83-#728 - 11760

ASSESSMENT REPORT

GEOCHEMCIAL SURVEY

ON THE

SHERPA 1

SHERPA 2

MINERAL CLAIMS

N.T.S. 82L/10E Lat. 50⁰38'N, Long. 118⁰40'W

VERNON MINING DIVISION

BY

DOUGLAS BRYAN

NORANDA EXPLORATION COMPANY, LIMITED (No Personal Liability)

> oct. 1 - OCTEOLOGICAL BRANCH ASSESSMENT REPORT

11,760

ABSTRACT

Two hundred and forty-three soil samples were collected from a reconnaissance grid covering the SHERPA 1 and 2 mineral claims. All samples were analysed for copper, lead, zinc, silver and molybdenum. Several coincident lead and zinc soil geochemical anomalies have been outlined. Further geochemical sampling combined with detailed geological surveys are warranted.

TABLE OF CONTENTS

		PAGE
	ABSTRACT	
I	INTRODUCTION	1
2	LOCATION AND ACCESS	1
3	TOPOGRAPHY	2
4	CLAIMS INFORMATION	2
5	GEOCHEMICAL SURVEY	2-6
	5.1 CONTROL GRID	2&3
	5.2 SOIL GEOCHEMICAL SAMPLING	3
	5.3 LABORATORY ANALYTICAL METHODS	3&4
	5.4 PRESENTATION OF RESULTS	4
	5.5 DISCUSSION OF RESULTS	4
	5.5.1 MOLYBDENUM	4
	5.5.2 SILVER	4
	5.5.3 COPPER	5
	5.5.4 LEAD	5&6
	5.5.5 ZINC	6
6	SUMMARY	7
7	RECOMMENDATIONS	7
	APPENDIX 1 SOIL GEOCHEMICAL RESULTS	
	APPENDIX 2 LIST OF PERSONNEL, STATEMENT OF C	COSTS
	APPENDIX 3 STATEMENT OF QUALIFICATIONS	
	MAPS APPENDED	
1	GEOCHEMISTRY - Pb in SOILS SCALE 1:10,000	
2	GEOCHEMISTRY - Zn in SOILS SCALE 1:10,000	


I INTRODUCTION

The SHERPA.1 and SHERPA 2 mineral claims comprising 40 units, were staked during late 1982 by John Leask. The claims were staked to cover an area where a number of high grade sphalerite-galena-pyrrhotite-pyrite boulders have been discovered. The property lies within the Shuswap Metamorphic Complex and appears to be underlain predominantly by hornblende-biotite-quartz schist.

In October of 1983 Noranda Exploration Company, Limited (No Personal Liability) optioned the property from John Leask. Subsequent to this a grid was established over the SHERPA 1 and 2 claims. Two hundred and forty-three soil samples, collected on the grid were analysed for copper, lead, zinc, silver and molybdenum.

2 LOCATION AND ACCESS

The SHERPA 1-2 mineral claims are centered on longitude 118°40'W and latitude 50°38'N within N.T.S. map sheet 82L/10E. The claims are situated on the east side of Mabel Lake, immediately north of Tsuius Creek, approximately 50km. by road northeast of Lumby, B.C. The Mabel Lake road, from Lumby, runs through the west-central portions of both the SHERPA 1 and SHERPA 2 claims.

3 TOPOGRAPHY

The SHERPA claims flank the western side of Mount Mabel (2137m.). Topography on the claims is moderately rugged with a constant slope to the east, towards Mabel Lake. Maximum relief on the claim group is about 750m.

4 CLAIMS INFORMATION

The SHERPA 1 and 2 mineral claims recorded by John Leask, Apt. 402 - 4200 Mayberry St., Burnaby, B.C. have been optioned by Noranda Exploration Company, Limited (No Personal Liability).

CLAIM NAME	RECORD NUMBER	RECORD DATE
SHERPA 1	1304	Nov. 4, 1982
SHERPA 2	1305	Nov. 4, 1982

5 GEOCHEMICAL SURVEY

5.1 CONTROL GRID

During October, 1983 a control grid was established on the SHERPA claims. A north-south baseline extends 3.6 km. from the southern end of the SHERPA l claim to a point on Mabel Lake. At this point the baseline was shifted 700m. east and then extended north a further 1.4 km., to the northern border of the SHERPA 2 claim. Stations were located at 50m. intervals along the baseline. Winglines, running east-west, were established at 200m. intervals along the baseline.

5.1 Control Grid Cont'

Stations were established at 25m. intervals along the winglines. All lines were established using metric chains and compass.

5.2 SOIL GEOCHEMICAL SAMPLING

Two hundred and forty-three samples, collected from the grid were analysed for ppm copper, lead, zinc, silver and molybdenum in the Noranda Exploration Company, Limited laboratory located at 1050 Davie Street, Vancouver, B.C.

Soil samples, taken at 50m. intervals on winglines and 50m. intervals on the baseline, where possible, were obtained by digging holes with a maddock to depths between 10 and 30 cm. where the visible B horizon, when ever possible, was exposed. The samples were placed in "Hi Wet Strength Kraft 3½" X 6 1/8" Open End" envelopes and the grid co-ordinate was marked on the envelope with an idelible felt pen.

5.3 LABORATORY ANALYTICAL METHODS

Soil samples were placed in a drying cabinet for a period of 24 to 48 hours. The sample material is then screened and sifted to obtain a -80 mesh fraction.

The determination procedure for total copper, zinc, lead, silver and molybdenum is as follows:

-3-

5.3 Laboratory Analytical Methods Cont'

0.200 grams of -80 mesh material is digested in 2 ml. of HCl 0₄ and 0.5 ml. of HNO_3 for approximately 4 hours. Following digestion, each sample is diluted to 5 ml. with demineralized H₂O. A Varian Techtron Model AA-5 Atomic Absorption Spectrophotometer was used to determine the parts per million, copper, lead, zinc, silver and molybdenum content in each sample.

The theory of Atomic Absorption Spectrophotometer is fully outlined in the literature and will not be described in this report.

5.4 PRESENTATION OF RESULTS

Geochemical results for the SHERPA claims soil samples are found in Appendix 1. Grid maps with results for lead zinc are appended to this report. Results for copper, silver and molybdenum generally fall within background levels and are not presented in map form.

5.5 DISCUSSION OF RESULTS

5.5.1 MOLYBDENUM

The majority of molybdenum analyses are less than 2 ppm. No anomalous trends were defined.

5.5.2 SILVER

Silver values are uniformly low ranging between 0.2 to 0.4 ppm. No anomalous zones were outlined.

5.5 Discussion of Results Cont'

5.5.3 COPPER

Copper values generally range between 18 and 50 ppm. with sporadic spot high values. No anomalous trends were defined.

5.5.4 LEAD

The mean value of the 243 samples from the SHERPA grid was 11 ppm. Using this figure the following arbitrary divisions were established:

3rd order anomaly 30 - 47 ppm 2nd order anomaly 49 - 84 ppm 1st order anomaly >85 ppm

Due to the sporadic nature of the readings contour intervals of 30 and 50 ppm. were used to outline any anomalous trends. An anomalous zone (Anomaly 1) as defined by the 30 ppm. contour, extends grid southwest from station 13700N/11000E to station 13150N/10000E, located on the shore to Mabel Lake. The anomalous zone has a width of 550m. along its western end and a minimum strike length of 1.30 km. Within this broad anomaly two stronger (>50 ppm. Pb) anomalies were outlined, the first (Anomaly 2) between 13600N/10800E and 13600N/10900E with the second anomaly (Anomaly 3) between 13000N/10250E and 13000N/10400E. Spot highs within this second anomaly reach 620 ppm. Pb.

A second anomalous trend (Anomaly 4) is located at the east end of L13600N beginning at station 13600N/11200E where a value of 88 ppm. Pb was recorded.

-5-

5.5 Discussion of Results 5.5.4 Lead Cont'

This anomaly extends a further 100m. upslope and has not yet been fully defined.

5.5.5 ZINC

The mean value for zinc was 223 ppm. From this figure the following divisions were established:

3rd order anomaly 450 - 725 ppm 2nd order anomaly 725 - 975 ppm 1st order anomaly >975 ppm

A 450 ppm. Zn contour was used to outline the anomalous trends. There is a good correlation between the

anomalous zinc values and anomalous lead values on the SHERPA grid. There is a broad zinc anomaly (Anomaly 1) (>450 ppm.) extending southwest from 14000N/10950E to 13150N/100000E. At its western end the anomalous zone has a width of 600m. and a length of 1.3 km. Within this broad zone lie 2 stronger anomalies with widths in the order of 100 to 150m. Both anomalies (Anomalies 2,3) are coincident with strong lead in soil anomalies. Zinc values within these anomalous zones ranges between 550 and 2000 ppm. Zn.

Anomaly 4 located on the east end of L13600N is coincident with a strong lead anomaly. The extent of this anomalous trend has not been fully defined.

6 SUMMARY

A coincident Pb-Zn soil anomaly (>30 ppm. Pb, >450 ppm. Zn) with widths up to 600m. and a length in the order of 1.3 km. has been outlined on the northern end of the SHERPA grid. Within this broad zone two smaller, stronger anomalies have been outlined. A second zone with high lead and zinc values has been located grid east of the broad anomalous trend. This second zone, extending upslope off the present grid, has not been fully defined.

7 RECOMMENDATIONS

Further geochemical sampling is warranted between lines 12500N to 14500N and 10000E to 12000E. East-west wingline should be established at 100m. intervals with samples taken every 50m. All lines should be extended to 12000E to cover the anomalous zone located at the end of line 13600N. Detailed mapping and prospecting of the grid, particularly between 12500N and 14500N is warranted.

APPENDIX I

GEOCHEMICAL RESULTS

	TION _ 566C RIAL _ 5/LT - 50/L		PROJECT						er.	13/ 18	3	- KF	•0	
AIE	HIAL Zn A	t A A	to in a	2-2-2-			DATE	E ANALYSE	0	1-1-1-	ANALY	51	•	
EMA	RKS _ Cu 2n A	e Here	- 1/10		1									-
-		× 1/ 1/ - 4												
T.T. NO.	SAMPLE NO.	Cu	zu	do	B	1971-								
32	100E - 128 N	18	82	10	0.2	* 2								
3	128.50	24	190	16	0.2	1 2		b						
۲	129	12	100	10	0.2	• %								
5	129.50	M	110	14	0.2	- %								_
6	130	20	94	10	0.2	* 2								-
,	130.50	12	96	6	0.2	* 2								
r	131	14	370	10	0.2	12						1		2
1	131.50	M	1400	36	0.2	* 2								
40	132	30	380	2	0.2	8								
1	132.50	16	230	6	0.2	* 2	1 P				-			
*	133	18	650	18	0.2	- 2								
1	133.50	22	1400	7:2	0.4	- 2								
۴	134	10	200	66	0.2	12								
r	134.50	38	260	6	. 2	* 2		1						
*	135	34	310	8	0 7	* 7								
>	135.50	46	200	2	0.2	- 2								
P	100 E - 136 N	48	110	2	0.2	* 7								
,	125 Nº - 986	30	62	6	0.4	* 7								_
se	WSOE	24	100	R	0.2	- 2								
1	97	8	140	12	e. 7	* 7			_			- Nation		_
1	17.50	10'	140	8	0.2	* 7	_			-	-			
\$3	125N-100E	8	94	10	0.2	* 2								

P

CA	NON SEBC		- PHOJECI		COLLEG	JUH	_ UAIE	HECEIVEL	0-0-0-	1411		6F	_ SHEET_	
TE	RIAL SILT- Soil	0.1					DATE	ANALYSE	D	1 31 /2	2 ANALY	ST_/*F	-	
MA	aks Cu Za Al	1 12 120	~ 10	2-7										
_							_							
.T. O.	SAMPLE NO.	Cu	え	26	Ro	Nie.								
*	150.0-108E	16.	150	8	0.2	< 2								
9		12	110	4	0.2	- 2								
	CHECK N'L-4	26	66	26	0.4	10						•		
1	150 Nº 159E	12	120	4	0.2	< 2								
-	109.50	16	110	6	0. 2	* 12								
,	110	10	140	4	0.2	* 2					_			
۲	110.50	16	80	4		* 2								
s	111	14	130	2	0.2	* 2			-					
۶	111.50	12	88	2	0.2	• 2			_					
,	112 -	12	220	4	1.0	- 2	-					-		
P	112.50	12	120	2	0.6	12								
,	113	12	260	4	0.6	* 2								
10	113.50	14	280	10	0.4	* 2						-		
	15°N-114E	110	200	8	1.0	· 7								
1	107E- 136N	10	350	14	0.2	. 2								
5	136.50	12	320	18	0.2	• 2			1					
2	137	32	550	44	0.2	2								
r	137.50	26	420	26	• 7	12						1		
6	138	14	800	34	0.2	- 2				-				
,	138.50	14	440	16	e. 2	• 2							-	
8	139	6	350	12	0.2	* 2						1	-	
12	107E - 137.500	20	210	20	0.2	42				1000	1			

	NORANDA	GEOCHEM	LABORATORY
--	---------	---------	------------

UCA	TION SEGC		PROJECT	1-31-1	COLLE	CTOR 1.5	DATE P	RECEIVED	000	11110	CODE	CA	SHEET	
ATE	RIAL SILT - SOIL	1 1	1	-			_ DATE A	ANALYSED		131 185	ANALYS	st		_
EMA	RKS Cre 2- Ab	7 1.30	- ~											
-									1977					
T.T. NO.	SAMPLE NO.	Cu	えっ	rb	13	10								
76	13010- NGE	12	130	8	0.2	* 2					-			
2	106.50	26	120	8	0.2	• 7								
8	130N-107E	12	230	6	0.2	* 2								
9	136N-105E	12	320	12	02	* %								
ro	105.50	8	1300	12	0.2	* 2								
1	106	24	450	18	0.2	* 2								
2	106.50	12	450	26	1.2	- 2								
,	107	10	380	14	0.2	* 2								
4	107.50	28	600	46	0.2	2								
r	108	14	250	66	0.2	2								
6	108.50	14	530	40	0.2	* 2	_				_			
>	107	16	450	82	0. 2	- 2								
8	107.50	10	410	34	07	* 2								
>	110	14	340	30	0.2	* 7								
~	110.50	12	650	32	c. 7	* 7								_
,	111	16	170	18	02	-2								
2	111.50	r	200	10	0.2	- 2								
د	//2	14	850	55	c. 2	* 2								
۲	112.50	12	2000	20	0.2	• 2		*						
6	136 N- 113E	20	1300	120	0.2	* 7								
6	150N-107E	10	92	6.	03	- 7								
97	r7.50	5	120	4	0.2	* 2								

ATER	ION 563C						DATE	ANALYSE	our	131 10	3 ANALY	ST_//	
LAG	iks Cu za Ab	A Mie	5 00		1		_ 0412	AAALIGEE		· · · · · ·	rates		
MAP	IKS	.)											
							1						
.T. O.	SAMPLE NO.	6.4	ZH	ref.	B	1.20							
20	107E-140N	20	160	6	0.2	4 2							
,	140.50	14	250	6	r. 2	* *					-		
2	141	14	220	8	0.2	* *						*	
,	141.50	10	210	34	0.2	* 7							
*	142	12	310	8	0.2	- 21							
0	142.50	18	270	10	0.2	- 2							
	143	14	28	6	0.2	* 2							
,	143.50	14	140	6	0.2	* -2							
1	144	16	120	2	0.2	- 2							
,	144.50	18	140	2	r.2	- 2							
to	145	12	130	4	0.2	* 2							
,	145.50	14	120	4	5.2	* ス							
-	146	34	140	2	0.2	* 7			E				
1	146.50	16	220	4	0.2	* 2							
~	147	16	20	6	c. 2	. 2			-				
-	147.50	20	26	4	0.2	* *							
6	148	20	\$2	2	02	* 7							
,	148.50	15	230	10	c. 7	* 2							
1	149	10	130	4	0.2	- 2							
5	147.50	5	130	6	c. 7	* *							
Y	107E- 150N	8	76	4	0. 7	* 2				1			
	145 N= 105 E	14	46	2	r. 2	* 2					1		T

	- (NC	ORANI	DA GE	OCHEM	_ABORATORY	5
1004	TION SERC		PROJECT	rest-	COLLE	TOR D5	DATE RECEIVED OCT 124 103	TODE 1510-152 SHEET 6
MATE	RIAL _ 5.45- 5216		- FROMEOR	1			DATE ANALYSED TOT / 31 /03	MALVET KP
MAIE	RKS _ Cu 2 mb	A Ma		20			DATE ANALTSED	
REMA	HK5	- 2						
_		-						
T.T. NO.	SAMPLE NO.	Cu	24	16	3	N:c		
12	1451 - 1555C	16.	120	2	0.2	* 2		
- ,	106	12	150	4	0.2	- 2		
۳	pl.se	8	160	6	0. %	* 7		
r	107	12	120	4	0.2	• 2		
6	107.50	14	110	6	0.2	* 7		
>	108	14	25	2	c. 2	* 7		
8	101:50	15	66	2	0.2	* 7		
5	145N- 107E	10	44	2	c. 2	~ 7		
150	CHECK AL-4	26	66	64	0.4	5		
1	-	-	-		-	-		
1	CHECK NL-4	24	62	70	0.6	P		
2	145 N - 109502	20	82	12	0.2	* 2		
- 3	110	34	64	2	0.2	- 2		
۵	110.50	20	1023	6	c. 2	* 2		
٢	<u>iit</u>	14	250	6	0.6	* 2		
6	111.50	16	190	4	0.2	* 2		
2	112	12	120	4	0.6	* 2		
8	(12.50	12	200	6	c. 2	* 2		
9	145N - 113 E	10	100	8	c.2	* 22		
10	120 N - 478 E	14	90	8	c.4	< 2		
1	98.50	36	22	4	0.2	* 2	•	
12	120N - 99 E	16	66	8	c. 2	< 2		

	TION SEBC		PROJECT	1051-1	COLLE	CTOR D. M.	DATE	RECEIVED	Oct	124 /8	CODE E	310-05	2 SHEET	2
MATE	RIAL SILL - Soil						DATE	ANALYSED	Cct	1 31 /83	ANALYS	TRP		
REM/	RKS (eu In	Ph the M	io in p	m		_					_ ///////			•
DIESSY		0												
T.T.	SAMPLE						- 1		_	1			1 1	
NO.	NO.	Eu	Zn	1,1	Az	NLO							NTS	GCI
• 5	120 N - 99 50 E	12	22	8	0.2	42							826/10	
-4	100	32	26	6	0. 5	- 2								(*
s	100.50	12	110	6	e. 2	= 2								
6	101	14	82	6	0.4	42								
2	101.50	18	56	2	0.2	* 2								
8	102	24	86	4	0.2	- 2								
9	102.50	20	80	4	0.3	* 2								
20	(03	10	140	4	0.2	- 2								
r	103.50	18	28	4	0.2	• 2								
2	10 4	20	120	4	0.2	- 2								
3	104.50	12	160	2	c.2	* 2								
4	120 N - 105 E	22	140	6	0.6	* 2								
- 5	140 N - 105. C	14	490	12	0.4	* 2	-				1			
6	105.30	14	530	16	0.4	e 2								
7	106	12	230	12	0.4	* 2								
в	106.50	54	230	14	0.2	« 2								
y	107	18	200	6	0.4	12								-
10	107.50	22	220	10	0.2	* 2								
1	108	.36	250	16	0.2	* 2								
2	108 50	14	270	14	0.4	* 2								
3	109	30	130	4	0.2	* 2					13.91			
34	140 N - 109.50E	16	450	12	0.4	* 2								

LOCA	non SEBC NAL SIL-Soil		PROJECT	1051-1	COLLEC	CTOR D.Br		CODE 840-052 ANALYST RP	_ SHEET _	в
REMA							 			
T.T. NO.	SAMPLE NO.	Cu	Zn	P6	As	No			NTS	Gel
15	140N - 110E	16	310	18	2.4	42			8.11 10	
-6	10.00	14	80	2	0.2	- 2				
2	tų –	12	360	20	0.2	* 2				
8	111.00	14	300	24	0.4	* 2				
9	140N - 112 E	14	430	24	0.2	- 2				

OCAT	ION SEBC (R.	(GAR)	PROJECT	1051-1		TOR D.P.	DATE	RECEIVED	Oct 1	12618	CODE	831-001	_ SHEET _	(
ATER	IAL Soil						DATE	ANALYSED	Nov.	/ 1 / 83	ANALYS	T_RF		_
EMAF	KS Cu Ru Pb Az C.A.g./2 ml	, hio in	. ppm											
_	C. A g/2 ml	HCLOA - H	hvin -	- 5/	ml						-		4.12	_
T.T. NO.	SAMPLE NO.	Cu	2u	р6	Noz	ALO								
4	100 N - 100.50 F	10	82	2	0.2	< 2			-		-			
5	(01	20	24	2	0.4	• 2								
6	101.50	32	88	2	0.2	4 2								
2	(02	24	24	2	0.2	* 2								
8	102.50	36	24	2	0.2	* 2								
9	103	22	68	2	c. 2	- 2								
60	103.50	18	110	2	c.2	• 2							-	
1	104	38	20	2	0.4	* 7					-			
2	104.50	46	86	2	0.6	* 2								
3	105	34	120	4	0.6	* 2						·		
4	105.50	44	76	4	0.4	* 7								
2	106	34	86	6	0.4	* 7								
6	106.50	28	90	2	0.2	* 2								
7	107	44	140	2	0.4	* 2								
8	107.50	30	100	4	0.4	* 2								
9	108	32	160	6	0.2	< 2								
20	108 50	24	90	4	0.2	* 2								
1	109	30	180	4	0.2	• 2							-	
2	109.50	54	190	8	0.4	* 7								
2	lio	24	150	4	0.2	* 7								
4	110.50	20	110	4	0.4	* 2								
75	100N -111 E	32	130	4	0.4	* 2								A CORDE

()

LOCATION _	SEBC	PROJECT	1051-1	COLLECTOR	DBr	DATE RECEIVED	act	126	183	CODE 834-001	SUECT	2
MATERIAL _	Stil									ANALYST RF	SHEET _	
REMARKS _					_							

T.T. NO.	SAMPLE NO.	Qu	2.	P6	Aig	ALO					
16	100 N - 111.50 E	38	150	4	0.4	< 2		-			
,	112	44	140	4	0.4	* 2					-
8	112.50	18	94	2	0.2	- 2				19 10 19 19 19 19 19 19 19 19 19 19 19 19 19	-
9	113	14	110	6	0.2	* 2					-
80	113.50	18	120	4	0.2	* 2					-
1	44	18	130	2	0.2	12					 -
2	114.50	16	24	2	0.2	* 2					-
3	100 N - 115 C	26	100	4	0.4	* 2					-
4	100 G - 110 N	20	120	2	0.4	* 2	-				
c	110.50	16	120	.4	0.6	*2		-			
6	le ₁	18	130	4	0.4	* 2					
2_	111.50	46	76	2	0.2	* 2					 -
8	112	24	86	2	0.2	* 2					 -
9	(12.50	24	1000	2	0.2	* 2					-
90	1/3	18	120	4	0.4	42					 -
(113.50	24	210	4	0.2	* 2					 -
4	(14	28	82	2	0.2	- 2					
2	114.50	20	100	4	0.2	* 2			-		 -
4	115.	24	56	2	0.2	* 2					
5	115.50	18	48	2	0.2	- 7					 -
6	116	14	20	4	0.2	* 2					 T
57	1005 - 116.50N	54	110	2	0.2	4 2				 	 -

13 NORANDA GEOCHEM LABORATORY LOCATION _ DE BC PROJECT 1051-1 COLLECTOR DATE RECEIVED CC.+ 126/83 CODE 8311-001 SHEET 3 DATE ANALYSED NOV / 1 /83 ANALYST R.F. soil MATERIAL REMARKS _ T.T. SAMPLE lin Ph 24 As NO. NO. Cu 38 4 < 2 92 0.2 20 100 G - 117 N < 2 88 6 0:4 12 100 E - 117. 50N 99 0.6 10 68 100 CHECK AVL.4 24 20 < 2 6 0.4 18 100 100E - 118N 1 92 < 2 0.2 20 2 2 118.50N 4 140 0.2 - 2 3 20 IIAN 4 120 0.2 . 2 10 4 114,50N 6 20 56 13 0.2 5 120N 62 6 < 2 12 0.2 6 120.50N 64 6 14 e. 2 12 7 121N 88 8 < 7 0.2 10 8 121,50N 6 12 82 0.2 18 122N 6 24 0.2 < 2 16 122.50N 110 26 < 2 8 0.2 24 1 123N 110 < 2 0.2 10 2 12 123.50N - 2 12 78 3 8 0.2 124N 64 6 - 2 0.2 4 124.50N 20 80 0.2 * 7 5 10 10 125N 8 8 88 0. 2 × 2 6 125.50N - 7 P 16 92 0.2 7 126N - 2 86 12 12 0.2 126.50N 8 14 < 2 12 0.2 90 119 100E - 127N

MATERIA	L Soil						DA	Nou	126 /8		- RE	_ SHEET _	
EMARK	s _ Cn, Cn, Pb, A.	J, Mo in	ppm;					 	<u> </u>	ANALYS	sr <u> </u>		
	s Cn, Zn, Pb, A. 0.2y/2ml H	INO3 · HUOY	-> 5m							4			
T.T. NO.	SAMPLE NO.	G	T	Рь	A	M	Γ		Ī	•			
2 11	0N- 101.50E	20	150	4	Ag	Mu		 ┝					
	ION-LOZE	42	120	4	0.4	- 2		 					
YL	00E - 107N	44	80	2	0.2	- 2		 	-				
5	LU7.SON	34	88	2	0.4	* 2		 			-		
6	108N	30	110	4	0.4	1 2		 					
7	108.50N	20	130	4	5.4	* 2		 					
8	109N	26	22	2	0.2	* 2		 					-
	0E - 109,50N	38	76	2	8.2	* 7		 -					
O CH	IECK NL-4	26	64	68	0.6	8		11 11 11 11 11 11 11 11 11 11 11 11 11					
		-	-		-	-		 					
	IECK NL-4	24	56	66	0.4	8							
	N - 102.50E	28	22	2	0.2	<2							-
5	103E	12	140	6	0. 7	e2		-					
1	103,50E	16	190	4	0.2	< 2							-
	104E	42	54	2	0.2	< 2							-
<u> </u>	104,50E	26	150	2	0.2	< 2							
	N-105E	24	260	7	0.4	<2							
	N- 98E	44	180	2	0.2	< 2							ac s
-	98.50E	20	52	2	0.2	<2							
<u>,</u>	99E	6	46	2	0.2	< 2							
1100	100E	28	62	2	0.7	< 2							
2 115	1 - 100.50E	20	36	2	0.2	< 2		_					

()

LOCATION SEBC	PROJECT _	1051-1	COLLECTOR D. Br.	DATE RECEIVED .	Oct	126	183	CODE \$311-001	SHEET	7
MATERIAL So.1								ANALYST_RF		
REMARKS									100 E	

T.T. NO.	SAMPLE NO.	Cu	Zn	РЪ	Ay	Mo				
R	100 E - 127.50N	12	80	12	0.4	• 2				
1	100 E - 100 N	32	82	2	0.4	- 2			*	
2	100.50N	30	100	2	0.2	- 2				
3	LOIN	44	64	2	0.2	- 2				
۲	101.50N	18	120	2	0.2	* 7				
5	102N	24	100	2	0.2	* 2				
6	102.50N	30	24	2	0.2	* 2				
7	103N	22	120	2	0.4	* 2				
8	103.50N	26	64	2	0.2	* 2				
9	LOYN	32	56	2	0.2	* 2				
130	104.50N	28	50	2	0.2	* 2				
2	IUSN	30	90	4	0.4	- 2				
2	105.50N	34	90	2	0.4	- 2				
3	LOGN	22	100	4	0.4	* 2				
ч	100 E - 106.50N	50	22	2	0.4	* 2				
5	110N - 98E	20	200	6	0.4	* 2				
6	98.508	26	190	2	.2	- 2				
7	996	20	230	4	0.4	- 2				
8	99,50E	22	120	6	0.4	12				
4	JOOE	16	140	2	0.4	· 2				
140	100.505	34	170	2	0.6	< 2				
141	LION - LOIE	16	160	6	0.4	* 2		 1.		

	/		INC	JHAN	DA GE	UCHE	M LA	SORA	IUHY		5.00		(d) (
	TION <u>SEBC</u> . RIAL <u>Sui </u> RKS		PROJECT	<u>losi-1</u>					Oct Nev		_	(_ SHEET_	6
T.T. NO.	SAMPLE NO.	C4	27	РЪ	Ag	Mo							
3	LISN - JULSOE	12	44	2	0.2	42							
4	102E	26	140	2	0.2	<2							
5	102.50E	16	120	6	0-2	< 2							
6	103E	12	160	6	0.2	< 2							
7	103.50E	22	170	2	0.2	< 2							
9	99.50E	12	82	2	0.2	< 2							
9	LOYE	32	250	4	0.6	< 2							
20	104.50E	16	110	4	0-2	< 2							

< 2

-

1...

.

0.2

15N- 105E a line

94

2

8

.....

CATIO TERI MARI	ON <u>SEBC</u> IAL <u>SILT- SOIL</u> KS		PROJECT _	1051-1			DATE RECEIVED				
	SAMPLE NO.	Cn	2	pb	B	Mo			1	1	
										۲.	
											 -
ſ			11-1	2							
ŀ	105N - 98E	24	110	2	0.2	<u> </u>		<u> </u>			
-	98.50	20	74	2	0.2	. 2					
-	98.50 . 99	20 24	74 140	2 2	0.2 0.2	. 2					
-	98.50 . 99 .97.50	20 24 22	74 140 200	2 2 2	0.2 0.2 0.2	2 2 2 2 2 2					
	98.50 .99 .97.50 .00.50	20 24 22 2P	74 140 200 58	2 2 2 2 2 2 2	0.2 0.2 0.2 0.2 0.2	2 2 2 2 2 2 2 2 2 2					
<pre>c</pre> c c c v v	98.50 .99 .97.50 .00.50 .101	20 24 22 2P 38	74 140 200 \$8 84	2 2 2 2 2 7 7 7	0.2 0.2 0.2 0.2 0.2 0.2	2 2 2 2 2 2 2 2 2 2 2 2					
<pre>c</pre> c	98.50 .99 .97.50 .00.50 .101 .01 .01	20 24 22 2P 38 34	74 140 200 \$8 84 140	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.2 0.2 0.2 0.2 0.2 0.2 0.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
C 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.50 .99 .97.50 .00.50 .101 .01 .01 .01 .01 .01 .01 .01 .02.50	20 24 22 28 38 34 8	74 140 200 58 84 140 120	2 2 2 2 2 2 2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
r 6 5 7 7 7 7 7	98.50 99 97.50 100.50 101 101 101 101 102.50 103	20 24 22 28 38 34 8 22	74 140 200 58 84 140 120 64	2 2 2 2 2 2 2 2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
F 6 33 X 7 20 1 1	98.50 .99 .97.50 .100.50 .101 .101 .101 .101 .101 .50 .103.50	20 24 22 28 38 38 34 8 22 22	74 140 200 58 84 140 120 64 120	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
· · · · · ·	98.50 99 97.50 100.50 101 101 101 101 102.50 103	20 24 22 28 38 34 8 22	74 140 200 58 84 140 120 64	2 2 2 2 2 2 2 2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					

	RIAL SILT - Serl		to intro particulation				DATE	HECEIVED			_ CODE		_ SHEET _	- /
							DATE	ANALYSED	1.02	18 /8:	ANALYS	RF_		
IAN	RKS	·											_	
-						the second								1
т. О.	SAMPLE NO.	Cu	24	106	B	1:0							· · · · · · · · · · · · · · · · · · ·	
2	105N - 105.50E 102 105N - 106E	22	140	4	0.2	< 2	1	1.575						
1	1-2	14	150	2	0.2	. 2								-
9	105N-100E	22	200	4	0.2	z 2								
-	CHECK NL-4	26	64	74	0.4	10								
_	105N- 106.50	26	110	2	0.2	• 2						×		
2	105N-107E	30	150	2	0,2	2								
+								•				0.00		
+								<u> </u>						
+							-							
1		-												
+							A							
+							-							
1														
1														
T		-												
T														
1														-
				-			-						<u></u>	
T		-												

APPENDIX 2

LIST OF PERSONNEL, STATEMENT OF COSTS

LIST OF PERSONNEL

NAME

POSITION

FIELD SUPERVISOR

IVOR SAUNDERS GRAHAM DAVIDSON RON SCHAFER LEO LORANGER

5

GEOLOGIST GEOLOGICAL ASSISTANT CONTRACTOR DATES WORKED

OCT. 15-21 OCT. 15-19, 21 OCT. 28,29,30 OCT. 11-14

NORANDA_EXPLORATION_COMPANY._LIMITED

STATEMENT_DE_COST

PROJECT - SHERPA 1, SHERPA 2 DATE: NOVEMBER 1983 TYPE OF REPORT - Geochem a) Wages: No. of Days - 20 mandays Rate per Day - \$97. 09 Dates From - October 1 - October 31 1983 Total Wages - 20 X \$97.09 \$1,941.74 b) Food and Accommodation: No. of Days - 20 Rate per Day - \$45.00 Dates From - October 1 - October 31, 1983 Total Cost - 20 X \$45.00 \$ 900.00 c) Transportation: No. of Days -12 Rate per Day - \$30.00 Dates From - October 1 - October 31, 1983 Total cost 12 X \$30.00 360.00 d) Analysis 972.00 e) Cost of Preparation of Report: Author 158.00 Drafting 79.00 Typing 79.00 e) Other: Supervision \$ 300.00 Total Cost \$4,789.74

UNIT_COSTS

1

Unit Costs for Geochem

No. of Days -	20
No. of Units -	243 Samples
Unit Costs -	19.71 / Sample

Total cost 243 X \$19.71

\$4,789.74

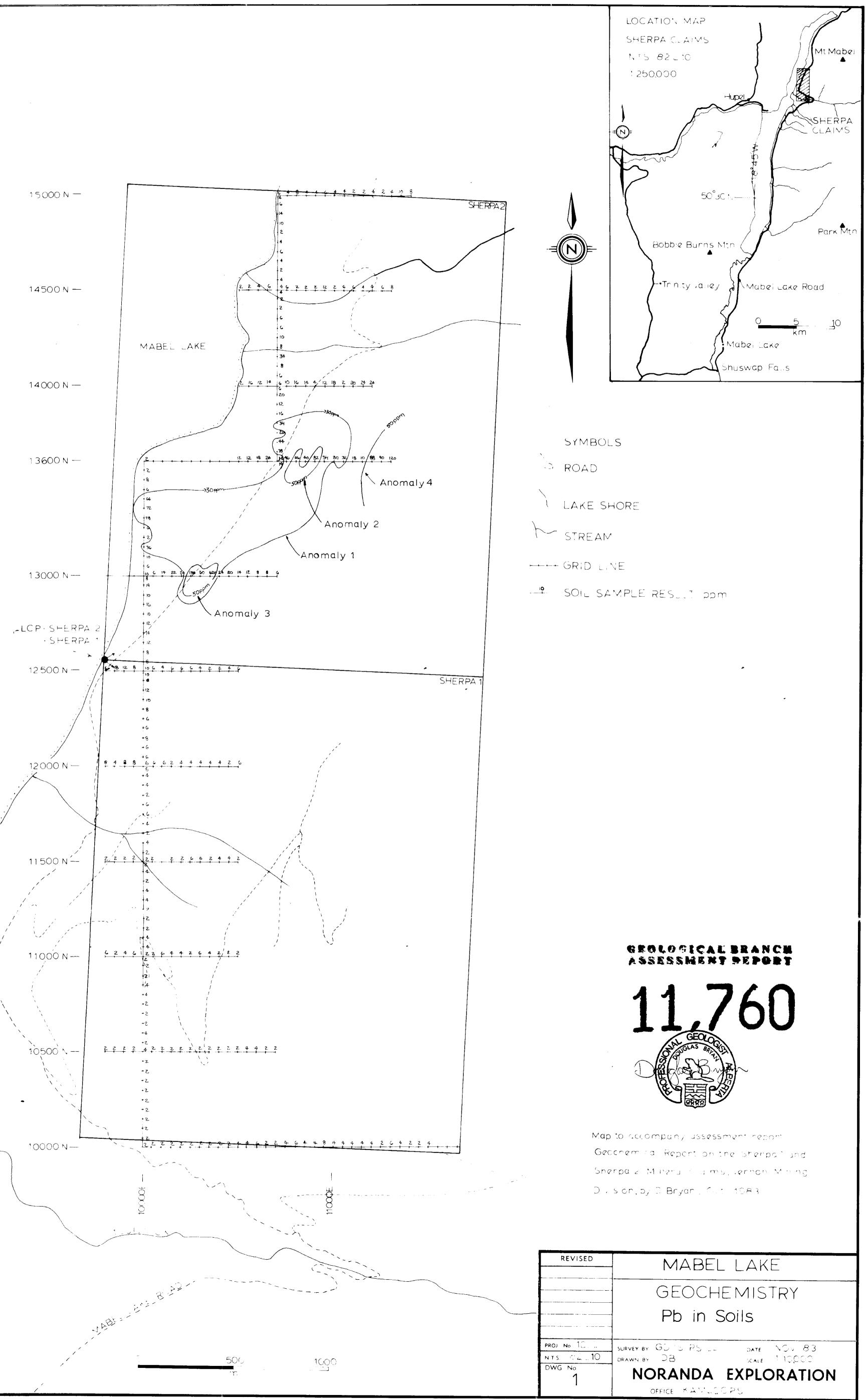
NORANDA EXPLORATION COMPANY, LIMITED

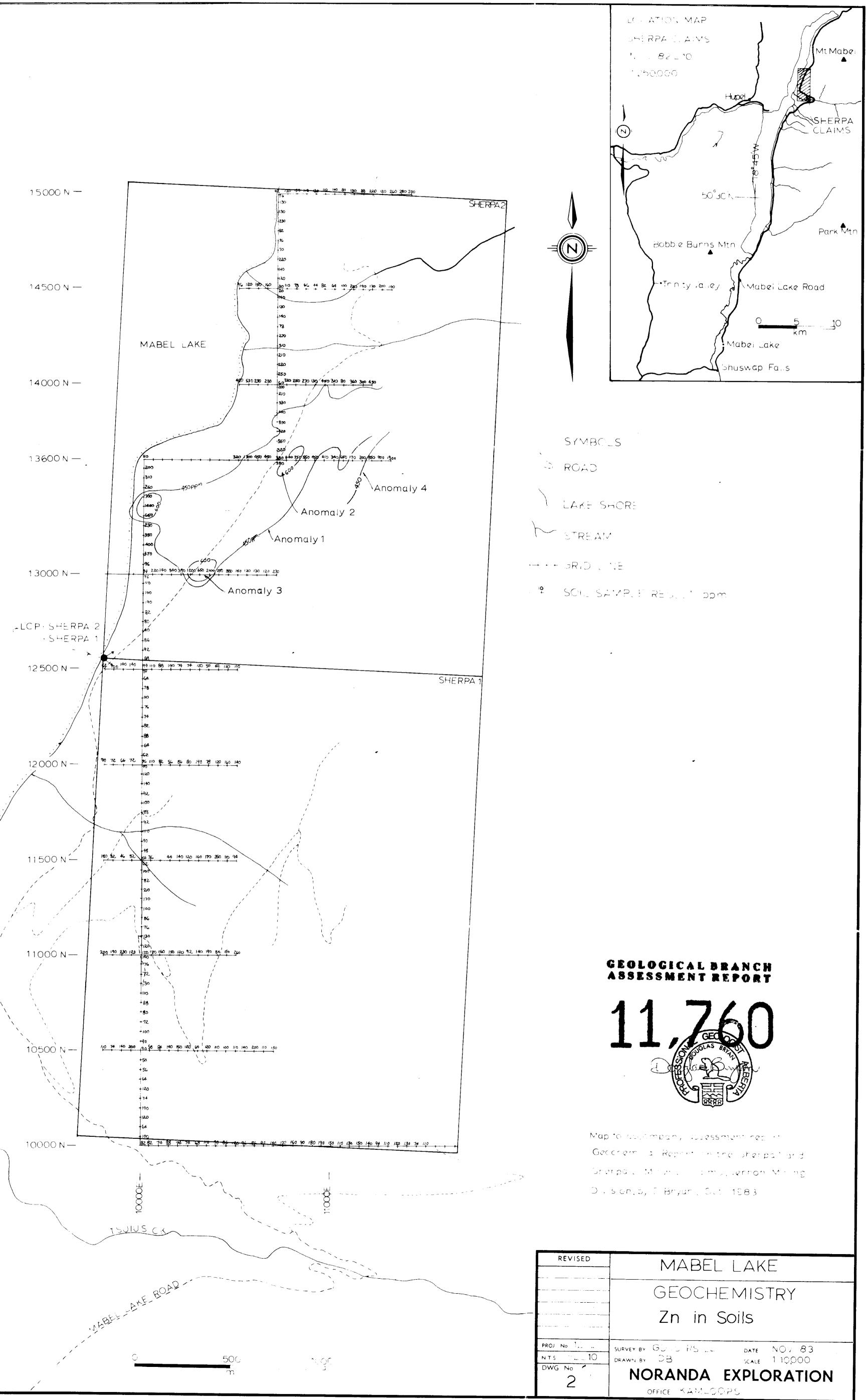
DETAILS OF ANALYSES COSTS

243 Soils Samples - 5 Elements Cu, Pb, Zn, Ag, Au \$_972.00

APPENDIX 3

STATEMENT OF QUALIFICATIONS


STATEMENT OF QUALIFICATIONS


I, Douglas Bryan of the City of Kamloops, Province of British Columbia, do certify that:

- I am a graduate of the University of Alberta with a Masters of Science in Geology.
- I am a Professional Geologist registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.

3. I have been a permanent emproy of the oranda Exploration Company, Limited since Marth 019798

> Douglas Bry BAR District Geologist Noranda Exploration Company, Limited (No Personal Liability)

