamilton, Ontario, with a degree of Bachelor of Science (1971).
3. THAT I am District Geologist, B.C. and Yukon, with Canadian Nickel Company Limited (subsidiary of Inco Limited) of Copper Cliff, Ontario, POM $1 N 0$.
4. THAT I have practised my profession as a geologist since 1971, having worked in Ontario, Quebec, the Northwest Territories, Yukon Territory and British Columbia.
5. THAT I visited the property and that the work described in this report was carried out under my supervision on behalf of Canadian Nickel Company Limited.
6. THAT I am a Fellow of the Geological Association of Canada and a member of the Canadian Institute of Mining and Metallurgy.

DATED at Richmond, British Columbia, this 12th day of September, 1983.


## APPENDIX A

ANALYTICAL RESULTS





CAMADIAN NICKEL FILE\# BS-078E FFDJECTH GOE19
FACE

SAMPLE I	$\begin{aligned} & \mathrm{No} \\ & \mathrm{ppe} \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{pppa} \end{aligned}$	$\begin{aligned} & p b \\ & p p \end{aligned}$	$\begin{aligned} & \text { In } \\ & \mathrm{ppr} \end{aligned}$	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{Pp:} \end{aligned}$	$\begin{aligned} & \mathrm{N}_{1} \\ & p p a \end{aligned}$	Co	$\begin{aligned} & M_{n} \\ & p F Q \end{aligned}$	$\begin{aligned} \mathrm{Fe} \\ \mathrm{Z} \end{aligned}$	A5 pp:	$\underset{p p r}{u}$	An ppa	$\begin{aligned} & \text { ih } \\ & \text { ppr } \end{aligned}$	Sr   ppa	$\begin{aligned} & c d \\ & \rho p a \end{aligned}$	35	9i P9	ppr	$\begin{gathered} \mathrm{Ca}_{2} \end{gathered}$	2	La	Cr	$\begin{gathered} \mathrm{Mg} \\ \underset{2}{2} \end{gathered}$	88.8	$1 i$	¢	Al.	k $\vdots$	$\%$	923	Aul	HQ pot
kix 41601	?	55	5	50	.	3	6	565	3.33	12	2	N0	2	20	1	2	2	$11)$	. 45	. 10	14	3	1.07	71	. 01	4	. 43	. 07	$\therefore$	2	5	
61-4:302	1	29	4	58	. 1	3	4	582	2.21	9	2	W	$?$	25	$!$	2	2	5	1.75	. 02	2	1	. 10	158	. 3	$\varepsilon$	. 37	. 61	. 2	\%	10	
8x-4!6j3	;	18	8	55	. 2	3	3	825	2.47	19	2	W0	2	33	!	2	2	7	9.11	. 04	t	J	1.12	427	. 01	;	. 41	. 01	2	?	35	
81-4i604	:	4	,	68	. 1	55	21	671	3.82	4	2	N:	2	530	$!$	2	$?$	98	5.10	. 36	40	84	2.59	1965	. 05	7	. 95	. 07	. 24	?	35	
R1-41605	$i$	13	2	3?	. 2	47	17	381	3.74	15	2	W0	?	59	1	2	d		12.77	. 20	2	132	1.64	53	. 07	3	2.01	. 05	.14	2	10	
81-41606	!	107	$\varepsilon$	6 ?	. 2	54	20	59.	2.95	S	2	ND	2	89	1	2	2		16.47	. 07	2	121	1.96	63	. 11	$b$	2,30	. 04	. 69	2	5	
2:-4:607	i	47	6	47	. ${ }^{\text {a }}$	57	13	713	3.33	5	2	Na	2	53	$!$	?	?	60	13.94	. 00	2	114	2.05	250	. 12	8	2.08	. 0	. 12	$?$	5	
㪘-41608	1	61	b	73	. 1	19	15	608	4.94	12	2	ND	2	36	1	2	2	155	1.27	. 16	15	45	2.37	68	. 20	$t$	2.34	. 10	. 09	$?$	5	
51-4609	!	8	6	03	. 1	4	5	453	2.75	2	$?$	NO	2	44	!	2	2	10	2.06	. 07	$1!$	4	1.13	105	. 01	5	1.94	. 05	. 20	2	5	
Sx-43610	!	22	!	of	. 2	12	9	789	3.14	9	2	Ni	2	47	1	2	\%	45	4.46	. 07	$t$	24	1.63	94	. 14	7	1.89	. 06	. ${ }^{\text {e }}$	2	¢	
R1-416:1	1	2	3	1	. 4	1	1	489	1.02	5	2	10	2	452	1	$?$	2		22.91	. 0 !	2	1	8.09	144	. 01	3	. 07	.01	. 31	\%	5	10
81-46:12	1	12	2	12	. 3	7	1	- 539	1.68	43	2	N0	2	365	1	5	?		19.51	. 02	2	8	7.19	124	. 01	3	. 15	. 0	. 6	$?$	15	30
ax-4t:13	1	14	8	68	. 1	22	16	-971	5.19	1.	2	N	2	104	$!$	,	2	126	3.16	. 14	15	42	2.15	34	. 01	$\vdots$	1.43	. 05	. 04	$?$	20	40
81-416:4	1	65	9	58	. 1	36	18	897	4.96	6	4	Ni	?	78	1	2	E	142	3.0E	. 12	11	12	4.67	30	. 01	6	2.69	. 06	, ©	?	16	10
is - 41615	1	4	1	$\varsigma$	. 4	3	6	377	1.05	25	2	ND	2	453	$!$	2	?	8	26.45	. 81	2	5	8.89	174	. $0!$	?	:13	. 01	. 6	?	5	30
K- 4 - 1616	$!$	56	5	4	. 1	22	¢ 4	$52 \%$	4.03	5	2	ND	2	149	1	2	$?$	86	8.76	. 11	10	37	3.44	214	. 01	4	. 76	. 03	. ${ }^{\text {c }}$	?	5	250
R1-16017	!	1	9	$5{ }^{\text {d }}$	. 1	39	20	791	5.02	11	2	N 3	$?$	71	1	$?$	?	132	2.65	. 13	7	$5!$	3.51	96	. 19	0	2.85	. 64	. OL	?	5	20
ST-41618	1	14	5	13	. 3	7	5	125	2.50	11	2	N	2	24	1	2	2	27	16.42	. 03	2	13	7.07	107	. 01	3	. 42	. 02	. 02	2	5	6
82-4619	1	3	4	6	. 4	3	2	517	2.01	$b$	?	ND	2	454	$!$	2	$?$		20.53	. 01	2	3	7.8!	89	. 11	!	.14	. 0	. 01	?	5	10
F1-41520	2	109	5	89	.	30	16	653	4.82	15	$?$	\% 0	?	71	1	2	2	1: 5	3.15	. 12	6	4	2.07	3	. 24	;	2.13	. 07	$\therefore 4$	?	25	
81-1152!	1	13	7	11	. 3	3	5	817	2.54	5	2	N1	?	334	!	$?$	2		19.72	. 01	?	2	3.27	112	. 01	4	. 23	. 11	. ic	?	35	76
तr-41222	2	54	11	59	. 1	67	25	bet	4.84	12	5	N0	2	53	:	2	2	165	3.10	. 19	3	232	?.62	103	. 17	7	4.19	. 12	! 6	2	15	
R1-41623	1	229	5	$4!$	.	4	10	556	2.29	4	2	ND	?	46	$!$	$?$	?	75	1.56	. 17	3	6	1.03	73	. 10	¢	1.6	. 6	. 3	2	$\because$	
R5-41624	1	74	7	87	.	20	15	727	4.49	15	4	N	\%	75	1	2	?	159	2.95	. 13	8	35	2.09	45	. ${ }^{2}$	4	2.12	. 6	.	?	$2!$	
81-41625	$!$	248	10	87	. 1	3	21	711	S.0.7	11	?	N	,	So	!	2	?	155	1.77	. 26	23	2	1.63	42	. 22	§	2.30	. 6	. $\because$	2	20	
R1-41650	$!$	9	5	89	. 1	?	4	75.	3.72	9	2	ND	?	47	!	2	?	$\cdots$	2.09	. 08	5	5	1.25	54	. 27	$\ddagger$	2.75	. 64	.15	:	5	
Ri-416]:	!	35	12	74	. 1	10	13	698	5.01	20	?	W0	?	62	!	2	2	98	2.35	. 6	6	20	1.35	249	. 17	4	3.)3	.12	. 17	2	15	
R-41032	,	5	!	\%	.	2	1	63	. 56	7	2	NJ	2	5	$!$	2	?	5	. 09	. 01	2	2	. 07	27	. 1	$\pm$	.1?	. 11	\%	?	3	
Sr-4163	14	38	b	-	. 3	3	9	223	4.13	52	2	\%	2	30	1	2	2	28	. 58	. 22	20	$!$	. 63	102	. 01	7	2.65	. ${ }^{1}$	. 2	$?$	5	
81-41654	1	:	5	2	. 6	1	1	2027	. 34	:	:	N0	2	34	:	-	9	7	30.46	.41	5	1	.0s	7	. 01	5	. 0.5	. 1	. 6	2	£	
(11-41535	4	103	$!$	11	1	$?$	4	225	1.07	1	$?$	N0	$?$	55	1	2	$?$	1	2,25	. 02	3	1	. 71	633	. 01	$!$	, 13	. 62	. 04	2	5	
E:-41636	1	54	0	59	.?	7	15	1126	2.74	6	$?$	N0	2	97	,	?	2	89	7.64	. 10	5	5	3.27	573	. 02	9	. 59	. 04	. 64	2	5	
21-4637	03	13	6	15	1.2	5		153	. 86	11	2	N0	?	19	$!$	?	?	25	. 62	. 11	2	1	. 17	356	. 0 !	E	. 37	. 01	. 97	2	70	
fr-4:658	87	16	1	26	1.8	8	$\pm$	148	1.33	45	:	N0	2	15	1	3	$?$	25	. 14	. 02	2	6	. 3	589	.01	$t$	. 5	. 01	. 08	2	196	
81-11639	$!$	-15	3	20	. 3	-	2	113	. 3 ?	7	${ }^{2}$	N0	2	7	1	?	2	17	. 08	. 01	2	6	. 13	192	. 0 !	?	, ${ }^{\text {d }}$	. 01	. ${ }^{2}$	2	$15 \%$	
R1-41640	104	35	z	32	1.5	6	4	107	1.95	191	2	110	2	35	$!$	7	2	22	. 08	. 04	8	5	. 11	1014	. 61	玉	. 6 ?	. 01	. 37	?	375	$\bigcirc$
510 2-1/2	,	30	40	184	.	35	13	1023	3.85	11	?	N0	2	30	,	2	2	59	. 6 ?	. 09	7	69	. 78	233	. 07	3	2.03	. 03	. 21	2	$53:$	60

LANADIAN NIEKEL FILE\# ES-OTES FROJECT\# GOQ1Z
Brice \# 2

SAKPLE :	Mo	$\mathrm{Cu}_{\text {ppe }}$	pb	In	${ }^{\text {Ag }}$	Ni	$\mathrm{Co}_{0}$	Mn	Fe	As	4	As	Th	Sr	Cd	5	Bi	$V$	Cd	$p$	La	Cr		83	Ti	5	4	Kis	1.	1	Ait
	9pa	pp	PP9	ppa	ppa	ppa	ppa	ppa	1	ppa	ppa	ppa	pps	pp3	pp 3	ppo	2p\%	ppz	1	2	ppz	Ppo	,	ppa	,	PP\%	4.	H2	2	972	-
$8 \mathrm{Si}-41641$	22	I8	6	60	. 3	17	16	378	4.52	44	2	Wid	2	10	1	2	2	47	27												
RI-4:642	2	173	11	97	. 1	8	19	1027	6.90	10	7	ND	3	$5!$	\%	?	2	200	3.27	1.15	18	10	. 81	185	. 01	0	2.56	. 01	. 30	$?$	5
R $\mathrm{x}-41643$	115	58	14	39	3.7	6	9	J38	2.88	80	2	N0	2	25	1	6	5	20	3.24	. 25	20	8	2.13	54	. 20	2	2.96	. 04	. 03	?	5
21-4:24	2	162	8	73	. 1	8	17	862	5.90	2	10	ND	3	53	1	2	2	189			12	7	. $\cdot 6$	903	. 01	3	1.15	. 01	. 17	2	65
:1-41845	8	104	$1!$	65	. 8	10	11	656	7.20	34	2	KO	2	12	1	2	2	128	2.15 .29	. 208	19	7	1.85 1.59	17 78	. 30	4	2.55	. 0	. 10	2	5
81-41816	60	66	15	48	. 8	7	10	419	5.96	429		N0	2	35	1	10	2	86	. 23	. 03	14	3	1.22	1355	. 01	6	2.78				
RX-41647	14	15	3	20	1.0	5	J	233	1.20	14	2	K0	2	17	1	,	2	16	. 92	. 01		4	. 15	247	. 01	6	. 2.89	. 01	. 15	2	135 860
RI-41648	30	12	5	17	. 7	5	2	113	. 89	14	,	ND	2	8	i	2	2	16	1.14	. 02	2	5	. 15	183	. 01	$i$	. 35	.01	. 07	2	8.0 145
STD A-I/AU 0.5	1	29	38	185	. 3	36	13	1046	2.68	10	2	KD	2	37	$!$	2	2	61	. 65	. 11	8	70	. 79	272	. 08	6	2.09	. 0 ?	. 20	,	5



CANADIAN NICKEL FILE\# BS-O7ES PROJECTH GUB13
FAGE \# 4

SAMPLE I	$\begin{aligned} & y_{0} \\ & p p \neq \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{ppa} \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & \mathrm{ppa} \end{aligned}$	$\begin{aligned} & \text { ln } \\ & \text { ppit } \end{aligned}$	$\begin{aligned} & \text { aq } \\ & p ; p_{1} \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & \mathrm{ppa} \end{aligned}$	$\begin{aligned} & \text { Co } \\ & \text { ppa } \end{aligned}$	$\begin{aligned} & \mathrm{kn} \\ & \mathrm{ppa} \end{aligned}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { ppa } \end{aligned}$	$\underset{\text { ppa }}{0}$	$\begin{aligned} & \text { Au } \\ & \text { ppz } \end{aligned}$	$\begin{aligned} & \text { Th } \\ & \text { pFs } \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & \mathrm{p} \boldsymbol{1} \end{aligned}$	$\begin{aligned} & \mathrm{Cd} \\ & \mathrm{ppa} \end{aligned}$	$\begin{aligned} & \text { Sb } \\ & p p a \end{aligned}$	$\begin{aligned} & \mathrm{Bi} \\ & \mathrm{ppa} \end{aligned}$	$\begin{gathered} V \\ p p: ~ \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{a}} \\ \mathrm{t} \end{gathered}$	y	$\begin{aligned} & \text { Ld } \\ & \text { pps } \end{aligned}$	$\begin{aligned} & \mathrm{Cr} \\ & \mathrm{p}, \mathrm{q} \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{i} \end{gathered}$	Ba ppa	$\begin{gathered} \mathrm{Ti} \\ \mathrm{I} \end{gathered}$	ppa	$\begin{gathered} A! \\ \vdots \end{gathered}$	$\begin{gathered} \mathrm{Ka} \\ 2 \end{gathered}$	$\begin{aligned} & k \\ & z \end{aligned}$	$\begin{gathered} \text { W } \\ p ; Q \end{gathered}$	Aut
51-89838	1	30	8	58	. 1	15	10	696	2.16	2	2	KD	2	39	1	2	2	46	. 37	. 07	9	27	. 45	114	. 06	7	1.81	. 06	. 31	2	5
51-89840	1	36	10	58	. 1	15	9	634	2.40	3	2	ND	2	46	1	2	2	57	. 51	. 08	10	26	. 48	144	. 08	7	1.76	. 04	. 28	2	5
S1-6984!	1	45	11	66	. 1	18	10	767	2.38	4	2	W0	2	77	1	2	2	51	. 59	. 11	10	28	. 60	199	. 06	8	1.75	. 03	. 39	2	5
51-87642	1	51	10	62	. 1	21	11	664	2.64	6	2	ND	2	87	1	2	2	60	. 78	. 12	11	32	. 71	130	. 07	23	2.01	. 02	. 35	2	5
51-8984J	1	14	7	50	.!	19	7	594	2.37	2	2	H0	2	$5!$	1	2	2	56	. 63	. 10	10	29	. 67	159	. 07	7	1.71	. 04	. 25	2	5
51-89844	1	33	8	59	. 1	17	10	655	2.10	7	5	ND	2	60	1	2	2	54	. 67	. 10	10	30	. 53	167	. 26	6	1.64	. 02	. 26	2	15
51-89845	1	12	10	66	. 1	20	10	724	2.55	9	2	KD	2	101	1	2	2	55	. 64	. 13	11	29	. 76	159	. 06	8	1.70	. 62	. 35	2	5
51-69846	$!$	39	8	54	. 1	17	9	593	2.38	3	2	ND	2	62	1	2	2	55	. 66	. 11	10	29	. 56	172	. 06	6	1.57	. 02	. 24	2	5
51-89847	1	58	8	70	. 2	36	14	731	3.26	6	2	KD	2	47	1	2	2	63	1.05	. 10	10	51	. 81	176	. 05	10	2.52	. 02	. 43	2	5
SI-89848	1	62	10	67	. 1	33	14	849	3.20	6	2	No	2	40	1	2	2	61	. 88	. 08	11	44	.76	206	. 06	8	2.42	. 02	. 40	2	5
51-89849	1	55	10	66	. 1	29	13	784	3.09	7	2	ND	2	53	1	2	2	$6!$	. 94	. 09	10	58	. 82	193	. 06	10	2.27	. 02	. 13	2	5
51-69850	1	59	8	53	. 1	31	14	639	3.13	5	2	ND	2	70	1	2	2	71	2.33	. 10	9	44	. 78	144	. 06	?	1.96	. 01	. 32	2	10
51-89851	1	58	13	63	. 2	29	14	762	3.25	1	2	KD	2	15	1	2	2	69	. 94	. 10	11	38	. EO	18!	. 06	9	2.22	. 01	. 41	2	5
51-39652	$!$	57	9	61	. 1	27	14	730	3.33	11	2	ND	2	48	!	2	2	75	. 97	. 11	10	38	. 76	169	. 07	9	2.18	. 02	. 35	2	5
S1-89853	1	56	7	60	. 1	25	13	711	3.16	3	2	ND	2	64	1	2	2	70	1.02	. 11	10	34	. 91	131	. 06	12	2.13	. 01	. 41	2	5
51-89854	1	65	10	58	. 1	27	15	789	3.34	5	2	No	2	61	1	2	2	71	1.46	. 12	10	36	1.05	159	. 06	11	2.02	. 02	. 38	2	5
51-89E55	1	62	9	62	. 1	25	14	738	3.35	8	2	N0	2	50	1	2	2	77	1.07	.11	11	24	. 96	174	. 07	10	2.25	. 01	. 37	2	25
51-89856	1	64	9	59	. 1	26	14	763	3.24	11	2	ND	2	38	1	2	2	71	. 79	. 09	10	34	. 92	151	. 07	8	2.05	. 01	. 35	2	5
SX-89857	1	67	8	57	. 2	26	13	641	3.15	11	2	ND	2	54	1	2	2	75	2.45	. 11	9	32	1.00	160	. 06	9	2.07	. 01	. 54	2	10
51-89858	1	58	9	59	. 1	2 J	13	709	3. 28	6	$?$	No	2	43	1	2	2	76	. 94	.1!	10	27	. 95	158	. 05	7	1.94	. 01	. 25	2	5
51-89859	1	49	11	52	. 2	23	12	778	2.82	7	2	N0	2	67	1	2	2	63	. 94	. 11	15	30	. 65	24.	.is	7	2.43	. 02	. 32	2	15
51-89860	1	35	9	56	. 1	20	9	732	2.20	7	2	N0	2	56	1	2	2	47	. 84	. 13	10	23	. 45	$27 \%$	. 05	7	1.87	. 02	. 30	2	5
SI-8986!	1	55	9	56	. 1	26	12	799	2.60	6	2	KD	2	10	1	2	2	55	. 71	. 09	11	43	. 67	202	. 06	6	2.13	. 02	. 22	2	5
51-89862	1	57	9	55	. 1	24	12	500	2.78	2	2	ND	2	43	1	2	2	62	. 90	. 12	12	34	. 54	213	. 26	6	2.06	. 01	. 25	2	5
5t-39863	1	58	13	59	. 1	19	11	849	2.63	6	2	KD	2	50	1	2	2	57	. 83	. 13	13	27	. 57	322	. 06	6	2.31	. 02	. 26	2	5
SI-89854	1	62	9	59	. 1	20	12	806	2.80	8	2	ND	2	72	1	2	2	65	1.26	. 13	13	27	. 73	277	. 06	d	2.17	. 02	. 29	2	5
51-89865	1	38	204	50	.	17	8	465	2.31	6	2	KD	2	97	1	2	2	50	1.05	. 09	10	23	. 68	196	. 05	30	1.67	. 05	. 32	2	5
51-89866	1	51	11	57	. 1	19	11	707	2.64	9	2	W ${ }^{1}$	2	70	1	2	2	55	1.04	. 12	13	23	. 57	255	. 05	8	1.71	. 01	, 21	2	5
SY-89867	1	57	8	50	. 1	18	11	984	2.33	11	2	KO	2	66	1	2	2	50	1.01	. 13	14	18	. 53	255	. 04	7	1.78	. 02	. 18	2	5
51-89838	1	51	8	57	. 1	19	11	864	2.65	2	2	N	2	98	1	2	2	56	. 89	. 11	14	27	. 64	238	. 05	8	2.24	. 02	. 32	2	5
51-89869	1	46	10	57	. 1	18	10	672	2.54	11	2	N0	2	99	1	2	2	54	. 95	. 11	13	26	. 88	218	. 05	10	2.11	. 02	. 27	2	5
51-89870	1	64	11	72	. 1	24	15	922	3.44	13	2	N2	2	67	1	2	2	75	1.13	. 13	16	28	. 68	273	. 05	8	2.45	. 02	. 28	$?$	5
51-E987!	1	53	11	59	. 1	23	12	747	2.99	6	2	K0	2	57	1	2	2	65	. 79	. 11	12	34	. 74	220	. 06	$\varepsilon$	2.23	. 02	. 34	2	5
SI-89872	1	69	7	90	. 2	50	18	693	3.75	15	2	ND	2	46	1	2	2	46	. 95	. 12	9	50	. 59	190	. 03	9	1.91	. 02	. 23	2	5
S1-69873	1	56	9	60	. 1	26	13	789	3.04	10	2	ND	2	59	1	2	2	63	. 84	. 10	12	38	. 69	218	. 06	B	1.96	. 02	.26	2	5
51-89846	1	39	9	55	. 2	18	9	603	2.44	6	4	ND	2	63	1	2	2	56	. 67	.11	10	28	. 57	172	. 06	6	1.55	. 02	. 25	2	5
SID A-1/AU 0.5	1	29	43	185	. 3	36	13	1055	2.91	9	2	N0	3	37	1	2	2	62	. 65	. 10	B	69	73	282	07	6	2.09	. 01	. 21	2	540


$\begin{array}{llllllllllllllllll}\mathrm{Mo} & \mathrm{Cu} & \mathrm{pb} & \mathrm{In} & \mathrm{Aq} & \mathrm{Ki} & \mathrm{Co} & \mathrm{Mn} & \mathrm{Fe} & \mathrm{As} & \mathrm{U} & \mathrm{Au} & \mathrm{Th} & \mathrm{Sr} & \mathrm{Cd} & \mathrm{Sb} & \mathrm{Bi} & \mathrm{Y} \\ \mathrm{ppz} & \mathrm{ppz} & \mathrm{ppa} & \mathrm{ppz} & \mathrm{ppz} & \mathrm{ppz} & \mathrm{ppz} & \mathrm{ppa} & \mathrm{I} & \mathrm{ppa} & \mathrm{ppa} & \mathrm{ppz} & \mathrm{pps} & \mathrm{ppz} & \mathrm{pps} & \mathrm{ppz} & \mathrm{ppa} & \mathrm{ppa}\end{array}$ pa $C a$
$I$ l $\begin{array}{ll}\text { a } & \mathrm{Cr} \\ \text { ppa } & \mathrm{pps}\end{array}$ Ba $1 i$
1 Al Kd y Aut

	かumbus	wo win un	musomut		O以ひひひ	いunus	으은
MNTNON	nnertor	nNmmod	nouraner	anmmo	Nometeror	monnor	nerre
	\％思セ～～	＂\％	？	극ッカ	F－90\％	「ごぎ枵	¢号옹
	O		¢̃®O®		¢¢¢¢		$\overrightarrow{0} \stackrel{\rightharpoonup}{0}$
$\underset{\sim}{\approx} \stackrel{\sim}{-} \underset{\sim}{\sim}$					氙以気気 risicinin	ジニッデ －えirinin	$\stackrel{\leftrightarrow}{\sim} \vec{\sim}$
	－00mn	ㄷ－0응or	－9으웅	$=^{\infty} 0^{\infty}$	moun	人moy？	二응
웅ㅇㅇㅇㅇㅇㅇㅇㅇ	웅웅ㅇㅇㅇㅡ․	응ㅇㅇ응		등휴응	今050	句氙含号	－5．
			品品品合总		合合可示		－
	－	へスが号灾	号只怘䈍示。	－$\square_{0}^{\infty}$	吅号吕号：	ㄷ．0유융．	边三号
N＂융․․		号品気宫	式心品品	ッロッズ	AmPMP	のハウット	二口欠
－0．0ㄹ	$\cdots$ comme			ざッざッチ		二ニッツ』	$\underline{O}=\infty$
으으쿠으․	二ニ二．	ㄲํํッ			$\because \because \because \because$	二ヲ응．	굥응
옹号识品	Formor			홍몽	紫合号		恕面
		－ロッド号	号ご氙に			成品过过	퐁
nNomm	rammom	NMのMmか	Mいのmの	ammem	m－Nm＊	の＂mmm	MNN
nowner	nummm	nnNnN	nmann	annonn	notumer	$\rightarrow$ nnors	nctue
$\rightarrow-\cdots-$	$\cdots \rightarrow-\cdots$		－－－－－	－－－－－	$\cdots \cdots-\cdots$	－－－－－	－
		品的品骂边		N品品が0	요心㐌只思		응ㅇㅇㅇ
nunmo	ancmen	nonnmor	nonmen	nnmen	nNmNM	minnt	nond
是是是是窘				두우줒울		우줒우맀	是是家
MnNor．	$\cdots$	nertome	ntanm	mmnon		nNmNの	nner
Nuso	m		いつ下mい	$\cdots \sim n=0$	いnoun	$n \rightarrow+\infty$	mino
iNirini	伿合荷	$\begin{aligned} & \text { Fown w w } \\ & \text { Niñ } \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & \text { 罢OMM } \\ & \text { NinNM } \end{aligned}$	思品ばざロ cincis	minim	멍ํํ검 ininjo	令号家
遌罵哭罢示		呙ご号三宫				罢気込認帚	웅승
$\cdots=\stackrel{\square}{\sim}=\sim$	ニニベコッ		ニニッニッ	끄ニコニ		ヘッロッニ	$\cdots=9$
$\because$ 二禺里云		N二ニำ		ローローツニ	ご田ざ	べフNさ	田司吅
$\because マ マ マ マ$		$\because マ マ マ マ$	$\because マ マ マ ー$		$\because: マ マ$	$\because マ マ マ マ$	$\because マ$－
动沼絽品		䊅呮里品品	중ㅇㅇㅁ				号品敀
$\cdots \infty$		NN二が	＜900\％		omitoo	$\sim$ O－0， 0	$\cdots$－
	可合号示	界果哭留え		品才思号家		水里里品品	\％\％
$\cdots \cdots-\cdots$	$\cdots \rightarrow$－	$\cdots \cdots-$	$\cdots \rightarrow-$	$\rightarrow \rightarrow$－	－ーーー－	$\rightarrow \cdots-$	$\cdots-$

CANADIAN NICKEL FILE护 83-0788 FROJECT\# 60813
FAGE \# 7
SAMPLE


SY-96049	.	$5!$	4	54	. 1	20	11	470	2.35	5	2	ND	2	72	1	2	2	54	. 82	. 10	10	27	1.01	151	. 05	8	1.65	. 02	. 26	2	5
51-96049	1	48	5	60	1.1	24	12	724	2.58	6	2	ND	2	48	1	2	2	55	. 91	. 10	9	33	. 69	198	. 05	7	1.77	. 01	. 34	2	5
5 $\mathrm{S}^{\text {P } 96050}$	1	43	7	55	. 1	35	12	782	2.57	3	2	HD	2	12	1	2	2	50	. 83	.1!	9	54	. 80	304	. 04	6	1.85	. 01	. 21	2	5
51-95051	1	17	7	54	. 2	29	12	758	2.47	5	2	ND	2	44	1	2	2	51	. 77	. 09	10	45	. 71	207	. 05	5	1.86	. 01	. 25	2	5
S1-90052	1	41	5	57	. 2	22	10	734	2.02	4	2	ND	2	82	1	2	2	39	1.04	. 09	8	30	. 74	224	. 04	9	1.65	. 04	. 59	2	5
51-96053	1	52	4	52	. 1	28	12	669	2.52	2	2	ND	2	30	$!$	2	2	51	. 64	. 10	8	40	. 69	148	. 05	6	1.53	. 0 !	. 26	2	35
51-96054	1	43	4	57	. 2	16	10	767	2.22	9	2	KD	2	49	1	2	2	50	. 78	. 12	10	25	. 53	255	. 05	5	1.54	. 01	. 29	2	5
51-96055	1	5 i	7	53	. 2	18	11	750	2.54	9	2	ND	2	48	1	2	2	59	. 94	.11	10	23	. 68	242	. 05	E	1.51	. 01	. 26	2	5
5 5 -96056	!	53	4	62	. 2	15	10	897	2.09	5	2	ND	2	71	1	2	2	45	1.24	. 13	11	18	. 57	330	. 04	8	1.52	. 01	. 32	2	5
S1-96057	1	50	5	$5!$	. 1	16	10	793	2.19	6	2	KD	2	72	1	3	2	47	1.05	. 11	12	22	. 54	247	. 04	8	1.52	. $0:$	. 29	2	5
51-96058	!	16	7	44	. 2	10	6	501	1.53	4	2	ND	2	467	1	3	2	31	7.51	. 14	,	13	1.67	150	. 02	16	1.69	. 03	. 23	2	5
51-96059	1	58	8	69	. 2	18	12	1025	2.77	15	2	$N \mathrm{~N}$	2	55	1	2	2	59	1.04	. 13	14	25	. 66	283	. 05	7	1.85	. 01	. 27	2	5
51-96060	1	49	6	83	. 3	14	11	1201	3.14	16	2	ND	2	44	$!$	2	2	47	. 94	. 13	15	17	. 56	326	. 03	4	1.92	. 01	. 17	2	5
51-9606!	1	41	6	69	.	17	11	833	2.65	12	2	ND	2	55	1	2	2	57	. 78	.11	12	23	. 55	236	. 05	1	1.59	. 01	. 28	2	5
ST-9606 2	1	13	6	56	. 2	14	8	460	2.16	5	2	N0	2	240	1	5	2	50	2.96	.15	10	22	2.94	161	. 05	14	1.69	. 03	. 19	2	5
51-96063	1	64	6	63	. 2	18	13	$94!$	2.96	8	2	ND	2	70	1	2	2	63	1.24	. 14	20	27	. 87	252	. 04	9	1.84	. 01	. 32	2	5
51-93054	1	50	9	89	. 3	20	12	826	2.85	12	2	Ki	2	76	1	2	2	61	. 88	. 11	12	28	. 72	296	. 06	8	1.78	. 01	. 30	2	5
S1-90065	1	51	8	72	. 2	20	11	819	2.55	6	2	ND	2	127	1	3	2	55	1.38	.1!	12	27	. 81	240	. 04	14	1.83	. 02	. 34	2	10
$5 \mathrm{~S}-96066$	1	57	7	68	. 2	22	13	860	3.09	7	2	KD	2	64	1	2	2	77	1.03	. 13	10	35	1.00	201	. 06	9	1.65	. 01	. 26	2	15
\$1-90067	1	53	10	71	.2	18	11	972	2.49	1	2	ND	2	86	1	2	2	58	1.05	. 12	12	28	. 59	294	. 05	8	2.09	. 01	. 28	?	5
51-96068	,	56	7	53	. 1	21	11	684	2.72	8	2	WD	2	52	!	2	2	71	. 91	. 11	10	31	. 70	201	. 07	8	1.77	. 02	. 29	2	15
51-96C59	3	52	4	57	. 3	17	9	518	2.25	11	2	ND	2	590	1	2	2	55	4.69	. 13	7	23	1.05	77	. 05	17	1.26	. 02	. 26	2	5
51-96070	1	58	5	19	. 1	19	11	717	2.58	B	2	KD	2	68	1	2	2	68	. 93	. 11	9	31	. 67	164	. 07	7	1.62	. 22	. 27	2	5
SI-96071	1	49	5	51	. 1	18	10	685	2.35	2	2	ND	2	55	1	2	2	61	. 85	. 09	8	30	. 61	198	. 06	7	1.55	. 02	. 26	2	5
\$1-96072	1	41	5	60	. 1	18	10	715	2.25	6	2	WD	2	76	1	2	2	54	. 72	. 09	8	31	. 60	215	. 06	6	1.60	. 02	. 34	,	5
S1-96073	1	10	6	45	.1	10	5	398	1.35	4	2	No	$?$	828	,	3	2	33	5.50	. 10	5	15	4.07	231	. 04	22	1.29	. 04	. 29	2	5
Sx-96074	1	60	J	50	. 1	22	11	705	2.55	10	2	ND	2	67	1	2	2	66	1.01	, 13	9	30	. 80	227	. 05	$\varepsilon$	1.60	. 02	. 24	2	15
SI-96075	1	74	6	69	. 1	18	11	911	2.35	J	3	ND	2	60	1	2	2	54	. 84	. 11	10	24	. 72	337	. 06	8	1.70	. 02	. 25	2	10
SI-95076	!	69	7	56	.2	17	9	701	2.02	7	2	ND	2	297	1	2	2	50	4.10	. 13	7	24	. 93	300	. 04	18	1.41	. 02	. 35	2	10
SI-96077	1	66	5	70	. 2	15	10	797	2.28	7	2	No	2	61	1	2	2	51	. 86	. 13	11	23	. 70	190	. 05	8	1.45	. 01	. 34	2	s
S1-96078	1	65	6	54	.2	16	9	654	2.30	5	2	MD	2	117	1	3	2	56	1.80	. 14	11	25	1.18	142	. 06	11	1.45	. 02	. 22	2	5
SI-96079	1	67	1	57	. 2	15	10	763	2.17	4	2	NJ	2	77	1	2	2	59	. 90	. 14	12	24	. 60	150	. 05	10	1.53	. 01	. 27	2	5
51-95080	1	64	8	74	. 1	17	14	1103	3.26	16	2	ND	2	42	1	2	2	70	. 85	. 12	15	28	. 72	224	. 25	6	2.05	. 01	. 21	2	5
$51-36081$	1	47	6	64	. 1	19	11	700	2.70	6	2	K0	2	115	1	2	2	56	. 98	. 12	12	26	. 97	145	. 06	12	1.80	. 02	. 37	2	5
SI-96082	2	37	4	61	. 2	14	8	819	1.93	7	2	ND	2	135	1	2	2	38	1.71	. 12	9	19	1.05	140	. 04	15	1.42	. 08	. 36	2	15
51-96083	1	48	1	58	. 2	18	11	738	2.70	6	2	N0	2	61	1	2	2	59	. 85	. 10	11	26	. 65	184	. 05	9	1.85	. 02	. 36	2	10
STD A-1/AU 0.5	1	30	38	188	. 3	36	13	1072	2.91	10	2	N0	2	40	1	2	2	65	. 56	. 10	8	76	. 78	285	. 08	7	2.01	. 01	. 20	2	530

CANADIAN NICKEL FILEW 日J-0789 PRQJECT: $60 日 13$
FAGE I B
SANPLE I


```
4 P P
``` \(\begin{array}{cc}V & \mathrm{Cl} \\ p ; 1 & 1\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 51-96094 & 1 & 18 & 9 & 65 & . 1 & 20 & 12 & 771 & 3.01 & \(\theta\) & 5 & K0 & 2 & 49 & 1 & 2 & 2 & 71 & . 70 & . 11 & 11 & 35 & . 78 & 192 & .69 & 1 & 2.34 & . 02 & . 34 & 2 & 5 \\
\hline \$5-96065 & 1 & 47 & 9 & 52 & . 1 & 18 & 10 & 654 & 2.82 & 12 & 2 & N & 2 & \(5!\) & 1 & 2 & 2 & 48 & . 90 & . 09 & 11 & 29 & . 71 & 148 & . 07 & 9 & 1.94 & . 02 & . 31 & 2 & 10 \\
\hline 51-96086 & 1 & 47 & 4 & 55 & . 2 & 17 & 10 & 131 & 2.75 & ! & 2 & N 1 & 2 & 56 & 1 & 2 & 2 & 64 & . 95 & . 12 & 12 & 28 & , 62 & 247 & . 61 & 8 & 2,05 & . 02 & . 36 & \(?\) & 5 \\
\hline 31-96097 & ! & 48 & 5 & 51 & . 2 & 17 & 10 & 122 & 2.51 & 5 & 2 & \(x 2\) & 2 & 54 & 1 & 2 & 2 & 61 & , 85 & . 11 & 12 & 21 & . 69 & 205 & . 07 & 7 & 1.39 & . 22 & . 26 & 2 & 20 \\
\hline \$1-93038 & 1 & 45 & 7 & 55 & . 2 & 15 & \(\dagger\) & 783 & 2.27 & 10 & 2 & M5 & 2 & 101 & 1 & 2 & 2 & \(5!\) & 1.05 & . 10 & 12 & 22 & . 59 & 2JJ & .09 & 8 & 1.72 & . 22 & . 24 & 2 & 25 \\
\hline 5t-96089 & 1 & 40 & 6 & 59 & . 1 & 14 & 9 & 812 & 2.15 & 6 & 2 & W0 & 2 & 65 & 1 & 2 & 2 & 52 & . 96 & . 11 & 13 & 22 & . 51 & 296 & . 07 & 1 & 2.01 & . 02 & . 21 & 2 & 10 \\
\hline 51-96098 & 1 & 55 & 5 & 58 & . 2 & 18 & 11 & 876 & 2.97 & \(\stackrel{ }{ }\) & 2 & N & 2 & 54 & 1 & 2 & 2 & 67 & . 92 & . 12 & 14 & 29 & . 74 & 267 & . 07 & 5 & 2.14 & . 02 & .23 & 2 & 10 \\
\hline 55-96091 & 1 & 52 & 5 & 56 & . 2 & 14 & 10 & 759 & 2.51 & 9 & \$ & W2 & 2 & 82 & 1 & 2 & 2 & 57 & 1,11 & +11 & 12 & \(2!\) & . 65 & 235 & . 05 & 10 & 1.71 & . 02 & . 28 & 2 & 5 \\
\hline 51-96092 & 1 & 35 & ¢ & 12 & . 1 & 16 & 8 & 510 & 2.84 & 2 & 2 & N & , & 150 & 1 & , & 2 & 41 & 1.55 & .11 & \(\uparrow\) & 21 & . 70 & 146 & . 06 & 10 & 1.42 & . 05 & . 30 & 2 & 5 \\
\hline \$5-9607\% & 1 & 10 & 7 & 57 & . 1 & 15 & 9 & 721 & 2.38 & 6 & 2 & W0 & 2 & 98 & 1 & 2 & 2 & 54 & 1.13 & .13 & 11 & 27 & . 56 & 257 & . 07 & 6 & 1.94 & , 0 & , 31 & 2 & 5 \\
\hline 51-96094 & 1 & 12 & 9 & 97 & . 1 & 12 & 6 & 700 & 1.69 & \(\ddagger\) & 2 & N6 & 2 & 94 & 1 & 2 & 2 & 36 & 1.47 & .1? & 8 & 17 & . 12 & 275 & . 05 & 10 & 1.57 & . 02 & . 29 & 2 & 10 \\
\hline \(512 k-1\) & 1 & 29 & 41 & 188 & . \(]\) & 34 & 13 & 1026 & 2.84 & 9 & 2 & s0 & 2 & 18 & t & 2 & 2 & 60 & . 65 & . 10 & 8 & 7 & . 76 & 271 & . 08 & \% & 2.09 & . 31 & . 21 & 2 & \\
\hline
\end{tabular}

ACME ANALYTICAL LABORATORIES LTD. BS2 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124
ICP GEDCHEMICAL ANALYSIS
A . 500 GRAK SAMPLE IS DIGESTED XITH 3 KL OF 3:1:3 HCL 10 HKOJ TO H2O AT 90 DEG.C. FOR 1 HOUR, THE SAKPLE IS DILUTED TO 10 KLS XITH WATER. IHIS LEACH IS PARTIAL FDR: \(\mathrm{Ca}_{2}, \mathrm{P}, \mathrm{Kq}, \mathrm{Al}, \mathrm{Ti}, \mathrm{L}, \mathrm{K}, \mathrm{K}, \mathrm{K}, \mathrm{K}, \mathrm{Ba}_{2}, \mathrm{Si}, \mathrm{Sr}, \mathrm{Cr}\) AND B. AU DETECTION J PPa.
AUI AXALYSIS BY AA FRON 10 GRAN SAAPLE. SARPLE TYPE - STREAM SED \(+501 L\)

CANADIAN NICKEL FFQJECT\# 60日17-6Ü813 FILE\# 83-0961 FAGE \# 1

```

ACME ANALYTICAL LABORATORIES LTD.
852 E. HASTINGS, VANCOUVER B.C. $\mathrm{PH}: 253-3158$

ICP GEOCHEMICAL ANALYSIS

 IHIS LEACH IS PART!AL FOR: $\mathrm{C}_{2}, \mathrm{P}, \mathrm{Mg}_{1}, \mathrm{Al}, \mathrm{Ii}, \mathrm{L}_{2}, \mathrm{H}_{2}, \mathrm{~K}_{1} \mathrm{~K}_{1} \mathrm{Z}_{2}, \mathrm{Si}, \mathrm{Sr}, \mathrm{GC}$ AND 8. AU DEIECTION 3 ppa .
AUI AXALYS!S BY RA FROK 10 GRAX SAXPLE. HOL AKALYSIS GY FLAMELESS AA FROH . 500 GRAK SAMPLE. SAAPLE TYPE - HEAYY XIMERAL CONG p whariged -rou mesh

CANADIAN NICKEL PRQJECT \# 60813 17 \& 23 FILE H 日J-0792
FAGE 11

SAMPLE 1	No	CH	P6	\ln	Ag	Ki	So	Kn	Fe	As	U	Au	Th	Sr	Cd																	
	ppi	Pp 1	ppi	PPI	ppe	PPA	Pp:	pp1	1	ppl	ppI	ppa	ppt	ppz	pp:	ppe	PpI	ppa	$\begin{gathered} C_{2} \end{gathered}$	i	$\begin{aligned} & \text { la } \\ & \text { ppa } \end{aligned}$	PPI	$\begin{gathered} M_{g} \\ 1 \end{gathered}$	$\begin{gathered} B_{2} \\ p P_{2} \end{gathered}$	Ii	8	${ }^{\text {Al }}$	x_{2}	K	$\underset{ }{*}$	Aut	$\mathrm{H}_{3} 1$
\$1-90117	1	39	10	10	. 1	20	14	587	5.03	12	1	NO	2	95	1	2	2	16J	2.70	. 15	10	25	1.02									
51-90118	1	14	15	79	. 1	21	17	572	7.58	8	2	KD	2	79	1	2	3	219	1.81	.15	11	6]	1.02	21270	13	8	1.16	. 03	. 10	?	15	20
51-90119	1	51	11	38	. 1	39	18	510	5.99	15	2	N0	2	96	1	2	2	191	1.85	. 14	10	J1	1.06 1.38	1270	. 26	?	1.30	. 05	. 10	?	15	10
51-90120	1	16	17	51	. 3	31	19	573	10.13	3	J	no	2	84	1	2	2	352	1.41	. 14	10	105	1.17	195]	. 30	6	1.+2	. 06	. 11	?	10	290 30
51-9012t	1	70	12	13	. 1	11	19	610	7.39	10	2	No	2	114	1	2	2	238	2.13	. 12	13	J6	1.18	2458	. 18	8	1.37	. 01	. 10	$?$	5	
51-90122 51	1	11	8	17	. 1	9	5	172	J. 85	2	2	* 0	2	17	1	2	2	139	. 29	. 03	3	31	. 22	109	. 14	\%	. 35	. 02	. 01	2	J	25
51-90123	1	52	. 10	54	. 1	23	11	66.	3.09	5	12	KD	2	126	1	2	2	86	2.89	. 13	9	[3	1.15	157	. 09	b	1.39	. 04	. 16	2	20	50
510 A-I/AU 0.5	1	J0	11	182	. 3	36	13	103J	2.89	10	2	N0	2	37	1	2	2	61	. 66	. 11	8	78	. 79	296	-	,	2.07	.	.	,		

```
ACME ANALYTICAL LABDRATDRIES LTD．BS2 E．HASTINGS，VANCQUVER B．C．
\[
\begin{aligned}
& \text {. } 200 \text { brax sample IS digeste }
\end{aligned}
\]



APPENDIX B

ROCK SAMPLE DESCRIPTIONS

TRAVERSE NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{N.T.S. \(\quad 92-\mathrm{T}-8 \mathrm{~W}\)} & \multicolumn{3}{|r|}{AREA Stump Lake, B.C. DATE Ju} & \multicolumn{7}{|l|}{une, 1983} \\
\hline SAMPLE & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{SAMPLE LENGTH, WIDTH, AREA} & \multirow[t]{2}{*}{LATITUDE, LONGITUDE and/or U.T.M.} & SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESULTS (opm. / \%/oz. per ton)} \\
\hline NUMBER & \[
\begin{aligned}
& \frac{R X}{\text { Rock, }} \\
& \text { Tolus }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{\text { SX }}{\text { Streom }} \\
& \text { Silt, } \\
& \text { Soil }
\end{aligned}
\] & Grob, Chip, Channel & & & \begin{tabular}{l}
Rock type, lithology, character of soil, stream silt, etc. Formation \\
Minerolizotion, etc.
\end{tabular} & \[
\begin{array}{r}
\mathrm{Au} \\
\mathrm{ppb}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{As} \\
\mathrm{ppm}
\end{gathered}
\] & Sb
ppm & \[
\begin{gathered}
\mathrm{Pb} \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{Zn} \\
\mathrm{ppm}
\end{array}
\] & Cu
pp \\
\hline RX 41601 & Rock & & Chip & \(20+00 \mathrm{~W}\) & \(2+40 \mathrm{~N}\) & Lapilli tuff siliceous grey to white, some & 5 & 0.1 & 12 & 2 & 5 & 80 & 55 \\
\hline & & & & & & rhyolitic component. Pyrite occurs as dis- & & & & & & & \\
\hline & & & & & & seminations. Some minor carbonate alteratior. & . & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline RX 41602 & " & & " & 20 000 W & \(3+00 \mathrm{~N}\) & Tuff to rhyolite, siliceous, grey to rust & 10 & 1 & 9 & 2 & 4 & 58 & 29 \\
\hline & & & & & & brown. Pyrite 1\% occurs as disseminations, & & & & & & & \\
\hline & & & & & & very fragmental. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline RX 41603 & " & & " & \(20+00 \mathrm{~W}\) & \(3+75 \mathrm{~N}\) & Tuff to rhyolite, siliceous, exhibits minor & 35 & 2 & 19. & 2 & 8 & 55 & 18 \\
\hline & & & & & & banding, pyrite occurs in minor quantities. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline RX 41604 & " & & " & 18+00W & \(1+00 \mathrm{~N}\) & Rock unit \(2 a, b\), mixture of rhyolitic and & 25 & 1 & 4. & 2. & 7 & 68 & 41 \\
\hline & & & & & & tuffaceous unit some pyrite, very siliceous. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & - & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TRAVERSE NUMBER \(\qquad\) \\
N.T.S. \(\qquad\) 92-I-8W
\end{tabular}}} & \multicolumn{3}{|r|}{PROJECT BAG Claims} & \multicolumn{7}{|l|}{GEOLOGIST(S) Greg Beischer} \\
\hline & & & & \multicolumn{2}{|r|}{AREA} & Stump Lake, B,C, & \multicolumn{7}{|l|}{June 15, 1983} \\
\hline SAMPLE & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{SAMPLE LENGTH, WIDTH, AREA} & \multirow[t]{2}{*}{LATITUDE, LONGITUDE and/ or U.T.M.} & SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESULTS (p.m. \(/ \% /\) \% . per ton)} \\
\hline NUMBER & \[
\begin{aligned}
& \frac{R X}{\text { ROCk, }} \\
& \text { Talus }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{\text { SX }}{\text { Stream }} \\
& \text { Silt, } \\
& \text { Soit }
\end{aligned}
\] & Grob, Chip, Channe! & & & \begin{tabular}{l}
Rock type, lithology, character of soil, stream silt, etc. Formation \\
Mineralizotion, etc.
\end{tabular} & Au ppb & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\begin{aligned}
& \text { As } \\
& \mathrm{ppm}
\end{aligned}
\] & Sb
ppm & Pb
ppm & Zn
ppm & p \\
\hline \multirow[t]{8}{*}{RX 41605} & Rock & & Grab & 19+40W & \(2+40 \mathrm{~S}\) & Amygdaloidal basalt - amygdules up to 1.5 cm & 10 & 0.2 & 13 & 2 & 2 & 87 & 1 \\
\hline & & & & & & diameter, carbonate filled, abundant, mostly & & & & & & & \\
\hline & & & & & & white, but some are red and green. Matrix & & & & & & & \\
\hline & & & & & & is fine-grained, dark grey basalt. Over the & & & & & & & \\
\hline & & & & & & outcrop area, the composition ranges from & & & & & & & \\
\hline & & & & & & andeaite to basalt. A high degree of epi- & & & & & & & \\
\hline & & & & & \(=\) & dotization is present in some areas. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{RX 41606} & " & & " & \(19+40 \mathrm{~W}\) & \(2+405\) & Altered basalt. Some amygdules, carbonate & 15 & 0.2 & & 2 & 8 & 62 & 10 \\
\hline & & & & & & filled. Medium to fine-grained dark grey & & & & & & & \\
\hline & & & & & & andesite - basalt. Fresh surface is green. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{-RX 4.1607} & " & & " & 20+40W & \(4+005\) & Breccia - fragments are altered andesite - & 5 & 0.3 & & 2 & 6 & 42 & 4 \\
\hline & & & & & & basalt. Sugary fine to medium-grained & & & & & & & \\
\hline & & & & & & carbonate matrix surrounding fragments. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{-RX 41608} & " & & " & \(4+40 \mathrm{~W}\) & \(0 \pm 005\) & Medium-grained tuff - grey black grey on & 5 & 0.1 & 12 & 2 & 6 & 73 & 6 \\
\hline & & & & \(4+40 \mathrm{~m}\) & Otoos & weathered surface. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{RX 41609} & " & & " & 5+00W & \(4+65 \mathrm{~S}\) & Tuff - highly siliceous, medium to coarse- & 5 & 0.1 & 2 & 2 & 6 & 68 & \\
\hline & & & & & & grained. Some oxidized pyrite, brown-grey & & & & & & & \\
\hline & & & & & & on the fresh surface. Grey on weathered & & & & & & & \\
\hline & & & & & & surface. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{9}{*}{RX 41610} & " & & " & \(4+95 \mathrm{~W}\) & \(5+403\) & Tuff - very coarse-grained - almost resemble & 5 & 0.2 & 9 & 2 & 11 & 66 & 2 \\
\hline & & & & & & a chert-pebble conglomerate. Grey on & & & & & & & \\
\hline & & & & & & fresh and weathered surface. Some finely & & & & & & & \\
\hline & & & & & & disseminated sulphide (pyrite). & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

TRAVERSE NUMBER
N.T.S. 92-I-8W
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{SAMPLE LENGTH, WIDTH, AREA} & \multirow[t]{2}{*}{LATITUDE, LONGITUDE and / or U.T.M.} \\
\hline NUMBER & \[
\begin{aligned}
& \frac{\mathrm{RXX}}{\text { Rock, }} \\
& \text { Talus }
\end{aligned}
\] & \(\frac{\text { SX }}{\text { Stream }}\) Silt, Soil & Grob, Chip, Channel & & \\
\hline \multirow[t]{7}{*}{RX 41611} & Rock & & Grab & \(4+00 \mathrm{~N}\) & \(7+055\) \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{RX 41612} & " & & Chip & \(4+00 \mathrm{~W}\) & \(7+055\) \\
\hline & & & \((0.7 \mathrm{~m})\) & & \\
\hline & & & & & \\
\hline \multirow[t]{8}{*}{RX 41613} & " & & chip & \(4+00 \mathrm{~W}\) & \(7+055\) \\
\hline & & & (0.5 m) & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{RX 41614} & " & & Chip & \(4+00 \mathrm{~W}\) & \(7+055\) \\
\hline & & & (0.5 m) & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{RX-41615} & " & & chip & \(3+90 \mathrm{~W}\) & \(7+005\) \\
\hline & & & (0.5 m) & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{RX 41616} & " & & Chip & \(3+90 \mathrm{~W}\) & \(7+005\) \\
\hline & & & \((0.5 \mathrm{~m})\) & & \\
\hline & & & & & \\
\hline
\end{tabular}

BAG Claims
Stump Lake, B.C.
GEOLOGIST(s) Greg A. Beischer
DATE June 15, 1983
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESULTS (p.pm. / \% /oz.per ton)} \\
\hline \begin{tabular}{l}
Rock type, lithology, character of soll, stream silt, ete. Formation \\
Mineralization, etc.
\end{tabular} & \[
\begin{array}{r}
\mathrm{Au} \\
\mathrm{ppb}
\end{array}
\] & Ag
ppm & As
Ppm & Sb
ppm & Pb
ppm & \[
\begin{aligned}
& \mathrm{Zn} \\
& \mathrm{ppm}
\end{aligned}
\] & Cu
Pp \\
\hline Quartz vein material froma vein 0.5 m true & 5 & 0.4 & 5 & 2 & 3 & 4 & \\
\hline width, striking \(310^{\circ}\) dipping \(75^{\circ}\) south. & & & & & & & \\
\hline Vein is botryoidal and contains some vugs & & & & & & & \\
\hline and exhibits banded agate. Hydrothermal- & & & & & & & \\
\hline type depositional characteristic. Calcar- & & & & & & & \\
\hline eous in places. & & & & & & & \\
\hline & & & & & & & \\
\hline Same description as RX 41610. & 15 & 0.3 & 43 & 5 & 2 & 12 & 1 \\
\hline & & & & & & Hg & - \\
\hline & & & & & & & \\
\hline Tuff - fine-grained matrix with some larger & 20 & 0.1 & 11 & 2 & 8 & 68 & 7 \\
\hline particles, green on the fresh surface, pink- & & & & & & Hg \(=\) & 40 \\
\hline ish - orange on the weathered surface. & & & & & & & \\
\hline Weathered filmis calcareous. Fresh surface & & & & & & & \\
\hline is slightly calcareous. This sample repre- & & & & & & & \\
\hline sents the hanging wall of the quartz vein & & & & & & & \\
\hline represented by \(\mathrm{RX} 41611, \mathrm{RX} 41612\). & & & & & & & \\
\hline & & & & & & & \\
\hline Same description as RX 41613, but with & 10 & 0.1 & 6 & 2 & 9 & 58 & 6 \\
\hline some stockworking of tiny quartz and carbon- & & & & & & \(\mathrm{Hg}=\) & 0 \\
\hline ate veins. Represents footwall of the quart & & & & & & & \\
\hline vein represented by RX 41611, RX 41612. & & & & & & & \\
\hline & & & & & & & \\
\hline Quartz vein material - clean agate. Minor & 5 & 0.4 & 25 & 2 & 1 & 5 & \\
\hline amounts of pyrite. See descrintion of & & & & & & H8 = & 30 \\
\hline RX 41611 for other details. & & & & & & & \\
\hline & & & & & & & \\
\hline Tuff - highly weathered - extremely friable, & 5 & 0.1 & 58 & 2 & 5 & 47 & \\
\hline recessive, beige in colour, High degree & & & & & & \(\mathrm{Hg}=\) & 250 \\
\hline of clay mineral weathering. Represents & & & & & & & \\
\hline hanging wall of the quartz vein (RX 41615). & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
traverse number \(\qquad\) \\
N.T.S. \(92-T-8 \mathrm{~W}\)
\end{tabular}}} & \multicolumn{3}{|r|}{PROJECT BAG Claims} & \multicolumn{7}{|l|}{GEOLOGISt(s) Greg_A. Beischer} \\
\hline & & & & & AREA & Stump Lake, B.C. DATE & \multicolumn{7}{|l|}{June 15, 1983} \\
\hline \multirow[t]{2}{*}{SAMPLE NUMBER} & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{SAMPLE WIDTH, AREA} & \multirow[t]{2}{*}{latitude, LONGITUDE and/or u.T.M.} & & \multicolumn{7}{|l|}{RESULTS (p.am. / \%/oz. per ton)} \\
\hline & \[
\begin{array}{|l}
\hline \frac{R X}{} \\
\text { Rock, } \\
\text { Talus }
\end{array}
\] & \[
\begin{gathered}
\text { SXX } \\
\text { Streom } \\
\text { Silt, } \\
\text { Soil }
\end{gathered}
\] & Grab, Chip, Channel & & & \begin{tabular}{l}
SAMPLE DESCRIPTION \\
Rock type, lithology, character of soil, stream silt, Formation \\
Mineralization, etc.
\end{tabular} & \[
\begin{gathered}
\mathrm{Au} \\
\mathrm{ppb}
\end{gathered}
\] & \[
\left.\begin{array}{r}
\mathrm{Ag} \\
\mathrm{ppm}
\end{array} \right\rvert\,
\] & \[
\begin{gathered}
\mathrm{As} \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{array}{l|}
\mathrm{Sb} \\
\mathrm{ppm}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Pb} \\
& \mathrm{ppm}
\end{aligned}
\] & 2n
ppm & Cu
ppm \\
\hline \multirow[t]{4}{*}{RX 41617} & Rock & & Chip & \(3+90 \mathrm{~W}\) & 7+00s & Same description as RX 41617. Represents a & 5 & 0.1 & 11 & 2 & 8. & 56 & 61 \\
\hline & & & (0.5 m) & & & sample of the footwall of the quartz vein & & & & & & \(\mathrm{Hg}=\) & 20 p \\
\hline & & & & & & (RX 41615). & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{RX 41618} & " & & Chip & \(3+90 \mathrm{~W}\) & \(7+005\) & Same as RX 41617. & 5 & 0.3 & 14 & 2. & 5. & & 14 \\
\hline & & & \((0.5 \mathrm{~m})\) & & & & & & & & & \(\mathrm{Hg}=\) & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{RX. 41619} & " & & Grab & \(3+905\) & \(7+005\) & Quartz vein material - just a remnant, agate & 10 & 0.4 & & 2 & 4 & 6 & \\
\hline & & & & \(3+203\) & 2toes & - similar description as RX 41615. & & & & & & \(\mathrm{Hg}=\) & 10 p \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{RX 41620} & " & & Grab & 5+50W & \(7+10 \mathrm{~S}\) & Argillite - very fine-grained. Black, soft. & 25 & 0.1 & 13 & 2 & 5 & 89 & 108 \\
\hline & & & & & & brown on the weathered surface. Highly & & & & & & & \\
\hline & & & & & & fractured, stockworked with fine quartz and & & & & & & & \\
\hline & & & & & & calcite veins. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{RX 41621} & " & & Grab & 5+50W & 7+70S & Quartz vein material, agate, brecciated & 35 & 0.3 & & 2 & 7 & 11 & 13 \\
\hline & & & & & & in places. Some vugs with botryoidal & & & & & & & \\
\hline & & & & & & linings. Small exposure, 1.5 mm in length & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{RX 41622} & " & & Grab & 5 70W & 8+90S & Rhyolite - very fine-grained, compact, & 15 & 0.1 & 12 & 2 & 11 & 59 & -54 \\
\hline & & & & & & light grey on fresh and weathered surfaces. & & & & & & & \\
\hline & & & & & & Very siliceous, cherty \(-10 \%\) sulphide & & & & & & & \\
\hline & & & & & & (pyrite). & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{RX 41623} & " & & Grab & \(3+60 \mathrm{~W}\) & \(4+10 \mathrm{~N}\) & Agglomerate - conglomerate - pebbles are & 30 & 0.1 & & 2 & 6 & 41 & 229 \\
\hline & & & & & & fairly rounded. Matrix is clastic, brown & & & & & & & \\
\hline & & & & & & on fresh and weathered surface. Matrix is & & & & & & & \\
\hline & & & & & & medium-grained. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{RX 41624} & " & & Grab & \(12+40 \mathrm{~W}\) & 7+003 & Rhyolite - very fine-grained, grey, massive. & 20 & 0.1 & 19 & 2 & 7 & 67 & 74 \\
\hline & & & & & & Some finely disseminated sulphide. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
traverse number \(\qquad\) \\
N.T.S. \(\qquad\) 92-I-8W
\end{tabular}}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
PROJECT \\
AREA \(\qquad\)
\end{tabular}}} & BAG Claims GEOLOGIS & \multicolumn{7}{|l|}{T(s) Greg A. Beischer} \\
\hline & & & & & & Stump Lake, B.C. & June & 15, & 1983 & & & & \\
\hline SAMPLE & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{\begin{tabular}{l}
SAMPLE \\
LENGTH, WIDTH, AREA
\end{tabular}} & \multirow[t]{2}{*}{LATITUDE, LONGITUDE and/or U.T.M.} & SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESUULTS (p.pm. / \%/oz. per ton)} \\
\hline NUMBER & \[
\frac{\text { RX }}{\text { Rock }} \text { Talus }
\] & \[
\begin{gathered}
\underline{\text { SX }} \\
\text { streom } \\
\text { Silt, } \\
\text { Soil, }
\end{gathered}
\] & Grab, Chip, Channel & & & \begin{tabular}{l}
Rock type, lithology, character of soil, stream silt, etc. Formation \\
Mineralization, etc.
\end{tabular} & \[
\mathrm{Au}_{\mathrm{ppb}}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{As} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\left.\begin{aligned}
& \mathrm{Sb} \\
& \mathrm{ppm}
\end{aligned} \right\rvert\,
\] & \[
\begin{array}{r}
\mathrm{Pb} \\
\mathrm{ppm}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Zn} \\
& \mathrm{ppm}
\end{aligned}
\] & Cu
ppm \\
\hline \multirow[t]{4}{*}{RX 41625} & Rock & & Grab & \(11+90 \mathrm{~W}\) & \(6+805\) & Gabbro - coarse-grained, \(50 \%\) feldspars, no & 20 & 0.1 & 11 & 2 & 10 & 97 & 248 \\
\hline & & & & & & sulphides. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{RX 41630} & Rock & & Grab & \(11+40 \mathrm{~W}\) & \(6+40 \mathrm{~S}\) & Rhyolite - light grey, quite siliceous, & 5 & 0.1 & 9 & 2 & 5 & 90 & 9 \\
\hline & & & & & & massive. Some quartz eyes, some sulphide. & & & & & & & \\
\hline RX 41631 & Rock & & Grab & & & Rhyolite. & 5 & 0.1 & 20 & 1 & 12 & 74 & 35 \\
\hline \multirow[t]{4}{*}{RX 41632} & " & & Ġrab & \(16+00 \mathrm{~W}\) & \(9+20 \mathrm{~N}\) & Quartz - chalcedony material, brecciated in & 20 & 0.1 & 7 & 2 & 1 & 6 & 5 \\
\hline & & & & & & places, no sulphides present although outcron & & & & & & & \\
\hline & & & & & & is fragmental and gossaned. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{RX 41633} & " & & Grab & 16+00W & \(9+20 \mathrm{~N}\) & The altered carbonate rich tuff. The wall- & 35 & 0.3 & 52 & 2 & 6 & 69 & 68 \\
\hline & & & & & & rock surrounding vein (RX 41632). The out- & & & & & & & \\
\hline & & & & & & crop is fragmental. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{RX 41634} & " & & Grab & \(16+00 \mathrm{~W}\) & \(13+10 \mathrm{~N}\) & & 6 & p. 6 & 2 & 2 & 5 & 2 & 1 \\
\hline & ! & & & & & alterations, no quartz, width unknown. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{RX 41635} & " & & Grab & \(12+00 \mathrm{~W}\) & \(18+50 \mathrm{~N}\) & Sample from quartz vein (attitude?). & 5 & 0.1 & 7. & 2 & 1 & 11 & 103 \\
\hline & & & & & & Contains pyrite cubes (minor). Calcite is & & & & & & & \\
\hline & & & & & & present. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{RX 41636} & " & & Chip & 9+50W & 9+00N & Carbonate veining cutting agglomerate. No & 5 & 0.2 & 6 & 2 & 6 & 59 & 54 \\
\hline & & & & & & sulphide. Gossan on rock. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{8}{*}{RX 41637} & " & & Chip & & & Width of quartz vein 10.6 m , a non-brecciated & 70 & 1.2 & 11. & 2 & 6 & 16 & 13 \\
\hline & & & ( 0.6 m ) & & & vein, strike \(55^{\circ}\) Dip \(84^{\circ} \mathrm{NW}\). No mineraliza- & & & & & & & \\
\hline & & & & & & tion observed. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
TRAVERSE NUMBER \(\qquad\) \\
N.T.S. \(92-\mathrm{I}-8 \mathrm{~W}\)
\end{tabular}} & \multicolumn{3}{|r|}{\[
\begin{aligned}
& \text { PROJECT BAG Claims } \\
& \text { AREA } \quad \text { Stump Lake, B.C. }
\end{aligned}
\]} & \multicolumn{7}{|c|}{C. Raynaas} \\
\hline SAMPLE & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{SAMPLE LENGTH, WIDTH, AREA} & \multirow[t]{2}{*}{LATITUDE, LONGITUDE and / or U.T.M.} & SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESULTS (p.pm. \(/ \% /\) oz. per ion)} \\
\hline NUMBER & \[
\begin{aligned}
& \frac{R X}{\text { Rock }} \\
& \text { Talus }
\end{aligned}
\] & SX Stream Silt, Soil & Grab, Chip, Channel & & & Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc. & \[
\begin{array}{r}
\mathrm{Au} \\
\mathrm{ppb}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\begin{aligned}
& \text { As } \\
& \mathrm{ppm} \\
& \hline
\end{aligned}
\] & Sb ppm & Pb ppm & Zn ppm & Cu
pp \\
\hline \multirow[t]{7}{*}{RX 41638} & Rock & & Chip & & & Width of quartz vein 0.15 m . A strongly & 190 & 1.8 & 45 & 3 & 4 & 26 & \\
\hline & & & \((0.6 \mathrm{~m})\) & & & brecciated vein where brecciated fragments & & & & & & & \\
\hline & & & & & & consist of Nicola Volcanic wallrock. Vein & & & & & & & \\
\hline & & & & & & a continuation of RX 41637. Sampled vein. & & & & & & & \\
\hline & & & & & & Strike \(55^{\circ} \mathrm{Dip} 84^{\circ} \mathrm{NW}\). Small gossan and & & & & & & & \\
\hline & & & & & & vugs. Observed, hut no mineralization. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{RX 41639} & " & & Chip & & & Width of quartz vein 1 \(m\), but the inter- & 150 & 0.8 & 7 & 2 & 3 & 20 & 1 \\
\hline & & & (1 m) & & & mitted quartz veining and Nicola Volcanic & & & & & & & \\
\hline & & & & & & quartz vein width are from 0.3 m to 12 cm & & & & & & & \\
\hline & & & & & & to 2 cm . Strike \(30^{\circ}\) Dip \(80^{\circ} \mathrm{NW}\). A non- & & & & & & & \\
\hline & & & & & & brecciated vein with no mineralization. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{RX 41640} & " & & Chip & \(17+00 \mathrm{~W}\) & \(11+50 \mathrm{~N}\) & Quartz vein - strike \(320^{\circ}\). Vertical brec- & 325 & 1.5 & 191 & 7 & 8 & 32 & 3 \\
\hline & & & \((0.2 \mathrm{~m})\) & & & ciation, chert fragments, quartz filling. & & & & & & \(\mathrm{MO}=\) & 104 \\
\hline & & & & & & Vein is about \(7-10 \mathrm{~cm}\) wide. Highly gossan- & & & & & & & \\
\hline & & & & & & ed. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{RX 41641} & " & & Chip & 17+00W & \(11+50 \mathrm{~N}\) & Andesite - highly sheared and altered. & 5. & 0.3 & 44 & 2 & 8 & 60 & 3 \\
\hline & & & \((0.2 \mathrm{~m})\) & & & Dark grey, gossaned hangingwall of quartz & & & & & & & \\
\hline & & & & & & vein (RX 41640). & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{RX 41642} & " & & Chip & \(17+00 \mathrm{~W}\) & \(11+50 \mathrm{~N}\) & Same as RX 41640. Represents fontwall of & 5 & 0.1 & 10 & 2. & 11 & 97 & 17 \\
\hline & & & \((0.3 \mathrm{~m})\) & & & quartz vein ( \(R X 41640\) ) & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{RX. 41643} & 11 & & Chip & 18+00W & \(13+00 \mathrm{~N}\) & Quartz vein breccia - same description as & 65 & 3.7 & 80 & 6 & 14 & 39 & 5 \\
\hline & & & (0.3 m) & & & RX 41640. Same size and orientation. & & & & & Mo & \(=115\) & PP \\
\hline & & - & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{RX 41644} & " & & Chip & \(18+00 \mathrm{~W}\) & \(13+00 \mathrm{~N}\) & Andesite from hanging wall. Same descrip- & 5 & 0.1 & 2 & 2. & 8 & 73 & 16 \\
\hline & & & (0.3 m) & & & tion as RX 41641. & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}


APPENDIX C
STREAM SEDIMENT (HEAVY MINERAL)
SAMPLE DESCRIPTIONS
traverse number bag claims
N.T.S. \(\quad 92-\mathrm{I}-8 \mathrm{~W}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLE NUMBER} & \multicolumn{3}{|c|}{SAMPLE TYPE} \\
\hline & \[
\begin{aligned}
& \frac{\text { RX }}{\text { Rock, }} \begin{array}{l}
\text { Rolus }
\end{array},
\end{aligned}
\] & \[
\begin{aligned}
& \frac{\text { SX }}{\text { Stream }} \\
& \text { Silt, } \\
& \text { Soil } \\
& \hline
\end{aligned}
\] &  \\
\hline & & & : \\
\hline & & & \\
\hline SX 90117 & & Stream & HM \\
\hline & & & \\
\hline & & & \\
\hline .5X 90118 & & Stream & HM \\
\hline & & & \\
\hline Sx 90119 & & Stream & HM \\
\hline Sx-90119 & & & \\
\hline & & & \\
\hline & & & \\
\hline SX 90120 & & Stream & HM \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline SX 90121 & & Stream & HM \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline SX 90122 & & Stream & HM \\
\hline & & & \\
\hline & & & \\
\hline SX 90123 & & Scream & -80 \\
\hline & & & mesh \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

PROJECT BAG Claims
AREA Stump Lake, B.C.

GEOLOGIST(S) B. Booth/E, Debicki/M,Msson DATE June 8, 1983
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LATITUDE, & SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESULTS (pam. \(\%\) / /or.per ton)} \\
\hline LONGITUDE and / or U.T.M. & \begin{tabular}{l}
Rock type, lithology, character of soil, stream silt, etc. Formation \\
Minerolization, ete.
\end{tabular} & \begin{tabular}{|c}
Au \\
ppb \\
\hline Zn
\end{tabular} & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{ppm} \\
& \mathrm{Cd} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { Ppm } \\
& \text { Sb } \\
& \text { pmm }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{w} \\
\mathrm{ppm} \\
\text { Mo } \\
\text { Mpm }
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Cu} \\
& \mathrm{ppm}
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{Pb} \\
\mathrm{ppm}
\end{array}
\] & \(\underset{\mathrm{Pr}}{\mathrm{Hg}}\) \\
\hline & Samples SX 90117 to SX 90123 & & & & & & & \\
\hline & Dry 1 m wide creek bed opposite Stump Lake & & & & & & & \\
\hline & (BAG Claims). Creek opposite turn-off into & & & & & & & \\
\hline & Stump Lake boat launch. & & & & & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & 15 & 0.1 & 12 & 2 & 39 & 10 & 20 \\
\hline & Pan concentrate - non-magnetic fraction. & 40 & 1 & 2 & 1 & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & 5 & 0.1 & 8 & 2 & 44 & 15 & 40 \\
\hline & Pan concentrate - weakly magnetic fraction. & 79 & 1 & 2 & 1 & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & 15. & 0.1 & 15 & 2 & 51 & 11 & 280 \\
\hline & Goldwheel concentrate - 1st run. & 38 & 1 & 2 & 1 & & & \\
\hline & Non-magnetic fraction. & & & & & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & 10 & 0.3 & 3 & 2 & 46 & 47 & 30 \\
\hline & Goldwheel concentrate - 1st run & 57 & 1 & 2 & 1 & & & \\
\hline & Weakly magnetic fraction. & & & & & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & 5 & 0.1 & 10 & 2 & 70 & 12. & 30 \\
\hline & Goldwheel concentrate - 2nd run (1st run & 43 & 1 & 20 & 1 & & & \\
\hline & tailings) - non-magnetic fraction. & & & & & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & IS & 0.1 & 2 & 2 & 11 & 8 & 25 \\
\hline & Goldwheel concentrate - 2 nd run (1st_run & 17 & 1 & 2 & 1 & & & \\
\hline & tailings) - weakly magnetic fraction. & & & & & & & \\
\hline & & & & & & & & \\
\hline & Resample of SX 90048 & 20 & 0.1 & 5. & 2 & 52 & 10 & 50 \\
\hline & -80 mesh stream silt. & 54. & 1 & 2 & 1 & & & \\
\hline & & & & & & & & \\
\hline & IS = Insufficient Sample & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TRAVERSE NUMBER \(\qquad\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PROJECT Merritt-Quilchena-Kamloops Belt
AREA}} & \multicolumn{7}{|l|}{GEOLOGIST(S) B. Booth/E. Deblcki} \\
\hline & & & & & & & \multicolumn{7}{|l|}{DATE June 12, 1983} \\
\hline SAMPLE & \multicolumn{3}{|c|}{SAMPLE TYPE} & \multirow[t]{2}{*}{SAMPLE LENGTH, WIDTH, AREA} & \multirow[t]{2}{*}{LATITUDE, LONGITUDE and/or U.T.M.} & SAMPLE DESCRIPTION & \multicolumn{7}{|l|}{RESULTS (pan, / \%/oz. per ton)} \\
\hline NUMBER & \[
\begin{aligned}
& \frac{\mathrm{RX}}{\text { Rock, }} \\
& \text { Tolus }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{\text { SX }}{\text { Streom }} \\
& \text { Silt, } \\
& \text { Soil }
\end{aligned}
\] & Grab, Chip, Channel & & & Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, elc. & Au ppb & Ag ppm & As ppm & Cu ррп & \begin{tabular}{l}
Pb \\
Ppm
\end{tabular} & \[
\mathrm{Zn}
\] & \[
\begin{gathered}
\mathrm{w} \\
\mathrm{p} \pi
\end{gathered}
\] \\
\hline SX 90131 & & Stream & & Coldwhee & & Resample of SX 90046. & 235 & 6 & 67 & 75 & 48 & 114 & 6 \\
\hline & & & & Conc. & & Coldwhecl Conc - None magnetic fraction. & & & & & & & \\
\hline & & & & & & Highway culvert marker \(\# 134 / 16\). & & & & & & & \\
\hline & & & & & & B.C. Legal Survey Marker: & & & & & & & \\
\hline & & & & & & 1967 I 100 & & & & & & & \\
\hline & & & & & & \(94 \quad \mathrm{RH}\) & & & & & & & \\
\hline & & & & & & 404 PC & & & & & & & \\
\hline & + & & & & & SX 90046 (1982 HM pan concentrate) ran: & & & & & & & \\
\hline & & & & & & 5 ppb Au, Q.2 ppmAg, 19 prm As, 43 ppm Cu & & & & & & & \\
\hline & & & & & & 2 ppmL & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & . & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & * & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & - \\
\hline & & & & & & & & & & & & & - \\
\hline & & & , & & & & & & & & & & \\
\hline & & & & & & & & & & & & & - \\
\hline & & & & & & & & & & & & & - \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & - \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & - \\
\hline & & & & & & & & & & & & & - \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

APPENDIX D

GOLDHOUND CONCENTRATING WHEEL SPECIFICATIONS/OPERATING INSTRUCTIONS

\section*{AUTOMATIC PANNERS AND CONCENTRATORS}

(
ughout the world, prospectors, geologists, lab lechnicians ond protessional in ers depend on Goldhound for reliable, efficient concentration of ores and somplings.
Our rugged, portable wheels clean and concentrale in one quarter the time required with conventional methods. The Goldhound is easy to operole with effective results obloinoble the firsl lime used.
The Goldhound is excellent for cleoning black sands ond recovering mercury from concentrate, post amalgamolion.

I Recover gold, silvet, platinum, tungsten ond other heovies to minus 300 mesh.

Also recovers precious stones.


Econo 12 Vot


E The Goldhound 18s are ovailable with either a heovy duty 12 V electric motor for outo bollery operation of 110 V electric molot,

The Goldhound breaks down into three mojor pieces tot ease of storage ond tronsportotion.

EIntroduced in corty 1981, the industrial duty \(36^{\prime \prime}\) mochines hove ochieved the some reputation os the \(18^{\prime \prime}\) with those who tequite industrios grode copocity ond production.

\begin{tabular}{|c|c|}
\hline 12 Voh DC \(18^{\prime \prime}-2\) lead riflle pod plaslic bowl \& wolet pump 25.50 \#/ht, copocity Econo-line & 399.00 \\
\hline 12 Voh DC \(18^{\prime \prime}-2\) leod riffle pod \& woter pump \(\mathbf{2 5 - 5 0 \# \# / h r . ~ c a p o c i t y ~}\) Staintess bowl & 549.00 \\
\hline 110 Voll AC \(18^{\prime \prime}\)-2leod riffle pad vorioble speed \& 110 V water pump \(25-50 \mathrm{~F} / \mathrm{ht}\). copocity Staintess bowl & 599.00 \\
\hline 12 Voll DC 18"-4 leod riffle pad \& woter pump \(50-100 \mathrm{f} / \mathrm{ht}\). copacity Stoinless bowt & 659.00 \\
\hline 110 Voll AC \(18^{\prime \prime}-4\) leod ritfle pod w/vorioble speed 110 V water pump 50-100 \(\mathrm{t} / \mathrm{ht}\) copocity Sloinless bowl & 699.00 \\
\hline
\end{tabular}
\begin{tabular}{lc}
\hline 110 Voll \(A C 36^{-1}-15\) lead & \(3,650.00\) \\
Industriol Duty & \\
\(1 / 2\) ton/hr. copocity & \\
Machine line &
\end{tabular}
tiol list of customers using Goldhounds around the world:
nbridge Mines Canodo, Dominicon Republic, Norway min S.A. Venezuela
olional Nickle Co, Conada
Group. Greal Britain Riofinex: Saudi Arobia
Corolino Slate University
ton Internationot Minerols Division of Bechtel Ine.
dinerols Johonnesburg. S.A.
hall Earth Resources, Houslon IX.
d \(N^{( } \quad\) s Reseorch Molaysio
forn Poris, Saudi Arabia
oranger, Osio Norway



\section*{ADVANCED RECOVERY TECHNIQUES}

The following material will help the Goldhound user get the most out of his machine. The material is organized as follows:
1. Maximizing your ore throughout.
2. Secrets of flour gold recovery.
A. Watching your water
B. Amalgamation
3. Fitting your machine into larger ore processing systems.
4. Machine maintenance.

\section*{1. WAKIMIZING YOUR ORE THROUGHPUT RATE}

This section deals with the "how to" of zunning the nost cre through the machine in the least amount of time.

The following factors control ore througḩut rate:
i. feed rate

3, ore specific gravity
C. ore grain size
A. FEED RATE

Rule of Thumb: The more evenly you can introduce your ore the more material you can run.

The ore that can be run the fastest is a dry gravel that has been screared to about 40 mesh." This screened gravel should be introduced evenly in a thin layer in a line just above the water on the right side of the wheel. The idea is to have the gravel stick to the wet pad in a thin, even layer. This allows the ore to go under the water, be wetted down quickly, and start the wash process shortly thereafter.

If you intend to introduce damp ore or ore in slurry form, introaucing it evenly may prove difficult. Damp ore tends to clump up. As the clump hits the bowl bottom it sometimes splashes gold and other material over the front resulting in unnecessary value loss.

Steady ore introduction may also be accomplished by using a hopper or auger feed. A simple hopper may be built out of a 5 gallon plastic bucket suspended over the right side of the wheel. The bucket needs a slot cut in the botton uining a hot knifa. An electric vibrator or other vibration producing device should be placed near the hopper feed hole to ensure constant ore flow. This 5 gallon bucket arrangement works best on dry, screened ores.
* MESH: Mesh is defined as the number of particles per linear inch. That is \(1 / 4\) mesh would be particles \(1 / 4^{\prime \prime}\) in diameter; 16 mesh would be particles \(1 / 16^{\prime \prime}\) in diameter and 100 mesh would be \(1 / 100^{\prime \prime}\) particles in diameter, and so on.

\section*{LARGER ROCKS}

For bank run sampling, where you sish to introduce clay or moss covered rocks directly into the bowl, you will need to remove the larger rocks by hand. Otherwise the bowl will fill up with larger rocks and your throughput will suffer.

For the more mecinically inclined "rim cleaners" may be constructed. These little metal scoops ara positioned along the \(x i m\) of the bowl and help scoop out the larger rocks that sometimes have difficulty being pushed out of the bowl on their own. Specifically:

ERONT VIEN


SIDE VIEN


\section*{GRE DEIST:}

Rule of Thumb: Light gravels run cqickiy, henvy concentrates fun slowly.
As the specific gravity of the ore goes up tho number of pounds of ore that can be run through the machine in an hour goes down. You can realistically expect the following throughput rates with the following ores:

AVERAGE
SPECIFIC

ORE TYPE
GRAVITY
L35/: iR
gold plus heavy black
sand concentrates
\(10+\)
bank runs - sand and gravel with low percentage of heavies

For those of you who are more mathematically inclined the above information may be presented graphically as follows:

average specific gravity

It is appropriste here to gispell one of the fallacies presently in vogue in the mining fiele, specifically that is the gencrally held belfef tat more wheels in line is better. I em referring to the icea that having the concentrate fyctr, vae wheel foeding into the fzont of another wheel. The problem is that as the ore works its way from one theel to the next it gets progressively more concentroted. is it becomes more concentrated its overage specific gravity rises. As the specific gravity rises the speed of a given particle (gold) falling through the concentrate decreases. That is the gold floats more and more easily as the surrounding material becomes thord concentrated and thus heavier. The result is that the specd of separation drops and the throughput suffers.

In practice this means that having moze than two wheels in seguence is a waste of time. Why? Because the first wheel may recover 90 's of the values in the first minute while it may take the second wheel five minutes to wecover the same values Ercm the concentrote it receives from the fizst wheel. If you had a third wheel it would take 15 minutes, fourth 45 minutes and so on. The moral of the story is "T: you're planning on using multiple wheels, only use two."

Also, from the preceding discussion it follows that separation of values is faster when the ore or concentrate is lighter. What this means in practice is that if you add some gravel to a heavy concentrate you'll get a fiaster separation. The ideal black sand to gravel concentrate is about sive parts sravel to one part black sand. This means you don't need to clean your black sands up as far as ycu might think before you use the wheel. This should help save time.

\section*{POINT INTRODUCTION TECHNIQUE}

For very heavy concentrates there is a special "trick" that can be used to double your throughput. This technique involves introducing your concentrate at exactly the right place on the wheel. Specifieally your concentrate needs to be introduced at a point which will allow the concentrate to proceed into the wash cycle without having to go through the washing ore body located at the bottom left of the bowl.


The idea is to introduce the ore, preferably dry or iarsly damp, into the riffle winch zuas by, just above the washing ore body. i rule of thumin is to introduce the black sand where the water meets at right angles. This keeps very fine gold Ercin being washed into the heavy concentrate ore body. Once Eine gold is in tine heavy ore body it takes a long time to sink and start back up the zizzles. The heavier the concentrate the longer it takes Eor it to start up the riefles. İ nothing else seems to work, this point introćuction technique may also be tricd on samples that have extensive fine gold content.

\section*{ORE GRAH SIZE}

Rule of Thumb: Ideally ore should be screened to about \(20-50\) mesh (beach sand size) before introduction to the wheel.

Grain size has a lot to do with how well a water-based system works. In the Goldhound the recovery efficiency of the system drops off steadily as ore particles get smaller. For instance you can realistically expect the following recovery efficienies as your gold gets smaller.
\begin{tabular}{c|c|c}
\hline Gold Particle Size & \begin{tabular}{l} 
Final Purity \\
(parts Au to parts \\
black sand)
\end{tabular} \\
\hline \(20-40\) & \(90-95 s\) & \begin{tabular}{l} 
Erom 1 to \(1 / 10\) \\
to 1 to 1
\end{tabular} \\
\hline \(40-80\) & 908 & \begin{tabular}{l} 
Erom 1 to 1 \\
to 1 to 10
\end{tabular} \\
\hline \(80-250\) & \(80-903\) & \begin{tabular}{l} 
Erom 1 to 10 \\
to 1 to 50
\end{tabular} \\
\hline 250 plus & \(30-805\) & \begin{tabular}{l} 
ircm 1 to 50 \\
to 1 to 500
\end{tabular} \\
\hline
\end{tabular}

For 80 plus mesh a further chemical recovery technicue such as amalgamation should be considered. Or alternating multiple passes through the wheel might be considered with each pass recovering gold of a different size.

\section*{SECRETS OF FLOUR GOLD RECOVERY}

Most gold falls into the category of flour gold. Because of this the zecovery of flour gold is of exceptional importance. Anybody can pick up a \(1 / 2\) oz. nugget. Not everyone can recover the fine gold. Follow some of these hints and you'll get what everyone else misses: the flour gold.

SUMEACE TEISION: Nost Elour gold is lost simply because it zioats away. Golu floats because of surface tension. Nater has its own built-in surface vension which nay be increased drastically with the addition of oil.

To keep Eine gold from floating and make it sink in is necessary to recuce or eliminate surface tension.

The affects of surface tension can be recuced or eliminated by aceing a chemical "wetting agent" to your water. Some comercially availsble wetting agents arc:
A. Liçuid detergent

Amway biodegradable concentrated liquid detergent or the equivilent is ideal. However almost any licuid detergent will do. Consideration should be given to the environmental impact of any detergent used.
B. adaitives

Alum (aluminum Silicate) like rock salt. Nix in with ore at 17 by weight. Gives constant concentration of wetting agent. Ideal because aluninum and silica are so common in the environment that a little nore introduced into the environment through your ore is harmless. Alun is available at most drugstores or chemical supply houses.
C. Acids, etc.

Small amounts of acids and other chemicals may be used to produce the desired surface tension reduction. Caution should be exercised in their use however due to both the personal and environmental safety aspects. Closed recirculating systems should be considered for use with acids. Concentrations of a couple of drops of concentrated nitric acid per gallon of wash water are typical.

Ideally all ore samples should be pre-treated and washed with water that has a wetti.gg agent in it before it is placed into your machine. Barring this the wash water should have a constant amount of wetting agent introduced into it before it enters the wheel.

WATCHING YOUR WATER - HON MUCH IS ENOUGH??
Rule of Thumb: "Less water, Einer gold." The less water you can introduce into the wheel the finer will be the gold you can pick up.

This rule leads to the question of modifications to the wash tube. She overall amount of water introduced is governed by the water valve. Control of how little water can be introduced is governed by the size of the holes in the wash tube. Smaller holes introduce less water and thus allow you to recovez finer gold.

If you wish to experiment with different wash tube hole sizes and arrangements, do so. Purchase a piece of \(1 / 2^{\prime \prime}\) PVC pipe the same size as the original tube that comes on your machine. Drill small holes in approximately the orientation depicted on the following diagrem.


As the hole size goes bown you introduce less water．As you intraduce less water the ore body on the left end of the wheel rides up farther along tion bowl edige． If too little water is introduced iv rides right up and over，Ealiing across the entire face oi the wheel．Thus more small holes will need to be dailled near the left end of the tube as shown in the diagram．At the very edge an extra two or three holes should be drilled．Be sure to use all of the same size holes for your tube．

If you want to get really fancy attach a sink dishwashing nozzle to the end of the wash tube for those hard to clean out sample jars．You may also wish to add a couple of elbows to bring the wash tube closer to the face of the wheel．This will permit you to introduce even less watet．

Note that your wash tube may be rotated slightly up side down for fine adjustrent of the water intensity．Rotating the tube up permits the water to fall a little farther effectively increasing its intensity．Rotating down decreases it slightly because it doesn＇t fall as far．

\section*{BEFORE YOU AMALGAMATE}

One of the more difficult situations in which you may find yourself involves recovery of fine gold from heavy black sand．Scmetines it is not possible to get rid of all the black sand in one or even two gasses over the wheel．At this point you probably have say one part gold to \(20-50\) parts black sand．

If the amount of black sand isn＇t too excessive，say less than 10 pounds，it is possible to recover most of the gold by a careful hand panning as an alternative to amalgamating．If you must analgamate continue to the following section：

\section*{AMALGAMATING USING THE GOLDHOUND}

The following presentation describes a sure－fire method of recovering fine gold from black sand．

The Goldhound wheel is capable of completely separating gold frcm black sand as long as the gold is relatively coarse，say down to \(30-35\) mesn．For gold below 35 mesh you will begin to take in some black sand．The amount of black sand taken in will increase as the gold gets smaller．At around \(60-80\) mesh the ratio of gold to black sand is typically one part gold to \(5-10\) parts black sand．

Below about 100 mesh the amount of black sand taken in along with gold increases rapidly to the point where at say 250 mesh you may have one part gold to \(50-100\) parts black sand．It is at this point that you will want to consider using another step to separate the gold from the black sand．This step will not be a mechanical separation as with the wheel，but rather a chemical separation using elemental mercury（Quicksilver） and nitric acid．

\section*{AMALGAMATION}

Let＇s assume you have 5 lbs of black sand concentrate which contains coarse and fine gold．You wish to recover the gold and eliminate all the black sand．You＇ve already run this concentrate over your wheel and can＇t seem to elininate the slack sand and still retain the find gold．At this point you have two choices．You can pass the concentrate over the wheel using a steeper，more vertical setting that will recover the coarse gold and eliminate both the black sand and most of the fine gold．You can save the overflow containing the fine gold and plan to amolgamate this black sand／fane gold combination at a later date．This alternative will give you the most clean gold in the fewest steps．

The altemotive, trying to get all the gold at once, will require the use of a techniçue callud amalgamation.

Amalgamation is the least dangerous of all the chemical techniques available to the small miner. When proper caution is exercised it will prove to be a relatively simple, highly effecient gold recovery technigue.

Before you can begin to amalgamate you will neec the following equipment:
1. Mercury (Quicksilver). Available in small volumes at most prospecting shops. In larger quantities up to flask ( 76 lbs ) at major chemical supply houses. Check local yellow pages for specific names and addresses.
2. Nitric acid - concentrated. Available same as mercury. If possible purchase by the pint for easier handling.
3. Niechanical amalgamater, plus chams or ball bearings. May be anything from a small cement mixer to a lapicary rock tumbler/polisher. For small batches, say less than 10 los, a desk top lapidary rock tumier available from most lapidary supply houses will do the job. These run from \(\$ 50\) on up depending upon amount of material it can handle. Again, check your local yellow pages or lapidary journals for rock tumbler sources.
One point about the use of tumblers. Sometimes it is difficult to keep nercury from running out of the tumbler drum lid. Some sort of plumbers cement or rubber cement should be considered if mercury leakage proves to be a problem.
4. Controllable heat source. A small hot plate or the equivelant will be needed to heat your nitric Acia/amalgam solution.

If you use an open fire you will have to watch \(i t\) closely in order not to over heat your solution. More about this later.
5. Safety eguipment:

Safety glasses; heavy-duty rubber gloves, preferably long sleeved; face mask, type used when spraying weed killers and such; WATSR, in case you splash acid on yourself. You will want at least two buckets sull or a garden hose running and handy to wash the acid off. Also some baking soda to neutralize the acid.

Dishwashing detergent or greasy skin cream to spread on hands, face and arms before you start; zubber laboratory apron or thick clothing.
6. Pyrex bowls or stainless steel pans. Two or three for simmering acids. Three to four cup capacity is ideal.
7. Small, throw-away paint brush.
8. Elemental copper. Tubing, pennies, etc.
9. Baking soda.
10. Dishwashing liçuid, or other wetting agent.
11. Optional equipment: 50 cc syringes, cotton balls, chamois or silk eloth.

Steo I
Take 3 - 10 pounds oz black sand and place it in rock twmbler. To che black sand you need to adc;
1. Nater up to the two thircs mark.
2. One or two drops nitric acid are optional.
3. Liquid detergent.
4. Mercury. Add mercury eçual to approximately \(2-3\) times the amount of gold you expect to recover.
5. Four or five three quarter to one inch ball bearings. Four or five links of chain will also work.

Check to see that top of tumbler is completely sealed. If sealing is a problem contact cement or something similar can be used to properly seal the tumbler canisters lid.

\section*{Step II}

Turn tumbler on. The length of time you leave it on depends upon how determined you are to to get all the gold. Two to three hours is a minimum. Forty-eight hours zunning time is not unheard of. (Note: Why run so long? Gold may have a film of organic material on its surface or it may be bound up inside of black sand. Youx tumbler must clean the surface of the gold as well as free up the gold bound in the black sand. Complete pulverization is what you're after. Typically 153 of your values may be bound in black sand and thus inaccessable except by amalgamation.)

\section*{Step III}

Stop tumblex. Let material settle for one or two minutes. Take the tumbler canister to your Goldhound. Take the top off and carefully pour the contents of the tumblex canister onto the moving wheel. You will see the mercury being separated by the wheel. You should be able to capture all the mercury while at the same time leaving behind essentially all the black sand.

Step IV
At this point you will have your amalgam separate from your black sand. Now you' 11 want to separate your gold from the mercury. For this step you'll need either your syringe and cotton balls, your chamois or silk cloth. Personally i prefer the silk eloth.

Dampen the chamois or cloth and squeeze the mercury through the cloth. This will allow you to separate most of the mercury from the gold. Be sure to hold cloth over suitable catch pan to retain squeezed mercury.

Gather the remaining gold button left in the cloth. This now requires a chemical step in order to clean the remaining mercury off of the gold.

\section*{Step V}

Removing the remaining mercury from the gold has traditionally been accomplished by using one of two methods. However, a third method, which I highly reccmand, is much safer.
( Aethod one, retorting:. The mercury is boiled off. giving off a deadly vapor. lethod two, "potats" method, which works, sometimes. There is danger in dropping mercury into the Eire. If the temperature of the mercury rises above \(550^{\circ} F\) the mercury vaporizes and again is deadly if inhaled. Therefore I reccmuend method number three.
aItric ACll, sImering. All a:ound the most contzoliabla anc repeatacle. also potertially the least nangarous mechod with reasonajie cau:ion.

\section*{Step VI}

For this step you'll need the following:
Safety glasses
Gloves
Face mask
Stainless steel pan
Nitric acid
Baking soca
Amalgam
PUT ON YOUR SAFETY GEAR
Take the stainless steel pan. Put in one or two cups of water.
Add nitric acid to water. (NEVER acd woter to acid. It splatters.)
Add anywhere from 258 to 758 nitric acid. That is one part nitric to three parts water gives you a 258 nitric solution. A stronger solution makes things go faster and also recuires closer watching during the rest of the operation.

\section*{Step VII}

Put your amalgam button in the pan now. Brown fumes will inanediately begin to be emitted from the button. These fumes are toxic. They won't kill you. They can mate you sick, so stay away from them. Be sure to wear your mask.

Put the pan on your hot plate.
Bring the solution to a simmer. Do not boil.
It should take 15 minutes to a half hour until the mercury has gone into solution. You'll know when the mercury is all in solution when the Alka-Seltzer like bubbling stops. You should see the beautifully clean gold on the bottom of the pan.

Step VIII
Add a little cool water to the solution to bring its temperature dow. The mercury will NOT collect in the pan. That takes another step.

Step IX
Be sure at this point that you have a bucket of water and some baking soda (bicarbonate of soda) on hand in case you splash some of the nitric acid on yourself. Baking soca neutralizes the nitric acid.

\section*{Step X}

Pour the nitric acid solution into your other stainless steel pan, being careful no: to lose any of your fine sponge gold.

To recover what little mercury that is still in the nitric acid solution place some elemental copper such as tubing or pennies into the solution. Your mercury will plate out on the copper and pool at the bottcm of the pan.
step XI
Pour the spent nitric acid solution off into anothex stainless steel pan or pyrex container. Alutralize the solution using baking socia. Dispose of the neutralized acid using a sealed, unbreakable plastic container if possible.

②30 XZI
Gather your mercury together for another amaljamation cycle.

\section*{step Kili}

Take your small brush and brush gold into a suitable container. קut the inesh in nitric acici and \(\overline{\text { aisolve the bristles. This will free up any fine gold stuck in the }}\) brush.

You are now ready to begin the cycle again.
CAUTICN: Because we have no control over how you physically go about using materials or in following our instructions, we at Goldhound cannot be responsible for the results you get or any injury you might cause yourself or others, or any property camage that might occur to your property or another's.

\section*{ORES CONTAINING MULTIPLE VALUES}

Let's say you have an ore that contains several values, gole, silver and tungsten for instance. In this situation separation will be based upon the fact that as the angle of the bowl is changed the specific gravity of the material being recovered changes.

More specifically let us start with an ansle of say \(25^{\circ}\). Let us also say that at this angle you are recovering gold of say 25 mesh. is you tilt the bowl back you will find that lighter and lighter material begins to come up through the center hole.


It should be noted that the diagrams above have been exagerated to make a point. In reality a very small change in angle is all that is necessary to procuce a significant change in specific gravity picked up. Typically one degree of change in tilt will produce a change of about \(1 / 2\) specific gravity unit in the material picked up.

What this means in practice is that for an ore containing multiple values or coarse and fine gold, it will probably ke necessary to run the ore through the wheel once for each value being careful to set the whecl at a different angle For each ore.

For the original sample containing gold, silver and tungsten you would propably run the material in the following sequence:
1. Run through at angle such that you recovered all gold plus some black sand. Save overslow.
2. Run recovered black sand and gold a second time to eliminate most of black sand. Dan down or amalgamate depending upon percentage of fines vs coarsa.
3. Reset wheel at zlatter angle, say \(30^{\circ}\) for silver recovery. Catch gll oversiow. Pass recovered black sand and silver over wheel a second time in orcier to elininate most of black sand.
4. Keset wheel et an even 三latter angle, say \(35^{\circ}\) in orcer to recover tungsten. usig using black light adjust wheel for best recovery.

\section*{DACATNE MaINTEMANCE}

Cccaszonal Problems and Yinat to do About Yhen.
Nan has never made a machine that didn't have scme problems. The Golchound is no different. Fortunately the probiems that arise are infreçuert ond can usuail\% je corrected by the user.

As of this writing Goldhounds have experienced the follcwing proilens:
1. MCTOR BURN OUTS: Occasionalily a 12 VDC moter ( 1 out of 50 ) will burn out after only a fiew hours of running. Experience has shown that iEit's going to bu:n out it will do so within the first ten hours. If it burns out iefore ten hours senc it jack to be raplaced. Remember also under no circumstances is the 12 VDC motor to be dropped onto cenent. It will definitely break if hit hard enough.

Some people like to have a spare azound. Go to your local junk yard and purchase a 12 VDC clockwise rotating Ford windsheilcwiper motor.
2. BROKEN SWITCHES: Sometimes switches are broken by the freight carrier. In this case you can call us and we'll send you a new one or you can replace it yourself. 12 volt nachines use a 12 VDC automobile uncer-the-dash 3 -way heater switch. Take your old one in and match it with a replacement. The 110 Vac switches are wall 600 watt incandescent dirmer switches available at nost hardware stores.
3. BOWL TO RUBBER SEAL CRACKS: Sometimes the caulking material used between the rumber pad and the bowl cracks. Sometines also the center nole coulking is a bit rough for certain applications. To repair edge cracks or snooth out the center hole caulking you will need to purchase some Hard Drying Permatex Formagasket autcmobile head gasket sealar from your local auto supply parts house.

For edge cracks smear Permatex onto offending area. Nork guickly. Permatex is only workable for about \(30-45\) seconds once it comes out of the tube. For the center hole smear Pematex onto hole area, smoothing out as well as possible. Finish smoothing after 2-3 minutes by patting down bumps using a wet finger. Do not smear pormatex to try and smooth it down. This will only make it rougher.









```

