REPORT ON THE PHASE ONE EXPLORATION PROGRAM

OF THE "VICTORIA GROUP" OF MINERAL CLAIMS

SLOCAN MINING DIVISION

LATITUDE 49° 58'

LONGTITUDE 117° 13'

82F/ IAE

OWNER: EROS RESOURCES INC.

VANCOUVER, B.C.

AUTHOR:

NORMAN W. STACEY

GEOLOGIST

VANCOUVER, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

November, 1983

11,751

TABLE OF CONTENTS

	page
TITLE PAGE	1
TABLE OF CONTENTS	2
INTRODUCTION	3
PROPERTY	3
LOCATION, PHYSIOGRAPHY AND ACCESS	3
HISTORY	4
REGIONAL GEOLOGY	4
PROPERTY GEOLOGY	7
FIELDWORK	8
RESULTS:	
A. GEOCHEMISTRY	9
B. GEOLOGY	11
C. WORKINGS	11
CONCLUSION	11
RECOMMENDATIONS	12
BUDGET - PHASE II SURFACE EXPLORATION	13
STATEMENT OF COST	14
STATEMENT OF QUALIFICATIONS	15
BIBLIOGRAPHY	16
FIGURES	
FIGURE I Location map	5
FIGURE II Claim map	6
VICTORIA CLAIM GROUP PLAN	(in pocket)
APPENDED	
ASSAY CERTIFICATE, ACME ANALYTICAL LABORATORIES LTD.,	
I.C.P. GBOCHEMICAL ANALYSIS, ACME ANALYTICAL LABORATORIES	LTD.
CENCULATION ACCAY CERRITATION OF THE	

INTRODUCTION

Field work was undertaken at the request of Mr. Evan Kablonski of Eros
Resources Inc. The program had been recommended in a Preliminary Report on
the proerty by Stacey and Goldsmith, dated January, 1981. As detailed in the
preliminary report, the property covers approx. 200 acres of prime exploration
ground in the prolific Sandson Mining Camp. The ground is logistically very
well situated and includes two previously reported and now confirmed,
mineral showings.

PROPERTY

Specifically the property consists of the following units:

NAME	LOT #	AREA	LOCATED	RECORD #	ANNIVERSARY		
Victoria No.6	L 3154	35.16	Apr. 26, 1897	465	August 29		
Galt	L 5194	42.92	Mar. 17, 1937	467	August 29		
Belt	L 2139	51.6	Mar. 17, 1937	466	August 29		
St. Charles	L 3264	41.71	Mar. 17, 1937	466	August 29		
Marie Fr.	L 6870	21.45	Mar. 15, 1936	468	August 29		

Total 192.84 acres

LOCATION, PHYSIOGRAPHY AND ACCESS

The property is optimally located, being approx. 500 metres across the valley from Dickenson Mines Ltd., Silvana Division, and adjacent to their flotation mill. The proerty is additionally 1 km due south of Hallmac Mines Ltd. high-grade silver mine; approx. 1.5 km west of Wavecrest Resources "Bluebell" property, and down projected strike of the "R.E. Lee" past producer.

The ground extends from the valley floor at 3,400 feet covering the south facing slope above Sandon to an elevation of 5,300 feet a.s.l. Slopes are moderate to steep, frequently about 35°, and generally treed with mature mixed

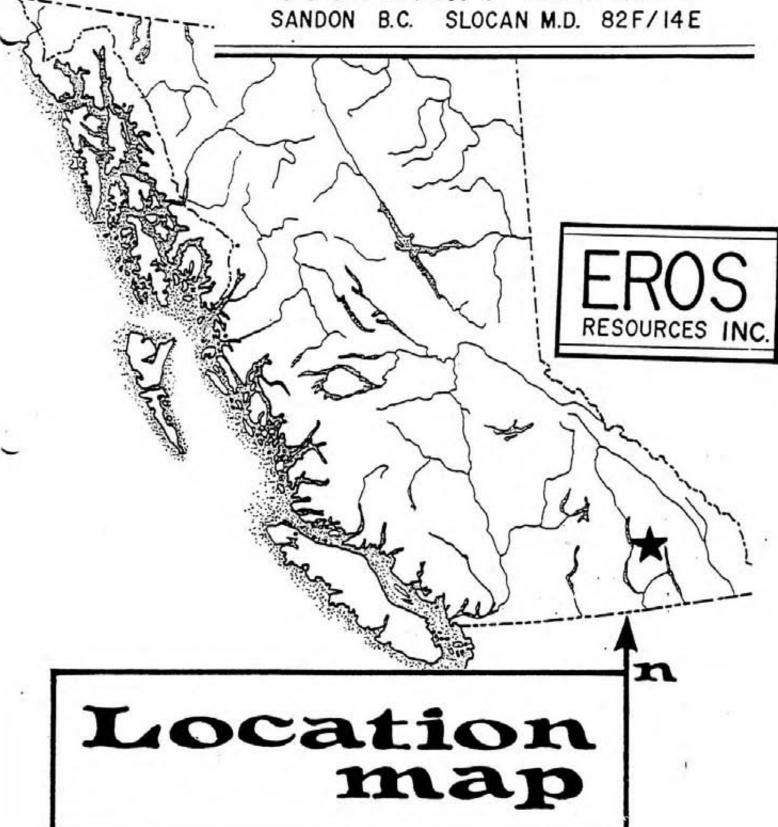
pine, fir and spruce species. An immature, alder covered snow slide bisects the property.

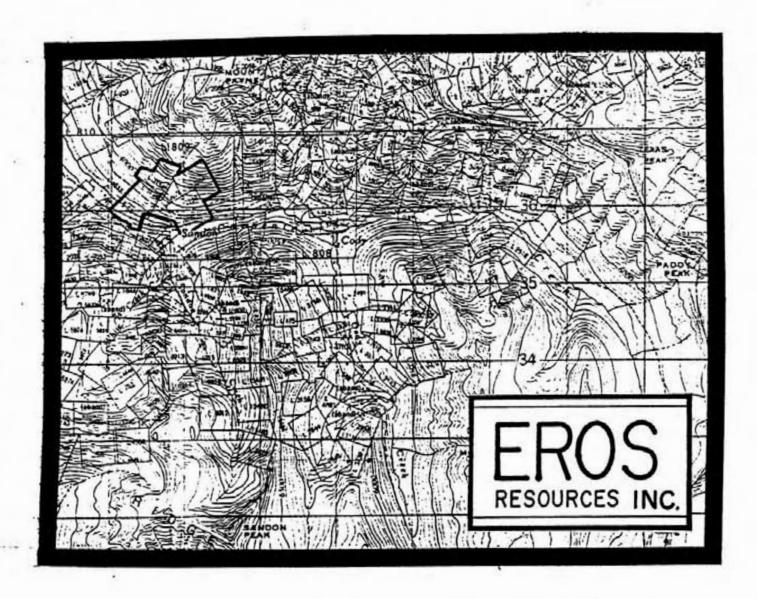
Access is excellent being some 6 km southeast of paved highway 31A on the provincially maintained Sandon and Cody road. The property covers portions of the historic townsite of Sandon and is traversed by Hallmac Mines access road and by the abandoned Cody rail-grade.

HISTORY

Previous work is extensively covered and quoted in the Preliminary Report.

Two separate workings, the "Argo" and the "Victoria", each with three levels,
explored silver and lead mineralization in fissure veins. The work was probably
of an exploration nature with only limited production of 8 tons (88 oz/ton
silver and 47.3% lead) recorded from the "Victoria" (MINDEP files). The
"Argo" work occurred prior to 1896 and the "Victoria" work prior to 1925.


REGIONAL GEOLOGY


The dominant lithologies in the Sandon area are fine-grained to aphanitic, clastic sediments of late Triassic age, Slocan Group. These are now somewhat regionally metamorphosed to slates, argillites and fine grained quartzites. The Slocan Group are regionally folded in a northwest/southwest trending, recumbent Slocan Fold, which may be imbricate thrust fault repeated. The limbs are subsequently deformed in numerous, lower order, structures.

South of Sandon is a very extensive batholith of mainly porphyritic granite, with lesser non-porphyritic granodiorite both of Early Cretaceous age, Nelson Plutonic Rocks. An appendage to this at the head of Carpenter, Creek is reported to be of considerably younger age than the main body.

The Slocan sediments are frequently cut by dykes, sills and small irregular plutons, the origin of which is not well understood. Many of the

VICTORIA CLAIMS

VICTORIA CLAIMS

SANDON B.C. SLOCAN M.D. 82F/14E

sills and dykes are either synchronous with or pre-date deformation and may be coeval with the Nelson Batholith main body. The plutons are often discordant and post-deformation and may belong to the younger phase.

Regionally, previous workers (Cairnes, Hedley, Robinson) have noted the control of northeast trending, southeast dipping, subparallel fault fissures, on the locus of silver ore-shoots. Robinson has identified a fan-shaped pattern to these converging to the west in the area of the Silverton warp. These northeast striking, southwest diiping fissures host the orebodies of the Payne, Hallmac, R.E. Lee, Bluebell, Cody, Reco and Violamac mines. It is further postulated that proximity to later age intrusives may be important to ore-forming processes and hence deposits.

PROPERTY GEOLOGY

The dominant lithologies underlying the property are banded grey, quartzitic and black argillaceous beds of the Slocan Group. The more indurated members may outcrop as precipitous bluffs, but bedrock generally is obscured by a veneer of float or poorly developed soil cover and subcrop. The massive nature of indurated outcrops or abundant shearing and cleavage of subcrops often obscures true bedding making structure difficult to determine. From limited outcrop and reported workings, a northwest strike is evident and at least one and possibly several recumbent folds with an axis similar to strike are evident. Both quartz porphyry and medium grained salic, granitic dykes or sills are evidently quite prevalent as deduced by locally derived float throughout the property. These may be predeformation or some may be apophyses of the Payne Mountain Plug, an irregular pluton outcropping in the north and northwestern extents of the property.

FIELDWORK

The initial grid and soil sampling was conducted on August 25th through
September 1st, 1983 by a two man field crew and a geologist. Follow-up and
detailed grid and sampling was conducted on October 18th, 19th and 24th during
a period of inclement weather. A total of 20 man days were spent on the property.

Baseline was established 40 m east of the bridge across Carpenter Creek at Sandon and run at 035°. Grid origin was established 100 m north of this point with sampled crosslines commencing at 100 m intervals from the 1+00N line.

Sample stations were at 20 m intervals and marked with plastic flagging. Spatial control was by handheld Silva compasses and cotton line dispensing "belt-chains."

Samples were taken from 'B' soil horizon or its nearest approximation, generally 10 cm to 20 cm depth with small mattocks, and bagged in Kraft soil envelopes. Three samples were collected from the three "Victoria Mine" dumps. Station co-ordinates, upslope direction, soil colour, soil texture. fragment lithology, sample depth and salient features were noted at each station.

The Victoria dump samples were selected speciment of "vein-rock" being quartz or quartz carbonate with abundant sulphide and trace galena. 89001 was from the bottom dump with 02 from the middle and 03 from the top. Only the top working was marginally accessible but not inspected underground. Sulphide was predominantly pyrite (to 35%) with trace arsenopyrite and possible chalcopyrite. Galena was recognised in the top (03) sample only. These samples were assayed for copper, zinc, lead, silver and gold, and results are appended. Only lead, zinc and silver were economically significant.

The initial survey on the 100 m spaced crosslines were analyzed for copper, lead, zinc, silver, arsenic and gold by I.C.P. methods. The results are appended.

The follow-up work was by identical field techniques with determinations of lead and zinc only, by atomic absorption techniques of the -80 mesh fraction.

Results are similarly appended.

Claim boundaries were initially inferred from N.T.S sheet 82-F-14, 1:50,000 Edition 4. An old, weathered, small claim post was noted 19 m east of the baseline on line 1+00N. This would correspond closely with the projected position of the southwest corner of the Marie Fraction at the juncture with the Galt Claim. The known workings were similarly located at their described positions and the drainage is as depicted on 82 F. 14. The property location is considered well established but would require surveying prior to extensive development.

RESULTS

(A) GEOCHEMISTRY

Results are very encouraging with silver being the best pathfinder. Silver values are often coincident with lead and zinc values. Gold is significant in only one of the geochem. samples, coincident with an arsenic anomaly, but also with lead, silver and zinc anomalies and attributable to the Victoria Mine workings. Silver and lead values are plotted on the accompanying plan.

Statistical methods of evaluating the data are likely invalidated by contamination from; known workings, physical disturbance, and contamination from introduced material. Results are nevertheless very significant and are treated empirically.

Anomaly "A" is a signature of the Victoria Mine and thus significant. This is anomalous in all elements tested except copper but adequately recognized by silver or lead.

Anomaly "B" is attributable to the Argo workings and merits further investigation.

Anomaly "C" is the first significant "blind" discovery. An extensive area has anomalous silver values of up to 13.2 ppm silver in the first survey.

Follow-up work has similarly elevated silver values and both are without coincident lead values. This is as discovered on the adjacent Hallmac controlled ground in the vicinity of the Donnelly Claim. Stripping of the Payne Mountain Plug/Slocan sediment contact on that ground revealed an interdigitated contact with "dry" silver mineralization; i.e. Tetrahedrite and probable other silver minerals in the relative absence of galena. The contact is noted in this vicinity on the Eros ground and deserves further exploration.

Anomaly "D" is attributable to contamination. The road, now used by
Hallmac Mines, was previously the Payne Mine road and prior to that the K. & S.
Railway. It has been periodically used for ore stockpiling as well as having mine
dunp material introduced as ballast or road-base. Such very elevated values would
mask "in situ" anomalies. Two upslope lines have only isolated elevated values
which remain unexplained but are downslope of a higher rail-grade. Interestingly,
a downslope line has only marginally elevated values, suggesting the contamination
is relatively confined.

Anomaly "E". This was initially attributed to railway contamination even though samples were taken on the upslope side. However, this simple explanation is now discredited by the upslope follow-up line which continues elevated lead values. Similarly, downslope migration from the Victoria workings is discredited by being unreflected in the intervening 3+00N line. A likely source is the Victoria lode continuation with possible recurrence of mineralisation. The reported dip and strike of the Victoria lode would project a surface trace through this anomaly.

Other elevated values are isolated and would require further work to prioritize or interpret. One value at 2+00N, 1+20E is very elevated but may be contaminated from the upslope Cody rail-grade.

B. GEOLOGY

The notable feature of observed geology is the presence of the small intrusive plug on the property. The contact has been drifted along underground from the Daniel Claim, approx. 300m west and workings may approach the property boundary. It has also hosted mineralization on the Hallmac ground adjoining to the north.

C. WORKINGS

The Victoria Mine was observed and as reported follows a contact between sediments and intrusives. Values of up to 49% lead and 112 oz silver are reported (Cairnes, 1935). The strike is reported as 035° with a 70° southeast to 90° dip. This trend projected, may be continuous with the "R.E. Lee" producer. The orientation is consistent with the fissures noted by Robinson and favoured by mineralization.

The Argo workings are reported to develop a fissure striking 065° and dipping 45° southeast. They similarly follow the regionally favourable trend. The workings lie near the southernmost extent of the claim block, but provide upslope potential.

CONCLUSION

The Phase One program was most successful in determining the following:

- Location of, and geochemical signature for two separate workings on traditional northeast striking, southeast dipping, fissure-vein lodes.
- A geochemically implied, possible downslope continuation or repetition of the Victoria lode system.
- iii) Geochemical and geological evidence of "dry-type" mineralization (i.e. low lead, high silver ratio). The geology is similar to mineralization of this type, on the same structure on adjoining Hallmac ground.

RECOMMENDATIONS

A surface stripping or bulldozer costeaning program is recommended. This should include geological mapping of new workings with simultaneous sampling and possible minor geochemistry. This should initially utilize the old Cody rail-grade to access and trench upslope of Anomaly "E" on trend with the downslope projection of the Victoria workings. The upslope northeast trend of the Argo workings should similarly be trenched from the rail-grade if access is relatively easy.

The uppermost Victoria adit should be made safe for inspection and mapped and sampled.

The contact (probably interdigitated) between the Slocan Sediments and the Payne Mountain Plug should be exposed with a bulldozer, especially in the vicinity of the Victoria lode projected intersection. Any mineralization should be mapped and sampled.

Surface discovered mineralization or fault fissures should be traced and a diamond drill program designed.

BUDGET - PHASE II SURFACE EXPLORATION

1)	Bulldozing (Caterpillar D6)			
	Anomaly E			
	Access 8 hrs @ \$65/hr		\$	520.00
	Trenching 16 hrs @ \$65/hr			1,040.00
	Anomaly B			
	8 hrs @ \$65/hr			520.00
	Anomaly C			
	Access 24 hrs @ \$65/hr			1,560.00
	Trenching 40 hrs @ \$65/hr			2,600.00
2)	Victoria (underground mapping, etc)			
	3 days @ \$250/day			750.00
3)	Permits, plans, filing, etc.			
	2 days @ \$250/day			500.00
4)	Swamper/Assistant			
	25 days @ \$125/day			3,125.00
5)	Geologist, mapping, sampling			3,750.00
	Vehicle			1,500.00
	Accommodation			
	50 man/days @ \$35/day			1,750.00
	Assays			2,500.00
	Supplies			750.00
	Engineering			1,500.00
	Reporting, drafting, etc.			1,500.00
		SUBTOTAL		23,805.00
	Contingencies @ 20%			4,761.00
		TOTAL		28,566.00
	ALLOW	3	_	30,000.00

STATEMENT OF COST

Personnel:		
P. Livesey, Field Geologist Aug, 25, 26, 27, 29, 30 Sep. 1, Oct. 18, 19, 24 9 days @ \$100/day		\$ 900.00
G. Timms, Prospector/Field Hand		
(as above)		
9 days @ \$100/day		900.00
N.W. Stacey, Geologist		
2 days Field @ \$250/day		500.00
2 days reporting @ \$250/day		500.00
Disbursements:		
Accommodation & Meals		
20 man days @ \$35/man day		700.00
Bags, tags, topo, stationery		87.00
Telephone		35.00
Freight		41.85
Expenses:		
4 X 4 Truck 9 days @ \$50/day		450.00
Fuel		45.00
Travel		(gratis)
Reporting:		
Drafting		350.00
Typing, printing, reproducing		100.00
Assays:		
Initial		2,268.00
Follow-up		389.40
	TOTAL	\$ 7,265.00

Respectfully submitted

Spent on Victoria Group of Claims

Norman W. Stacey, Geologist, Vancouver, B.C.

STATEMENT OF QUALIFICATIONS

I, Norman W. Stacey, of #305 Trinity Manor, 2320 Trinity Street, Vancouver, B.C. V5L 4W7, state that:

I am a graduate of the University of Auckland, New Zealand, with a B.Sc. degree in Geology and Applied Geophysics.

I am a Fellow of the Geological Association of Canada, and a Member of the Canadian Institute of Mining and Metallurgy.

Since graduation in 1974, I have pursued my profession in Geology. I have been employed as a Geologist in New Zealand, Western Australia, and in Northern and Western Canada, and as a Research Assistant at the University of British Columbia.

I am currently a self-employed Geologist.

I have written this report entitled "Report of the Phase I Exploration Program of the "Victoria Group" of Mineral Claims, based on field work conducted or organized by me and on the references cited.

I have no pecuniary interest in the securities of EROS RESOURCES Inc., nor in the properties which are the subject of this report.

Norman W. Stacey

Geologist

VANCOUVER, B.C. November 28, 1983

BIBLIOGRAPHY

- Ann. Rept., Minister of Mines, 1896, p.53.
- Cairnes, C.E., 1934. Slocan Mining Camp, British Columbia. G.S.C. Mem. 173.
- Cairnes, C.E., 1935. Description of properties, Slocan Mining Division, British Columbia. G.S.C. Mem. 184, p.15, p.155,156.
- Hedley, M.S., 1952. Geology and Ore Deposits of the Sandon Area, Slocan Mining Camp, British Columbia, B.C. Dept. of Mines Bulletin 29.
- Little, H.W., 1960. Nelson Map-Area, West Half, British Columbia, G.S.C. Mem. 308.
- MINDEP. Inventory Files, available for inspection at G.S.C Library, Vancouver.
- Orr, J.F., and Sinclair, A.J., 1972. Computer Evaluation of Slocan Mining Camp, unpublished version of University of British Columbia paper. Geological Sciences Centre, U.B.C.
- Robinson, M.C. (C 1966) Slocan Report. Unfinished Galley Proof. Available from B.C.M.M. Property Files in Victoria, B.C.
- Sinclair, A.J., 1974. Report on Geochemical Sirvey, Sandon Area, for Prism Resources Ltd. B.C. Dept. Mines A.R. 5219.
- 10. Stacey, Norman W. & Goldsmith, Locke B. 1981 Preliminary Report on the "Victoria Group" consisting of The Victoria No. 6, The Galt, The Belt and the St. Charles Claims, and the Marie Fraction. Private Corporate Report of Eros Resources Inc.
- Map 1176 A Geology, Valhalla and Valkyr Ranges. 1: 63360. G.S.C. Ottawa.
- 12. Map 82 F 14 Slocan 1: 50,000. Can. Map Office. E.M.R. Ottawa.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

ASSAYER _ NEW DEAN TOYE, CERTIFIED B.C. ASSAYER

MR. L. SOOKOCHOFF PROJECT # ERUS FILE # 83-2429 PAGE# 1

SAMPLE CU PB AG AU ZN % % DZ/TON DZ/TON % .031 .12 89001 12.85 7.28 10.68 .38 11.20 89002 - 14 2.02 .043 89003 .02 44.60 10.08 20.05 .005

V. force Coro. C.

ACME ANALYTICAL LABL ATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. FH: 253-3158 TELEX: 04-53124 DATE (._CEIVED SEPT 16 1983

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HN03 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER.

THIS LEACH IS PARTIAL FOR: Ca,P,Hg,A1,Ti,La,Na,K,N,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppm. AUI ANALYSIS BY AA FROM 10 GRAM SAMPLE.

SAMPLE TYPE - SOIL - PULVERIZING

ASSAYER __ DEAN TOYE, CERTIFIED B.C. ASSAYER

	EROS RESOURCE	S	FILE #	83-2173			PAGE# 1
SAMPLE		ppm CU	PB ppm	ZN ppm	AG ppm	AS ppm	Au*
600N 280M 600N 260M 600N 240M 600N 220M 600N 200M	4 4	9 15 17 12 7	37 42 44 31 28	150 209 213 167 104	1.8 2.7 .9 .8	11 10 11 9	ธธธธธ
600N 180M 600N 160M 600N 140M 600N 120M 600N 100M	7 1	13 25 11 13 14	33 35 30 28 25	114 211 171 151 185	33462	19 8 6 8 7	សស្តម្ភាស្ត្
600N 80W 600N 60W 600N 40W 600N 20W 600N 0W		15 14 27 31 29	32 16 17 80 19	167 129 129 194 142	.1 .1 .6	7 6 8 12 8	តពតតត
600N 20E 600N 40E 600N 60E 600N 80E 600N 100E		44 27 20 21 31	31 29 36 20 39	155 174 200 149 169	.55554	26 7 14 11 17	ងសងសង
600N 120E 600N 140E 600N 160E 600N 180E 600N 200E		21 32 25 37 48	25 31 26 37 20	187 138 133 165 134	.3	12 7 8 7 8	សពសពស
600N 240E 600N 260E 600N 280E 600N 300M 600N 320M		26 32 37 42 25	39 33 56 32 27	186 160 175 171 137	.2 .1 .1 .3	11 6 5 9 7	សសមាសមា
600N 340W 600N 360E 600N 380E 600N 400E 600N 420E	9.71	29 32 39 29 32	19 26 29 57 59	117 142 267 269 526	.2 .3 .1 .4 1.0	7 8 24 11 38	១១១១១ ១១
600N 440E 600N 460E STD A-1/A		31 20 30	39 29 39	175 143 181	.1 .2 .3	22 10 11	5 5 520

 γ_{i_1}

EROS	RESOURCES	FILE #	83-2173			PAGE#	2
SAMPLE	CU ppm	PB ppm	ZN ppm	AG ppm	AS ppm	Au*	
500N 280W 500N 260W 500N 240W 500N 220W 500N 200W	\begin{cases} 9 11 12 9 9 9	49 56 28 22 27	256 173 102 109 99	2.5 7.9 3.9 2.0 2.3	9 14 8 8	5 10 5 5 5	
500N 180W 500N 140W 500N 140W 500N 120W 500N 100W	7 12 76 78 34	34 53 37 72 53	111 164 356 - 507 - 335 .	1.3 13.2 1.1 1.7 1.2	8 12 23 34 21	50 55 55 55	
500N BOW 500N 60W 500N 40W 500N 20W 500N 0E	(59 24 26 20 41	28 125 16 19 27	242 - 449 - 114 153 139	1.3 .4 .3	17 34 10 9	ທະນະຄອ	
500N 20E 500N 40E 500N 60E 500N 80E 500N 100E	21 56 26 31 26	37 33 21 34 25	130 145 181 160 114	.7 .6 1.2	14 41 9 20 16	ម្រាមមាន	
500N 120E 500N 140E 500N 160E 500N 180E 500N 200E	18 60 41 29 30	46 31 38 27 48	246 242 159 157 272	.4 1.7 1.3 .9	24 26 18 9	សសសសស	
500N 220E 500N 240E 500N 260E 500N 280E 500N 300E	38 44 17 31 20	35 23 17 28 24	169 110 114 195 236	1.0 1.1 .3 .7	38 17 12 19 24	พพพพพ	
500N 320E 500N 340E 500N 360E 500N 380E 500N 400E	26 33 48 28 36	23 20 31 26 24	207 123 122 113 180	.7 .4 .4 .4	14 21 13 12 16	ยเลเลเล	
500N 420E 500N 440E STD A-1/AU-0.5	32 29 30	27 21 38	159 132 181	.3	14 13 9	5 5 515	

1.

		EROS	RESOURCES	FILE #	83-2173			PAGE#	3
SAMPL	E		CU	PB ppm	ZN PPm	AG ppm	AS ppm	Au*	
500N 500N 500N	460E 480E 500E 520E 440W		22 29 27 20 7	26 23 48 26 24	131 114 150 173 85	.3 .6 .3	8 11 13 9	<u> </u>	
400N 400N 400N	420k 400k 380k 360k 340k))	10 16 10 10	28 40 31 34 65	107 108 120 125 267	.7 1.4 .9 .5	7 6 9 9	១ភភភភ	
400N 400N 400N	320W 300W 280W 260W 240W	1	7 7 13 15 7 22	88 41 40 77 33	226 126 167 317 654	1.3 .6 .6 .2	11 12 14 19 13	55555	
400N 400N 400N	220k 200k 180k 160k 140k) J	23 32 27 30 29	25 31 39 43 35	238 240 247 308 302	.2 .8 .8	38 265 45 20 23	នាសនាសនា	
400N 400N 400N	120W 100W 80W 60W 40W		31 16 18 31 21	27 24 74 789 60	524 275 334 - 1522 - 296	.5 .4 .5 4.0	17 8 13 1485 -	5 5 135 -	
400N 400N 400N	20W 0E 20E 40E 60E		27 31 69 32 42	38 42 31 24 79	112 195 138 157 - 314 -	.9 .1 .1	204 41 15 7 45	ទទទទទ	
400N 400N 400N	80E 100E 120E 140E 100E		73 38 38 35 42	33 26 28 25 26	166 120 168 164 189	.2	25 17 18 23 31	ธธธธธธ	
400N 400N STD A			28 39 30	26 31 39	220 162 183	.3 .9 .3	20 23 10	5 5 525	

٧..

Ĺ

	EROS	RESOURCES	FILE #	83-2173			PAGE# 4
SAMPLE		CU	PB PPm	ZN	AG ppm	AS ppm	Au*
400N 220 400N 240 400N 260 400N 280 400N 300	OE OE	28 42 29 26 18	24 25 19 21 16	133 109 103 122 121	.4	10 8 5 4 2	ទទទទ
400N 320 400N 340 400N 360 400N 380 400N 400	OE OE	14 14 12 20 17	16 14 17 21 18	124 99 75 97 105	.1 .3 .4 .7 .3	5 13 20 17	ธธธธธ
400N 420 400N 440 400N 460 400N 480 400N 500	DE DE	31 21 12 19 21	21 20 24 18 22	89 105 110 78 130	.1 .4 .4 .4	10 11 25 14 12	នភភភភភ
400N 520 400N 540 400N 560 400N 580 400N 600	DE DE	20 11 24 21 23	38 21 31 29 72	133 84 110 153 218	.1 .3 .4 .4	12 8 12 9	តមាមមា
400N 620 400N 640 400N 660 400N 680 400N 700	DE DE	31 10 20 9 13	43 34 30 27 36	203 239 198 152 168	.9 .6 .7 .6	11 20 13 13 36	មម្
300N 380 300N 340 300N 340 300N 320 300N 300	OM OM OM	15 32 31 23 29	23 34 42 29 36	100 225 161 122 178	.4 .7 1.1 .8 .5	11 8 32 19 20	ភទទទភ
300N 280 300N 240 300N 240 300N 220 300N 200	OW OW	16 23 21 37 62	22 25 26 24 28	195 128 182 239 297	.2 .4 .5 .4	25 34 31 68 14	មានមាន
300N 180 300N 160 STD A-1		24 28 30	21 23 39	191 263 183	.3	22 14 11	5 500

. 9

		EROS	RESOURCES	FILE #	83-2173			PAGE#	5
SAMP	LE		CU	PB ppm	ZN ppm	AG ppm	AS ppm	Au*	
300N 300N 300N 300N	1200 1000 80W	A	38 28 29 15 27	21 36 22 24 27	116 266 181 170 165	1.0 .8 .6 .2	22 60 113 7	5 10 5 5 5	
300N 300N 300N 300N	20W 0W 20E		31 28 27 23 16	35 97 18 28 22	148 295 104 89 74	.935.8	19 45 13 12 7	10 5 5 5	
300N 300N 300N 300N	100E	=	17 16 12 17 30	18 30 26 58 52	42 163 118 529 -	.7 .4 .4 .3	3 8 8 13 20	សមសមស	
300N 300N 300N 300N	180E 200E 220E		34 30 17 17 25	30 32 25 42 29	532 - 423 145 146 153	.7 .3 .4 .3	36 23 18 12 8	សម្រងមួន	
300N 300N 300N 200N 200N	280E		45 17 27 18 20	49 33 30 36 26	229 92 122 119 103	.55.87	10 8 9 38	សមាធមាធ	
200N 200N 200N 200N 200N	340k 320k 300k	2	18 21 22 35 32	38 34 24 27 39	162 125 102 107 123	.7652	40 37 26 46 109	សម្រម្	
200N 200N 200N 200N 200N		4	33 41 46 34 39	44 53 24 22 20	140 163 142 196 113	- 2.0 - 3	30 48 69 31 56	10 5 5 5	
	140W		26 52 30	37 32 38	134 200 182	1.0	11 23 9	5 5 520	

		EROS	RESOURCES	FILE #	83-2173			PAGE# 6
SAMPL	E		CU CU	PB ppm	ZN ppm	AG ppm	AS ppm	Au* ppb
200N 200N	1200 1000 80W 60W 40W	3	23 19 10 -29 18	28 33 41 	158 176 189 341 127	.5 .2 2.0—	15 16 20 39 23	อเลยเลย
200N 200N 200N	20W 0E 20E 40E 60E		C. 29 30 27 15 21	1029 127 42 27 29	- 480 ~ 285 168 173 139	9.4 - .8 1.0 .5	50 36 24 17 15	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
200N 200N 200N	BOE 1008 1208 1408 1408		21 19 40 13 19	49 20 1973 39 50	143 101 - 974 - 228 150	21.1- .3 .7	28 10 61 18 13	។ មាមមាមមា
200N 200N 200N	1806 2006 2206 2406 2406		16 16 12 30 16	21 25 17 25 17	113 135 116 173 106		16 16 9 18	ទាមមាម
200N 200N 200N	2808 3008 3208 3408 3408		- 13 23 23 21 28	18 144 19 23 25	96 243 128 217 167	3.8 .4 .4	93 10 10	1
200N 200N 100N	3808 4008 4208 5000 4800		18 44 36 19 22	33 33 30 320 42	157 137 160 454 175	.6 .2 3.7	7 12 11 12 25	ភពភព ភពភាព ភពភាព
100N 100N 100N	4400 4400 4200 4000 3800	1	16 15 6 9 13	25 39 34 125 130	99 177 87 328 329	.3 .5 .3 1.1 1.2	22 16 8 14 34	សម្រង
100N 100N STD A	340V	1	22 13 29	122 30 41	253 110 182	1.2	28 30 11	5 5 490

*

EROS	RESOURCES	FILE # 8	3-2173			PAGE#	7
SAMPLE	ppm CU	PB ppm	ZN	AG ppm	AS ppm	Au*	
100N 320W 100N 300W 100N 280W 100N 260W 100N 240W	39 71 55 28 37	1361 ° 5897 ° 8892 ~ 911 ~ 1118 ~	452 - 1593 - 693 - 377 - 369 _	9.7 36.5 - 48.1 - 6.3 -	54 28 12 29 34	10 10 20 5 5	
100N 220W 100N 200W 100N 180W 100N 160W 100N 140W	55 21 26 13 21	2382 155 - 75 50 62	581 - 396 - 224 148 232	19.1 1.3 1.0 .4 .6	38 20 34 10 18	១២១២២	
100N 120W 100N 100W 100N 80W 100N 60W 100N 40W	11 9 12 18 12	121 134 68 59 74	139 122 142 118 115	.22	27 23 14 14 15	ភសសសស	
100N 20W 100N 0W 100N 20E 100N 40E 100N 60E	18 12 15 24 56	35 56 56 116 164	82 135 149 195 207	.1238 .7	17 12 9 26 13	5555 10	
100N 80E 100N 100E 100N 120E 100N 140E 100N 160E	34 38 63 39 140	226 225 615 884 859 -	232 232 787 - 343 - 763 -	1.2 1.8 3.8 .6 3.0	19 12 24 16 14	15 20 40 10 5	
100N 180E 100N 200E STD A-1/AU-0.	5 20 62 30	95 816 - 39	241 1491 182	.3 5.9 .3	10 62 10	5 10 510	

-1

.

EROS RES	DURCES FI	LE #	83-2173			PAGE# 8
SAMPLE	CU	PB ppm	ZN ppm	AG ppm	AS ppm	Au k
700N 0E 700N 20E 700N 40E 700N 60E 700N 80E	9 6 15 14 24	87 34 59 67 116	113 117 227 191 162	1.1 .4 1.1 1.3	22 11 16 20	សសមា
700N 100E 700N 120E 700N 140E 700N 160E 700N 180E	17 21 24 36 27	22 29 20 27 33	120 101 94 117 89	.38 .7 .8	9 20 10 14 12	55555 155
700N 200E 700N 220E 700N 240E 700N 260E 700N 280E	31 27 30 31 20	21 21 18 22 26	100 109 99 121 156	.23 .4 .3	8 5 3 6 11	រម្គមម្គ
700N 300E 700N 320E 700N 340E 700N 360E 700N 380E	29 63 60 43 40	33 33 38 50 34	229 177 264 275 144	.6 .7 .3 .7	14 19 22 20 9	មានមាន
700N 400E 700N 420E 700N 440E 700N 460E 700N 480E	42 51 23 41 30	25 32 71 38 23	148 192 122 135 107	.4 .6 .2 .1 .2	7 10 11 8 7	១០០០០
700N 500E 700N 520E 700N 540E 700N 560E 700N 580E	44 31 39 32 36	32 25 42 19 27	154 124 144 101 105	1.3 .4 .2 .6	21 6 11 10 10	មានមាន
700N 600E STD A-1/AU-0.5	39 30	42 40	127 186	:1/3	12	5 530

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124 DATE RECEIVED NOV 3 1983

DATE REPORTS MAILED NOV 8/83

GEOCHEMICAL ASSAY CERTIFICATE

A .500 6M SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HMO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : PB, AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -80 MESH.

ASSAYER _ No MELE DEAN TOYE, CERTIFIED B.C. ASSAYER

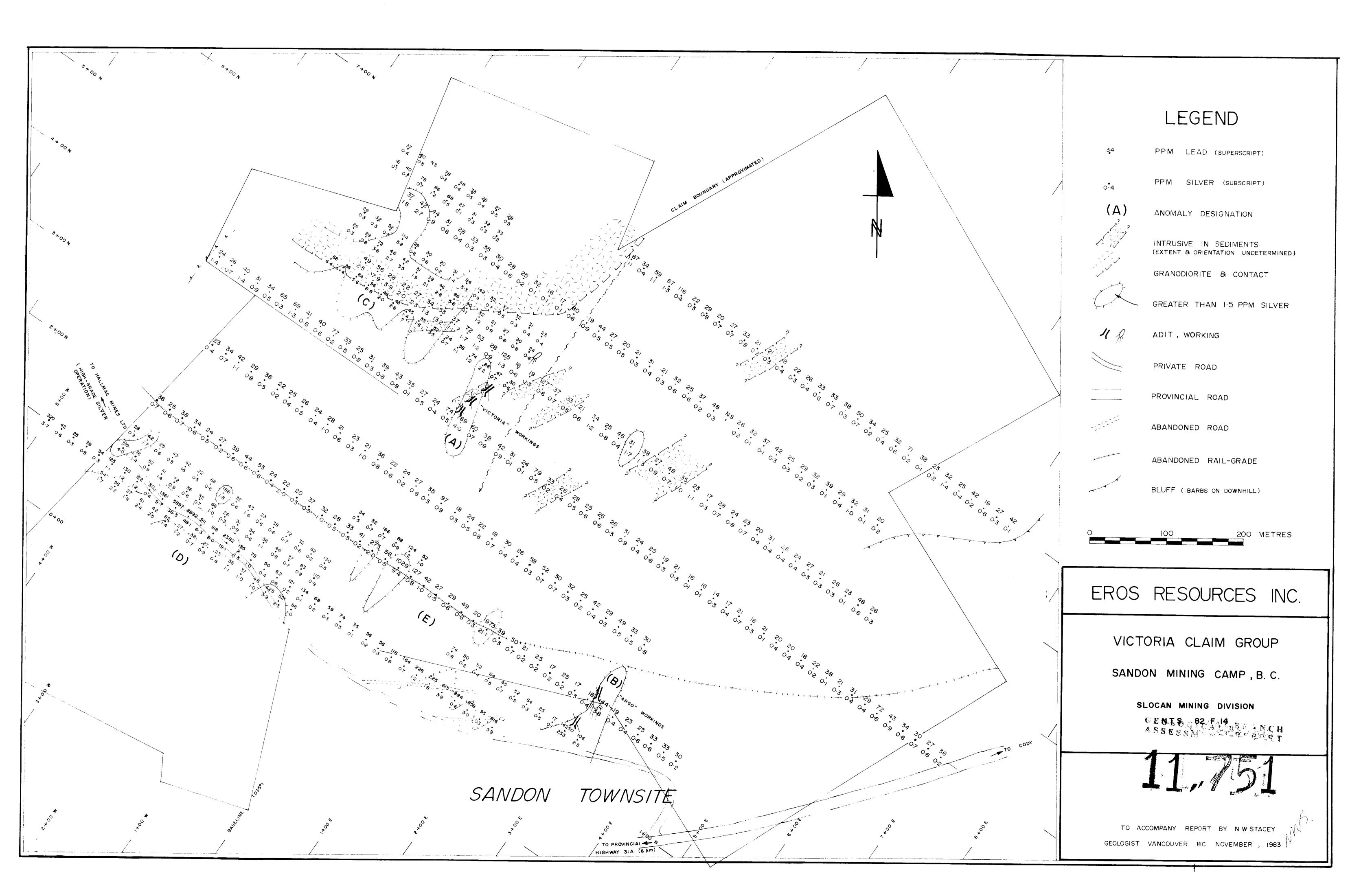
EROS RESOURCES PROJECT # VICTORIA FILE # 83-2821 PAGE# 1

SAMPLE	PB PPM	AG PPM
650N 320W	37	. 4
650N 300W	40	.5
650N 260W	78	.3
650N 240W	48	.6
650N 220W	33	.5
650N 200W	26	. 4
650N 180W	27	.5
650N 160W	28	.5
625N 320W	16	. 1
625N 300W	49	.7
625N 280W	78	.7
625N 260W	66	1.2
625N 240W	68	.5
625N 220W	27	. 1
625N 200W	31	.3
625N 180W	32	.3
625N 160W	33	.2
550N 320W	29	.3
550N 300W	32	.7
550N 280W	52	.7
550N 260W	114	5.8
550N 240W	29	- 6
550N 220W	30	.8
550N 200W	20	.2
550N 180W	31	1.4
550N 160W	94	5.3
550N 140W	142	.9
550N 120W	32	. 7
550N 100W	37	.5
550N BOW	32	.3
550N 60W	31	. 4
550N 40W	23	. 4
525N 320W	26	.3
525N 300W	29	.8
525N 280W	72	3.8
525N 260W	46	2.7

		-	W-1	-
P	~ -	-	-	
-		-	32	,

SAMPLE	PB	AG
meson resemble 14	PPM	PPM
525N 240W	42	3.5
525N 220W	31	1.9
525N 200W	38	2.1
525N 180W	46	2.8
	1, 7 - T	5.6
525N 160W	86	5.6
525N 140W	40	1.1
525N 120W	32	1.2
525N 100W	21	. 9
525N BOW	27	.6
525N 60W	30	.8
525N 40W	24	.6
475N 320W	68	6.4
475N 300W	36	1.4
475N 280W	64	5.6
475N 260W	96	6.6
475N 240W	48	2.0
475N 220W	43	2.8
475N 200W	45	1.4
475N 180W	35	1.6
475N 160W .	52	3.5
475N 140W	24	.7
475N 120W	58	1.1
475N 100W	74	1.2
475N BOW	86	2.2
	47	.7
475N 60W	4/	. /
475N 40W	30	.6
225N 100W	34	.5
225N 80W	52	. 7
225N 60W	186	.7
225N 40W	88	.9
225N 20W	124	1.2
225N OW	52	1.0
	28	.9
150N 380W	42	1.7
150N 360W	25	.6
150N 340W	43	.5
150N 320W	42	1.5

EROS RESOURCES	PROJECT # VICTORIA	FILE # 83-2821	PAGE# 3


SAMPLE	PB PPM	AG PPM
150N 300W	22	.5
150N 280W	68	.6
150N 260W	168	1.8
150N 240W	32	.6
150N 220W	43	1.6
150N 200W	23	.6
150N 180W	38	.6
150N 160W	72	. 7
150N 140W	32	. 6
150N 120W	62	.2
150N 100W	130	.5
150N 100E	74	.6
150N 120E	50	.2
150N 140E	52	. 4
150N 160E	64	.5
150N 180E	45	. 7
150N 200E	52	.5
150N 220E	64	.3
150N 240E	25	.5
150N 260E	17	. 1
150N 280E	14250	253.0
150N 300E	106	2.5
150N 320E	37	. 9
150N 340E	54	.5
150N 360E	140	2.0
150N 380E	460	2.5
150N 400E	196	2.4
125N 400W	310	4.0
125N 380W	76	1.4
125N 360W	52	. 9
125N 340W	41	1.4
125N 320W	72	.9
125N 300W	56	.6
125N 280W	32	.7
125N 260W	68	1.0
125N 240W	26	.3
125N 220W	31	. 9

 $\langle \cdot \rangle$

.

750

EROS RESOURCES	PROJECT #	VICTORIA	FILE	# 83-2821	PAGE
SAMP	LE		PB	AG	E .
370,000	-		PPM	PPM	
125N	200W		34	.6	
125N	180W		36	1.1	
125N	160W		46	.8	
	140W		37	.7	
	120W		83	.8	
125N	100W		110	.9	
75N			54	1.7	
75N :			56	2.2	
75N			27	1.8	
75N			61	2.4	
75N	320W		42	2.5	
75N			62	1.4	
75N			27	1.2	
75N			38	. 7	
75N			27	.9	
75N	220W		25	.8	
75N			38	1.1	
75N			37	1.0	
75N			46	1.0	
75N			425	3.9	
75N	120W		52	2.5	
75N	TO CONTROL OF THE PARTY OF THE		86	1.0	

